控制系统时域与频域性能指标的联系

合集下载

自动控制原理试题库(含答案).

自动控制原理试题库(含答案).
A、 线性系统稳定的充分必要条件是:系统闭环特征方程的各项系数都为正数;
三、(8分)写出下图所示系统的传递函数 (结构图化简,梅逊公式均可)。
四、(共20分)设系统闭环传递函数 ,试求:
1、 ; ; ; 时单位阶跃响应的超调量 、调节时间 及峰值时间 。(7分)
2、 ; 和 ; 时单位阶跃响应的超调量 、调节时间 和峰值时间 。(7分)
3、根据计算结果,讨论参数 、 对阶跃响应的影响。(6分)
4、判断一个闭环线性控制系统是否稳定,可采用、、
等方法。
5、设系统的开环传递函数为 ,则其开环幅频特性为,
相频特性为。
6、PID控制器的输入-输出关系的时域表达式是,
其相应的传递函数为。
7、最小相位系统是指。
二、选择题(每题 2 分,共20分)
1、关于奈氏判据及其辅助函数 F(s)= 1 + G(s)H(s),错误的说法是 ( )
试题四
一、填空题(每空 1 分,共15分)
1、对于自动控制系统的性能要求可以概括为三个方面,即:、和,其中最基本的要求是。
2、若某单位负反馈控制系统的前向传递函数为 ,则该系统的开环传递函数为。
3、能表达控制系统各变量之间关系的数学表达式或表示方法,叫系统的数学模型,在古典控制理论中系统数学模型有、等。
五、已知系统开环传递函数为 均大于0,试用奈奎斯特稳定判据判断系统稳定性。(16分)[第五题、第六题可任选其一]
六、已知最小相位系统的对数幅频特性如图3所示。试求系统的开环传递函数。(16分)
七、设控制系统如图4,要求校正后系统在输入信号是单位斜坡时的稳态误差不大于0.05,相角裕度不小于40o,幅值裕度不小于10 dB,试设计串联校正网络。( 16分)

论ts和ωc的关系

论ts和ωc的关系

论自动控制系统中频域和时域快速性的关系通常我们都用截止频率c ω作为开环频域指标来分析系统的快速性,而在时域中我们通常用调节时间s t 来分析系统的快速性,但是对于他们之间的关系我们却没有一个明确的说法。

下面我们来讨论s t 和ωc 之间的关系。

通常人们都简单的认为:在控制系统中,系统的调节时间s t 和截止频率c ω之间是成反比的关系,即随着ωc 的增大s t 减小,但事实并非如此。

下面我们分别从二阶系统和高阶系统来反正这个结论的错误性。

一,对于二阶系统如图1-1是一个典型二阶系统的结构图,我们可以得出它的传递函数为 G(S) =(2)n K s s +ζω (0 < ζ < 1)相应的闭环传递函数为 Φ(s) =22n KS S K+ζω+若改变开环增益K 的大小,截止频率ωc 和调整时间s t 会怎么变化呢?是否截止频率增大,调整时间一定减小呢?下面我们来证明。

由图1-1我们可得系统的开环频率特性为 G(j ω) =)2(n j j K ζωωω+ (1-1)由式(1-1)可得开环幅频和相频特性分别为 )(ωA(1-2))(ωϕ=90arctan 2nω--ζω (1-3)在ω=ωc 处,)(c ωA =1,即 )(c ωA= 2K=1得42222cn c 40K ω+ζωω-= 对于典型二阶系统来说K=2nω所以上式可化简为 图1-1 二阶系统结构图图1-2 二阶系统的根轨迹图c n ω=ω (1-4)所以当开环增益K 增大时,n ω在增大,故截止频率c ω增大!若以系统调节时间s t 随着c ω的增大而减小的常规说法来看,此时系统的调节时间s t 应该是减小的,事情真的是这样吗?下面我们来看看随着K 的变化s t 是怎么变化的。

从根轨迹方面来说:我们可以由系统的结构图(图1-1)作出如右图1-2所示的系统根轨迹图。

从右图中,我们可以明显的看出,两条渐近线到虚轴的距离始终不会改变,都是n ζω。

频域性能指标和时域性能指标的关系

频域性能指标和时域性能指标的关系

5.7 频域性能指标和时域性能指标的关系频率响应法是通过系统的开环频率特性和闭环频率特性的一些特征量间接地表征系统的瞬(暂)态响应的性能,因而这些特征量又被称为频域性能指标。

常用的频域性能指标有幅值裕度、相位裕度、谐振峰值、谐振频率和频带宽度等。

虽然这些指标没有时域性能指标那样直观,但在二阶系统中,它们与时域性能指标有着确定的对应关系,对于高阶系统,也有近似的关系。

5.7.1频域指标和二阶系统的过渡过程指标设二阶单位反馈系统的方框图如图5-80所示。

图 5-80 二阶单位反馈系统的方框图此系统的闭环传递函数为2222)()(nn n s s s X s Y ωξωω++= 其中ξ为阻尼比,n ω为无阻尼自然振荡频率。

令s j =ω代入上式,可得系统的闭环频率响应为:ja n nM j j X j Y e 2)1(1)()(22=+-=ωωξωωωω式中 M nn =-+1122222()()ωωξωω2212a r c t a n nn ωωωωξα--= 根据式(5-67)可知,当00707≤≤ξ.时,在谐振频率ωr 处,M 出现峰值ωωξr n =-122M r =-1212ξξ二阶系统的闭环频率特性如图5-81所示。

图 5-81 图5-80所示系统的闭环频率特性对于二阶系统,在012≤<ξ时,频率特性的谐振峰值M r 可以反映系统的阻尼系数ξ,而其谐振频率ωr 可以反映给定ξ对应的自然频率ωn ,从而也能反映响应速度。

这样就可把二阶系统闭环频率特性的M r 和ωr 当作性能指标用。

系统的频带宽度(带宽)由图5-81可见,当ωω>r 时,闭环频率特性的幅值M 单调下降。

当闭环频率特性的幅值下降到707.021==M 时,或者说,当闭环频率特性的分贝值下降到零频率时分贝值以下3分贝时,对应的频率ωb 称为截止频率,又称带宽频率。

此时有b j M j M ωωω>-<3)0(lg 20)(lg 20对于0)0(lg 20=j M ,有b j M ωωω>-<3)(lg 20系统对频率高于ωb 的输入衰减很大,只允许频率低于ωb 的输入通过。

自控理论 4-6频域指标与时域指标的关系

自控理论 4-6频域指标与时域指标的关系

2 −40
ω
作业
4 - A -14、 4 -B - 4 、
K s(Ts + 1)
c(t)
例:已知最小相位系统的开环对数幅频特 性曲线,试求: 性曲线,试求:
L(ω)
(1) 开环传递函数 开环传递函数G(s); ; (2) 剪切频率 ωc ; (3) 相角裕量 γ(ωc); (4) r(t)=(1/4)t2 时的 ess 。
6 0
−40 −20 0.5
ωc
令 G ( jω c ) = 1,
解得
ω c = ω n − 2ζ 2 + 4ζ 4 + 1
γ = 180 + ϕ (ω c ) = tg
0 −1
(4 − 30)
(4 − 31)
求γ
2ζω n
ωc
将式(4-30)代入式 代入式(4-31)得 将式 代入式 得
求γ
γ = 180 + ϕ (ω c ) = tg
2.
r(t)
25 s( s + 6)
c(t)
ωn2 =25 得 ζ =0.6 ωn=5
2ζ = 59.2 0
γ = tg
−1
− 2ζ 2 + 4ζ 4 + 1
ω c = ω n − 2ζ 2 + 4ζ 4 + 1 = 3.58
3.
Mr =
1 2ζ 1 − ζ
2
= 1.04
ω r = ω n 1 − 2ζ 2 = 2.65
结论
8 t sω c = tgγ
(4 − 36)
( 2) ω c与ζ、ω n 都有关,当ζ 一定,ω c ↑→ ω n ↑→ t s ↓ 一定,

自动控制原理试题库(含答案)

自动控制原理试题库(含答案)

一、填空题(每空 1 分,共15分)1、反馈控制又称偏差控制,其控制作用是通过给定值与反馈量的差值进行的。

2、复合控制有两种基本形式:即按输入的前馈复合控制和按扰动的前馈复合控制。

3、两个传递函数分别为G 1(s )与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G (s)为G1(s )+G2(s )(用G 1(s)与G 2(s) 表示)。

4、典型二阶系统极点分布如图1所示,则无阻尼自然频率=nω,阻尼比=ξ,0.7072= 该系统的特征方程为2220s s ++= ,该系统的单位阶跃响应曲线为衰减振荡。

5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为1050.20.5s s s s+++. 6、根轨迹起始于开环极点,终止于开环零点.7、设某最小相位系统的相频特性为101()()90()tg tg T ϕωτωω--=--,则该系统的开环传递函数为(1)(1)K s s Ts τ++.8、PI 控制器的输入-输出关系的时域表达式是1()[()()]p u t K e t e t dt T =+⎰, 其相应的传递函数为1[1]p K Ts +,由于积分环节的引入,可以改善系统的稳态性能.1、在水箱水温控制系统中,受控对象为水箱,被控量为水温。

2、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为闭环控制系统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。

3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统稳定。

判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用奈奎斯特判据。

4、传递函数是指在零初始条件下、线性定常控制系统的输出拉氏变换与输入拉氏变换之比。

自动控制原理期末考试卷含答案

自动控制原理期末考试卷含答案

自动控制原理期末考试卷与答案一、填空题〔每空 1 分,共20分〕1、对自动控制系统的根本要求可以概括为三个方面,即: 稳定性 、快速性和 准确性 。

2、控制系统的 输出拉氏变换与输入拉氏变换在零初始条件下的比值 称为传递函数。

3、在经典控制理论中,可采用 劳斯判据(或:时域分析法)、根轨迹法或奈奎斯特判据(或:频域分析法) 等方法判断线性控制系统稳定性。

4、控制系统的数学模型,取决于系统 结构 和 参数, 与外作用及初始条件无关。

5、线性系统的对数幅频特性,纵坐标取值为20lg ()A ω(或:()L ω),横坐标为lg ω 。

6、奈奎斯特稳定判据中,Z = P - R ,其中P 是指 开环传函中具有正实部的极点的个数,Z 是指 闭环传函中具有正实部的极点的个数,R 指 奈氏曲线逆时针方向包围 (-1, j0 )整圈数。

7、在二阶系统的单位阶跃响应图中,s t 定义为 调整时间 。

%σ是超调量 。

8、设系统的开环传递函数为12(1)(1)Ks T s T s ++,那么其开环幅频特性为2212()()1()1KA T T ωωωω=+⋅+,相频特性为01112()90()()tg T tg T ϕωωω--=---。

9、反应控制又称偏差控制,其控制作用是通过 给定值 与反应量的差值进行的。

10、假设某系统的单位脉冲响应为0.20.5()105tt g t ee --=+,那么该系统的传递函数G(s)为1050.20.5s s s s+++。

11、自动控制系统有两种根本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为 开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为 闭环控制系统;含有测速发电机的电动机速度控制系统,属于 闭环控制系统。

12、根轨迹起始于开环极点,终止于开环零点。

13、稳定是对控制系统最根本的要求,假设一个控制系统的响应曲线为衰减振荡,那么该系统 稳定。

自动控制原理试卷及答案

自动控制原理试卷及答案

自动控制原理试题及答案一、填空题(每空 1 分,共15分)1、反馈控制又称偏差控制,其控制作用是通过 与反馈量的差值进行的.2、复合控制有两种基本形式:即按 的前馈复合控制和按 的前馈复合控制。

3、两个传递函数分别为G 1(s )与G 2(s )的环节,以并联方式连接,其等效传递函数为()G s ,则G (s )为 (用G 1(s )与G 2(s) 表示).4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率=n ω , 阻尼比=ξ ,该系统的特征方程为 , 该系统的单位阶跃响应曲线为 .5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为 。

6、根轨迹起始于 ,终止于 .7、设某最小相位系统的相频特性为101()()90()tg tg T ϕωτωω--=--,则该系统的开环传递函数为 .8、PI 控制器的输入-输出关系的时域表达式是 ,其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。

二、选择题(每题 2 分,共20分)1、采用负反馈形式连接后,则 ( )A 、一定能使闭环系统稳定;B 、系统动态性能一定会提高;C 、一定能使干扰引起的误差逐渐减小,最后完全消除;D 、需要调整系统的结构参数,才能改善系统性能。

2、下列哪种措施对提高系统的稳定性没有效果 ( )。

A 、增加开环极点;B 、在积分环节外加单位负反馈;C 、增加开环零点;D 、引入串联超前校正装置。

3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平面闭环极点数2=Z 。

4、系统在2)(t t r =作用下的稳态误差∞=ss e ,说明 ( )A 、 型别2<v ;B 、系统不稳定;C 、 输入幅值过大;D 、闭环传递函数中有一个积分环节。

时域和频域的关系

时域和频域的关系

信号的频域在电子学、控制系统及统计学中,频域是指在对函数或信号进行分析时,分析其和频率有关部份,而不是和时间有关的部份,和时域一词相对。

函数或信号可以透过一对数学的运算子在时域及频域之间转换。

例如傅里叶变换可以将一个时域信号转换成在不同频率下对应的振幅及相位,其频谱就是时域信号在频域下的表现,而反傅里叶变换可以将频谱再转换回时域的信号。

以信号为例,信号在时域下的图形可以显示信号如何随着时间变化,而信号在频域下的图形(一般称为频谱)可以显示信号分布在哪些频率及其比例。

频域的表示法除了有各个频率下的大小外,也会有各个频率的相位,利用大小及相位的资讯可以将各频率的弦波给予不同的大小及相位,相加以后可以还原成原始的信号。

在频域的分析中,常会用频谱分析仪来将实际的信号转换为频域下的频谱。

频域,尤其在射频和通信系统中运用较多,在高速数字应用中也会遇到频域。

频域最重要的性质是:它不是真实的,而是一个数学构造。

时域是惟一客观存在的域,而频域是一个遵循特定规则的数学范畴。

正弦波是频域中唯一存在的波形,这是频域中最重要的规则,即正弦波是对频域的描述,因为时域中的任何波形都可用正弦波合成。

这是正弦波的一个非常重要的性质。

然而,它并不是正弦波的独有特性,还有许多其他的波形也有这样的性质。

正弦波有四个性质使它可以有效地描述其他任一波形:(1)时域中的任何波形都可以由正弦波的组合完全且惟一地描述。

(2)任何两个频率不同的正弦波都是正交的。

如果将两个正弦波相乘并在整个时间轴上求积分,则积分值为零。

这说明可以将不同的频率分量相互分离开。

(3)正弦波有精确的数学定义。

(4)正弦波及其微分值处处存在,没有上下边界。

使用正弦波作为频域中的函数形式有它特别的地方。

若使用正弦波,则与互连线的电气效应相关的一些问题将变得更容易理解和解决。

如果变换到频域并使用正弦波描述,有时会比仅仅在时域中能更快地得到答案。

而在实际中,首先建立包含电阻,电感和电容的电路,并输入任意波形。

频域响应和时域响应之间的关系

频域响应和时域响应之间的关系
*
5.8 MATLAB在频域分析中的运用
5.8.1 用MATLAB绘制频率响应图
本节介绍如何用MATLAB来绘制Bode图,再次讨论频率性能指标与时域性能的联系,并举例说明频域内的控制系统设计。 本节介绍的MATLAB函数有bode函数和 logspace函数。其中,bode函数用于绘制Bode图, logspace函数用于生成频率点数据是按照数的相等间隔生成的。在这些频率点上,计算机将根据 Bode图的需要,进行相应的计算。
*
当系统无差度 时,由式(5—140)得 (5-141) 综上分析,对于无差度 的无差度系统,闭环幅频特性的零频值 ;而对于无差度 的有差系统,闭环幅频率特性的零频值 。式(5—141)说明, 系统开环放大系数K越大, 闭环幅频特性的零频值 愈接近于1,有差系统的稳态误差将愈小。
上式表明,选择300~600 的相角裕度时,对应的系统阻 尼比约为0.3~0.6。
图5-72 相角裕度和阻尼比的关系
*
式中 为系统的被控信号, 分别是系统的闭环频率特性和 控制信号的频率特性。一般情况下,直接应用式(5—159)求解高阶系统的 时域响应是很困难的。在第三章和第四章我们介绍了主导极点的概念,对于 具有一对主导极点的高阶系统,可用等效的二阶系统来表示,在这种情况下, 可以利用前面介绍的方法对高阶系统进行分析。实践证明,只要满足主导极 点的条件,分析的结果是令人满意的。对于不具有一对主导极点的高阶系统, 除了利用式(5—159)的傅立叶变换外,尚无简便的方法可循。
(3)谐振频率 和截止频率 的大小反映了系统的响应速度。 与 的值愈大,系统响应速度愈快,反之愈慢。但频带太宽( 的值大),系统对高频噪声的滤波性能差,因此在系统设计中,必须兼顾系统的快速性和抗干扰能力,妥善处理好这一对矛盾。

控制工程(自动控制)第十八课 频率特性与时域指标

控制工程(自动控制)第十八课 频率特性与时域指标

闭环频率特性主要性能指标
带宽频率ω 带宽频率ωb:当闭环幅频特性下降到频率为零时的分 贝值以下3分贝时,对应的频率称为带宽频率ω 贝值以下3分贝时,对应的频率称为带宽频率ωb . 频率范围(0,ωb)称为系统的带宽. 频率范围( 称为系统的带宽.
ω > ωb
20 lg Φ ( jω ) < 20 lg Φ ( j 0) 3
πζ / 1ζ 2
ζ =
1 1 1 2 Mr 2
π
2 M r M r 1 2 M r + M r 1
σ% = e
× 100%
ts =
3.5
ζωn
( = 0.05, 0 < ζ < 0.9)
因此,若知道频域指标中的任两个, 因此,若知道频域指标中的任两个,就可解算 从而求出时域指标.反之, 出ζ和ωn,从而求出时域指标.反之,给出时域指 标的任两个,就可确定闭环频域指标. 标的任两个,就可确定闭环频域指标.
高阶系统
1 Mr = ( 35 ° ≤ γ ≤ 90 ° ) sin γ σ = 0 . 16 + 0 . 4 ( M r 1) (1 ≤ M ts = kπ ≤ 1 .8 )
r
ωc
(1 ≤ M
r
k = 2 + 1 . 5 ( M r 1) + 2 . 5 ( M r 1) 2
≤ 1 .8 )
2 b 2 2 n
1 = 20 lg 2
ω jα ( ω ) Φ ( jw) = = M (ω )e 2 2 ( jω ) + 2ζω n ( jω ) + ωn
2 n
M (ω ) =
1
ωb2 2 ωb 2 [1 2 ] + [2ζ ] ωn ωn

自动控制原理 第五章 控制系统的频域分析法

自动控制原理 第五章 控制系统的频域分析法


uos (t) = A ⋅ A(ω)sin[ω t + ϕ(ω)]
(5.2)
结论:
(1) 稳态解与输入信号为同一频率的正弦量;
(2) 当ω 从 0 向∞变化时,其幅值之比 A(ω) 和相位差ϕ(ω) 也将随之变化,其变化规
律由系统的固有参数 RC 决定; (3) 系统稳态解的幅值之比 A(ω) 是ω 的函数,其比值为
三角函数形式: G( jω) = A(ω)[cosϕ(ω) + jsinϕ(ω)] 。
式中 A(ω) = G( jω) 是幅值比,为ω 的函数,称为幅频特性;
ϕ(ω) = ∠G( jω) 是相位差,为ω 的函数,称为相频特性; U (ω) 是 G( jω) 的实部,为ω 的函数,称为实频特性; V (ω) 是 G( jω) 的虚部,为ω 的函数,称为虚频特性。
s + p1 s + p2
s + pn s + jω s − jω
∑n
=
Ci
+
B
+
D
i=1 s + pi s + jω s − jω
(5.4)
式中 Ci , B , D 均为待定系数。
将(5.4)式进行拉氏反变换,得系统的输出响应为
n
∑ c(t) = Cie− pi t + (Be− jω t + Dejω t ) = ct (t) + cs (t) i =1
C( jω) = G( jω)R( jω)
因而,得
G( jω) = C( jω) R( jω)
(5.11)
事实上,当ω 从 0 向∞变化时, G( jω) 将对不同的ω 作出反映,这种反映是由系统自

控制系统的时域与频域特性分析

控制系统的时域与频域特性分析
傅里叶变换
将时域信号转换为频域信号,通过分析频谱特性来了解信号的频率组成和变化规 律。
频域分析
通过分析系统的频率响应,了解系统在不同频率下的性能表现,有助于揭示系统 的内在特性。
控制系统设计中的时频转换
时频转换
在控制系统设计中,时频转换是一种 重要的技术手段,用于将时域特性与 频域特性相互转换,以便更好地进行 系统分析和设计。
VS
详细描述
时频联合分析结合了时域和频域分析的方 法,通过同时考虑系统的时域和频域特性 ,全面了解系统的动态特性和稳定性。例 如,对于一个控制系统,可以通过时频联 合分析计算系统的时频响应曲线,从而更 全面地评估系统的性能和稳定性。
06 结论
控制系统的时域与频域特性总结
稳定性
通过分析系统的极点和零点,可以判断系统 的稳定性。极点位于复平面的左半部分时, 系统不稳定;而零点同样影响稳定性,需要 综合考虑。
稳定性
系统在受到扰动后恢复平衡状态 的能力,分为稳定、临界稳定和 不稳定三种状态。
阶跃响应与冲激响应
阶跃响应
系统在阶跃输入信号下的动态行为, 反映系统的动态性能和调节能力。
冲激响应
系统在冲激输入信号下的动态行为, 用于评估系统的暂态性能和稳态误差 。
时域性能指标
上升时间
系统输出从稳态值的 10%上升到90%所需的
快速性
系统的快速性主要通过调节时间常数实现, 时间常数小的系统响应速度快。
控制系统的时域与频域特性总结
• 准确性:系统的准确性由最大误差决定,可通过优化系统 参数减小误差。
控制系统的时域与频域特性总结
带宽
带宽反映了系统对不同频率信号的响应能力,带 宽越大,系统对高频信号的响应越好。

自动控制原理试题有参考答案解析

自动控制原理试题有参考答案解析

⾃动控制原理试题有参考答案解析⼀、填空题(每空 1 分,共15分)1、反馈控制⼜称偏差控制,其控制作⽤是通过给定值与反馈量的差值进⾏的。

2、复合控制有两种基本形式:即按输⼊的前馈复合控制和按扰动的前馈复合控制。

3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联⽅式连接,其等效传递函数为()G s ,则G(s)为G 1(s)+G 2(s)(⽤G 1(s)与G 2(s) 表⽰)。

4、典型⼆阶系统极点分布如图1所⽰,则⽆阻尼⾃然频率=n ω 1.414 ,阻尼⽐=ξ 0.707 ,该系统的特征⽅程为 2220s s ++= ,该系统的单位阶跃响应曲线为衰减振荡。

5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为1050.20.5s s s s+++。

6、根轨迹起始于开环极点,终⽌于开环零点。

7、设某最⼩相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传递函数为(1)(1)K s s Ts τ++。

1、在⽔箱⽔温控制系统中,受控对象为⽔箱,被控量为⽔温。

2、⾃动控制系统有两种基本控制⽅式,当控制装置与受控对象之间只有顺向作⽤⽽⽆反向联系时,称为开环控制系统;当控制装置与受控对象之间不但有顺向作⽤⽽且还有反向联系时,称为闭环控制系统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。

3、稳定是对控制系统最基本的要求,若⼀个控制系统的响应曲线为衰减振荡,则该系统稳定。

判断⼀个闭环线性控制系统是否稳定,在时域分析中采⽤劳斯判据;在频域分析中采⽤奈奎斯特判据。

4、传递函数是指在零初始条件下、线性定常控制系统的输出拉⽒变换与输⼊拉⽒变换之⽐。

5、设系统的开环传递函数为2(1)(1)K s s Ts τ++,则其开环幅频特性为2222211K T τωωω++;相频特性为arctan 180arctan T τωω--(或:2180arctan1T T τωωτω---+) 。

控制系统的设计与校正

控制系统的设计与校正

(c)r18 0
γ—为要求达到的相角裕度。 —是为补偿滞后网络的副作用而提供的相角裕度的修正量,一般取
5°~12°。
原系统中对应 处的频率即为(校c正r)后系统的剪切频率ω。
(4)求滞后网络的β值。 未校正系统在ω的对数幅频值为L0(ω)应满足
L 0(c)r2l0 g)(0 由此式求出β值。
了平系稳统性的将截有止所频下率降,获还得会足降够低的系快统速抗性高。频干扰的能力。
Ts 1
Xo s
Gs Ts 1
L
20 40
20lg Kg
20
11
11
c1 c2
T2 T
20lg
T1 T
60
90 180
80
二、滞后校正 1、滞后网络
Xi s
R1 R2 C
Gc
s
Xos Xi s
Phase Margin (deg): 18
At frequency (rad/sec): 8.91
Delay Margin (sec): 0.0508
Closed Loop Stable? Yes
-135
At frequency (rad/sec): 6.17
Closed Loop Stable? Yes
用希望对数频率特性进行校正装置的设计
G *(S)G 0(S)G c(S)
只要求得希望对数幅频特性与原系统固有开环对数幅频 特性之差即为校正装置的对数幅频特性曲线,从而可 以确定(s),进而确定校正参数和电路
G* (S )为希望的开环传递函数 Gc (S)为校正装置的传递函数 G0 (S)为系统固有的传递函数
各种校正装置的比较:
超前校正通过相位超前特性获得所需要的结果;滞后校正则是通过高频衰减特性获得所需要的结 果;而在某些问题中,只有同时采用滞后校正和超前校正才能获得所需要的结果。

控制系统时域和频域性能指标的联系

控制系统时域和频域性能指标的联系

控制系统时域和频域性能指标的联系首先,稳态误差与系统的频率响应特性有直接的关系。

稳态误差是指系统在稳态下的输出与期望输出之间的差异。

对于一个给定的输入信号,系统的稳态误差取决于系统的静态增益以及输入信号的频率。

频域分析可以帮助我们理解系统的静态增益以及系统对不同频率信号的响应。

在频域中,系统的增益可以用频率响应函数(Bode图)表示。

通过分析频率响应函数,可以了解系统在不同频率上对输入信号的衰减或放大程度,进而得出稳态误差的大小。

其次,超调量、上升时间和调整时间与系统的带宽有关。

超调量是指系统在达到稳态之前超过期望值的最大幅度,上升时间是指系统从初始状态到达稳态的时间,调整时间是指系统在超调量和上升时间基础上调整到稳态的时间。

这些性能指标反映了系统的动态响应特性。

在频域中,带宽可以用系统的频率响应曲线上的3dB截止频率表示。

带宽越大,系统对输入信号的高频成分的放大程度越高,超调量越小,上升时间和调整时间也越短。

另外,增益裕度和相位裕度与系统的稳定性有关。

增益裕度是指系统在保持稳定性的前提下,可以承受的最大增益变化。

相位裕度是指系统在保持稳定性的前提下,可以承受的最大相位变化。

在频域中,增益裕度和相位裕度可以通过系统的频率响应曲线来确定。

如果增益裕度或相位裕度较小,则可能导致系统的不稳定性。

自动控制原理试卷及答案

自动控制原理试卷及答案

自动控制原理试题及答案一、填空题(每空 1 分,共15分)1、反馈控制又称偏差控制,其控制作用是通过 与反馈量的差值进行的。

2、复合控制有两种基本形式:即按 的前馈复合控制和按 的前馈复合控制。

3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s )为 (用G 1(s )与G 2(s) 表示)。

4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率=n ω , 阻尼比=ξ ,该系统的特征方程为 , 该系统的单位阶跃响应曲线为 。

5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s )为 。

6、根轨迹起始于 ,终止于 。

7、设某最小相位系统的相频特性为101()()90()tg tg T ϕωτωω--=--,则该系统的开环传递函数为 .8、PI 控制器的输入-输出关系的时域表达式是 ,其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。

二、选择题(每题 2 分,共20分) 1、采用负反馈形式连接后,则 ( )A 、一定能使闭环系统稳定;B 、系统动态性能一定会提高;C 、一定能使干扰引起的误差逐渐减小,最后完全消除;D 、需要调整系统的结构参数,才能改善系统性能.2、下列哪种措施对提高系统的稳定性没有效果 ( ).A 、增加开环极点;B 、在积分环节外加单位负反馈;C 、增加开环零点;D 、引入串联超前校正装置。

3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( )A 、稳定;B 、单位阶跃响应曲线为单调指数上升;C 、临界稳定;D 、右半平面闭环极点数2=Z 。

4、系统在2)(t t r =作用下的稳态误差∞=ss e ,说明 ( )A 、 型别2<v ;B 、系统不稳定;C 、 输入幅值过大;D 、闭环传递函数中有一个积分环节.5、对于以下情况应绘制0°根轨迹的是( )A 、主反馈口符号为“-” ;B 、除r K 外的其他参数变化时;C 、非单位反馈系统;D 、根轨迹方程(标准形式)为1)()(+=s H s G 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制系统时域与频域性能指标的联系经典控制理论中,系统分析与校正方法一般有时域法、复域法、频域法。

时域响应法是一种直接法,它以传递函数为系统的数学模型,以拉氏变换为数学工具,直接可以求出变量的解析解。

这种方法虽然直观,分析时域性能十分有用,但是方法的应用需要两个前提,一是必须已知控制系统的闭环传递函数,另外系统的阶次不能很高。

如果系统的开环传递函数未知,或者系统的阶次较高,就需采用频域分析法。

频域分析法不仅是一种通过开环传递函数研究系统闭环传递函数性能的分析方法,而且当系统的数学模型未知时,还可以通过实验的方法建立。

此外,大量丰富的图形方法使得频域分析法分析高阶系统时,分析的复杂性并不随阶次的增加而显著增加。

在进行控制系统分析时,可以根据实际情况,针对不同数学模型选用最简洁、最合适的方法,从而使用相应的分析方法,达到预期的实验目的。

系统的时域性能指标与频域性能指标有着很大的关系,研究其内在联系在工程中有着很大的意义。

一、系统的时域性能指标延迟时间t d阶跃响应第一次达到终值h (∞)的50%所需的时间上升时间t r阶跃响应从终值的10%上升到终值的90%所需的时间;对有振荡的系统,也可定义为从0到第一次达到终值所需的时间峰值时间tp阶跃响应越过终值h (∞)达到第一个峰值所需的时间调节时间ts阶跃响应到达并保持在终值h (∞)的±5%误差带内所需的最短时间超调量%σ 峰值h(tp)超出终值h (∞)的百分比,即%σ=()()()∞∞-h h h t p ⨯100%二、系统频率特性的性能指标采用频域方法进行线性控制系统设计时,时域内采用的诸如超调量,调整时间等描述系统性能的指标不能直接使用,需要在频域内定义频域性能指标。

1、零频振幅比M(0):即ω为0时闭环幅频特性值。

它反映了系统 的稳态精度, M(0)越接近于1,系统的精度越高。

M(0)≠1时,表明系统有稳态误差。

2、谐振峰值Mr :为幅频特性曲线的A(ω)的最大值。

一般说来,Mr 的大小表明闭环控制系统相对稳定性的好坏。

Mr 越大,表明系统对某个频率的正弦信号反映强烈,有共振倾向,系统的平稳性较差,相应阶跃响应的超调量越大。

对应的ωr为谐振频率。

3、谐振频率ωr:出现最大值Mmax 时对应的频率。

4、带宽bω幅频特性下降至零频幅比的70.7﹪,或下降3dB 时对应的频率称为带宽(也成为闭环截止频率)。

带宽用于衡量控制系统的快速性,带宽越宽,表明系统复现快速变化信号的能力越强,阶跃响应的上升时间和调节时间就越短。

带宽是控制系统及控制元件的重要性能指标。

三、闭环频域性能指标与时域性能指标的关系1、二阶系统的相互联系对于二阶系统,其频域性能指标和时域性能指标之间有着严格的数学关系(1)、谐振峰值Mr 和时域超调量δ之间的关系幅频特性的谐振峰值Mr在二阶系统Φ(s)=ωωωξn2n222s ++s n中,2(nωM令()=0dM d ωω,得谐振频率=r ωω。

求得幅频特性峰值r M 二阶系统的超调量-%=100%e ξπδ⨯由此可看出,谐振峰值Mr 仅与阻尼比ξ有关,超调量%σ也仅取决于阻尼比ξ。

ξ越小,Mr 增加的越快,这时超调量%σ也很大,超过40%,一般这样的系统不符和瞬态响应指标的要求。

当0.4< ξ<0.707时,Mr 与δ%的变化趋势基本一致,此时谐振峰值Mr=1.2 ~ 1.5,超调量%σ=20% ~30%,系统响应结果较满意。

当ξ>0.707时,无谐振峰值,Mr 与%σ的对应关系不再存在,通常设计时,ξ取在0.4至0.7之间(2)、谐振频率rω与峰值时间p t的关系=rωωt =p πωp t 与rω之积为prt ω由此可看出,当ξ为常数时,谐振频率 r ω与峰值时间 p t 成反比, r ω值愈大,pt 愈小,表示系统时间响应愈快(3)、闭环谐振峰值Mr 和相角裕度γ的关系()()=M()j j eαωφωω ()()=()j G j A eϕωωω0()(180-)()=()=()=()(-cos -sin )j c j c c c c G j A eA eA j ϕωγωωωωγγ0=180+()cγϕω 0()=180-c ϕωγ()()M()==1+()1-()cos -()sin c c c c G j A G j A jA ωωωωωγωγ一般Mr 极大值发生在c ω附近。

()11=0()()sin sin dM A Mr dA ωωωγγ⇒≈⇒≈故1sin Mr γ≈在开环截止频率c ω附近,上述近似程度就越高。

(4)、γ和ξ的关系2()==1()(+2)n c cc c nG j G j j j ωωωωωξω∠2n)1/22=c nωξω2=180+(-90-arctg)=90-arctg =arctg 22ccnnncωωξωγξωξωω得出1/2=arctg 2γξ⎡⎤⎛⎫⎢⎥⎢⎥⎣⎦对于二阶系统,一般要求:0030<<700.27<<0.8γξ⇔2、带宽b ω与时域性能的关系(1)、一阶系统一阶系统的闭环传递函数为1()=1+s TSφ 系统的闭环频率特性为1()=1+j Tj φωω系统的闭环幅频特性为()=()M j ωφω可知,ω=0时幅值为1,即零频振幅比M(0)=1, 则L(0)= 20LgM(0) = 0 闭环截止频率b ω:由b ω的定义知 L(b ω)=L (0)-3=-320()=20b LgM Lgω(b M ω 可解得:=1/b T ω一阶系统中调节时间、上升时间与带宽的关系=2.2tr T =3ts T → =2.2/b tr ω,=3/b ts ω(2)、二阶系统 标准二阶系统的开环传递函数为 2()=(s+2)nn G s s ωξω二阶系统的闭环传递函数为222()=+2+nnns s s ωφξωω闭环频率特性为222222()==()+2++2-nnnnnnj j j j ωωφωωξωωωωξωωω系统的闭环幅频特性为2()=()nM j ωφω可知, ω=0时幅值为1,即零频振幅比M(0)=1,则L(0)= 20LgM(0) = 0闭环截止频率b ω由b ω的定义知 L(b ω)=L (0)-3=-3 可解得:2(=0.707nb M ω=bωω阻尼比不变,自然振荡频率越大,带宽越大;自然振荡频率不变,阻尼比越小,带宽越大;可知带宽与系统响应速度成正比!(3)、带宽b ω与调节时间ts 的关系调整时间 3.5=nts ξω=bωωb ω与ts 之积为 bts ω由此可看出,当阻尼比ξ给定后,闭环截止频率b ω与过渡过程时间s t 成反比关系。

换言之,b ω愈大(频带宽度0 -b ω愈宽),系统的响应速度愈快。

(4)、系统带宽的选择带宽频率是一项重要指标。

其选择要求要既能以所需精度跟踪输入信号,又能拟制噪声扰动信号。

在控制系统实际运行中,输入信号一般是低频信号,而噪声信号是高频信号。

(5)、带宽指标取决于下列因素:a) 对输入信号的再现能力。

大的带宽相应于小的上升时间,即相应于快速特性。

粗略地说,带宽与响应速度成正比。

b) 对高频噪声必要的滤波特性。

为了使系统能够精确地跟踪任意输入信号,系统必须具有大的带宽。

但是,从噪声的观点来看,带宽不应当太大。

因此,对带宽的要求是矛盾的,好的设计通常需要折衷考虑。

具有大带宽的系统需要高性能的元件,因此,元件的成本通常随着带宽的增加而增大。

3、典型二阶系统频域指标与时域指标的关系闭环频域指标:Mr=r ω=b ω=arctgγ)1/22=cωξω闭环阶跃响应时域指标:-%=100%eξπσ⨯tp=/=/(d πωπω=(-)/=(-)/(d tr πβωπβω3.5=(=0.05,0<<0.9)nts ξξω∆因此,若知道频域指标中的任两个,就可解算出ξ,n ω,从而求出时域指标。

反之,给出时域指标的任两个,就可确定闭环频域指标。

ξ-%=100%eσ⨯ξ↑,,,,Mr ts γσ↓↑↓↓,相对稳定性好,超调小,振荡次数少。

,nξω↑不变时,c,,,,nbtr tp ωωω↓↓↓↑↑,系统灵敏度下降。

,nωξ↑不变时,c,,rbωωω↑↑↑,系统灵敏,速度快。

4、高阶系统频域指标与时域指标 谐振峰值 1=sin Mr γ超调量 =0.16+0.4(-1)Mr σ 1 1.8Mr ≤≤调节时间 c=K ts πω2=2+1.5(-1)+2.5(-1)K Mr Mr 1 1.8Mr ≤≤。

相关文档
最新文档