初二数学 因式分解经典练习题100道

合集下载

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)一、填空题(共20题)1、a ²-9b -9b²²=2、2x 2x³³-12x -12x²²+4x =2x ( )3、-27a -27a³³=( )³)³4、2xy 2xy²²-8x -8x³³ = 2x ( )()( )5、(、(x+2y x+2y x+2y)()()(y-2x y-2x y-2x))= -(x+2y x+2y)()()( )6、x (x-y x-y))+y +y((y-x y-x))=7、a-a a-a³³= a (a+1a+1)()()( )8、1600a 1600a²²-100=100-100=100(( )()( ) 9、9a 9a²²+( )+4 =( )²)²1010、(、(、(x+2x+2x+2))x-x-2= (x+2x+2)()()( )1111、、a ³-a =a ( )()( )1212、(、(、( )x ²+4x+16 =( )²)²1313、、3a 3a³³+5a +5a²²+( )=(a+ )()( +2a-4 +2a-4)1414、(、(、( )-2y -2y²² = -2( +1)²)²1515、、x ²-6x-7=-6x-7=((x )()(x x )1616、、3xy+6y 3xy+6y²²+4x +4x²²+8xy=3y( )+4x ( )=( )()( ) 1717、、a ²+3a-10=+3a-10=((a+m a+m)()()(a+n a+n a+n),则),则m= ,n= 1818、、8a 8a³³-b -b³³=(2a-b 2a-b)()()( )1919、、xy+y xy+y²²+mx+my=+mx+my=((y ²+my +my))+( )=( )()( ) 2020、(、(、(x x ²+y +y²)²²)²²)²-4x -4x -4x²²y ²=二、选择题(共32题)1、多项式2a 2a²²+3a+1因式分解等于(因式分解等于( )A 、(、(a+1a+1a+1)()()(a-1a-1a-1))B 、(、(2a+12a+12a+1)()()(2a-12a-12a-1))C 、(、(2a+12a+12a+1)()()(a+1a+1a+1))D 、(、(2a+12a+12a+1)()()(a-1a-1a-1))2、下列各式分解因式正确的是(、下列各式分解因式正确的是( )A 、3x 3x²²+6x+3= 3(x+1x+1)²)²)²B B 、2x 2x²²+5xy-2y +5xy-2y²²=(2x+y 2x+y)()()(x+2y x+2y x+2y)) C 、2x 2x²²+6xy= (2x+32x+3)()()(x+2y x+2y x+2y)) D 、a ²-6=-6=((a-3a-3)()()(a-2a-2a-2))3、下列各式中,能有平方差公式分解因式的是(、下列各式中,能有平方差公式分解因式的是( )A 、4x 4x²²+4B 、(、(2x+32x+32x+3)²)²)² -4 -4(3x 3x²²+2+2)²)²)²C 、9x 9x²²-2xD 、a ²+b +b²²4、把多项式x ²-3x-70因式分解,得(因式分解,得( ) A 、(、(x-5x-5x-5))(x+14) B 、(、(x+5x+5x+5)()()(x-14x-14x-14))C 、(、(x-7x-7x-7)()()(x+10x+10x+10))D 、(、(x+7x+7x+7)()()(x-10x-10x-10))5、已知a+b=0a+b=0,则多项式,则多项式a ³+3a +3a²²+4ab+b +4ab+b²²+b +b³的值是(³的值是(³的值是() A 、0 B 、1 C 、 -2 D 、 26、把4a 4a²²+3a-1因式分解,得(因式分解,得() A 、(、(2a+12a+12a+1)()()(2a-12a-12a-1)) B 、(、(2a-12a-12a-1)()()(a-3a-3a-3))C 、(、(4a-14a-14a-1)()()(a+1a+1a+1))D 、(、(4a+14a+14a+1)()()(a-1a-1a-1))7、下列等式中,属于因式分解的是(、下列等式中,属于因式分解的是() A 、a (1+b 1+b))+b +b((a+1a+1))= (a+1a+1)()()(b+1b+1b+1))B 、2a 2a((b+2b+2))+b +b((a-1a-1))=2ab-4a+ab-bC 、a ²-6a+10 =a (a-6a-6))+10D 、(、(x+3x+3x+3)²)²)²-2-2-2((x+3x+3))=(x+3x+3)()()(x+1x+1x+1))8、2m 2m²²+6x+2x +6x+2x²是一个完全平方公式,则²是一个完全平方公式,则m 的值是(的值是() A 、 0 B 、 ± 32 C 、 ±52 D 、949、多项式3x 3x³³-27x 因式分解正确的是()因式分解正确的是()A 、3x 3x((x ²-9-9))B 、3x 3x((x ²+9) C 、3x 3x((x+3x+3)()()(x-3x-3x-3)) D 、3x 3x((3x-13x-1)()()(3x+13x+13x+1))1010、已知、已知x >0,且多项式x ³+4x +4x²²+x-6=0+x-6=0,则,则x 的值是(的值是( ) A 、1 B 、2 C 、3 D 、41111、多项式、多项式2a 2a²²+4ab+2b +4ab+2b²²+k 分解因式后,它的一个因式是(分解因式后,它的一个因式是(a+b-2a+b-2a+b-2),则),则k 的值是(是() A 、4 B 、-4 C 、8 D 、-81212、对、对、对 a a 4 + 4进行因式分解,所得结论正确的是(进行因式分解,所得结论正确的是() A 、 (a ²+2+2)²)²)² B B 、 (a ²+2+2)) (a ²-2-2))C 、有一个因式为(、有一个因式为(a a ²+2a+2+2a+2))D 、不能因式分解、不能因式分解1313、多项式、多项式a ²(²(m-n m-n m-n))+9+9((n-m n-m)分解因式得()分解因式得()分解因式得() A 、(、(a a ²+9+9)()()(m-n m-n m-n)) B 、(、(m-n m-n m-n)()()(a+3a+3a+3)()()(a-3a-3a-3))C 、(、(a a ²+9+9)()()(m+n m+n m+n))D 、(、(m+n m+n m+n)()()(a+3a+3a+3)²)²)²1414、多项式、多项式m 4-14m -14m²²+1分解因式的结果是(分解因式的结果是() A 、(、(m m ²+4m+1+4m+1)()()(m m ²-4m+1-4m+1)) B 、(、(m m ²+3m+1+3m+1)()()(m m ²-6m+1-6m+1))C 、(、(m m ²-m+1-m+1)()()(m m ²+m+1+m+1))D 、(、(m m ²-1-1)()()(m m ²+1+1))1515、下列分解因式正确的是(、下列分解因式正确的是(、下列分解因式正确的是() A 、-x -x²²+3x = -x (x+3x+3)) B 、x ²+xy+x=x +xy+x=x((x+y x+y))C 、2m 2m((2m-n 2m-n))+n +n((n-2m n-2m))= (2m-n 2m-n)²)²)²D D 、a ²-4a+4=-4a+4=((a+2a+2)()()(a-2a-2a-2))1616、下列等式从左到右的变形,属于因式分解的是(、下列等式从左到右的变形,属于因式分解的是(、下列等式从左到右的变形,属于因式分解的是( )A 、2x 2x((a-b a-b))=2ax-2bxB 、2a 2a²²+a-1=a +a-1=a((2a+12a+1))-1C 、(、(a+1a+1a+1)()()(a+2a+2a+2))= a ²+3a+2D 、3a+6a 3a+6a²²=3a =3a((2a+12a+1))1717、下列各式、下列各式、下列各式① 2m+n 和m+2n ② 3n (a-b )和-a+b③x ³+y ³ 和x ²+xy ④a ²+b ² 和a ²-b ²其中有公因式的是( )A 、① ②B 、 ② ③C 、① ④D 、 ③ ④ 1818、下列四个多项式中,能因式分解的是(、下列四个多项式中,能因式分解的是(、下列四个多项式中,能因式分解的是( )A 、x ²+1B 、 x ²-1C 、 x ²+5yD 、x ²-5y1919、将以下多项式分解因式,结果中不含因式、将以下多项式分解因式,结果中不含因式x-1的是(的是( )A 、1 -x ³B 、x ²-2x+1C 、x (2a+32a+3))-(3-2a 3-2a))D 、2x 2x((m+n m+n))-2-2((m+n m+n))2020、若多项式、若多项式2x 2x²²+ax 可以进行因式分解,则a 不能为(不能为( )A 、0B 、-1C 、1D 、22121、已知、已知x+y= -3,xy=2 ,则x ³y+xy y+xy³的值是(³的值是(³的值是( ) A 、 2 B 、 4 C 、10 D 、202222、、多项式x a -y a 因式分解的结果是(x ²+y +y²)²)(x+y x+y))(x-y x-y)),则a 的值是() A 、2 B 、4 C 、-2 D-42323、对、对8(a ²-2b -2b²)²)²)-a -a -a((7a+b 7a+b))+ab 进行因式分解,其结果为(进行因式分解,其结果为( )A 、(、(8a-b 8a-b 8a-b)()()(a-7b a-7b a-7b))B 、(、(2a+3b 2a+3b 2a+3b)()()(2a-3b 2a-3b 2a-3b))C 、(、(a+2b a+2b a+2b)()()(a-2b a-2b a-2b))D 、(、(a+4b a+4b a+4b)()()(a-4b a-4b a-4b))2424、下列分解因式正确的是(、下列分解因式正确的是(、下列分解因式正确的是( )A 、x ²-x-4=-x-4=((x+2x+2)()()(x-2x-2x-2))B 、2x 2x²²-3xy+y -3xy+y²² =(2x-y 2x-y)()()(x-y x-y x-y))C 、x(x-y)- y(y-x)=(x-y x-y)²)²)²D D 、4x-5x 4x-5x²²+6=+6=((2x+32x+3)()()(2x+22x+22x+2))2525、多项式、多项式a=2x a=2x²²+3x+1+3x+1,,b=4x b=4x²²-4x-3-4x-3,则,则M 和N 的公因式是(的公因式是( )A 、2x+1B 、2x-3C 、x+1D 、x+32626、多项式(、多项式(、多项式(x-2y x-2y x-2y)²)²)²+8xy +8xy 因式分解,结果为(因式分解,结果为( )A 、(、(x-2y+2x-2y+2x-2y+2)()()(x-2y+4x-2y+4x-2y+4))B 、(、(x-2y-2x-2y-2x-2y-2)()()(x-2y-4x-2y-4x-2y-4))C 、(、(x+2y x+2y x+2y)²)²)²D D 、(、(x-2y x-2y x-2y)²)²)²2727、下面多项式、下面多项式、下面多项式 ① x ²+5x-50 ②x ³-1③ x ³-4x ④3x ²-12他们因式分解后,含有三个因式的是(他们因式分解后,含有三个因式的是() A 、① ② 、 B 、③ ④ C 、 ③ D 、④28、已知、已知x= 12+1,则代数式(,则代数式(x+2x+2x+2)()()(x+4x+4x+4))+x +x²²-4的值是(的值是( ) A 、4+2 2 B 、4-2 2 C 、2 2 D 、4 22929、下列各多项式中,因式分解正确的(、下列各多项式中,因式分解正确的(、下列各多项式中,因式分解正确的( ) A 、4x 4x²² -2 =(4x-24x-2))x ² B 、1-x 1-x²²=(1-x 1-x)²)²)² C 、x ²+2 = (x+2x+2)()()(x+1x+1x+1)) D 、x ²-1=-1=((x+1x+1)()()(x-1x-1x-1))3030、若、若x ²+7x-30与x ²-17x+42有共同的因式x+m x+m,则,则m 的值为(的值为() A 、-14 B 、-3 C 、3 D 、103131、下列因式分解中正确的个数为(、下列因式分解中正确的个数为(、下列因式分解中正确的个数为() ① x ²+y ²=(x+y )(x-y ) ② x ²-12x+32=(x-4)(x-8) ③ x ³+2xy+x=x (x ²+2y ) ④x 4-1=(x ²+1)(x ²-1)A 、1B 、2C 、3D 、43232、下列各式中,满足完全平方公式进行因式分解的是(、下列各式中,满足完全平方公式进行因式分解的是(、下列各式中,满足完全平方公式进行因式分解的是() A 、0.0 9- x ² B 、x ²+20x+100C 、 4x ²+4x+4D 、x ²-y -y²²-2xy三、因式分解(共42题)1、x ²(²(a-b a-b a-b))+(b-a b-a))2、x ³-xy -xy²²3、(、(a+1a+1a+1)²)²)²-9-9-9((a-1a-1)²)²)²4、x (xy+yz+xz xy+yz+xz))-xyz5、(、(x-1x-1x-1)()()(x-3x-3x-3))+16、a ²-4a+4-b -4a+4-b²²7、(、(x x ²-2x -2x)²)²)²+2x +2x +2x((x-2x-2))+18、(、(x+y+z x+y+z x+y+z)³)³)³-x -x -x³³-y -y³³-z -z³³9、x 4-5x -5x²²+41010、、5+75+7((x+1x+1))+2+2((x+1x+1)²)²)²1111、、a ²+b +b²²-a -a²²b ²-4ab-11212、、x 4+x +x²²+11313、、a 5-2a -2a³³-8a1414、、a ²(²(b-2b-2b-2))-a -a((2-b 2-b)) 1515、、a ²(²(x-y x-y x-y))+16+16((y-x y-x))1616、、x ²+6xy+9y +6xy+9y²²-x-3y-301717、(、(、(x x ²+y +y²²-z -z²)²²)²²)²-4x -4x -4x²²y ²1818、、xy xy²²-xz -xz²²+4xz-4x1919、、x ²(²(y-z y-z y-z))+y +y²(²(²(z-x z-x z-x))+z +z²(²(²(x-y x-y x-y))2020、、3x 3x²²-5x-1122121、、3m 3m²²x-4n x-4n²²y-3n y-3n²²x+4m x+4m²²y2222、、x ²(²(2-y 2-y 2-y))+(y-2y-2))2323、、x 4+x +x²²y ²+y 42424、、x 4-162525、(、(、(x-1x-1x-1)²)²)²--(y+1y+1)²)²)²2626、(、(、(x-2x-2x-2)()()(x-3x-3x-3))-202727、、2(x+y x+y)²)²)²-4-4-4((x+y x+y))-302828、、x ²+1-2x+4+1-2x+4((x-1x-1))2929、(、(、(a a ²+a +a)()()(a a ²+a+1+a+1))-123030、、5x+5y+x 5x+5y+x²²+2xy+y +2xy+y²²3131、、x ³+x +x²²-x-13232、、x (a+b a+b)²)²)²+x +x +x²(²(²(a+b a+b a+b))3333、(、(、(x+2x+2x+2)²)²)²-y -y -y²²-2x-33434、(、(、(x x ²-6-6)()()(x x ²-4-4))-15 3535、(、(、(x+1x+1x+1)²)²)²-2-2-2((x ²-1-1))3636、(、(、(ax+by ax+by ax+by)²)²)²++(ax-by ax-by)²)²)²-2-2-2((ax+by ax+by)()()(ax-by ax-by ax-by))3737、(、(、(a+1a+1a+1)()()(a+2a+2a+2))(a+3)(a+4)-33838、(、(、(a+1a+1a+1))4+(a+1a+1)²)²)²+1 +13939、、x 4+2x +2x³³+3x +3x²²+2x+14040、、4a 4a³³-31a+154141、、a 5+a+14242、、a ³+5a +5a²²+3a-9 四、求值(共10题)1、x+y=1x+y=1,,xy=2求x ²+y +y²²-4xy 的值的值2、x ²+x-1=0+x-1=0,求,求x 4+x +x³³+x 的值的值3、已知a (a-1a-1))-(a ²-b -b))+1=0+1=0,求,求a ²+b +b²²2-ab 的值的值 4、若(、若(x+m x+m x+m)()()(x+n x+n x+n))=x =x²²-6x+5-6x+5,求,求2mn 的值的值5、xy=1xy=1,求,求x ²+x x ²+2x+1 + y ²y ²+y 的值的值6、已知x >y >0,x-y=1x-y=1,,xy=2xy=2,求,求x ²-y -y²的值²的值²的值7、已知a= 2+1,b= 3-1,求,求ab+a-b-1的值的值8、已知x=m+1,y= -2m+1,z=m-2z=m-2,求,求x ²+y +y²²-z -z²²+2xy 的值。

因式分解练习100题及答案

因式分解练习100题及答案
因式分解练习100题及答案
一、 提取公因式
( 1) (9a+5)(-4b+5)+(b+2)(9a+5) (2) (3m-2)(-2n+3)+(3m-2)(-9n-1)+(3m-2)(-6n+4) (3) (9a-4)(2b+3)+(9a-4)(2b-2) (4) I4a3x4 -35a4x3y3 (5) 18x千-I2x 3y 千 (6) 2ab4c2— 8bc2 (7) x 3y4+5ax3y4 (8) (9x— 4)(—8x+l)+(9x— 4)(9x+2)
(57) (3a2+2ab-2b2 )(3a2 -2ab-2b2 ) (58) (2x2 +5x+9)(2x 2 -5x + 9) (59) (8x+7y-3)(8x-7y-1 1) (60) (9m + 7n-7)(9m-7n-3)
五、 十字相乘法
(6 1) 2(3b+2)(1lb-4) (62) -(4m+I)(2m-9) (63) (b+3)(8b+l) (64) 6(9a+4)(a+2) (65) 2(4x-5y)(l lx+5y) (66) -6(a-b)(4a+5b) (67) (x+17)(x+2) (68) -(b+4)(l lb-2) (69) (2a+9)(13a— 4) (70) —(7n— 5)(2n— 5) (7 1) 2(8x-1)(5x-4) (72) (12b+19)(4b + 3) (73) 4(y+5)(5y+3) (74) 13(x-l)(4x+15) (75) —24(m— 2n)(m+2n) (76) -6(5y+l)(y+2)

初二数学因式分解精选100题

初二数学因式分解精选100题

提升课堂托辅中心初二数学因式分解精选100题2013年1月25日一、选择题1.下列各式中从左到右的变形,是因式分解的是( )A (a +3)(a -3)=a 2-9B x 2+x -5=(x -2)(x +3)+1C a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x1) 2.下列各式的因式分解中正确的是( )A -a 2+ab -ac = -a (a +b -c )B 9xyz -6x 2y 2=3xyz (3-2xy )C 3a 2x -6bx +3x =3x (a 2-2b ) D21xy 2+21x 2y =21xy (x +y ) 3.把多项式m 2(a -2)+m (2-a )分解因式等于( )(A)(a -2)(m 2+m ) (B)(a -2)(m 2-m ) (C)m (a -2)(m -1) (D)m (a -2)(m+1) 4.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +45.下列多项式中,不能用完全平方公式分解因式的是( )(A)412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D)13292+-n n 6.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )(A)4x (B)-4x (C)4x 4 (D)-4x 4 7.下列分解因式错误的是( )(A)15a 2+5a =5a (3a +1) (B)-x 2-y 2= -(x 2-y 2)= -(x +y )(x -y )(C)k (x +y )+x +y =(k +1)(x+y ) (D)a 3-2a 2+a =a (a -1)2 8.下列多项式中不能用平方差公式分解的是( )(A)-a 2+b 2 (B)-x 2-y 2 (C)49x 2y 2-z 2 (D)16m 4-25n 2p 29.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)4-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )(A)①② (B)②④ (C)③④ (D)②③ 10.两个连续的奇数的平方差总可以被 k 整除,则k 等于( ) (A)4 (B)8 (C)4或-4 (D)8的倍数11下列各式中从左到右的变形属于分解因式的是( )A a(a +b -1)=a 2+ab -aB a 2 –a -2=a(a -1)-2C -4 a 2+9b 2=(-2a +3b)(2a +3b)D . 2x +1=x(2+1/x) 12下列各式分解因是正确的是( )A .x 2y +7xy +y=y(x 2+7x)B . 3 a 2b +3ab +6b=3b(a 2+a +2)C . 6xyz -8xy 2=2xyz(3-4y)D . -4x +2y -6z=2(2x +y -3z) 13下列多项式中,能用提公因式法分解因式的是( )A . x 2-yB . x 2+2xC . x 2+y 2D .x 2-xy +y 2 14 2(a -b)3-(b - a)2分解因式的正确结果是( )A . (a -b)2(2a -2b +1)B . 2(a -b)(a -b -1)C . (b -a)2(2a -2b -1)D . (a -b)2(2a -b -1) 15下列多项式分解因式正确的是( )A . 1+4a -4a 2=(1-2a)2B . 4-4a +a 2=(a -2)2C . 1+4x 2=(1+2x)2D .x 2+xy +y 2=(x +y)2 16 运用公式法计算992,应该是( )A .(100-1)2B .(100+1)(100-1)C .(99+1)(99-1)D . (99+1)217 多项式:①16x 2-8x ;②(x -1)2 -4(x -1)2;③(x +1)4-4(x +1)2+4x 2 ④-4x 2-1+4x 分解因式 结果中含有相同因式的是( )A.①和②B.③和④C.①和④D.②和③18无论x、y取何值,x2+y2-2x+12y+40的值都是()A.正数B.负数C.零D.非负数19下列正确的是()A.x2+y2=(x+y)(x-y) B.x2-y2=(x+y)(x-y)C.-x2+y2=(-x+y)(-x-y) D.-x2-y2=-(x+y)(x-y)二、填空题20.分解因式:m3-4m= .21.已知x+y=6,xy=4,则x2y+xy2的值为.22.将x n-y n分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为.23.若ax2+24x+b=(mx-3)2,则a= ,b= ,m= .24.根据图形面积关系,不连其他线,便可以得到一个分解因式的公式是.25多项式-9x2y+36xy2-3xy提公因式后的另一个因式是___________;26把多项式-x4+16分解因式的结果是_____________;27已知xy=5,a-b=3,a+b=4,则xya2-yxb2的值为_______________;28若x2+2mx+16是完全平方式,则m=______;(第24题图) 29分解因式:-x2+4x-4= ;30 +3mn+9n2=( +3n)2;31若x+y=1则1/2x2+xy+1/2y2= ;三、因式分解32. -24x3-12x2+28x 33. 6(m-n)3-12(n-m)2 34.3(a-b)2+6(b-a)35. 18(a+b)3-12b(b-a)236. (2a+b)(2a-3b)-3a(2a+b) 37.(x2+6x)2-(2x-4)238. 9(m+n)2-(m-n)239. (2x+3y)2-1 40. 9(a-b)2-16(a+b)2 41. (x+y)2-16(x-y)2 42. -16x4+81y4 43.3ax2-3ay244.2x3-8x 45. 7x2-63 46. (a2+b2)2-4a2b247. (m +n)2-6(m +n)+9 48. (3)(a -b)2-2(a -b)+1; 49. 4xy 2-4x 2y -y 350. -x 2-4y 2+4xy 51. 25)(10)(2++++y x y x ; 52. 4224817216b b a a +-;53. (a 2+4)2-16a 2 54. -4x 3+16x 2-26x 56. 21a 2(x -2a )2-41a (2a -x )357. 56x 3yz+14x 2y 2z -21xy 2z 2 58. mn(m -n)-m(n -m) 59. -41(2a -b )2+4(a -21b )260. 4xy –(x 2-4y 2) 61. -3ma 3+6ma 2-12ma 62. a 2(x -y )+b 2(y -x )63. 23)(10)(5x y y x -+- 64. 32)(12)(18b a b a b --- 65. –2x 2n -4x n66. )(6)(4)(2a x c x a b a x a ---+- 67. 4416n m - 68.22)(16)(9n m n m --+;69. 21ax 2y 2+2axy +2a 70. (x 2-6x )2+18(x 2-6x )+81 71. 24)4)(3)(2)(1(-++++x x x x72.9x 2-y 2-4y -4 73.22414y xy x +-- 74.811824+-x x75. 2ax a b ax bx bx -++--2 76.1235-+-x x x 77. )()()(23m n n m n m +--+78. 3)2(2)2(222-+-+a a a a 79. 2222224)(b a b a c ---四.特殊的因式分解 80.),(3127123且均为自然数n m b a a nn m n m >--- 81.13112121132-+-+-+++n n n n n n y x y x y x五.用简便方法计算:82. 57.6×1.6+28.8×36.8-14.4×80 83. 13.731175.231178.193117⨯-⨯+⨯84. 39×37-13×34 85)1011)(911()311)(211(2232----六.解答题86若n m y x -=))()((4222y x y x y x +-+,求m ,n 的值87已知,01200520042=+++++x x x x 求2006x 的值88若6,422=+=+y x y x 求xy 的值89已知312=-y x ,2=xy ,求 43342y x y x -的值。

(完整版)经典因式分解练习题100道

(完整版)经典因式分解练习题100道

1.)3a³b²c-12a²b²c2+9ab²c³2.)16x²-813.)xy+6-2x-3y4.)x²(x-y)+y²(y-x)5.)2x²-(a-2b)x-ab6.)a4-9a²b²7.)x³+3x²-48.)ab(x²-y²)+xy(a²-b²)9.)(x+y)(a-b-c)+(x-y)(b+c-a)10.)a²-a-b²-b11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12.)(a+3)²-6(a+3)13.)(x+1)²(x+2)-(x+1)(x+2)²14.)16x²-8115.)9x²-30x+2516.)x²-7x-3017.)x(x+2)-x18.)x²-4x-ax+4a19.)25x²-4920.)36x²-60x+2521.)4x²+12x+922.)x²-9x+1823.)2x²-5x-324.)12x²-50x+825.)3x²-6x26.)49x²-2527.)6x²-13x+528.)x²+2-3x29.)12x²-23x-2430.)(x+6)(x-6)-(x-6)31.)3(x+2)(x-5)-(x+2)(x-3)32.)9x²+42x+4933.)x4-2x³-35x34.)3x6-3x²35.)x²-2536.)x²-20x+10037.)x²+4x+338.)4x²-12x+539.)3ax²-6ax40.)(x+2)(x-3)+(x+2)(x+4)41.)2ax²-3x+2ax-342.)9x²-66x+12143.)8-2x²44.)x²-x+1445.)9x²-30x+2546.)-20x²+9x+2047.)12x²-29x+1548.)36x²+39x+949.)21x²-31x-2250.)9x4-35x²-451.)(2x+1)(x+1)+(2x+1)(x-3)52.)2ax²-3x+2ax-353.)x(y+2)-x-y-154.)(x²-3x)+(x-3)²55.)9x²-66x+12156.)8-2x²57.)x4-158.)x²+4x-xy-2y+459.)4x²-12x+560.)21x²-31x-2261.)4x²+4xy+y²-4x-2y-362.)9x5-35x3-4x63.)若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是(64.)若9x²−12xy+m是两数和的平方式,那么m的值是(65)把多项式a4− 2a²b²+b4因式分解的结果为()66.)把(a+b)²−4(a²−b²)+4(a−b)²分解因式为()) )1ö67.)æç-÷è2ø2001æ1ö+ç÷è2ø200068)已知x ,y 为任意有理数,记M = x ²+y ²,N = 2xy ,则M 与N的大小关系为()69)对于任何整数m ,多项式( 4m+5)²−9都能()A .被8整除B .被m 整除C .被(m−1)整除D .被(2m −1)整除70.)将−3x ²n −6x n 分解因式,结果是()71.)多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是()2x 72.)若+2(m -3)x +16是完全平方式,则m 的值等于_____。

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)因式分解题库100题专题训练经典练习题(含答案)一、填空题(共20题)1、a2-9b2=2、2x3-12x2+4x =2x()3、-27a3=()34、2xy2-8x3 = 2x()()5、(x+2y)(y-2x)= -(x+2y)()6、x(x-y)+y(y-x)=7、a-a3= a(a+1)()8、1600a2-100=100()()9、9a2+()+4 =()210、(x+2)x-x-2= (x+2)()11、a3-a =a()()12、()x2+4x+16 =()213、3a3+5a2+()=(a+ )( +2a-4)14、()-2y2 = -2( +1)215、x2-6x-7=(x )(x )16、3xy+6y2+4x2+8xy=3y( )+4x()=()()17、a2+3a-10=(a+m)(a+n),则m= ,n=18、8a3-b3=(2a-b)()19、xy+y2+mx+my=(y2+my)+()=()()20、(x2+y2)2-4x2y2=二、选择题(共32题)1、多项式2a2+3a+1因式分解等于()A、(a+1)(a-1)B、(2a+1)(2a-1)C、(2a+1)(a+1)D、(2a+1)(a-1)2、下列各式分解因式正确的是()A、3x2+6x+3= 3(x+1)2B、2x2+5xy-2y2=(2x+y)(x+2y)C、2x2+6xy= (2x+3)(x+2y)D、a2-6=(a-3)(a-2)3、下列各式中,能有平方差公式分解因式的是()A、4x2+4B、(2x+3)2 -4(3x2+2)2C、9x2-2xD、a2+b24、把多项式x2-3x-70因式分解,得()A、(x-5)(x+14)B、(x+5)(x-14)C、(x-7)(x+10)D、(x+7)(x-10)5、已知a+b=0,则多项式a3+3a2+4ab+b2+b3的值是()A、0B、1C、 -2D、 26、把4a2+3a-1因式分解,得()A、(2a+1)(2a-1)B、(2a-1)(a-3)C、(4a-1)(a+1)D、(4a+1)(a-1)7、下列等式中,属于因式分解的是()A、a(1+b)+b(a+1)= (a+1)(b+1)B、2a(b+2)+b(a-1)=2ab-4a+ab-bC、a2-6a+10 =a(a-6)+10D、(x+3)2-2(x+3)=(x+3)(x+1)8、2m2+6x+2x2是一个完全平方公式,则m的值是()A、 0B、±32C、±52D、949、多项式3x3-27x 因式分解正确的是()A、3x(x2-9)B、3x(x2+9 )C、3x(x+3)(x-3)D、3x(3x-1)(3x+1)10、已知x>0,且多项式x3+4x2+x-6=0,则x的值是()A、1B、2C、3D、411、多项式2a2+4ab+2b2+k分解因式后,它的一个因式是(a+b-2),则k的值是()A、4B、-4C、8D、-812、对 a4 + 4进行因式分解,所得结论正确的是()A、(a2+2)2B、(a2+2)(a2-2)C、有一个因式为(a2+2a+2)D、不能因式分解13、多项式a2(m-n)+9(n-m)分解因式得()A、(a2+9)(m-n)B、(m-n)(a+3)(a-3)C、(a2+9)(m+n)D、(m+n)(a+3)214、多项式m4-14m2+1分解因式的结果是()A、(m2+4m+1)(m2-4m+1)B、(m2+3m+1)(m2-6m+1)C、(m2-m+1)(m2+m+1)D、(m2-1)(m2+1)15、下列分解因式正确的是()A、-x2+3x = -x(x+3)B、x2+xy+x=x(x+y)C、2m(2m-n)+n(n-2m)= (2m-n)2D、a2-4a+4=(a+2)(a-2)16、下列等式从左到右的变形,属于因式分解的是()A、2x(a-b)=2ax-2bxB、2a2+a-1=a(2a+1)-1C、(a+1)(a+2)= a2+3a+2D、3a+6a2=3a(2a+1)17、下列各式① 2m+n 和m+2n ② 3n(a-b)和-a+b③x3+y3和x2+xy ④a2+b2和a2-b2其中有公因式的是()A、①②B、②③C、①④D、③④18、下列四个多项式中,能因式分解的是()A、x2+1B、 x2-1C、 x2+5yD、x2-5y19、将以下多项式分解因式,结果中不含因式x-1的是()A、1 -x3B、x2-2x+1C、x(2a+3)-(3-2a) D 、2x(m+n)-2(m+n)20、若多项式2x2+ax可以进行因式分解,则a不能为()A、0B、-1C、1D、221、已知x+y= -3,xy=2 ,则x3y+xy3的值是()A、 2B、 4C、10D、2022、多项式x a-y a因式分解的结果是(x2+y2)(x+y)(x-y),则a的值是()A、2B、4C、-2 D-423、对8(a2-2b2)-a(7a+b)+ab 进行因式分解,其结果为()A、(8a-b)(a-7b)B、(2a+3b)(2a-3b)C、(a+2b)(a-2b)D、(a+4b)(a-4b)24、下列分解因式正确的是()A、x2-x-4=(x+2)(x-2)B、2x2-3xy+y2 =(2x-y)(x-y)C、x(x-y)- y(y-x)=(x-y)2D、4x-5x2+6=(2x+3)(2x+2)25、多项式a=2x2+3x+1,b=4x2-4x-3,则M和N的公因式是()A、2x+1B、2x-3C、x+1D、x+326、多项式(x-2y)2+8xy因式分解,结果为()A、(x-2y+2)(x-2y+4)B、(x-2y-2)(x-2y-4)C、(x+2y)2D、(x-2y)227、下面多项式① x2+5x-50 ②x3-1③ x3-4x ④3x2-12他们因式分解后,含有三个因式的是()A、①②、B、③④C、③ D 、④28、已知x= 12+1,则代数式(x+2)(x+4)+x2-4的值是()A、4+2 2B、4-2 2C、2 2D、4 229、下列各多项式中,因式分解正确的()A、4x2 -2 =(4x-2)x2B、1-x2=(1-x)2C、x2+2 = (x+2)(x+1)D、x2-1=(x+1)(x-1)30、若x2+7x-30与x2-17x+42有共同的因式x+m,则m的值为()A、-14B、-3C、3D、1031、下列因式分解中正确的个数为()① x2+y2=(x+y)(x-y)② x2-12x+32=(x-4)(x-8)③ x3+2xy+x=x(x2+2y)④x4-1=(x2+1)(x2-1)A、1B、2C、3D、432、下列各式中,满足完全平方公式进行因式分解的是()A、0.0 9- x2B、x2+20x+100C、 4x2+4x+4D、x2-y2-2xy三、因式分解(共42题)1、x2(a-b)+(b-a)2、x3-xy23、(a+1)2-9(a-1)24、x(xy+yz+xz)-xyz5、(x-1)(x-3)+16、a2-4a+4-b27、(x2-2x)2+2x(x-2)+18、(x+y+z)3-x3-y3-z39、x4-5x2+410、5+7(x+1)+2(x+1)211、a2+b2-a2b2-4ab-112、x4+x2+113、a5-2a3-8a14、a2(b-2)-a(2-b)15、a2(x-y)+16(y-x)16、x2+6xy+9y2-x-3y-3017、(x2+y2-z2)2-4x2y218、xy2-xz2+4xz-4x19、x2(y-z)+y2(z-x)+z2(x-y)20、3x2-5x-11221、3m2x-4n2y-3n2x+4m2y22、x2(2-y)+(y-2)23、x4+x2y2+y424、x4-1625、(x-1)2-(y+1)226、(x-2)(x-3)-2027、2(x+y)2-4(x+y)-3028、x2+1-2x+4(x-1)29、(a2+a)(a2+a+1)-1230、5x+5y+x2+2xy+y231、x3+x2-x-132、x(a+b)2+x2(a+b)33、(x+2)2-y2-2x-334、(x2-6)(x2-4)-1535、(x+1)2-2(x2-1)36、(ax+by)2+(ax-by)2-2(ax+by)(ax-by)37、(a+1)(a+2)(a+3)(a+4)-338、(a+1)4+(a+1)2+139、x4+2x3+3x2+2x+140、4a3-31a+1541、a5+a+142、a3+5a2+3a-9四、求值(共10题)1、x+y=1,xy=2求x2+y2-4xy的值2、x2+x-1=0,求x4+x3+x的值3、已知a(a-1)-(a2-b)+1=0,求a2+b22-ab的值4、若(x+m)(x+n)=x2-6x+5,求2mn的值5、xy=1,求x2+xx2+2x+1+y2y2+y的值6、已知x>y>0,x-y=1,xy=2,求x2-y2的值7、已知a= 2+1,b= 3-1,求ab+a-b-1的值8、已知x=m+1,y= -2m+1,z=m-2,求x2+y2-z2+2xy的值。

初中因式分解经典练习题100道

初中因式分解经典练习题100道

初中因式分解经典练习题100道1.3a³b²c - 12a²b²c² + 9ab²c³可以因式分解为3abc(a - 3b)²。

2.16x² - 81可以因式分解为(4x - 9)(4x + 9)。

3.xy + 6 - 2x - 3y可以重写为xy - 2x - 3y + 6.4.x²(x - y) + y²(y - x)可以重写为x²(x - y) - y²(x - y)。

5.2x² - (a - 2b)x - ab可以重写为2x² - ax + 2bx - ab。

6.a⁴ - 9a²b²可以因式分解为(a² - 3ab)(a² + 3ab)。

7.x³ + 3x² - 4可以重写为x³ - x² + 4x² - 4.8.ab(x² - y²) + xy(a² - b²)可以重写为ab(x + y)(x - y) + xy(a +b)(a - b)。

9.(x + y)(a - b - c) + (x - y)(b + c - a)可以重写为(x + y)(a - b - c) - (y - x)(a - b + c)。

10.a² - a - b² - b可以重写为(a² - a) - (b² + b)。

11.(3a - b)² - 4(3a - b)(a + 3b) + 4(a + 3b)²可以重写为(3a -b)² - 4(3a - b)(a + 3b) + 4(a + 3b)²。

12.(a + 3)² - 6(a + 3)可以重写为(a + 3)² - 6(a + 3)。

初中数学因式分解100题及答案

初中数学因式分解100题及答案

初中数学因式分解100题及答案一、提取公因式(1)(53)(35)(53)(54)-----x y x y(2)(74)(25)(74)(52)----+x y x y(3)(54)(73)(54)(72)a b a b--+--(4)(45)(23)(71)(45)---+-m n n m(5)(25)(41)(25)(92)(25)(63)-++--+--a b a b a b(6)(1)(51)(1)(83)+-++-a b a b(7)(35)(85)(31)(35)-+---a b b a(8)4424322-+283521xy z y z x y z(9)22242x y z x yz x y+-15615(10)(21)(34)(23)(21)--+---m n n m(11)4232+x z x y z126(12)3222-x y x y39(13)343-ab c c2114(14)2333+xyz x y z820(15)(45)(2)(45)(33)a b a b+-+++-(16)(5)(25)(5)(53)(5)(42)--+--+-+m n m n m n (17)(72)(25)(72)(31)--+-+m x m x(18)33231435a c a b c-(19)3423234664xy z x y z x y z --(20)(2)(34)(2)(25)a b a b -----二、公式法(21)224253681x y x -+-(22)2262550x xy y ++(23)2324625x -(24)22729324m n -(25)2281324m n -(26)22364816a b a -+-(27)22900225a b -(28)22289340100a ab b -+(29)2361140900x x -+(30)22495616m n n -+-三、分组分解法(31)45408172mx my nx ny--+(32)455273xy x y --+(33)224835182186a c ab bc ca+-+-(35)60125010+--mn m n(36)12402480----xy x y(37)22++--54224545x y xy yz zx (38)28327080+++mn m n(39)22++++x z xy yz zx635102529 (40)54451815+--mx my nx ny (41)40802856+--ax ay bx by (42)245637--+xy x y(44)351573+--ax ay bx by (45)36541624+--ab a b (46)981981mx my nx ny+--(47)183060100+++ab a b (48)48641216-+-mx my nx ny (49)22-+--a c ab bc ca93326 (50)45253620--+ax ay bx by四、拆添项(51)22-+++936361235x y x y(52)223610489a b a b ---+(53)2299364828x y x y ----(54)2249161127217x y x y --+-(55)229366368x y x y ----(56)4224256936a a b b -+(57)2264254830m n m n-++(58)2281181880m n m n ----(59)22164641255m n m n -+++(60)2249649814432x y x y ----五、十字相乘法(61)22----+a ab b a b5412333018 (62)22+-+--x xy y x y283152815 (63)2++--a ab a b32828749(64)22x xy y x y-+-++327635564412 (65)22--+-+x xy y x y212025352514 (66)222x y z xy yz xz++-+-491512563656 (67)222x y z xy yz xz-+-+-28182031851 (68)222-++--48182030964a b c ab bc ac(69)22691523167x xy y x y +-+-+(70)2227216542321x xy y x y -----(71)22429149171415x xy y x y -++--(72)2229108471614x y z xy yz xz+----(73)22849293535a ab a b ++--(74)22629282315x xy y x y -++--(75)2293299x xy y y --+-(76)222141211165x xy y x y -+-++(77)2254697302224x xy y x y +++--(78)2215241231210a ab b a b --+-+(79)227222242712x xy y x y+-+-(80)2274342512814x xy y x y +-+-+六、双十字相乘法(81)22185914592814x xy y x y +-+--(82)2226341219260x y z xy yz xz-++++(83)2261121483142x xy y x y +-+-+(84)2227216282513x y z xy yz xz++--+(85)22263312342060x y z xy yz xz+++--(86)2146592135x xy x y +--+(87)22499849707024x xy y x y -+-++(88)22151910252110x xy y x y +-+++(89)242723x xy x y ++++(90)2728455x xy x y-+-七、因式定理(91)32672912x x x ---(92)326132015x x x --+(93)32896x x x ++-(94)321529173x x x +++(95)322536x x x +--(96)32384x x x -++(97)3220191312a a a --+(98)32463x x x +--(99)3231024x x x --+(100)32515136x x x +++初中数学因式分解100题答案一、提取公因式(1)(53)(21)x y --+(2)(74)(37)x y --+(3)(54)(145)a b --(4)(45)(54)m n --+(5)(25)(194)a b --(6)(1)(134)a b +-(7)(35)(56)a b -+(8)2222237(453)y z xy z z x -+(9)223(525)x y yz z x y +-(10)(21)(57)m n ---(11)326(2)x z xz y +(12)223(3)x y x -(13)337(32)c ab c -(14)2224(25)xyz x y z +(15)(45)(21)a b +-(16)(5)(116)m n --(17)(72)(54)m x --(18)2237(25)a c ac b -(19)3332(332)xy z z x xz --(20)(2)(1)a b -+二、公式法(21)(259)(259)x y x y ++-+(22)2(25)x y +(23)(1825)(1825)x x +-(24)(2718)(2718)m n m n +-(25)(918)(918)m n m n +-(26)(64)(64)a b a b ++-+(27)(3015)(3015)a b a b +-(28)2(1710)a b -(29)2(1930)x -(30)(74)(74)m n m n +--+三、分组分解法(31)(59)(98)m n x y --(32)(53)(91)x y --(33)(67)(835)a c a b c ---(34)(41)(310)m n --(35)2(65)(51)m n -+(36)4(2)(310)x y -++(37)(625)(9)x y z x y +-+(38)2(25)(78)m n ++(39)(357)(25)x y z x z+++(40)3(3)(65)m n x y-+(41)4(107)(2)a b x y-+(42)(81)(37)x y--(43)2(5)(310)m n+-(44)(5)(73)a b x y-+(45)2(94)(23)a b-+(46)9()(9)m n x y-+(47)2(310)(35)a b++(48)4(4)(34)m n x y+-(49)(3)(9)a c ab c-++(50)(54)(95)a b x y--四、拆添项(51)(365)(367)x y x y++-+(52)(61)(69)a b a b+---(53)(332)(3314)x y x y++--(54)(7417)(741)x y x y+--+ (55)(362)(364)x y x y++--(56)2222(536)(536)a ab b a ab b+---(57)(85)(856)m n m n+-+(58)(98)(910)m n m n++--(59)(425)(4211)m n m n++-+ (60)(782)(7816)x y x y++--五、十字相乘法(61)(563)(26)a b a b+---(62)(453)(75)x y x y++--(63)(47)(87)a b a++-(64)(852)(476)x y x y----(65)(757)(352)x y x y++-+ (66)(752)(736)x y z x y z----(67)(435)(764)x y z x y z+---(68)(665)(834)a b c a b c+---(69)(331)(257)x y x y-+++ (70)(337)(923)x y x y--++ (71)(675)(773)x y x y-+--(72)(52)(924)x y z x y z---+(73)(75)(477)a a b-++ (74)(345)(273)x y x y-+--(75)(33)(323)x y x y+--+ (76)(65)(221)x y x y----(77)(676)(94)x y x y+++-(78)(365)(522)a b a b-+++(79)(863)(94)x y x y++-(80)(77)(762)x y x y++-+六、双十字相乘法(81)(277)(922)x y x y++--(82)(72)(946)x y z x y z-+++ (83)(676)(37)x y x y-+++ (84)(776)(3)x y z x y z-+-+ (85)(732)(96)x y z x y z+-+-(86)(27)(735)x x y-+-(87)(774)(776)x y x y----(88)(352)(525)x y x y++-+ (89)(1)(423)x x y+++(90)(9)(85)x y x-+七、因式定理(91)(3)(21)(34)x x x-++ (92)2(3)(655)x x x-+-(93)2(2)(63)x x x++-(94)(1)(53)(31)x x x+++ (95)2(1)(236)x x x++-(96)2(1)(354)x x x---(97)(1)(43)(54)a a a--+ (98)2(1)(423)x x x++-(99)(3)(4)(2)x x x+--(100)2(2)(553)x x x+++。

100道因式分解及答案例题

100道因式分解及答案例题

100道因式分解及答案例题100道因式分解及答案例题(1)因式分解8-2x2=2(2-x)(2+x)(2)因式分解x4-1=(x-1)(x+1)(x^2+1)(3)因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)(4)因式分解4x2-12x+5=(2x-1)(2x-5)(5)因式分解21x2-31x-22=(21x+11)(x-2)(6)因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) (7)因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)(8)分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)(9)因式分解xy+6-2x-3y=(x-3)(y-2)(10)因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2(11)因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)(12)因式分解a4-9a2b2=a^2(a+3b)(a-3b)(13)因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) (14)因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) (15)因式分解a2-a-b2-b=(a+b)(a-b-1)(16)(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^ 2(17)因式分解(a+3)2-6(a+3)=(a+3)(a-3)(18)因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(19)16x2-81=(4x+9)(4x-9)(20)9x2-30x+25=(3x-5)^2(21)x2-7x-30=(x-10)(x+3)(22)因式分解x2-25=(x+5)(x-5)(23)因式分解x2-20x+100=(x-10)^2(24)因式分解x2+4x+3=(x+1)(x+3)(25)因式分解4x2-12x+5=(2x-1)(2x-5)(26)3ax2-6ax=3ax(x-2)(27)x(x+2)-x=x(x+1)(28)(3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) (29)36x2-60x+25=(6x-5)^2(30)4x2+12x+9=(2x+3)^2(31)x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1) (32)12x2-50x+8=2(6x-1)(x-4)(33)因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)(34)因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)(35)因式分解9x2-66x+121=(3x-11)^2(36)因式分解8-2x2=2(2+x)(2-x)(37)因式分解x2-x+14 =整数内无法分解(38)因式分解9x2-30x+25=(3x-5)^2(39)因式分解-20x2+9x+20=(-4x+5)(5x+4)(40)因式分解12x2-29x+15=(4x-3)(3x-5)(41)因式分解36x2+39x+9=3(3x+1)(4x+3)(42)因式分解21x2-31x-22=(21x+11)(x-2)(43)因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)(44)X3+7X2+X+7 = (X3+7X2)+(X+7) (分组)= X2(X+7)+(X+7) (在X3+7X2中提出X2)= (X2+1)(X+7) (提出X+7)(45)X3+3X2-5X-15= X3+3X2-(5X+15) (分组)= X2(X+3)-5(X+3) (在X3+3X2中提出X2,5X+15中提出5) = (X2-5)(X+3) (提出X+3)(46)a2b+ab2-ab=ab(a+b-1).(47)-7ab+14a2-49ab2=-7a(b-2a+7b2).(48)3(y-x)2+2(x-y)=(x-y)(3x-3y+2)(49)x(a-1)(a-2)-y(1-a)(2-a)=(a-1)(a-2)(x-y).(50)-a2+b2=(a+b)(_b-a_)(51)1-a4=(1+a)(1-a)(1+a2)(51)992-1012=-400(53)若a+b=1,x-y=2,则a2+2ab+b2-x+y=-1。

(基础题)初中数学专项练习《因式分解》100道计算题包含答案

(基础题)初中数学专项练习《因式分解》100道计算题包含答案

初中数学专项练习《因式分解》100道计算题包含答案一、解答题(共100题)1、分解因式:(2a+b)(2a﹣b)+b(4a+2b)2、已知:8•22m﹣1•23m=217,求m的值.3、求代数式x(2x﹣1)﹣2(x﹣2)(x+1)的值,其中x=2017.4、数257-512能被120整除吗?请说明理由.5、分解因式: 4x2-46、解方程:(x+1)(x﹣1)=(x+2)(x﹣3)7、分解下列因式:(1)(x+y)2﹣4x2;(2)3m2n﹣12mn+12n.8、给定一列代数式:a3b2, ab4, a4b3, a2b5, a5b4, a3b6,….(1)分解因式:ab4﹣a3b2;(2)根据你发现的规律,试写出给定的那列代数式中的第100个代数式.9、已知3m=6,9n=2,求32m﹣4n的值.10、试说明:(a2+3a)(a2+3a+2)+1是一个完全平方式.11、把下列多项式分解因式(1)﹣a+a3b2(2)(x﹣1)(x﹣3)+1.12、(1)分解因式:(a+b)2+a+b+;(2)已知a+b=5,ab=6,求下列各式的值:①a2+b2 ②a2﹣ab+b2.13、已知:(2x﹣y﹣1)2+=0,(1)求的值;(2)求4x3y﹣4x2y2+xy3的值.14、(a-b)10÷(b-a)3÷(b-a)315、已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b+13=0,求这个等腰三角形的周长.16、已知a﹣b=5,ab=3,求代数式a3b﹣2a2b2+ab3的值.17、计算:(1)(﹣4ab3)(﹣ab)﹣(ab2)2;(2)(1.25×108)×(﹣8×105)×(﹣3×103).18、甲乙两人共同计算一道整式乘法:,由于甲抄错了第一个多项式中的符号,得到的结果为;由于乙漏抄了第二个多项式中的的系数,得到的结果为.请你计算出、的值各是多少,并写出这道整式乘法的符合题意结果.19、计算图中阴影部分的面积.20、把一张正方形桌子改成长方形,使长比原边长增加2米,宽比原边长短1米.设原桌面边长为x米(x<1.5),问改变后的桌子面积比原正方形桌子的面积是增加了还是减少了?说明理由.21、已知n为正整数,你能肯定2n+4﹣2n一定是30的倍数吗?22、七年级学生小明剪出了多张如图⑴中的正方形和长方形的卡片,利用这些卡片他拼成了如图⑵中的大正方形,由此验证了我们学过的公式:.现在请你选取图⑴中的卡片(各种卡片的张数不限),并利用它们在图⑶中拼出一个长方形,由此来验证等式:.(请按照图⑴中卡片的形状来画图,并像图⑵那样标上每张卡片的代号).23、已知三角形的三边长分别为 a,b,c,且满足等式 a2+b2+c2=ab+bc+ac,试猜想该三角形的形状,并证明你的猜想.24、先化简,再求值:(2a+3b)2﹣(2a﹣3b)2,其中a=.25、已知关于x的二次三项式2x2+mx+n因式分解的结果是,求m、n的值.26、(1)计算:a(a﹣2).(2)分解分式:m2﹣3m.27、若△ABC的三边长为a、b、c满足a2+b2+c2+200=12a+16b+20c,试判断△ABC的形状,并说明理由。

专题因式分解专题100题(巩固篇)(专项练习)八年级数学上册基础知识专项讲练含解析答案

专题因式分解专题100题(巩固篇)(专项练习)八年级数学上册基础知识专项讲练含解析答案

专题 因式分解专题100题(巩固篇)(专项练习)1.分解因式: (1)328a a - (2)2()28x y xy -+2.因式分解: (1)22510x y xy - (2)229()4()a x y b y x -+-3.因式分解: (1)416m -; (2)32242x x x -+;(3)276xy xy x -+;(4)()22214a a +-.4.分解因式:(1)2(2)(3)(2)x y x y x y -+--(2)()222224x y x y +-5.因式分解 (1)22ma ma m ++(2)()222416x x +-6.因式分解: (1)323x y x -; (2)22(2)9a b b --.7.分解因式: (1)22484x xy y -+;(2)()()2221a a a +-+.8.因式分解 (1)3228x xy -(2)4322a a a -+9.分解因式 (1)29x y y - (2)322288x x y xy -+(3)()134x x x --+(4)()2221x y y --+.10.因式分解: (1)21222x x -+-;(2)()222936x x +-.(3)()()223223x y x y +-+;(4)()()2222a a b b b a ---.11.因式分解: (1)2214x xy y ++(2)()()()()2m n x y n m x y -+--+12.分解因式: (1)322363x x y xy -+.(2)221122x y -+.13.因式分解 (1)2288x x -+(2)()()216a x y y x -+-14.因式分解: (1)﹣3a 2b +6ab ﹣3b ; (2)a 2﹣2ab +b 2﹣c 2.15.把下列多项式因式分解: (1)224a b - (2)21236m m -+16.因式分解: (1)22())(x a b y b a ---;(2)()222416a a +-.17.分解因式: (1)4x 2-100;(2)2mx 2-4mxy +2my 2.18.因式分解: (1)22())(x a b y b a ---;(2)2231827x xy y -+.19.已知x ﹣y =1,xy =2,求x 3y ﹣2x 2y 2+xy 3的值.20.因式分解: (1)8﹣2x 2; (2)2x 3y +4x 2y 2+2xy 3.21.把下列各式分解因式: (1)2464x - (2)2225()9()a b a b +--22.因式分解: (1)a (a ﹣b )﹣a +b ; (2)(x 2+y 2)2﹣(2xy )2.23.分解因式: (1)328a a -; (2)241616a a -+24.分解因式: (1)328a a -; (2)241616a a -+25.将下列各式分解因式 (1)228a - (2)222(1)4x x +-26.把下列各式因式分解: (1)32242a a a -+;(2)()()2294a x y b y x -+-.27.分解因式: (1)216x -;(2)2288x y xy y -+.28.因式分解: (1)3269a a a ++(2)222(4)16x x +-29.因式分解: (1)228x -(2)3222x x y xy -+30.把下列各式分解因式: (1)29x -;(2)22288a ab b ++;(3)()()211m m m +-+;(4)()()221x x y +--.31.分解因式(其中(1)利用因式分解计算): (1)23.4 1.320.6613.226.4⨯+⨯- (2)31m m x x ++-(3)2215y y --(4)(x ²+4)²-16x 232.把下列各式因式分解: (1)264x xy -+;(2)231212a a ++;(3)()()222x a y a ---;(4)42416a a -.33.因式分解: (1)()24a b +- (2)22369ab a b b --34.分解因式: (1)241x -; (2)3244m m m -+.35.因式分解: (1)3269m n m n mn -+(2)()22214a a +-36.分解因式: (1)()134x x x --+ (2)3221218a a a -+-37.因式分解: (1)9x 2﹣81.(2)m 3﹣8m 2+16m .38.把下列各式因式分解: (1)328x x -; (2)22344xy x y y --.39.分解因式: (1)()()a x y b y x -+-; (2)231212m n mn n -+;(3)()2(2)421x y x y +-+-;(4)222(9)36x x +-.40.在实数范围内分解因式:(1)am 2﹣6ma +9a ; (2)9a 4﹣4b 4.41.因式分解:(1)22242mx mxy my ++(2)()222416x x +-42.因式分解: (1)3x y 2﹣12x ;(2)x 2y ﹣2xy 2+y 3.43.因式分解: (1)241616a a -+ (2)229()4()a x y b y x -+-44.因式分解:(1)39x x - (2)3244x x x -+45.分解因式: (1)263x y y -(2)()()222n m m -+-46.分解因式: (1)3520x x -(2)2412()9()y x x y --+-47.因式分解 (1)2322a b a ab -- (2)229()()a b a b --+48.分解因式: (1)4m 3n ﹣mn 3(2)(x ﹣1)(x ﹣3)+1.49.分解因式:(1)a2b﹣2ab2+b3.(2)(x2+9)2﹣36x2.50.因式分解:(1)2x2﹣2(2)x3﹣4x2y+4xy2.51.因式分解(1)111363a a⎛⎫-+⎪⎝⎭(2)()()22169a x yb y x-+-52.分解因式:(1)x2﹣9;(2)2232ax axy ay++.53.分解因式: (1)24xy x -.(2)32296x xy x y +-.54.分解因式:(1)22(32)(27)x x --+ ;(2)222(2)6(2)9x x +-++.55.分解因式 (1)32327x x y -(2)3a 2x -6axy +3a 2y56.因式分解 (1)22ax ay -;(2)2242x x ++.57.因式分解: (1)222a -; (2)322x x x -+.58.将下列各式分解因式: (1)2215x x +-(2)()()22924x y x y +--59.已知:20222021,2021a b ab -=--=-.求222020a b ab -+的值.60.把下列各式因式分解: (1)9x 2-6x +1(2)3x (x -y )-6y (x -y )61.分解因式: (1)2129xyz x y -;(2)2464x -.62.分解因式: (1)249x -;(2)322242m m n mn ++.63.因式分解: (1)2464x -;(2)232a a a -+-.64.分解因式: (1)533416m n m n -(2)32221218x x y xy -+65.把下列各式因式分解: (1)2416x -;(2)23216164a b a ab --.66.因式分解: (1)2296x xy y -+.(2)(1)(3)4x x +-+.67.分解因式 (1)33a b ab -(2)22363x xy y -+-68.因式分解: (1)x 3y ﹣xy 3;(2)(x +2)(x +4)+x 2﹣469.把下列各式分解因式: (1)a 3﹣a(2)16x 2y 2﹣(x 2+4y 2)270.分解因式:(1)2a (x ﹣y )+b (y ﹣x );(2)(x 2 +1)2﹣4x 2.71.因式分解: (1)2232x -(2)3223242x y x y xy ++72.因式分解 (1)am an ap -+(2)214x -(3)21664x x -+ (4)22(32)(23)x m n y n m -+-73.因式分解. (1)()69m m ++; (2)222(1)4a a +-.74.因式分解: (1)235x y y - (2)()()x x y y y x -+-75.因式分解: (1)4x 2-8x +4; (2)(x +y )2-4y (x +y )76.分解因式: (1)2m mn m -+ (2)3212a a a --(3)()()22413x x +-- (4)421881y y -+77.因式分解: (1)﹣20a ﹣15ax ; (2)a 2(x ﹣y )+36(y ﹣x );78.分解因式: (1)228168ax axy ay -+-(2)()22222936x y x y +-;(1)2363ab ab a -+ (2)22()8()a a b a b ---80.分解因式: (1)231212m n mn n -+; (2)22()()a a b b b a -+-81.把下列各式因式分解:(1)()()229a x y b y x -+-;(2)()222936a a +-82.分解因式: (1))()(2x y y x x -+-(2)223242x y xy y -+.(1)3222a a b ab -+(2)()()224m n m n +--(3)2215x x -- (4)22144a b ab --+84.把下列各式因式分解: (1)228x -; (2)2(2)8(2)16a a +-++.85.计算:(1)2()()()x y x y x y +-+-;(2)(21)(21)x y x y -+++.86.因式分解:(1)()()3a x y y x -+-(2)()222416x x +-87.因式分解 (1)2a 2b -8ab 2+8b 3(2)4a 2(m -n )+9(n -m )(3)81x 4-16(4)(m 2+5)2-12(m 2+5)+3688.因式分解: (1)11824n n x x +-;(2)4224-1881x x y y +89.因式分解: (1)ap ﹣aq +am ; (2)4y 2﹣25;(3)m 3n ﹣6m 2n +9mn ; (4)(a 2+1)2 –4a 2.90.因式分解: (1)mx 2﹣my 2;(2)2x 2-8x +8.91.分解因式: (1)223612x y xy xy -+-;(2)481m -.92.将下列各式因式分解 (1)39m n mn -(2)322344x y x y xy ++93.分解因式: (1)29x -(2)3218122a a a -+-94.分解因式: (1)a 3b ﹣2a 2b +ab ;(2)x 2﹣4xy +4y 2﹣1.95.分解因式: (1)3221218a a a -+-(2)2225()4()a x y b y x -+-96.分解因式: (1)2()3()x a b y b a -+-(2)244x y xy y -+97.因式分解: (1)3327x x -(2)244ab ab a -+98.分解因式: (1)()()x x y y y x -+-;(2)22352020a b ab b -+.99.分解因式 (1)2a 3﹣8a ;(2)(x ﹣y )2+4xy .100.因式分解: (1)4a 2-9;(2)16m 4-8m 2n 2+n 4参考答案1.(1)()()222a a a +- (2)()22x y +【分析】(1)先提取公因式2a ,再利用平方差公式进行因式分解即可得;(2)先计算完全平方公式,再计算整式的加减,然后利用完全平方公式进行因式分解即可得.(1)解:原式()224a a =-()()222a a a =+-.(2)解:原式22448x xy y xy =-++ 2244x xy y =++()22x y =+.【点拨】本题考查了因式分解,熟练掌握提取公因式法和公式法是解题关键. 2.(1)()xy x y 5-2(2)()()()3232x y a b a b -+-【分析】(1)利用提公因式法直接提出公因式5xy 即可求解;(2)先将y -x 转变为-(x -y ),再用提公因式法因式分解,最后用平方差公式因式分解即可得出答案.(1)解:()22=52105x xy y xy x y --;(2)解:()()()2222229()4()9()4()()94()3232a x y b y x a x y b x y x y a b x y a b a b -+-=---=--=-+-【点拨】本题主要考查了因式分解,熟练掌握提公因式法和公式法因式分解是解题的关键.3.(1)()()()2422m m m ++-;(2)()221x x -; (3)()()61x y y --; (4)()()2211+-a a【分析】(1)直接利用平方差公式分解因式即可; (2)先提公因式2x ,再用完全平方公式分解因式即可; (3)先提公因式x ,再用十字相乘法分解因式即可;(4)先根据平方差公式分解因式,再根据完全平方公式分解因式即可.(1)解:原式=()()2244m m +- =()()()2422m m m ++-;(2)解:原式=()2221x x x -+=()221x x -; (3)解:原式=()276x y y -+=()()61x y y --; (4)解:原式=()22214a a +-=()()22212a a +-=()()221212a a a a +++-=()()2211+-a a【点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.(1)()52y x y - (2)()()22x y x y +-【分析】(1)利用提公因式法,进行分解即可解答;(2)先利用平方差公式分解,再利用完全平方公式继续分解,即可解答. (1)解:原式()()()23252x y x y x y y x y =-+-+=-;(2)解:原式()()()()22222222x y xy x y xy x y x y =+++-=+-.【点拨】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;①公式法;①十字相乘法;①分组分解法.因式分解必须分解到每个因式都不能再分解为止.5.(1)2(1)m a + (2)22(2)(2)x x +-【分析】(1)先提取公因式,再用完全平方式因式分解. (2)先用平方差公式因式分解,再用完全平方公式因式分解. (1)22ma ma m ++ 2(21)m a a =++ 2(1)m a =+(2)()222416x x +-22(44)(44)x x x x =+++- 22(2)(2)x x =+-【点拨】此题考查了因式分解,解题的关键是熟悉因式分解的基本步骤1.提取公因式;2.套用公式.6.(1)()()311x y y -+(2)()()42a b a b +-【分析】(1)先提公因式,然后再用平方差公式分解因式;(2)先用平方差公式分解因式,再提公因式即可.(1)解:323x y x -()321x y =-()()311x y y =-+(2)解:22(2)9a b b --()()2323a b b a b b =-+--()()2224a b a b =+-()()42a b a b =+-【点拨】本题主要考查了因式分解,熟练掌握平方差公式()()22a b a b a b -=+-,是解题的关键.7.(1)24()x y -(2)3(1)(1)a a +-【分析】(1)先提取公因式4,再应用完全平方公式进行因式分解即可得出答案; (2)应用平方差公式进行求解即可得出答案.(1)解:22484x xy y -+()2242x xy y =-+()24x y =-; (2)解:()()2221a a a +-+ ()()()()2211a a a a a a ⎡⎤⎡⎤=++++-+⎣⎦⎣⎦()()22211a a a =++-()()()2111a a a =++-()()311a a =+-【点拨】本题主要考查了提公因式法与公式法的综合运用,熟练掌握提公因式法与公式法进行求解是解决本题的关键.8.(1)2(2)(2)x x y x y +-(2)()221a a -【分析】(1)根据提公因式法与平方差公式因式分解即可;(2)根据提公因式法和完全平方公式进行因式分解即可.(1)解:原式=()2224x x y - =()()222x x y x y +-;(2)解:原式=()2221a a a -+ =()221a a -.【点拨】本题考查了因式分解,涉及提公因式法、平方差公式和完全平方公式,解决此题的关键是熟练掌握因式分解的基本方法.9.(1)(3)(3)y x x +-;(2)22(2)x x y -;(3)()22x -;(4)()()11x y x y +--+【分析】(1)先提取公因式y ,然后再利用平方差公式进行因式分解即可; (2)先提取公因式2x ,然后再利用完全平方公式进行因式分解即可;(3)先进行展开,然后再利用完全平方公式进行因式分解即可;(4)先利用完全平方公式分解括号内的整式,然后再利用平方差公式进行因式分解即可.(1)解:原式=2(9)y x -=(3)(3)y x x +-(2)解:原式=322288x x y xy -+=222(44)x x xy y -+(3)解:原式=244x x -+=()22x -(4)解:原式=()221x y --=()()11x y x y ⎡⎤⎡⎤+---⎣⎦⎣⎦=()()11x y x y +--+【点拨】本题考查了因式分解的知识,熟练掌握因式分解的方法和步骤是解题的关键.10.(1)2122x ⎛⎫-- ⎪⎝⎭ (2)22(3)(3)x x -+(3)5()()x y x y +-(4)()3()a b a b +-【分析】(1)根据提公因式法和完全平方公式进行因式分解即可;(2)根据平方差公式与完全平方公式因式分解即可;(3)根据平方差公式与提公因式法因式分解即可;(4)根据提公因式法与平方差公式因式分解即可.(1)21222x x -+- =212()4x x --+ =2122x ⎛⎫-- ⎪⎝⎭ (2)()222936x x +-=()2229(6)x x +-=22(69)(69)x x x x -+++(3)()()223223x y x y +-+=()()32233223x y x y x y x y ++++--=(55)()x y x y +-=5()()x y x y +-(4)()()2222a a b b b a ---=()()2222a a b b a b ---=()222()a b a b --=()2()()a b a b a b -+-=()3()a b a b +-【点拨】本题考查了提公因式法、平方差公式和完全平方公式,解决此题的关键是熟练掌握因式分解的基本方法.11.(1)212x y ⎛⎫+ ⎪⎝⎭ (2)()()()1m n x y m n -+-+【分析】(1)直接根据完全平方公式因式分解,即可求解;(2)提取公因式()()m n x y -+,即可求解.(1)解:2214x xy y ++ =2211222x xy y ⎛⎫+⨯+ ⎪⎝⎭=212x y ⎛⎫+ ⎪⎝⎭; (2)解:()()()()2m n x y n m x y -+--+=()()()()2m n x y m n x y -+--+=()()()1m n x y m n -+--⎡⎤⎣⎦=()()()1m n x y m n -+-+.【点拨】本题考查了因式分解,掌握因式分解的方法是解题的关键.12.(1)23()x x y -(2)1()()2y x y x -+ 【分析】(1)先提取公因式,然后利用完全平方公式进行因式分解;(2)先提取公因式,然后利用平方差公式进行因式分解.(1)322363x x y xy -+=3x (x 2-2xy +y 2)=3x (x -y )2;(2)221122x y -+ 221()2x y =-- 1()()2x y x y =-+- 【点拨】本题考查因式分解,掌握完全平方公式(a +b )2=a 2+2ab +b 2和平方差公式(a +b )(a -b )=a 2-b 2是解题关键.13.(1)()222x -(2)()()()44x y a a -+-【分析】(1)先提公因数,再利用完全平方公式分解因式;(2)先提公因式,再利用平方差公式分解.(1)解:原式=2(x 2-4x +4)=2(x -2)2;(2)解:原式=(x -y )(a 2-16)=()()()44x y a a -+-【点拨】本题考查因式分解的应用,熟练掌握因式分解的各种方法并灵活运用是解题关键.14.(1)()231b a --(2)()()a b c a b c -+--【分析】(1)先提公因式3b -,再利用完全平方公式即可进行因式分解;(2)将前3项为一组,第4项为一组,先利用完全平方公式,再利用平方差公式即可.(1)解:2363a b ab b -+-()2321b a a =--+()231b a =--;(2)解:-+-222a 2ab b c ()22a b c =-- ()()a b c a b c =-+--.【点拨】本题考查公式法,提公因式法进行因式分解,掌握平方差、完全平方公式的结构特征以及提公因式的原则是正确解答的关键.15.(1)()()22a b a b +-(2)()26m -【分析】(1)利用平方差公式即可因式分解;(2)利用完全平方公式即可因式分解.(1)解:224a b -()()()22222a b a b a b =-=+- ;(2)解:21236m m -+()2222666m m m =-⋅⋅+=-.【点拨】本题主要考查利用公式法因式分解,掌握完全平方公式以及平方差公式是解题的关键.16.(1)()()()a b x y x y -+-(2)()()2222a a +-【分析】(1)先提公因式()a b -,然后根据平方差公式因式分解即可求解; (2)根据平方差公式与完全平方公式因式分解即可求解.(1)解:原式=()()22a b x y -- ()()()a b x y x y =-+-;(2)解:原式=()()224444a a a a ⎡⎤⎡⎤+++-⎣⎦⎣⎦()()2222a a =+-.【点拨】本题考查了因式分解,掌握因式分解的方法是解题的关键.17.(1)()()455x x +-(2)()22m x y -【分析】(1)先提取公因式4,然后再运用平方差公式因式分解即可;(2)先提取公因式2m ,然后再运用完全平方公式因式分解即可.(1)解:4x 2-100=4(x 2-25)=()()455x x +-.(2)解:2mx 2-4mxy +2my 2=2m (x 2-2xy +y 2)=()22m x y -.【点拨】本题主要考查了因式分解,掌握运用提取公因式法和公式法成为解答本题的关键.18.(1)()()()a b x y x y -+-(2)23(3)x y -【分析】(1)先提取公因式,再利用平方差公式分解因式得出答案;(2)首先提取公因式3,进而利用完全平方公式分解因式得出答案.(1)解:原式22()()a b x y =--()()()a b x y x y =-+- (2)解:原式223(69)x xy y =-+23(3)x y =-【点拨】此题主要考查了公式法以及提取公因式法分解因式,熟练应用平方差公式和完全平方公式是解题关键.19.2【分析】运用提公因式法和完全平方公式进行因式分解,再进一步整体代入求解. 解:①x ﹣y =1,xy =2,①x 3y ﹣2x 2y 2+xy 3=xy (x 2﹣2xy +y 2)=xy (x ﹣y )2=2×1=2.【点拨】此题考查了因式分解在代数式求值中的应用,能够熟练运用提公因式法和公式法进行因式分解,渗透整体代入的思想.20.(1)2(2﹣x )(2+x )(2)2xy (x +y )2【分析】(1)直接提取公因式2,再利用平方差公式分解因式得出答案;(2)直接提取公因式2xy ,再利用完全平方公式分解因式得出答案.(1)解:原式=2(4﹣x 2)=2(2﹣x )(2+x );(2)解:原式=2xy (x 2+2xy +y 2)=2xy (x +y )2;【点拨】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.21.(1)4(4)(4)x x +-(2)()()444a b a b ++【分析】(1)先提取公因式4,然后利用平方差公式分解因式即可;(2)先利用平方差公式分解因式,然后提取公因式即可.(1)解:2464x -()2416x =-()()444x x =+-;(2)解:2225()9()a b a b +--()()()()5353a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()55335533a b a b a b a b =++-+-+()()8228a b a b =++()()444a b a b =++.【点拨】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.22.(1)(a ﹣b )(a -1)(2)(x +y )2(x -y )2【分析】(1)提取公因式分解即可;(2)先运用平方差公式,再运用完全平方公式分解即可.(1)解:a (a ﹣b )﹣a +b=a (a ﹣b )﹣(a -b )=(a ﹣b )(a -1)(2)(x 2+y 2)2﹣(2xy )2=(x 2+y 2+2xy )(x 2+y 2﹣2xy )=(x +y )2(x -y )2.【点拨】本题考查因式分解,解题关键是掌握因式分解的方法提公因式法和运用公式法.23.(1)()()222a a a +-(2)()242a -【分析】(1)先提取公因式2a ,然后再运用平方差公式因式分解即可;(2)先提取公因式4,然后再运用完全平方公式因式分解即可.(1)解:328a a -=()224a a - =()()222a a a +-.(2)解:241616a a -+=()2444a a -+ =()242a -.【点拨】本题主要考查了因式分解,掌握综合运用提取公因式法和公式法因式分解成为解答本题的关键.24.(1)()()222a a a +-(2)()242a -【分析】(1)先提取公因式2a ,然后再运用平方差公式因式分解即可;(2)先提取公因式4,然后再运用完全平方公式因式分解即可.(1)解:328a a -=()224a a - =()()222a a a +-.(2)解:241616a a -+=()2444a a -+ =()242a -.【点拨】本题主要考查了因式分解,掌握综合运用提取公因式法和公式法因式分解成为解答本题的关键.25.(1)()()222a a +-(2)()()2211x x +-【分析】(1)先提取公因式,再利用平方差公式继续分解;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解即可.(1)解:原式()()()224222a a a =-=+-; (2)解:原式()()()()2222121211x x x x x x =+++-=+-. 【点拨】本题考查了因式分解,熟练掌握提取公因式法和公式法分解因式是解题的关键.26.(1)()221a a -(2)()()()3232x y a b a b -+-【分析】(1)先提取公因式2a ,然后用完全平方公式分解即可;(2)先提取公因式x -y ,然后用平方差公式分解即可.(1)解:32242a a a -+ ()2221a a a =-+()221a a =-.(2)解:()()2294a x y b y x -+- ()()2294a x y b x y =---()()2294x y a b =--()()()3232x y a b a b =-+-.【点拨】本题主要考查了因式分解,掌握运用提取公因式法和公式法因式分解是解答本题的关键.27.(1)(4)(4)x x +-(2)22(2)y x -【分析】(1)根据平方差公式分解因式即可;(2)先提取公因式,再利用完全平方公式进行因式分解即可;(1)原式()()44x x =+-;(2)原式()()2224422y x x y x =-+=-; 【点拨】本题主要考查了因式分解的应用,准确利用提取公因式法和公式法求解是解题的关键.28.(1)2(3)a a +(2)22(2)(2)x x +-【分析】(1)先提公因式,再利用完全平方公式继续分解即可解答;(2)先利用平方差公式,再利用完全平方公式继续分解即可解答.(1)3269x x x ++2(69)x x x =++2(3)x x =+;(2)222(4)16x x +-22(44)(44)x x x x =+++-22(2)(2)x x =+-.【点拨】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.29.(1)2(2)(2)x x +-(2)2()x x y -【分析】(1)先提取公因数2,然后再运用平方差公式分解即可;(2)先提取公因式x ,然后再运用完全平方公式分解即可.(1)解:228x -=()224x - =()()222x x +-.(2)解:3222x x y xy -+=()222x x xy y -+ =()2x x y -.【点拨】本题主要考查了因式分解,综合运用提取公因式法和公式法是解答本题的关键.30.(1)()()33x x +-(2)()222a b +(3)()()211m m +-(4)()()11x y x y +++-【分析】(1)利用平方差公式分解因式即可;(2)先提取公因式2,然后利用完全平方公式分解因式即可;(3)先提取公因式m +1,然后利用平方差公式分解因式即可;(4)利用完全平方公式和平方差公式分解因式即可.(1)解:原式()()33x x =+-;(2)解:原式()2224a ab b =++ ()222a b =+; (3)解:原式()()211m m =+-()()()111m m m =++-(4)解:原式2221x x y =+-+()2221x x y =++-()221x y =+-()()11x y x y =+++-.【点拨】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.31.(1)13.2(2)1(1)(1)m x x x ++-(3)(5)(3)y y -+(4)22(2)(2)x x +-【分析】(1)提取公因式13.2,即可快速求解;(2)提取1m x +,再利用平方差公式求解即可;(3)利用十字相乘法求解;(4)利用平方差公式进行因式分解.(1)解:23.4 1.320.6613.226.4⨯+⨯- 2.3413.20.6613.213.22=⨯+⨯-⨯13.2(2.340.662)=⨯+-.13.2=(2)解:31m m x x ++-()121m x x +=-1(1)(1)m x x x +=+-(3)解:2215(5)(3)y y y y --=-+(4)解:()222416x x +-()()224444x x x x =+++-22(2)(2)x x =+-【点拨】本题考查了因式分解,解题的关键是掌握相应的方法:提取公因式法、利用平方差公式因式分解、利用完全平方公式因式分解.32.(1)()232x x y --(或者()223x y x -)(2)()232a +(3)()()22a x y -+(4)()()2422a a a +- 【分析】(1)先提公因式进行分解,即可解答;(2)先提公因式,再利用完全平方公式继续分解,即可解答;(3)先提公因式进行分解,即可解答;(4)先提公因式,再利用平方差公式继续分解即可解答.(1)解:-6x 2+4xy=-2x (3x -2y );(2)解:3a 2+12a +12=3(a 2+4a +4)=3(a +2)2;(3)解:2x (a -2)-y (2-a )=2x (a -2)+y (a -2)=(a -2)(2x +y );(4)解:4a 4-16a 2=4a 2(a 2-4)=4a 2(a +2)(a -2)【点拨】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.33.(1)(2)(2)a b a b +++-(2)2(3)b a b --【分析】(1)将()a b +作为整体,利用平方差公式分解即可;(2)原式先提取公因式,再利用完全平方公式分解即可.(1)解:原式(2)(2)a b a b =+++-(2)解:原式22(69)b ab a b =--2(3)b a b =--【点拨】本题主要考查了提公因式法与公式法因式分解,熟练掌握因式分解的方法是解题关键.34.(1)(2x +1)(2x ﹣1)(2)2(2)m m -【分析】(1)利用平方差公式,分解即可解答;(2)先提公因式,再利用完全平方公式继续分解即可解答.(1)解:原式=(21)(21)x x +-(2)解:原式= 2(44)m m m -+=2(2)m m -【点拨】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.35.(1)2(3)mn m -(2)22(1)(1)a a +-【分析】(1)先提取公因式,再运用完全平方公式进行解答即可;(2)先运用平方差公式,再运用完全平方公式进行解答即可.(1)解:原式()269mn m m =-+ 2(3)mn m =-(2)原式2221(2)a a()()221212a a a a =+++-22(1)(1)=+-a a .【点拨】本题考查因式分解,解题关键是掌握因式分解的方法与步骤.36.(1)2(2)x -(2)22(3)a a --【分析】(1)原式去括号整理得244x x -+,然后根据完全平方公式进行因式分解即可;(2)原式提取公因式2a -后,再根据完全平方公式进行因式分解即可.(1)解:()134x x x --+=234x x x --+=244x x -+=2(2)x -(2)3221218a a a -+-=22(69)a a a --+=22(3)a a --【点拨】本题考查完全平方公式、提公因式分解因式,掌握公式结构特征是正确应用的前提.37.(1)9(x +3)(x ﹣3)(2)m (m ﹣4)2【分析】(1)先提出公因式,再利用平方差公式计算,即可求解;(2)先提出公因式,再利用完全平方公式解得,即可求解.(1)解:9x 2﹣81=9(x 2﹣9)=9(x +3)(x ﹣3)(2)解:m 3﹣8m 2+16m =m (m 2﹣8m +16)=m (m ﹣4)2【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法,并会根据多项式的特征选用合适的方法解答是解题的关键.38.(1)2(2)(2)x x x +-(2)2(2)y x y --【分析】(1)先提公因式再用平方差公式分解即可;(2)先提公因式再用完全平方公式分解即可.(1)32()()()2824222x x x x x x x -=-=+-(2)22322244(44(2)xy x y y y x xy y y x y --=--+=--【点拨】本题考查因式分解,先提公因式再用公式法进行因式分解是解题的关键.39.(1)()()x y a b --(2)23(2)n m -(3)2(22)x y +-(4)22(3)(3)x x +-【分析】()1将y x -变形为()x y --,提公因式即可;()2先提公因式再用完全平方公式分解因式即可;()3把()2x y +看作整体,利用完全平方公式分解因式即可;()4先用平方差公式,再用完全平方公式即可.(1)解:原式()()a x y b x y =--- ()()x y a b =--;(2)解:原式()2344n m m =-+ 23(2)n m =-; (3)解:原式()2(2)424x y x y =+-++ 2(22)x y =+-;(4)解:原式()()229696x x x x =+++- 22(3)(3)x x =+-.【点拨】本题考查了提公因式法与公式法,体现了整体思想,掌握()()22a b a b a b -=+-,222)2(a ab b a b ±+=±是解题的关键.40.(1)()23a m - (2)22(3232)(32)a b a b a b +【分析】(1)利用提取公因式后再用完全平方公式进行分解因式即可;(2)两次利用平方差公式法进行分解因式即可.(1)解:原式=()()22693a m m a m -+=-; (2)原式2222(32)(32)a b a b =+-=2222]3(32)(2)a b a b +-=22(3232)(32)a b a b a b +.【点拨】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;①公式法;①十字相乘法;①分组分解法.因式分解必须分解到每个因式都不能再分解为止.41.(1)()22m x y +(2)()()2222x x -+【分析】(1)提取公因式2m ,再用完全平方公式因式分解.(2)先用平方差公式因式分解,再用完全平方公式因式分解.(1)解:原式()()222222m x xy y m x y =++=+ (2)解:原式()()()()2222444422x x x x x x =+++-=-+ 【点拨】此题考查了因式分解的方法,解题的关键是会用提取公因式法和公式法. 42.(1)3x (y +2)(y ﹣2);(2)y (x ﹣y )2【分析】(1)利用提取公因式、平方差公式,分解因式即可求解;(2)利用提取公因式、完全平方公式,分解因式即可求解.(1)原式=234x y -() =322x y y +-()() (2)原式=222y x xy y -+() =2y x y -() 【点拨】本题考查因式分解知识,关键是要熟练运用提取公因式、平方差公式、完全平方公式等.43.(1)24(2)a -(2)(x -y )(3a +2b )(3a -2b )【分析】(1)先提公因式4,再用完全平方公式分解即可;(2)先变形为229()-4()a x y b x y --,再提公因式(x -y ),然后用平方差公式分解即可. (1)解:241616a a -+=4(a 2-4a +4)=4(a -2)2;(2)解:229()4()a x y b y x -+-=229()-4()a x yb x y --=(x -y )(9a 2-4b 2)=(x -y )(3a +2b )(3a -2b ).【点拨】本题考查提公因式与公式法综合运用,熟练掌握提公因式与公式法分解因式的综合运用是解题的关键.44.(1)(3)(3)x x x +-(2)2(21)x x -【分析】(1)先提取公因式x ,再对余下的多项式利用平方差公式继续分解;(2)先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.(1)解:原式2(9)x x =-(3)(3)x x x =+-(2)解:原式()2441x x x =-+ ()221x x =- 【点拨】此题考查了用提公因式法和公式法进行因式分解.注意一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.45.(1)()2321y x -(2)()()()211m n n -+-【分析】(1)利用提公因式法,进行分解即可;(2)先将原式变形,然后再提取公因式,最后利用平方差公式进行分解即可.(1)解:263x y y -23(21)y x =-(2)解:2(2)(2)n m m -+- 2(2)(2)n m m =--- 2(2)(1)m n =--(2)(1)(1)m n n =-+-【点拨】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.46.(1)()()522x x x +-(2)()2332x y --【分析】(1)先提取公因式,再运用平方差公式分解即可;(2)将3(x -y )当成整体直接运用完全平方公式分解即可.(1)解:原式2()5 4x x =-()()522x x x =+-.(2)原式()()24129x y x y =+-+-()223x y +-⎡⎤⎣⎦=()2332x y =--.【点拨】本题考查因式分解,解题关键是掌握因式分解的两种方法提公因式法和运用公式法,公式法又分为平方差公式和完全平方公式,适当时可运用整体思想.47.(1)2()--a a b(2)()()422a b a b --【分析】(1)先提取公因式-a ,再利用完全平方公式继续分解;(2)先利用平方差公式进行分解,计算后再提取公因式即可.(1)解:2322a b a ab --()222a a ab b =--+2()a a b =--;(2)()()229a b a b --+()()223a b a b ⎡⎤⎦=-+⎣-()()()()33a b a b a b a b =-++--+⎡⎤⎡⎤⎣⎦⎣⎦()()4224a b a b =--()()422a b a b =--.【点拨】本题考查了因式分解,熟练掌握提公因式法和公式法分解因式是解题的关键.48.(1)mn (2m +n )(2m ﹣n )(2)(x ﹣2)2【分析】(1)先提取公因式mn ,再利用平方差公式分解可得;(2)先化简原整式,再利用完全平方公式计算可得.(1)解:原式=mn (4m 2﹣n 2)=mn (2m +n )(2m ﹣n );(2)解:原式=x 2﹣4x +3+1=x 2﹣4x +4=(x ﹣2)2.【点拨】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.49.(1)b (a −b )2(2)22(3)3x x +-()【分析】(1)先提公因式b ,再利用完全平方公式解答;(2)由整体思想,先利用平方差公式,再运用完全平方公式解答.(1)解:a 2b ﹣2ab 2+b 3=b (a 2-2ab +b 2)= b (a -b )2(2)(x 2+9)2﹣36x 2=(x 2+9+6x )(x 2+9-6x )=22(3)3x x +-().【点拨】本题考查因式分解,涉及提公因式、平方差、完全平方公式、整体思想等知识,掌握相关知识是解题关键.50.(1)2(x +1)(x -1)(2)x (x -2y )2【分析】(1)直接提取公因式2,再利用公式法分解因式即可;(2)直接提取公因式x ,再利用公式法分解因式即可.(1)2x 2﹣2=2(x 2-1)=2(x +1)(x -1)(2)x 3﹣4x 2y +4xy 2=x (x 2-4xy +4y 2)=x (x -2y )2 【点拨】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.51.(1)()21366a -。

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案(1)1027014ax ay bx by+--(2)224981981848x y x y--++ (3)22285132535a b ab bc ca--+-(4)222712272015x y xy yz zx--+-(5)60106010mn m n+--(6)801006480xy x y-+-+(7)22872124x y xy yz zx-++-(8)22283251520a b ab bc ca+-+-(9)20282535xy x y----(10)222141939x y xy yz zx++--(11)1070428xy x y-++-(12)221510313521x y xy yz zx+--+ (13)2220358103a c ab bc ca-+-+ (14)60501815xy x y----(15)22365452511a c ab bc ca---+ (16)226123417x z xy yz zx+-+-(17)754935ab a b-+-(18)16884xy x y-++-(19)945945mx my nx ny--+ (20)22201839a c ca++(21)22672824a b ab bc ca-+--(22)2235121220a b ab bc ca--+-(23)9327ax ay bx by+--(24)8016204mx my nx ny+++ (25)2231024x z xy yz zx---+(26)15502480xy x y----(27)221535464935x y xy yz zx++++ (28)222035154928a b ab bc ca--+-(29)632412mx my nx ny+--(30)49214218xy x y+++(31)4085ax ay bx by+--(32)16364090xy x y-++-(33)2220619624x y xy yz zx-+-+ (34)368368mn m n--+(35)45633549ax ay bx by-+-(36)2244363217a b a b--++ (37)25304554mn m n-+-(38)104156xy x y+++(39)2221126432x z xy yz zx++--(40)24286070ab a b--+(41)2249281840a b a b-+++ (42)223625652016a b ab bc ca+-+-(43)226464489m n m---(44)223664369m n m---(45)224936568433a b a b-++-(46)22331039a b ab bc ca+-+-(47)226513510a b ab bc ca+-+-(48)2294937x z xy yz zx++--(49)754935mn m n-+-(50)2291018447a c ab bc ca+--+ (51)227221272129x z xy yz zx---+ (52)530636mx my nx ny+--(53)2249241827a b a b -+-+(54)312624xy x y --++(55)225625529x z xy yz zx-++-(56)242065xy x y +++(57)2282836x y xy yz zx++--(58)2216202548a c ab bc ca++++(59)22925204x y y ---(60)2230736637a c ab bc ca--++(61)221412461035x y xy yz zx+-+-(62)2245425733x z xy yz zx-+--(63)486486mn m n +++(64)2210530627a c ab bc ca+-+-(65)205164xy x y --++(66)2272524331x z xy yz zx----(67)2293021353a c ab bc ca-++-(68)848040ab a b +++(69)81451810ab a b -+-(70)223014354952x z xy yz zx+-+-(71)22123574a b ab bc ca -+--(72)222020mx my nx ny -+-(73)153357ab a b -+-(74)18126342mn m n +--(75)99010ax ay bx by+--(76)24241616mn m n -+-(77)16144035xy x y -+-(78)728455mx my nx ny-+-(79)5401080mx my nx ny+++(80)2254221212x y xy yz zx++++(81)20503280xy x y --+(82)552020ax ay bx by+--(83)22124236x y xy yz zx----(84)18244864mn m n -+-(85)9020276ax ay bx by+--(86)222418391232a b ab bc ca----(87)2292142866x z xy yz zx+-+-(88)222581101a b a ---(89)24361624ax ay bx by--+ (90)20104020mn m n-+-(91)229961x y y---(92)226416647265x y x y----(93)229424209m n m n----(94)2245220813a c ab bc ca--+-(95)22449325648m n m n--++ (96)22481412648x y x y-++-(97)22634276103x z xy yz zx+--+ (98)223030202461x z xy yz zx++--(99)221012352126a c ab bc ca+--+ (100)24275663ax ay bx by--+初中数学因式分解(分组分解法)练习100题答案(1)2(7)(5)a b x y-+(2)(798)(796)x y x y+---(3)(75)(45)a b a b c-+-(4)(935)(34)x y z x y+--(5)10(1)(61)m n-+(6)4(54)(45)x y-+-(7)(87)(3)x y x y z-+-(8)(75)(43)a b c a b---(9)(45)(57)x y-++ (10)(3)(743)x y x y z++-(11)2(52)(7)x y---(12)(527)(35)x y z x y-+-(13)(45)(527)a c ab c-++ (14)(103)(65)x y-++(15)(95)(45)a c ab c+--(16)(34)(23)x z x y z---(17)(7)(75)a b+-(18)4(21)(21)x y---(19)9()(5)m n x y--(20)(56)(43)a c a c++(21)(4)(67)a b c a b--+(22)(53)(744)a b a b c-+-(23)(3)(9)a b x y-+(24)4(4)(5)m n x y++ (25)(325)(2)x y z x z--+ (26)(58)(310)x y-++ (27)(357)(57)x y z x y+++(28)(557)(47)a b c a b+--(29)3(4)(2)m n x y-+ (30)(76)(73)x y++(31)(8)(5)a b x y-+(32)2(25)(49)x y---(33)(4)(566)x y x y z-++ (34)4(1)(92)m n--(35)(97)(57)a b x y+-(36)(2217)(221)a b a b+---(37)(59)(56)m n+-(38)(23)(52)x y++(39)(32)(726)x z x y z-+-(40)2(25)(67)a b--(41)(234)(2310)a b a b++-+(42)(45)(954)a b a b c---(43)(883)(883)m n m n+---(44)(683)(683)m n m n+---(45)(763)(7611)a b a b+--+(46)(3)(33)a b a b c---(47)(355)(2)a b c a b---(48)(9)(4)x z x y z-+-(49)(7)(75)m n+-(50)(92)(25)a c ab c+-+ (51)(97)(833)x z x y z+--(52)(56)(6)m n x y-+(53)(239)(233)a b a b++-+ (54)3(2)(4)x y--+(55)(5)(56)x z x y z++-(56)(41)(65)x y++(57)(423)(2)x y z x y+-+(58)(84)(25)a b c a c+++ (59)(352)(352)x y x y++--(60)(6)(567)a c ab c--+ (61)(72)(265)x y x y z---(62)(57)(96)x z x y z-++ (63)6(1)(81)m n++(64)(265)(5)a b c a c---(65)(54)(41)x y--+ (66)(935)(8)x y z x z--+(67)(35)(376)a c ab c++-(68)4(10)(21)a b++(69)(92)(95)a b+-(70)(672)(57)x y z x z---(71)(35)(47)a b c a b--+ (72)2(10)()m n x y+-(73)(37)(51)a b+-(74)3(27)(32)m n-+(75)(10)(9)a b x y-+ (76)8(32)(1)m n+-(77)(25)(87)x y+-(78)(85)(9)m n x y+-(79)5(2)(8)m n x y++ (80)(922)(6)x y z x y+++ (81)2(58)(25)x y--(82)5(4)()a b x y-+(83)(643)(2)x y z x y--+ (84)2(38)(34)m n+-(85)(103)(92)a b x y-+(86)(83)(364)a b a b c+--(87)(7)(943)x z x y z---(88)(591)(591)a b a b+---(89)4(32)(23)a b x y--(90)10(2)(21)m n+-(91)(331)(331)x y x y++--(92)(845)(8413)x y x y++--(93)(321)(329)m n m n++--(94)(94)(52)a b c a c-+-(95)(2712)(274)m n m n+---(96)(296)(298)x y x y+--+ (97)(76)(97)x z x y z+-+ (98)(645)(56)x y z x z+--(99)(53)(274)a c ab c+-+ (100)(37)(89)a b x y--。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档