一元线性回归_方差分析_显著性分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元线性回归分析及方差分析与显著性检验
某位移传感器的位移x 与输出电压y 的一组观测值如下:(单位略)
设x 无误差,求y 对x 的线性关系式,并进行方差分析与显著性检验。 (附:F 0。10(1,4)=4.54,F 0。05(1,4)=7.71,F 0。01(1,4)=21.2)
回归分析是研究变量之间相关关系的一种统计推断法。
一. 一元线性回归的数学模型
在一元线性回归中,有两个变量,其中 x 是可观测、可控制的普通变量,常称它为自变量或控制变量,y 为随机变量,常称其为因变量或响应变量。通过散点图或计算相关系数判定y 与x 之间存在着显著的线性相关关系,即y 与x 之间存在如下关系:
(1)
通常认为且假设与x 无关。将观测数据 (i=1,……,n)代入(1)再注意样本为简单随机样本得:
(2)
称(1)或(2)(又称为数据结构式)所确定的模型为一元(正态)线性回归模型。 对其进行统计分析称为一元线性回归分析。
模型(2)中 EY=,若记 y=E(Y),则 y=a+bx,就是所谓的一元线性回归方程,其图象就是回归直线,b 为回归系数,a 称为回归常数,有时也通称 a 、b 为回归系数。
设得到的回归方程
bx b y
+=0ˆ 残差方程为N t bx b y y
y v t t t i ,,2,1,ˆ0 =--=-= 根据最小二乘原理可求得回归系数b 0和b 。 对照第五章最小二乘法的矩阵形式,令
⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪
⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=N N N v v v V b b b x x x X y y y Y 2102121ˆ111
则误差方程的矩阵形式为
V b
X Y =-ˆ 对照X A L V ˆ-=,设测得值 t
y 的精度相等,则有 Y X X X b
T T 1)(ˆ-=
将测得值分别代入上式,可计算得
,)()
)((2
1
1
2
1
1
1
xx
xy N
t t N t t N
t t N
t t N
t t t l l x x N y x y x N b =
--=
∑∑∑∑∑=====x b y x x N y x x y x b N t N
t t t t N
t t N t t N t t N t t -=--=
∑∑∑∑∑∑======1
1
2
21
111
20)()
)(())((
其中
2
111
2
2
1
1112
11
2
12
1
1)(1)()
)((1)()()(1)(11∑∑∑∑∑∑∑∑∑∑∑∑============-=-=-=--=-=-==
=
N
t t N t N
t t t yy N
t t N
t t N
t t t t N
t t xy N
t t N
t t N
t t xx N t t
N
t t
y N y y y l y x N y x y y x x l x N x x x l y
N
y x
N x
二、回归方程的方差分析及显著性检验
问题:这条回归直线是否符合y 与x 之间的客观规律回归直线的预报精度如何?
解决办法:
方差分析法—分解N 个观测值与其算术平均值之差的平方和;从量值上区别多个影响因素;用F 检验法对所求回归方程进行显著性检验。 (一)回归方程的方差分析
总的离差平方和(即N 个观测值之间的变差)
∑==-=N
t yy t l y y S 12)(,1-=N S ν
可以证明:
S=U+Q
其中
∑==-=N
t xy t bl y y U 12)(,1=U ν
xy yy N
t t t bl l y
y Q -=-=∑=1
2)ˆ(,2-=N Q ν U —回归平方和,反映总变差中由于x 和y 的线性关系而引起 y 变化的部分。
Q —残余平方和,反映所有观测点到回归直线的残余误差,即其它因素对y 变差的影响。
(二)回归方程显著性检验— F 检验法
基本思路:方程是否显著取决于U 和Q 的大小,U 越大Q 越小说明y 与x 的线性
关系愈密切。 计算统计量F
Q
U
Q U F νν//=
对一元线性回归,应为
)
2/(1
/-=
N Q U F
查F 分布表,根据给定的显著性水平α和已知的自由度1和N-2进行检验: 若, ),2,1(01.0-≥N F F 回归在0.01的水平上高度显著。
),2,1()2,1(01.005.0-<≤-N F F N F 回归在0.05的水平上显著。 ),2,1()2,1(05.010.0-<≤-N F F N F 回归在0.1的水平上显著。 ),2,1(10.0- (三)残余方差与残余标准差 残余方差:排除了x 对y 的线性影响后,衡量y 随机波动的特征量。 22-= N Q σ 残余标准差: 2-= N Q σ 含义:σ越小,回归直线的精度越高。 程序如下: test=[1.2 5 10 15 20 25; 5.1 10.1 14.8 21.5 25.2 28.4] N=length(test(1,:)); sx=0;sx2=0;sy=0;sy2=0;sxy=0;Lxy=0;Lyy=0; for i=1:N sx=sx+test(1,i); sx2=sx2+test(1,i)^2; sy=sy+test(2,i); sy2=sy2+test(2,i)^2; sxy=sxy+test(1,i)*test(2,i); Lxy=Lxy+(test(1,i)-sum(test(1,:))/N)*(test(2,i)-sum(test(2,:)/N)); Lyy=Lyy+(test(2,i)-sum(test(2,:))/N)^2; end