双曲线知识点归纳与例题分析

合集下载

双曲线知识点总结和典型习题

双曲线知识点总结和典型习题

1.双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于非零❶常数(小于|F 1F 2|)❷的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0. 2.双曲线的标准方程和几何性质x ≤-a 或x ≥a ,y ∈Ry ≤-a 或y ≥a ,x ∈R若将双曲线的定义中的“差的绝对值等于常数”中的“绝对值”去掉,则点的集合是双曲线的一支,具体是左支还是右支视情况而定.设双曲线上的点M 到两焦点F 1,F 2的距离之差的绝对值为2a ,则0<2a <|F 1F 2|,这一条件不能忽略. ①若2a =|F 1F 2|,则点M 的轨迹是分别以F 1,F 2为端点的两条射线;②若2a >|F 1F 2|,则点M 的轨迹不存在; ③若2a =0,则点M 的轨迹是线段F 1F 2的垂直平分线.[熟记常用结论]1.双曲线的焦点到其渐近线的距离为b .方程Ax 2+By 2=1表示双曲线的充要条件是什么? 提示 若A >0,B <0,表示焦点在x 轴上的双曲线;若A <0,B >0,表示焦点在y 轴上的双曲线.所以Ax 2+By 2=1表示双曲线的充要条件是AB <0.2.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .3.同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ;异支的弦中最短的为实轴,其长为2a . 4.若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2tan θ2,其中θ为∠F 1PF 2.5.若P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a .6.等轴双曲线(1)定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线. (2)性质:①a =b ;②e =2;③渐近线互相垂直;④双曲线方程λ=-22y x 5等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项. 7.共轭双曲线1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线. (2)性质:①它们有共同的渐近线;②它们的四个焦点共圆;③它们的离心率的倒数的平方和等于1.1与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x )0(≠λ与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x (1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆M 在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A.x 264-y 248=1B.y 264+x 248=1C.x 248-y 264=1 D .x 264+y 248=1 (1)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. (3)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的一动点,则|PF |+|PA |的最小值为________.2.已知△ABC 的顶点A (-5,0),B (5,0),△ABC 内切圆的圆心在直线x =2上,则顶点C 的轨迹方程是( )A.x 24-y 221=1(x >2)B.y 24-x 221=1(y >2)C.x 221-y 24=1 D.y 24-x 22=1 4.已知圆C :(x -3)2+y 2=4,定点A (-3,0),则过定点A 且和圆C 外切的动圆圆心M 的轨迹方程为__________. 若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5 B .5 C. 2D .2]经过点A (4,1),且对称轴都在坐标轴上的等轴双曲线方程为________.已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)6.若双曲线x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线经过点(3,-4),则此双曲线的离心率为()A.73 B.54 C.43 D.53题型一:双曲线定义问题1.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )2.若R ∈k ,则“3>k ”是“方程13322=+--k y k x 表示双曲线”的( ) A.充分不必要条件 B.必要不充分条件 C .充分必要条件 D.既不充分又不必要条件3.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是 .题型二:双曲线的渐近线问题1.双曲线42x -92y =1的渐近线方程是( )A . y =±23x B.y =±32x C.y =±49x D.y =±94x2.过点(2,-2)且与双曲线22x -y 2=1有公共渐近线的双曲线方程是()A .22y -42x =1 B.42x -22y =1 C.42y -22x =1 D.22x -42y =1题型三:双曲线的离心率问题1已知双曲线 x 2a 2 - y 2b2 = 1 (a >0,b >0)的左右焦点分别为F 1、F 2,点P 在双曲线的右支上,且∣PF 1∣=4∣PF 2∣,则此双曲线的离心率e 的最大值为 ( )A .43 B .53 C .2 D .732.已知21,F F 是双曲线)0(,12222>>=-b a b y a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左支交于A 、B两点,若2ABF ∆是正三角形,那么双曲线的离心率为 ( )A.2 B.3 C. 2 D. 33.过双曲线M:2221y x b -=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )4.在给定双曲线中,过焦点垂直于实轴的弦长为2,焦点到相应准线的距离为21,则该双曲线的离心率为( )A.22 B. 2 C .2 D. 225..已知双曲线12222=-by a x (a>0,b<0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2) B. (1,2) C .[2,+∞) D.(2,+∞)题型四:双曲线的距离问题1.设P 是双曲线22ax -92y =1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|等于( )A.1或5 B.6 C .7 D.92.已知双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是A.(33-,33) B. (-3,3) C .[ 33-,33] D. [-3,3]3.已知圆C 过双曲线92x -162y =1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是____.题型五:轨迹问题1.已知椭圆x 2+2y 2 =8的两焦点分别为F 1、F 2,A 为椭圆上任一点。

双曲线知识点总结及例题讲解

双曲线知识点总结及例题讲解

9. 双曲线 x2 y2 1的渐近线方程是 49
A. y 2 x 3
[解析]选 C
B. y 4 x 9
()
C. y 3 x 2
D. y 9 x 4
10.焦点为(0,6),且与双曲线 x2 y 2 1 有相同的渐近线的双曲线方程是
2
()
A. x 2 y 2 1
12 24
B. y 2 x 2 1
B.12
C.12 3
解析: a 1,b 12,c 13,由| PF1 |:| PF2 | 3 : 2 ①
D.24
又| PF1 | | PF2 | 2a 2, ②
由①、②解得| PF1 | 6,| PF2 | 4.
| PF1 |2 | PF2 |2 52,| F1F2 |2 52,
PF1F2为直角三角形,
A. 2
B. 3
C. 5
D. 2
【解题思路】通过渐近线、离心率等几何元素,沟通 a,b,c 的关系
[解析]
焦点到渐近线的距离等于实轴长,故 b 2a , e2
c2 a2
1 b2 a2
5 ,所以 e
5
【名师指引】双曲线的渐近线与离心率存在对应关系,通过 a,b,c 的比例关系可以求离心率,
也可以求渐近线方程 【新题导练】
[解析] 解法一:设双曲线方程为 x 2 - y 2 =1.由题意易求 c=2 5 . a2 b2
又双曲线过点(3 2 ,2),∴ (3 2)2 - 4 =1.
a2
b2
又∵a2+b2=(2 5 )2,∴a2=12,b2=8.
故所求双曲线的方程为 x 2 - y 2 =1. 12 8
解法二:设双曲线方程为 x 2 - y 2 =1, 16 k 4 k

(完整版)双曲线标准方程及几何性质知识点及习题,推荐文档

(完整版)双曲线标准方程及几何性质知识点及习题,推荐文档

9 2

1
的双曲线的
标准方程。
x2 【例 6】设 F1、F2 分别是双曲线 a2
y2 b2
1的左、右焦点,若双曲线上存在点 A,使
F1AF2 90 ,且︱AF1︱=3︱AF2︱,求双曲线的离心率。
练习。已知双曲线 x2 y 2 1的离心率 e 2 3 ,过 A(a,0), B(0,b) 的直线到原点的距离
5
【例 2】求虚轴长为 12,离心率为 双曲线标准方程。
4
【例 3】求焦距为 26,且经过点 M(0,12)双曲线标准方程。
练习。焦点为 0,6,且与双曲线 x2 y2 1有相同的渐近线的双曲线方程是 ( 2

A. x2 y 2 1
12 24
B. y 2 x2 1
12 24
C. y 2 x2 1
24 12
D. x2 y 2 1
24 12
【例 4】与双曲线 x2 y2 1有公共渐进线,且经过点 A 3, 2 3 9 16
练习。求一条渐近线方程是 3x 4 y 0 ,一个焦点是 4,0的双曲线标准方程,并求此双曲
线的离心率.
解决双曲线的性质问题,关键是找好等量关系,特别是 e、a、b、c 四者的关系,构造出
F1 、F2
分别是双曲线的左、右焦点,若| PF1 | 3 ,则| PF2 |
()
A.1 或 5
B. 6
C. 7
D. 9
11.已知双曲线
x2 a2
y2 b2
1, (a
0, b
0) 的左,右焦点分别为 F1, F2 ,点
P
在双曲线的右
支上,且| PF1 | 4 | PF2 | ,则双曲线的离心率 e 的最大值为 ( )

双曲线知识点归纳总结例题分析

双曲线知识点归纳总结例题分析

双曲线知识点归纳总结例题分析双曲线基本知识点补充知识点:等轴双曲线的主要性质有:(1)半实轴长=半虚轴长(⼀般⽽⾔是a=b ,但有些地区教材版本不同,不⼀定⽤的是a,b 这两个字母);(2)其标准⽅程为x^2-y^2=C ,其中C≠0;(3)离⼼率e=√2;(4)渐近线:两条渐近线 y=±x 互相垂直;(5)等轴双曲线上任意⼀点到中⼼的距离是它到两个焦点的距离的⽐例中项;(6)等轴双曲线上任意⼀点P 处的切线夹在两条渐近线之间的线段,必被P 所平分;(7)等轴双曲线上任意⼀点处的切线与两条渐近线围成三⾓形的⾯积恒为常数a^2;(8)等轴双曲线x^2-y^2=C 绕其中⼼以逆时针⽅向旋转45°后,可以得到XY=a^2/2,其中C≠0。

所以反⽐例函数y=k/x 的图像⼀定是等轴双曲线。

例题分析:例1、动点P 与点1(05)F ,与点2(05)F -,满⾜126PF PF -=,则点P 的轨迹⽅程为()A.221916x y -= B.221169x y -+=C.221(3)169x y y -+=≥ D.221(3)169x y y -+=-≤同步练习⼀:如果双曲线的渐近线⽅程为34y x =±,则离⼼率为()A.53B.54C.53或54例2、已知双曲线2214x y k+=的离⼼率为2e <,则k 的范围为()A.121k -<< B.0k < C.50k -<<D.120k -<<同步练习⼆:双曲线22221x y a b -=的两条渐近线互相垂直,则双曲线的离⼼率为.例3、设P 是双曲线22219x y a -=上⼀点,双曲线的⼀条渐近线⽅程为320x y -=,12F F ,分别是双曲线的左、右焦点,若13PF =,则2PF 的值为.同步练习三:若双曲线的两个焦点分别为(02)(02)-,,,,且经过点(2,则双曲线的标准⽅程为。

双曲线知识点及例题

双曲线知识点及例题

双曲线知识点一:双曲线的定义: 在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线的轨迹叫作双曲线..这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距两焦点的距离叫作双曲线的焦距. . 注意:注意:1. 1. 双曲线的定义中,常数双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 2. 若去掉定义中的“绝对值”,常数若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;的一支;3. 3. 若常数若常数满足约束条件:,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点);端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在;,则动点轨迹不存在;5.若常数,则动点轨迹为线段F 1F 2的垂直平分线。

的垂直平分线。

知识点二:双曲线与的简单几何性质标准方程图形性质焦点, ,焦距范围,,对称性 关于x 轴、y 轴和原点对称顶点 轴长 实轴长=,虚轴长=离心率 渐近线方程1.通径:过焦点且垂直于实轴的弦,其长ab 222.2.等轴双曲线等轴双曲线等轴双曲线 : : :当双曲线的实轴长与虚轴长相等即当双曲线的实轴长与虚轴长相等即2a=2b 时,我们称这样的双曲线为等轴双曲线。

其离心率,两条渐近线互相垂直为,等轴双曲线可设为3.3.与双曲线与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y 轴上)轴上)4.4.焦点三角形的面积焦点三角形的面积2cot221qb SF PF =D ,其中21PF F Ð=q 5.5.双曲线的焦点到渐近线的距离为双曲线的焦点到渐近线的距离为b.6.在不能确定焦点位置的情况下可设双曲线方程为:)0(122<=+mn ny mx 7.7.椭圆、双曲线的区别和联系:椭圆、双曲线的区别和联系:椭圆、双曲线的区别和联系:椭圆双曲线根据|MF 1|+|MF 2|=2a根据|MF 1|-|MF 2|=|=±±2aa >c >0, a 22-c 22=b 22(b >0)0<a <c , c 22-a 22=b 22(b >0), ,(a>b>0)(a>0,b>0,a不一定大于b)典型例题1、已知双曲线:()的离心率为,则的渐近线方程为()D.A.B.C.试题分析:由题意可知,因为渐近线方程为 所以渐近线的方程为 2、已知分别是双曲线的左右焦点,过做垂直于轴的直线交双曲线于两点,若为钝角三角形,则双曲线的离心率的范围是A.B.C.D.试题分析:由题意为钝角三角形,则,所以,又,,所以,所以,所以.考点:双曲线离心率.3、已知双曲线(a>0,b>0)的一条渐近线为,则它的离心率为()A.B.C.D.试题分析:由已知得,又在双曲线中有,所以得到;故选A.4、若双曲线的两准线间的距离是焦距的,则双曲线的离心率为_________. 试题分析:双曲线的两准线的距离为:,两焦点间的距离为:,根据题意可由:化简为:解得:,所以答案为:. 5、双曲线的离心率 .试题分析:双曲线即为,其中6、如图,、是双曲线的左、右焦点,过的直线与双曲线的左右两支分别交于点、.若为等边三角形,则双曲线的离心率为( )A.4B.C.D.试题分析:因为为等边三角形,不妨设,为双曲线上一点,,为双曲线上一点,则,,由,则,在中应用余弦定理得:,得,则7、设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为()A.B.C.D.试题分析:的一条渐近线方程与抛物线只有一个公共点,把代入中,得,由,,则8、过双曲线的右焦点F2的一条弦PQ,|PQ|=7,F1是左焦点,那么△F1PQ的周长为()A.18B.C.D.试题分析:可化为;由双曲线的定义,得的周长为.9、双曲线的顶点到其渐近线的距离等于_________.试题分析:双曲线的顶点为,渐近线方程为,即;则顶点到其渐近线的距离为. 10、双曲线的离心率,则的取值范围是()A.B.C.D.试题分析:由题意知,又,∴,∴. 11、双曲线的实轴长是()A.2B.2C.4D.4试题分析:双曲线方程可变形为,所以. 12、双曲线:的渐近线方程是()A.B.C.D.试题分析:由双曲线的渐近线方程的公式可知的渐近线方程是.13、斜率为的直线过双曲线的右焦点,且与双曲线的左右两支都相交,则双曲线的离心率的取值范围是()A.B.C.D.试题分析:如图,要使斜率为的直线过双曲线的右焦点,且与双曲线的左右两支都相交,必须且只需即可,从而有所以有离心率,故选D. 14、过原点的直线与双曲线有两个交点,则直线的斜率的取值范围为()A.B.C.D.试题分析:双曲线的焦点在y轴上,通过双曲线的图象与性质可知当直线与双曲线有两交点时直线的斜率k>1或k<-1,因此答案选B。

双曲线常见题型与典型方法归纳(修改版 附详解答案)

双曲线常见题型与典型方法归纳(修改版 附详解答案)

双曲线常见题型与典型方法归纳考点一 双曲线标准方程及性质1.双曲线的定义第一定义:平面内与两个定点21,F F 距离的差的绝对值等于|)|2(221F F a a <的点的轨迹。

(1)距离之差的绝对值.(2)当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支;当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是同一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在. 【典例】到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹( )A .椭圆B .线段C .双曲线D .两条射线 第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数)1(>e 的动点的轨迹。

2双曲线的标准方程及几何性质标准方程)0,0(12222>>=-b a by a x )0,0(12222>>=-b a bx a y 图形性 质焦点 F 1(-)0,c ,F 2()0,c F 1(),0c -,F 2(),c o焦距 | F 1F 2|=2c 222c b a =+范围 R y a x ∈≥,|| R x a y ∈≥,||对称 关于x 轴,y 轴和原点对称顶点 (-a ,0)。

(a ,0) (0,-a )(0,a )轴 实轴长2a ,虚轴长2b离心率)1(>=e ace (离心率越大,开口越大) 准线ca x 2±=ca y 2±=通径22b d a=22b d a=渐近线x ab y ±= x bay ±=注意:等轴双曲线(1)定义:实轴长与虚轴长相等的双曲线 (2)方程:222x y a -=或222y x a -= (3)离心率e =渐近线y x =±(4)方法:若已知等轴双曲线经过一定点,则方程可设为22(0)x y λλ-=≠ 【典例】 已知等轴双曲线经过点1)-,求此双曲线方程 3双曲线中常用结论(1)两准线间的距离: 22a c (2)焦点到渐近线的距离为b (3)通径的长是ab 22考点二 双曲线标准方程一 求双曲线标准方程的方法(1)定义法,根据题目的条件,若满足定义,求出相应a b c 、、即可求得方程; (2)待定系数法,其步骤是①定位:确定双曲线的焦点在哪个坐标轴上;②设方程:根据焦点的位置设出相应的双曲线方程; ③定值:根据题目条件确定相关的系数。

高中数学双曲线经典考点及例题讲解

高中数学双曲线经典考点及例题讲解

双曲线考纲解读 1.根据双曲线的定义和性质求标准方程;2.根据双曲线的标准方程求双曲线的性质:离心率、渐近线等;3.利用双曲线定义及性质解决简单的直线与双曲线的关系问题.[基础梳理]1.双曲线的定义(1)平面内与两个定点F1,F2的距离之差的绝对值(|F1F2|=2c>0)为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫作双曲线的焦点,两焦点间的距离叫作焦距.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a<|F1F2|时,M点的轨迹是双曲线;②当2a=|F1F2|时,M点的轨迹是两条射线;③当2a>|F1F2|时,M点不存在.2.双曲线的标准方程与几何性质x2y2y2x2[三基自测]1.双曲线x 23-y 22=1的焦距为( )A .32 B.5 C .2 5 D .45答案:C2.若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3 答案:B3.x 22+m -y 2m +1=-1表示双曲线,则m 的范围为________. 答案:(-∞,-2)∪(-1,+∞) 4.(2017·高考全国卷Ⅰ改编)双曲线x 2-y 23=1的渐近线方程为________. 答案:y =±3x考点一 双曲线定义及应用|易错突破[例1] (1)已知两圆C 1:(x +4)2+y 2=2,C 2:(x -4)2+y 2=2,动圆M 与两圆C 1,C 2都相切,则动圆圆心M 的轨迹方程是( )A .x =0 B.x 22-y 214=1(x ≥2) C.x 22-y 214=1 D.x 22-y 214=1或x =0 (2)已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43|PF 2|,求△F 1PF 2的面积.[解析] (1)动圆M 与两圆C 1,C 2都相切,有四种情况:①动圆M 与两圆都外切;②动圆M 与两圆都内切;③动圆M 与圆C 1外切、与圆C 2内切;④动圆M 与圆C 1内切、与圆C 2外切.在①②情况下,显然,动圆圆心M 的轨迹方程为x =0;在③的情况下,设动圆M 的半径为r ,则|MC 1|=r +2,|MC 2|=r - 2.故得|MC 1|-|MC 2|=22;在④的情况下,同理得|MC 2|-|MC 1|=2 2. 由③④得|MC 1|-|MC 2|=±2 2.已知|C 1C 2|=8,根据双曲线定义,可知点M 的轨迹是以C 1(-4,0),C 2(4,0)为焦点的双曲线,且a =2,c =4,b 2=c 2-a 2=14,其方程为x 22-y 214=1.(2)由双曲线的定义可得|PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10,故三角形PF 1F 2为直角三角形,因此S △PF 1F 2=12|PF 1|×|PF 2|=24.[答案] (1)D[易错提醒][纠错训练]1.(2018·陕西师大附中模拟)设过双曲线x 2-y 2=9右焦点F 2的直线交双曲线的左支于点P ,Q ,F 2为双曲线的右焦点.若|PQ |=7,则△F 2PQ 的周长为( )A .19B .26C .43D .50解析:如图,由双曲线的定义可得⎩⎪⎨⎪⎧|PF 2|-|PF 1|=2a , ①|QF 2|-|QF 1|=2a , ②①+②得|PF 2|+|QF 2|-|PQ |=4a , ∴△F 2PQ 的周长为|PF 2|+|QF 2|+|PQ | =4a +|PQ |+|PQ |=4×3+2×7=26.答案:B2.已知F 1,F 2为双曲线x 25-y 24=1的左,右焦点,P (3,1)为双曲线内一点,点A 在双曲线上,求|AP |+|AF 2|的最小值.解析:由题意知,|AP |+|AF 2|=|AP |+|AF 1|-2a ,要求|AP |+|AF 2|的最小值,只需求|AP |+|AF 1|的最小值,当A ,P ,F 1三点共线时,取得最小值,则|AP |+|AF 1|=|PF 1|=37,∴|AP |+|AF 2|=|AP |+|AF 1|-2a =37-2 5.考点二 双曲线的方程及性质|方法突破命题点1 求双曲线的方程[例2] (1)已知焦点在y 轴上的双曲线C 的一条渐近线与直线l :x +3y =0垂直,且C 的一个焦点到l 的距离为3,则双曲线C 的标准方程为( )A.y 29-x 23=1 B.x 29-y 23=1 C.y 24-x 26=1 D.x 24-y 26=1 (2)若双曲线经过点(3,2),且渐近线方程是y =±13x ,则双曲线的方程是________。

双曲线知识点归纳与例题分析

双曲线知识点归纳与例题分析

双曲线知识点归纳与例题分析双曲线是解析几何中重要的曲线之一,它有着许多特殊的性质和应用。

本文将对双曲线的知识点进行归纳,并结合例题进行分析,帮助读者更好地理解和应用双曲线的相关概念。

一、基本概念双曲线是平面上满足特定几何性质的曲线,由平面上到两个给定的点的距离之差等于一个常数构成。

常见的双曲线方程有两种形式:椭圆型和双曲型。

椭圆型的方程形如:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$,而双曲型的方程形如:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$。

其中,a和b分别是椭圆的长轴和短轴的长度。

二、性质与特点1. 焦点和准线:双曲线的焦点是曲线上到两个定点的距离之和等于常数的点,而准线是指到两个定点的距离之差等于常数的直线。

在椭圆型的双曲线中,焦点和准线位于曲线的长轴上,而在双曲型双曲线中,焦点和准线位于曲线的短轴上。

2. 渐近线:双曲线的两条渐近线是曲线的一种特殊性质。

渐近线与曲线的距离趋于无穷远,但始终不与曲线相交。

在双曲型的双曲线中,渐近线的斜率等于正负短轴与长轴之比。

而在椭圆型的双曲线中,渐近线的斜率等于正负长轴与短轴之比。

3. 对称性:双曲线具有关于x轴、y轴和原点的对称性。

即在曲线上一点(x, y)处,如果(x, -y)也在曲线上,那么曲线关于x轴对称;如果(-x, y)也在曲线上,那么曲线关于y轴对称;如果(-x, -y)也在曲线上,那么曲线关于原点对称。

三、例题分析下面通过几个例题来加深对双曲线的理解:例题1:已知双曲线的焦点为(2, 0),离心率为2,求该双曲线的方程。

解析:根据离心率的定义可知,双曲线的离心率e满足$$e=\frac{\sqrt{a^2+b^2}}{a}$$,其中a和b分别为双曲线椭圆型方程中长轴和短轴的长度。

因此,代入题目中的离心率2,可以得到2=\frac{\sqrt{a^2+b^2}}{a}。

解方程可得a=\sqrt{5},再根据焦点所在的位置可知,椭圆型方程的焦点是位于横轴上的。

双曲线性质总结及经典例题

双曲线性质总结及经典例题

双曲线性质总结及经典例题双曲线知识点总结1. 双曲线的第一定义:⑴①双曲线标准方程:.一般方程:.⑵①i. 焦点在x轴上:顶点:焦点:准线方程渐近线方程:或ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离). ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)例题分析定义类1,已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为点拨:一要注意是否满足122||a F F <,二要注意是一支还是两支12||||610PF PF -=< ,P 的轨迹是双曲线的右支.其方程为)0(116922>=-x y x2双曲线的渐近线为x y 23±=,则离心率为 点拨:当焦点在x 轴上时,23=a b ,213=e ;当焦点在y轴上时,23=b a ,313=e4 设P 为双曲线11222=-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( )A .36B .12C .312D .24 解析:2:3||:||,13,12,121====PF PF c b a 由 ①又,22||||21==-a PFPF ②由①、②解得.4||,6||21==PF PF,52||,52||||2212221==+F F PF PF为21F PF ∴直角三角形,.124621||||212121=⨯⨯=⋅=∴∆PF PF S F PF 故选B 。

1已知双曲线C 与双曲线162x -42y =1有公共焦点,且过点(32,2).求双曲线C 的方程.【解题思路】运用方程思想,列关于c b a ,,的方程组 [解析] 解法一:设双曲线方程为22a x -22b y =1.由题意易求c =25.又双曲线过点(32,2),∴22)23(a -24b =1.又∵a 2+b 2=(25)2,∴a 2=12,b 2=8.故所求双曲线的方程为122x-82y =1.解法二:设双曲线方程为kx -162-ky +42=1,将点(32,2)代入得k =4,所以双曲线方程为122x -82y =1.2.已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; [解析]设双曲线方程为λ=-224y x ,当0>λ时,化为1422=-λλy x ,2010452=∴=∴λλ, 当0<λ时,化为1422=---λλy y ,2010452-=∴=-∴λλ,综上,双曲线方程为221205x y -=或120522=-x y3.以抛物线x y 382=的焦点F 为右焦点,且两条渐近线是03=±y x 的双曲线方程为___________________.[解析] 抛物线x y 382=的焦点F 为)0,32(,设双曲线方程为λ=-223y x ,9)32(342=∴=∴λλ,双曲线方程为13922=-y x【例1】若椭圆()0122 n m ny m x =+与双曲线221x y a b-=)0( b a 有相同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是 ( )A. a m -B. ()a m -21 C. 22a m -D.am -()121PF PF ∴+=()122PF PF ∴-=±()()()2212121244PF PF m a PF PF m a-⋅=-⇒⋅=-:,故选A.【评注】严格区分椭圆与双曲线的第一定义,是破解本题的关键. 【例2】已知双曲线127922=-y x 与点M(5,3),F 为右焦点,若双曲线上有一点P ,使PMPF 21+最小,则P 点的坐标为【分析】待求式中的12是什么?是双曲线离心率的倒数.由此可知,解本题须用双曲线的第二定义.【解析】双曲线的右焦点F (6,0),离心率2e =, 右准线为32l x =:.作MN l ⊥于N ,交双曲线右支于P , 连FP ,则122PF e PN PN PN PF ==⇒=.此时 PM 1375225PF PM PN MN +=+==-=为最小.在127922=-y x 中,令3y =,得212xx x =⇒=±∴0,取x =XY O F(6,0)M(5,3)P N P ′N ′X=32所求P点的坐标为().【例3】过点(1,3)且渐近线为x y 21±=的双曲线方程是【解析】设所求双曲线为()2214x y k -=点(1,3)代入:135944k =-=-.代入(1): 22223541443535x y x y -=-⇒-=即为所求.【评注】在双曲线22221x y a b -=中,令222200x y x y a b a b-=⇒±=即为其渐近线.根据这一点,可以简洁地设待求双曲线为2222x y k a b-=,而无须考虑其实、虚轴的位置.【例7】直线l 过双曲线12222=-b y a x 的右焦点,斜率k =2.若l 与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是 ( ) A .e >2 B.1<e <3 C.1<e <D.e >5【解析】如图设直线l 的倾斜角为α双曲线渐近线m的倾斜角为β.显然。

双曲线知识点及例题

双曲线知识点及例题

双曲线知识点及例题一、双曲线的定义平面内到两个定点\(F_1\)、\(F_2\)的距离之差的绝对值等于常数\(2a\)(\(0 <2a <|F_1F_2|\))的点的轨迹叫做双曲线。

这两个定点\(F_1\)、\(F_2\)叫做双曲线的焦点,两焦点之间的距离\(|F_1F_2|\)叫做焦距,记为\(2c\)。

二、双曲线的标准方程焦点在\(x\)轴上的双曲线标准方程为:\(\frac{x^2}{a^2}\frac{y^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2 = a^2 + b^2\)。

焦点在\(y\)轴上的双曲线标准方程为:\(\frac{y^2}{a^2}\frac{x^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2 = a^2 + b^2\)。

三、双曲线的几何性质1、范围焦点在\(x\)轴上的双曲线,\(x\)的取值范围是\(x \leq a\)或\(x \geq a\);\(y\)的取值范围是\(R\)。

焦点在\(y\)轴上的双曲线,\(y\)的取值范围是\(y \leq a\)或\(y \geq a\);\(x\)的取值范围是\(R\)。

2、对称性双曲线关于\(x\)轴、\(y\)轴和原点都对称。

3、顶点焦点在\(x\)轴上的双曲线的顶点坐标为\((\pm a, 0)\);焦点在\(y\)轴上的双曲线的顶点坐标为\((0, \pm a)\)。

4、渐近线焦点在\(x\)轴上的双曲线的渐近线方程为\(y =\pm \frac{b}{a}x\);焦点在\(y\)轴上的双曲线的渐近线方程为\(y =\pm \frac{a}{b}x\)。

5、离心率双曲线的离心率\(e =\frac{c}{a}\)(\(e > 1\)),它反映了双曲线的开口大小。

四、例题解析例 1:已知双曲线的方程为\(\frac{x^2}{9} \frac{y^2}{16} =1\),求其顶点坐标、焦点坐标、渐近线方程和离心率。

双曲线知识点及题型总结刘

双曲线知识点及题型总结刘

双曲线知识点及题型总结1、双曲线定义:①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在.②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线2.双曲线的标准方程: ①12222=-b y a x (a >0,b >0)(焦点在x 轴上); ②12222=-bx a y (a >0,b >0)(焦点在y 轴上); 1)如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2)与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3)双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。

3. 求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.4. 曲线的简单几何性质22a x -22by =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线:①若双曲线方程为12222=-b y a x ⇒渐近线方程⇒=-02222by a x x a by ±=②若渐近线方程为x a by ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222by a x注:①当焦点在x 轴上时:渐渐线倾斜角与离心率的关系:tan θ=②当焦点在y 轴上时:渐渐线倾斜角与离心率的关系:tan θ=③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上)④特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;y =a b x ,y =-abx ⑸准线:l 1:x =-c a 2,l 2:x =c a 2,两准线之距为2122a K K c=⋅⑹焦半径:21()a PF e x ex a c =+=+,(点P 在双曲线的右支上x a ≥);22()a PF e x ex a c=-=-,(点P 在双曲线的右支上x a ≥);当焦点在y 轴上时,标准方程及相应性质(略)⑺通径的定义:过焦点且垂直于实轴的直线与双曲线相交于A 、B 两点,则其长为:ab AB 22||=(8)与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222b y a x )0(≠λ(9)与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x (10)1-2222=by a x (a>0;b>0)的焦点为1F 与2F ,且p 为曲线上任意一点,12F PF θ∠=。

双曲线及其性质知识点及题型归纳总结

双曲线及其性质知识点及题型归纳总结

双曲线及其性质知识点及题型归纳总结知识点精讲一、双曲线的定义平面内与两个定点21,F F 的距离的差的绝对值.....等于常数(大于零且小于21F F )的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).用集合表示为{})20(22121F F a a MF MF M<<=-.注(1)若定义式中去掉绝对值,则曲线仅为双曲线中的一支.(2)当212F F a =时,点的轨迹是以1F 和2F 为端点的两条射线;当02=a 时,点的轨迹是线段21F F 的垂直平分线.(3)212F F a >时,点的轨迹不存在. 在应用定义和标准方程解题时注意以下两点:①条件“a F F 221>”是否成立;②要先定型(焦点在哪个轴上),再定量(确定2a ,2b 的值),注意222c b a =+的应用.二、双曲线的方程、图形及性质双曲线的方程、图形及性质如表10-2所示.题型归纳及思路提示题型1 双曲线的定义与标准方程 思路提示求双曲线的方程问题,一般有如下两种解决途径:(1)在已知方程类型的前提下,根据题目中的条件求出方程中的参数a ,b ,c ,即利用待定系数法求方程.(2)根据动点轨迹满足的条件,来确定动点的轨迹为双曲线,然后求解方程中的参数,即利用定义法求方程.例10.11 设椭圆1C 的离心率为135,焦点在x 轴上且长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )A. 1342222=-y xB. 15132222=-y xC. 1432222=-y xD. 112132222=-y x解析 设1C 的方程为)0(12222>>=+b a by a x ,则⎪⎩⎪⎨⎧==135262a c a ,得⎩⎨⎧==513c a .椭圆1C 的焦点为)0,5(1-F ,)0,5(2F ,因为218F F <,且由双曲线的定义知曲线2C 是以21,F F 为焦点,实轴长为8的双曲线,故2C 的标准方程为1342222=-y x ,故选A.变式 1 设命题甲:平面内有两个定点21,F F 和一动点M ,使得21MF MF -为定值,命题乙:点M 的轨迹为双曲线,则命题甲是命题乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件变式 2 已知)0,2(-M 和)0,2(N 是平面上的两个点,动点P 满足2=-PN PM ,求点的P 轨迹方程.变式 3已知)0,2(-M ,)0,2(N ,动点P 满足22=-PN PM ,记动点的P 轨迹为W ,求W 的方程. 例10.12 求满足下列条件的双曲线的标准方程: (1)经过点)2,5(-,焦点为)0,6(;(2)实半轴长为32且与双曲线141622=-y x 有公共焦点; (3)经过点)72,3(P ,)7,26(-. 分析 利用待定系数法求方程.设双曲线方程为“)0,0(12222>>=-b a b y a x ”,或“x bay =”,求双曲线方程,即求参数a ,b ,为此需要找出并解关于a ,b 的两个方程. 解析 (1)解法一:因为焦点坐标为)0,6(,焦点在x 轴上,故可设双曲线方程为x b a y -=,又双曲线过点)2,5(-,所以142522=-ba ,又因为6=c ,所以622=+b a ,解得52=a ,12=b ,故所求双曲线方程为1522=-y x . 解法二:由双曲线的定义a MF MF 221=-,()()=+--=+---++-=610356103526526522222a52530530=---.得5=a ,6=c 故1=b ,双曲线方程为1522=-y x .(2)解法一:由双曲线方程141622=-y x ,得其焦点坐标为)0,52(1-F ,)0,52(2F ,由题意,可设所求双曲线方程为x bay -=,由已知32=a ,52=c ,得8222=-=a c b ,故所求双曲线方程为181222=-y x . 解法二:依题意,设双曲线的方程为)164(141622<<-=+--k ky k x , 由()k -=16322.得4=k ,故所求曲线的方程为181222=-y x . (3)因为所求双曲线方程为标准方程,但不知焦点在哪个轴上,故可设双曲线方程为)0(122<=+mn ny mx ,因为所求双曲线经过点)72,3(P ,)7,26(-,所以⎩⎨⎧=+=+149721289n m n m ,解得⎪⎩⎪⎨⎧=-=251751n m ,故所求双曲线方程为1752522=-x y . 评注 求双曲线的标准方程一般用待定系数法,若焦点坐标确定,一般仅有一解;若焦点坐标不能确定是在x 轴上还是在y 轴上,可能有两个解,而分类求解较为繁杂,此时可设双曲线的统一方程)0(122<=+mn ny mx ,求出即可n m ,,这样可以简化运算.变式 1 根据下列条件,求双曲线的标准方程:(1)与双曲线116922=-y x 有共同的渐近线,且过点)33,3(-; (2)与双曲线141622=-y x 有公共焦点;且过点)2,23(.变式 2 若动圆M 与圆()93:221=++y x C 外切,且与圆()13:222=+-y x C 内切,求动圆M 的圆心M 的轨迹方程.例10.13 已知双曲线的离心率为2,焦点分别为)0,4(-,)0,4(,则双曲线方程为( )A. 112422=-y x B. 141222=-y x C. 161022=-y x D.110622=-y x 解析 由焦点为)0,4(-,)0,4(,可知焦点在x 轴上,故设方程为)0,0(12222>>=-b a by a x ,且2==ace ,故2=a .所以42=a ,162=c ,12222=-=a c b ,故所求双曲线的方程为112422=-y x .故选A. 变式 1 已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线方程为x y 3=,一个焦点在抛物线x y 242=的准线上,则双曲线的方程为( )A. 11083622=-y x B.127922=-y x C.13610822=-y x D.192722=-y x 变式 2 已知双曲线1:2222=-by a x C 的焦距为10,点)1,2(P 在C 的渐近线上,则C 的方程为( )A. 152022=-y x B.120522=-y x C.1208022=-y x D.1802022=-y x 变式 3 已知点)4,3(-P 是双曲线)0,0(12222>>=-b a by a x 渐近线上的一点,E ,F 是左、右两个焦点,若0=⋅FP EP ,则双曲线的方程为( )A. 14322=-y x B. 13422=-y x C.116922=-y x D. 191622=-y x 题型2 双曲线的渐近线思路提示掌握双曲线方程与其渐近线方程的互求;由双曲线方程容易求得渐近线方程;反之,由渐近线方程可得出a ,b 的关系式,为求双曲线方程提供了一个条件.另外,焦点到渐近线的距离为虚半轴长b .例10.14 双曲线14222-=-y x 的渐近线方程为( ) A. x y 2±=B. x y 2±=C. x y 22±= D. x y 21±= 分析 对不标准的圆锥曲线方程应首先化为标准方程,再去研究其图形或性质,不然极易出现错误.解析 双曲线的标准方程为12422=-x y ,焦点在y 轴上,且42=a ,22=b ,故渐近线方程为x b ay ±=,故所求渐近线方程为x y 22±=,即x y 2±=.故选A. 评注 应熟记,若双曲线的标准方程为12222=-b y a x ,则焦点落在x 轴上,渐近线方程为x a by ±=;若双曲线的标准方程为12222=-b x a y ,则焦点落在y 轴上,渐近线方程为x b ay ±=.本题也可以直接写出渐近线方程为04222=-y x ,化简得x y 2±=. 变式 1已知双曲线)0(1222>=-b by x 的一条渐近线的方程为x y 2=,则b _________变式 2 设双曲线)0(19222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为( ) A.4B.3C.2D.1变式 3 已知双曲线)0(12222>=-b b y x 的左、右焦点分别为21,F F ,其中一条渐近线方程为x y =,点),3(0y P 在该双曲线上,则21PF PF ⋅等于( )A.-12B.-2C.0D.4例10.15 双曲线191622=-y x 的一个焦点到其渐近线的距离是_________. 解析 由题设可知其中一条渐近线方程为043=+y x ,则焦点)0,5(到该渐近线的距离3435322=+⨯=d .评注 双曲线12222=-by a x 的一个焦点到其渐近线的距离(焦渐距)为b .变式 1双曲线13622=-y x 的渐近线与圆())0(3222>=+-r r y x 相切,则=r ( ) A. 3B. 2C.3D.6变式 2 已知双曲线)0,0(12222>>=-b a by a x 的两条渐近线均和圆056:22=+-+x y x C 相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A. 14522=-y x B. 15422=-y x C. 16322=-y x D. 13622=-y x 例10.16 过双曲线)0,0(12222>>=-b a by a x 的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C ,若AB 21=BC ,作为双曲线的渐近线方程为_______. 解析 解法一:对于)0,(a A ,则直线方程为0=-+a y x ,将该直线分别与两渐近线联立,解得⎪⎪⎭⎫ ⎝⎛++b a ab b a a B ,2,⎪⎪⎭⎫⎝⎛---b a ab b a a C ,2,则有=BC ⎪⎪⎭⎫ ⎝⎛---2222222,2b a b a b a b a ,⎪⎭⎫ ⎝⎛++-=b a ab b a abAB ,,因为AB 21=BC ,则222b a b a b a ab -=+-,得a b 2=,故224a b =,得双曲线方程为142222=-ay a x ,则双曲线的渐近线方程为02=±y x . 解法二:如图10-5所示,过C 点作BO CD //交x 轴于点D ,作x CH ⊥轴于H ,则由AB 21=BC ,得AO 21=OD ,故)0,2(a D -. 又COD BOA CDO ∠=∠=∠,所以CO CD =,则H 为OD 中点,即)0,(a H -. 又在直角三角形CHA 中,︒=∠45CHA ,故a AH CH 2==,即)2,(a a C -.故22-=-==-aak a b OC ,即2=ab,故双曲线的渐近线方程为02=±y x . 评注 在解法一种,若注意到AB AC 3=,则可利用B C y y 3=巧妙求解;解法二更能帮助我们挖掘出图形的本质特征.变式 1 过双曲线1:22=-y x C 的右顶点A 的直线l 与双曲线C 的两条渐近线交于P ,Q 两点,且AQ PA 2=,则直线l 的斜率为_____________.题型3 离心率的值及取值范围 思路提示求离心率的本质就是探求a ,c 间的数量关系,知道a ,b ,c 中任意两者的等式关系或不等关系便可求解出e 或其范围,具体方法为标准方程法和定义法.例10.17 已知双曲线13422=-y x ,则此双曲线的离心率e 为( ) A.21B.2C. 22D.27解析 由题意可知42=a ,32=b ,故7222=+=b a c ,所以离心率27==a c e .故选D. 评注 本题若借用公式27474311222=⇒=+=+=e ab e ,则更为简洁,因为此种方法在求解过程中避开了基本量c 的求解,从而使得求解过程变得更为简捷.但是同学们应对公式:椭圆中)10(1222<<-=e a b e ;双曲线中)1(1222>+=e ab e ,加以熟练识记.变式 1 下列双曲线中离心率为26的是( ) A. 14222=-y x B. 12422=-y x C. 16422=-y x D.110422=-y x 变式 2 已知点)3,2(在双曲线)0,0(1:2222>>=-b a by a x C 上,C 的焦距为4,则它的离心率为______.变式 3 已知双曲线1422=+my x 的离心率)2,1(∈e ,则m 的取值范围是( ) A.)0,12(-B.)0,(-∞ C.)0,3(- D.)12,60(-- 例10.18 已知双曲线的渐近线方程是02=±y x ,则该双曲线的离心率等于________分析 因为不确定焦点在x 轴上还是在y 轴上,所以需分情况求解,由渐近线中的a ,b 关系,结合222b a c +=得出离心率.解析 依题意,双曲线的渐近线方程是x y 2±=.若双曲线的焦点在x 轴上,则因为双曲线的渐近线方程为x a b y ±=,故有2=ab,所以离心率5122=+=ab e ;若双曲线的焦点在y 轴上,则因为双曲线的渐近线方程为x b a y ±=,故有2=b a ,即21=a b ,所以离心率25122=+=ab e ;故离心率e 等于5或25.评注 ①若双曲线方程为)0,0(12222>>=-b a b y a x 时(焦点在x 轴上),其渐近线方程为x a by ±=;若双曲线方程为)0,0(12222>>=-b a b x a y 时(焦点在y 轴上),其渐近线方程为x bay ±=;②若双曲线的渐近线方程为)0(>±=k kx y ;则其离心率21k e +=(焦点在x 轴上)或211ke +=(焦点在y 轴上);③若双曲线的离心率为e ,则其渐近线方程为x e y ⋅-±=12(焦点在x 轴上)或x e y ⋅-±=112(焦点在y 轴上).变式 1 中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点)2,4(-,则它的离心率为( )A.6B.5C.26D.25 变式 2 若双曲线)0,0(12222>>=-b a b y a x 的离心率3=e ,则其渐近线方程为______.例10.19 已知双曲线)0,0(12222>>=-b a by a x .(1)若实轴长,虚轴长,焦距成等差数列,则该双曲线的离心率_________;(2)若实轴长,虚轴长,焦距成等比数列,则该双曲线的离心率_________.解析 (1)由题设可知c a b +=2,且222b ac +=,故2222⎪⎭⎫⎝⎛+=-c a a c ,得4c a a c +=-,即a c 53=,所以35=e . (2)由题设可知ac b =2,且222b a c +=,即ac a c =-22,由ac e =可得012=--e e ,得215+=e 或251-(舍去),所以215+=e . 变式 1 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么双曲线的离心率是( )A.2B.3C.213+D.215+变式 2 如图10-6所示,双曲线)0,0(12222>>=-b a by a x 的两个顶点为21,A A ,虚轴两个端点为21,B B ,两个焦点为21,F F ,若以21A A 为直径的圆内切于菱形2211B F B F ,切点分别为D C B A ,,,.则(1)双曲线的离心率=e _________.(2)菱形2211B F B F 的面积1S 与矩形ABCD 的面积2S 的比值=21S S例10.20 双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,过1F 作倾斜角为︒30的直线交双曲线右支于点M ,若2MF 垂直于x 轴,则双曲线的离心率为( )A.6B.3C.2D.33解析 依题意,如图10-7所示,不妨设12=MF ,则21=MF ,321=F F ,则3222121=-===MF MF F F a ca c e ,故选B. 变式1 已知21,F F 是双曲线)0,0(12222>>=-b a by a x 的两个焦点,M 为双曲线上的点,若21MF MF ⊥,︒=∠3012F MF ,则双曲线的离心率为( )A.13-B.26C.13+D.213+变式2 已知21,F F 是双曲线)0,0(12222>>=-b a by a x 的两个焦点,P 是C 上一点,若a PF PF 621=+,且21F PF ∆的最小内角为︒30,则C 的离心率为_____________.例10.21 双曲线)0,0(12222>>=-b a by a x 的两个焦点为21,F F ,若P 为其上一点,且212PF PF =,则双曲线的离心率的取值范围是( ) A.)3,1(B.(]3,1 C.),3(+∞ D.[)+∞,3 解析 解法一:由双曲线的定义知a PF PF 221=-,212PF PF =,故a PF 41=,a PF 22=,又c F F PF PF 22121=≥+,故c a 26≥,即3≤e ,又1>e ,故31≤<e ,故选B.解法二:利用21PF PF 的单调性,22221212PF aPF a PF PF PF +=+=,随2PF 的增加,21PF PF 减小,也就是说,当P 点右移时,21PF PF 值减小,故要在双曲线上找到一点P ,使得221=PF PF ,而当P 点在双曲线的右顶点时,221≥PF PF ,得c a ac ca ≥⇒≥-+32,则31≤<e , 故选B.评注 若在双曲线)0,0(12222>>=-b a b y a x 上存在一点P ,使得)1(21>=λλPF PF ,则111-+≤<λλe ,注意与椭圆中)1(111><≤+-λλλe 类似结论的区分和对比识记. 变式1 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为)0,(),0,(21c F c F -,若双曲线上存在点P 使caF PF F PF =∠∠1221sin sin ,则该双曲线的离心率的取值范围是____________.题型4 焦点三角形 思路提示对于题中涉及双曲线上点到双曲线两焦点距离问题常用定义,即a PF PF 221=-,在焦点三角形面积问题中若已知角,则用θsin 212121PF PF S F PF ⋅=∆,a PF PF 221=-及余弦定理等知识;若未知角,则用022121y c S F PF ⋅⋅=∆. 例10.22 过双曲线13422=-y x 左焦点1F 的直线交双曲线的左支于两点N M ,,2F 为其右焦点,则MN NF MF -+22的值为_________.分析 利用双曲线的定义求解解析 如图10-8所示,由定义知412=-MF MF ,12=-NF NF 所以()81122=+-+NF MF NF MF ,所以22=-+MN NF MF变式 1 设P 为双曲线11222=-y x 上的一点,21,F F 是该双曲线的两个焦点,若2:3:21=PF PF ,则21F PF ∆的面积为( )A. 36B.12C. 312D.24变式 2 双曲线1422=-y x 的两个焦点为21,F F ,点P 在双曲线上,21F PF ∆的面积为3,则21PF PF ⋅等于( ) A.2B.3C.-2D.3- 变式 3 已知21,F F 分别为双曲线1279:22=-y x C 左、右焦点,点C A ∈,点M 的坐标为)0,2(,AM 为21AF F ∠的平分线,则=2AF __________.有效训练题1. 已知双曲线1722=-y m x ,直线l 过其左焦点1F ,交双曲线左支于B A ,两点,且4=AB ,2F 为双曲线的右焦点,2ABF ∆的周长为20,则的值为( ) A. 8B. 9C. 16D. 202. 若点O 和点)0,2(-F 分别为双曲线)0(1222>=-a y ax 的中心和左焦点,点P 为双曲线右支上的任意一点,则FP OP ⋅的取值范围为( ) A. [)+∞-,323B. [)+∞+,323C. ⎪⎭⎫⎢⎣⎡+∞-,47D. ⎪⎭⎫⎢⎣⎡+∞,473. 已知21,F F 为双曲线222=-y x 的左、右焦点,点P 在C 上,212PF PF =,则=∠21cos PF F ( ) A.41B.53 C.43 D.544. 若椭圆)0(12222>>=+b a b y a x 的离心率为23,则双曲线)0,0(12222>>=-b a by a x 的渐近线方程为( ) A. x y 21±= B. x y 2±= C. x y 4±= D. x y 21±=5. 双曲线C 的左、右焦点分别为21,F F ,且2F 恰好为抛物线x y 42=的焦点,设双曲线C 与该抛物线的一个交点为A ,若21F AF ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为( ) A. 2B. 21+C. 31+D. 32+6. 如图10-9所示,过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交轴y 于E ,若ME FM =,则该双曲线的离心率为(A.3B.2C. 3D. 27. 已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为)0,5(F ,则=a _______,=b ___________.8. 已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一个点,若21PF PF ⊥,则21PF PF +的值为_________.9. 若双曲线)0,0(12222>>=-b a by a x 的两个焦点为21,F F ,P 为双曲线上一点,且213PF PF =,则该双曲线离心率的取值范围是________.10. 根据下列条件,求双曲线的标准方程:(1)与双曲线13422=-y x 有共同的渐近线,且过点)32,2(; (2)与双曲线191622=-y x 有公共焦点,且过点)4,22(-; (3)已知双曲线的渐近线方程为x y 32±=,且过点)1,29(-M ; (4)与椭圆1244922=+y x 有公共焦点,且离心率45=e .11. 中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点21,F F ,且13221=F F ,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3:7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求21cos PF F ∠的值.12. 已知双曲线的中心在原点,焦点21,F F 在坐标轴上,离心率为2,且过点)10,4(-P . (1)求双曲线方程;(2)若点),3(m M 在双曲线上,求证:021=⋅MF MF ; (3)在(2)的条件下,求21MF F ∠∆的面积.。

双曲线知识点及题型总结精华

双曲线知识点及题型总结精华

双曲线及其标准方程1 双曲线定义:第一定义:21212F F a PF PF <=-(a 为常数)注意:(1)距离之差的绝对值.(2)2a <|F 1F 2|,当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在.第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点 的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线2.双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).222a c b -=,其中|1F 2F |=2c3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.高考题型解析题型一:双曲线定义问题1.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A.充分不必要条件B.必要不充分条件 C .充分必要条件 D.既不充分又不必要条件2.若R ∈k ,则“3>k ”是“方程13322=+--k y k x表示双曲线”的( ) A .充分不必要条件. B.必要不充分条件. C.充要条件. D.既不充分也不必要条件. 4.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是 .1.双曲线42x -92y =1的渐近线方程是( )A . y =±23x B.y =±32x C.y =±49x D.y =±94x 2.过点(2,-2)且与双曲线22x -y 2=1有公共渐近线的双曲线方程是( )A .22y -42x =1 B.42x -22y =1 C.42y -22x =1 D.22x -42y =1题型三:双曲线的离心率问题1已知双曲线 x 2a 2 - y 2b 2 = 1 (a >0,b >0)的左右焦点分别为F 1、F 2,点P 在双曲线的右支上,且∣PF 1∣=4∣PF 2∣,则此双曲线的离心率e 的最大值为 ( ) A .43B .53C .2D .732.已知21,F F 是双曲线)0(,12222>>=-b a by a x的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左支交于A 、B 两点,若2ABF ∆是正三角形,那么双曲线的离心率为 ( ) A. 2 B. 3 C. 2 D. 33.过双曲线M:2221y x b -=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )B. 4.在给定双曲线中,过焦点垂直于实轴的弦长为2,焦点到相应准线的距离为21,则该双曲线的离心率为( ) A.22 B. 2 C .2 D. 225..已知双曲线12222=-by a x (a>0,b<0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 A.( 1,2) B. (1,2) C .[2,+∞) D.(2,+∞)1.设P是双曲线22ax -92y =1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|等于( ) A.1或5 B.6C .7D.92.已知双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是 A.(33-,33) B. (-3,3) C .[ 33-,33] D. [-3,3] 3.已知圆C 过双曲线92x -162y =1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是____________. 题型五:轨迹问题1.已知椭圆x 2+2y 2 =8的两焦点分别为F 1、F 2,A 为椭圆上任一点。

双曲线知识点总结例题

双曲线知识点总结例题

(二)双曲线知识点及巩固复习1.双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F 1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是(2) 若|P F1|-|PF2|=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是2.双曲线的标准方程3.双曲线的性质(1)焦点在x轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e= 范围 e越大双曲线的开口越 e越小双曲线的开口越准线渐近线焦半径公式|PF1|=|PF2|= (F1,F2分别为双曲线的左右两焦点,P为椭圆上的一点)(1)焦点在y轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e= 范围 e越大双曲线的开口越 e越小双曲线的开口越准线渐近线焦半径公式|PF1|=|PF2|= (F1,F2分别为双曲线的下上两焦点,P为椭圆上的一点)1.等轴双曲线:特点①实轴与虚轴长相等②渐近线互相垂直③离心率为2.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线的共轭双曲线是6.双曲线系(1)共焦点的双曲线的方程为(0<k<c2,c为半焦距)(2)共渐近线的双曲线的方程为例题在运用双曲线的定义时,应特别注意定义中的条件“差的绝对值”,弄清是指整条双曲线,还是双曲线的哪一支考点1、双曲线定义例1、已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程【例2】若椭圆与双曲线有相同的焦点F1,F2,P是两条曲线的一个交点,则|PF1|·|PF2|的值是()A. B. C. D.【例3】已知双曲线与点M (5,3),F 为右焦点,若双曲线上有一点P ,使最小,则P 点的坐标为考点2、求双曲线的方程求双曲线标准方程的方法1.定义法,根据题目的条件,若满足定义,求出相应a 、b 、c 即可求得方程. 2.待定系数法(2)待定系数法求双曲线方程的常用方法①与双曲线a2x2-b2y2=1有共同渐近线的双曲线方程可表示为a2x2-b2y2=t (t ≠0);②若双曲线的渐近线方程是y =±a bx ,则双曲线的方程可表示为a2x2-b2y2=t (t ≠0);③与双曲线a2x2-b2y2=1共焦点的方程可表示为a2-k x2-b2+k y2=1(-b 2<k <a 2); ④过两个已知点的双曲线的标准方程可表示为m x2+n y2=1(mn <0);⑤与椭圆a2x2+b2y2=1(a >b >0)有共同焦点的双曲线方程可表示为a2-λx2+b2-λy2=1(b 2<λ<a 2).例4、求下列条件下的双曲线的标准方程.(1)与双曲线9x2-16y2=1有共同的渐近线,且过点(-3,2); (2)与双曲线16x2-4y2=1有公共焦点,且过点(3,2).1.在双曲线的标准方程中,若x 2的系数是正的,那么焦点在x 轴上;如果y 2的系数是正的,那么焦点在y 轴上,且对于双曲线,a 不一定大于b .2.若不能确定双曲线的焦点在哪条坐标轴上,可设双曲线方程为:mx 2+ny 2=1(mn <0),以避免分类讨论.考点3、双曲线的几何性质双曲线的几何性质与代数中的方程、平面几何的知识联系密切,解题时要深刻理解确定双曲线的形状、大小的几个主要特征量,如a 、b 、c 、e 的几何意义及它们的相互关系,充分利用双曲线的渐近线方程,简化解题过程例5、(12分)双曲线C :a2x2-b2y2=1(a >0,b >0)的右顶点为A ,x 轴上有一点Q (2a,0),若C 上存在一点P ,使→AP ·→PQ =0,求此双曲线离心率的取值范围.例6、【活学活用】 3.(2012北京期末检测)若双曲线a2x2-b2y2=1(a >0,b >0)的两个焦点分别为F 1、F 2,P 为双曲线上一点,且|PF 1|=3|PF 2|,则该双曲线的离心率e 的取值范围是________.【例7】直线过双曲线的右焦点,斜率k =2.若与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是 ( )A .e >B.1<e <C.1<e <D.e >【例8】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为( )A .B. C. D.【评注】解题中发现△PF1F2是直角三角形,是事前不曾想到的吧?可是,这一美妙的结果不是每个考生都能临场发现的.将最美的结果隐藏在解题过程之中以鉴别考生的思维能力,这正是命题人的高明之处.渐近线——双曲线与直线相约天涯对于二次曲线,渐近线为双曲线所独有. 双曲线的许多特性围绕着渐近线而展开.双曲线的左、右两支都无限接近其渐近线而又不能与其相交,这一特有的几何性质不仅很好地界定了双曲线的范围.由于处理直线问题比处理曲线问题容易得多,所以这一性质被广泛应用于有关解题之中.【例9】过点(1,3)且渐近线为的双曲线方程是【评注】在双曲线中,令即为其渐近线.根据这一点,可以简洁地设待求双曲线为,而无须考虑其实、虚轴的位置.共轭双曲线——虚、实易位的孪生弟兄将双曲线的实、虚轴互易,所得双曲线方程为:.这两个双曲线就是互相共轭的双曲线.它们有相同的焦距而焦点的位置不同;它们又有共同的渐近线而为渐近线所界定的范围不一样;它们的许多奇妙性质在解题中都有广泛的应用.【例10】两共轭双曲线的离心率分别为,证明:=1.设而不求——与借舟弃舟同理减少解析几何计算量的有效方法之一便是设而不求.请看下例: 【例11】双曲线的一弦中点为(2,1),则此弦所在的直线方程为 ( )A.B.C.D.“设而不求”具体含义是:在解题中我们希望得到某种结果而必须经过某个步骤,只要有可能,可以用虚设代替而不必真地去求它.但是,“设而不求”的手段应当慎用.不问条件是否成熟就滥用,也会出漏子.请看:【例12】在双曲线上,是否存在被点M (1,1)平分的弦?如果存在,求弦所在的直线方程;如不存在,请说明理由.如果不问情由地利用“设而不求”的手段,会有如下解法:练习1.(2011安徽高考)双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 C .4 D .42.(2011山东高考)已知双曲线a2x2-b2y2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A.5x2-4y2=1B.4x2-5y2=1C.3x2-6y2=1D.6x2-3y2=13.(2012嘉兴测试)如图,P 是双曲线4x2-y 2=1右支(在第一象限内)上的任意一点,A 1,A 2分别是左、右顶点,O 是坐标原点,直线PA 1,PO ,PA 2的斜率分别为k 1,k 2,k 3,则斜率之积k 1k 2k 3的取值范围是( )A .(0,1)B .(0,81)C .(0,41)D .(0,21)4.(金榜预测)在平面直角坐标系xOy 中,已知△ABC 的顶点A (-5,0)和C (5,0),顶点B 在双曲线16x2-9y2=1上,则|sin A -sin C|sin B为( )A.23B.32C.45D.545.P 为双曲线9x2-16y2=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )A .6B .7C .8D .96.(2012南宁模拟)已知点F 1,F 2分别是双曲线的两个焦点,P 为该曲线上一点,若△PF 1F 2为等腰直角三角形,则该双曲线的离心率为( )A.+1B.+1 C .2 D .27.方程2-m x2+|m|-3y2=1表示双曲线.那么m 的取值范围是________.8.(2012大连测试)在双曲线4x 2-y 2=1的两条渐近线上分别取点A 和B ,使得|OA |·|OB |=15,其中O 为双曲线的中心,则AB 中点的轨迹方程是________.9.双曲线a2x2-b2y2=1(a >0,b >0)的离心率是2,则3a b2+1的最小值是________.10(2012肇庆模拟)已知中心在原点的双曲线C 的一个焦点是F 1(-3,0),一条渐近线的方程是 x -2y =0.(1)求双曲线C 的方程;(2)若以k (k ≠0)为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为281,求k 的取值范围.11.(文用)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(,0). (1)求双曲线C 的方程;(2)若直线:y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M 、N ,且线段MN 的垂直平分线过点A(0,-1),求实数m的取值范围.12已知中心在原点,顶点A1、A2在x轴上,离心率e=的双曲线过点P(6,6) (1)求双曲线方程 (2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点M、N,问是否存在直线l,使G平分线段MN,证明你的结论13.已知双曲线,问过点A(1,1)能否作直线,使与双曲线交于P、Q两点,并且A为线段PQ的中点?若存在,求出直线的方程,若不存在,说明理由。

双曲线知识点总结例题

双曲线知识点总结例题

(二)双曲线知识点及巩固复习1. 双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F i,F2为两定点,P为一动点,⑴若||PF i|-|PF2||=2a①0<2a<|F 1F2I则动点P的轨迹是 _______________________________②2a=|F 1F2I则动点P的轨迹是________________________________③2a=0则动点P的轨迹是_________________________________⑵若|P F i|-|PF2|=2a① ______________________________________________________ 0<2a<|F i F2|则动点P的轨迹是_______________________________________________② ____________________________________________________ 2a=|F 1F2I则动点P的轨迹是_________________________________________________③2a=0则动点P的轨迹是2.双曲线的标准方程3.双曲线的性质(1)焦点在x轴上的双曲线标准方程 ________________________x,y的范围 __________________________________顶点__________ 焦点________________ 对称轴_______________ 对称中心实半轴的长 ____________ 虚半轴的长__________________ 焦距 _______________ 离心率e= _____ 范围_____________ e越大双曲线的开口越____ e越小双曲线渐近线焦半径公式|PF i|= |PF2|= ________________ (F l,F2分别为双曲线的左右两焦点,P为椭圆上的(1)焦点在y轴上的双曲线标准方程 ________________________x,y的范围 __________________________________顶点 __________ 焦点________________ 对称轴_______________ 对称中心_____ 实半轴的长 ____________ 虚半轴的长_________________ 焦距 _______________ 离心率e= _____ 范围_____________ e越大双曲线的开口越____ e越小双曲线的开口越 ________准线 _________________ 渐近线______________________ 焦半径公式|PF i|= [PF2|= _______________________ (F i,F2分别为双曲线的下上两焦点,P为椭圆上的一点)1. 等轴双曲线:®特点①实轴与虚轴长相等②渐近线互相垂直'丄;③离心率为 _____2. 共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线的共轭双曲线是6.双曲线系(1)共焦点的双曲线的方程为2,c为半焦距)(2)共渐近线的双曲线的方程为例题在运用双曲线的定义时,应特别注意定义中的条件差的绝对值”,弄清是指整条双曲线,还是双曲线的哪一支考点1、双曲线定义例1、已知动圆M与圆C1 : (x + 4)2 + y2= 2外切,内切,求动圆圆心M的轨迹方程与圆C2: (x - 4)2 + y2 = 2= l(m> 0)与双曲线a白F2, P是两条曲线的一个交点,则|PF i| |PF2|的值是A.m-aS °)有相同的焦点F i,)J±=l例3】已知双曲线与点M (5 , 3)F为右焦点,若双曲线上有一点最小,则P点的坐标为考点2、求双曲线的方程求双曲线标准方程的方法1.定义法,根据题目的条件,若满足定义,求出相应a、b、c即可求得方程.2 •待定系数法(2)待定系数法求双曲线方程的常用方法一x2 y2 x2 y2①与双曲线a2 —b2 = 1有共同渐近线的双曲线方程可表示为a2 —b2 = t(t工0);②若双曲线的渐近线方程是y=±a x,则双曲线的方程可表示为a2—y2=t(t却);一x2 y2 x2 y2③与双曲线a2 —b2 = 1共焦点的方程可表示为a2- k—b2 + k = 1(—b2V k V a2);一x2 y2④过两个已知点的双曲线的标准方程可表示为m + n = 1(mn V0);一x2 y2 x2 y2⑤与椭圆a2 + b2 = 1(a > b > 0)有共同焦点的双曲线方程可表示为a2 -入+ b2 -U1(b2v 入V a2).例4、求下列条件下的双曲线的标准方程.x2 y2(1)与双曲线9 —16 = 1有共同的渐近线,且过点(一3,2);(2)与双曲线16 — 4 = 1有公共焦点,且过点(3, 2).1•在双曲线的标准方程中,若x2的系数是正的,那么焦点在x轴上;如果y2的系数是正的,那么焦点在y轴上,且对于双曲线,a不一定大于b.2. 若不能确定双曲线的焦点在哪条坐标轴上,可设双曲线方程为:mx2 + ny2 = 1(mn v 0),以避免分类讨论.考点3、双曲线的几何性质双曲线的几何性质与代数中的方程、平面几何的知识联系密切,解题时要深刻理解确定双曲线的形状、大小的几个主要特征量,如a、b、c、e的几何意义及它们的相互关系,充分利用双曲线的渐近线方程,简化解题过程x2例5、(12分)双曲线C: a2 —y2b2 = 1(a >0,b >0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,AP PQ使T f=0,求此双曲线离心率的取值范围.x2例6、活学活用】3.(2012北京期末检测)若双曲线a2的两个焦点分别为F i 、F 2, P 为双曲线上一点,且|PF i |二3|PF 2|,则该双曲线的 离心率e 的取值范围是 _________的右焦点,斜率k =2.若'与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是评注】解题中发现△ PF 1F 2是直角三角形,是事前 不曾想到的吧?可是,这一美妙的结果不是每个考生都能 临场发现的.将最美的结果隐藏在解题过程之中以鉴别考生的思维=1(a >0, b > 0)例7】直线!过双曲线口' 沪 B.1<e < 门C.1< e < 乓^-―=1p 卩例8】设尸为双曲线上的一点,是该双曲线的两个焦点,若I 叭I I 布」° ,则“陋的面积为(C.】2人D. 24能力,这正是命题人的高明之处. 渐近线一一双曲线与直线相约天涯对于二次曲线,渐近线为双曲线所独有.双曲线的许多特性围绕着渐近线而展开 .双曲线的左、右两支都无限接近其渐近线而又不能与其相交 ,这一特有的几何性质不仅很好地界定了双曲线的范围 由于处理直线问题比处理曲线问题容易得多,所以这一性质被广泛应用于有关解题之中设而不求一一与借舟弃舟同理减少解析几何计算量的有效方法之一便是设而不求 请看下例:设而不求”具体含义是:在解题中我们希望得到某种结果而必须经过某个步骤 ,只要有可能,可以用虚设代替而不必真地去求它.但是,设而不求”的手段应当慎用.不问条件是否成熟就滥用,也会出漏子.请看:例9】过点(1,3)且渐近线为 的双曲线方程是以简洁地设待求双曲线为,而无须考虑其实、虚轴的位置.共轭双曲线一一虚、实易位的孪生弟兄—2 --j —1将双曲线 ' 的实、虚轴互易,所得双曲线方程为 .这两个双曲线就是互相共轭的双曲线.它们有相同的焦距而焦点的位置不同一样;它们的许多奇妙性质在解题中都有广泛的应用;它们又有共同的渐近线而为渐近线所界定的范围不例10】两共轭双曲线的离心率分别为证明:例11】双曲线的一弦中点为 (2,1),则此弦所在的直线方程为评注】在双曲线 即为其渐近线.根据这一点,可-1例12】在双曲线- 上,是否存在被点M (1,1 )平分的弦?如果存在,求弦所在的直线方程;如不存在,请说明理由.如果不问情由地利用设而不求”的手段,会有如下解法练习1. (2011安徽高考)双曲线2X2—y2= 8的实轴长是()A. 2B. 2C. 4D. 4x2 y2 o o2. (2011山东高考)已知双曲线a2 —b2 = 1(a> 0, b > 0)的两条渐近线均和圆C: x2+ y2—6X+ 5 = 0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()x2 y2 x2 y2 x2 y2 x2 y2A. 5 —4 = 1B.4 —5 = 1C.3 —6 = 1D. 6 —3 = 1x23. (2012嘉兴测试)如图,P是双曲线4 —y2= 1右支(在第一象限内)上的任意一点,A,A2分别是左、右顶点,O是坐标原点,直线PA1,PO,PA>的斜率分别为k1, k2,k3,则斜率之积k j k2k3的取值范围是()1 1 1A. (0,1)B. (0,8)C. (0,4)D. (0,2)4. (金榜预测)在平面直角坐标系xOy中,已知△ ABC的顶点A(—5,0)和C(5,0),顶点Bx2 y2 sin B在双曲线16 —9 = 1上,则|sin A —sin C|为()3 2 5 4A.2B.3C.4D.5x2 y25. P为双曲线9 —16 = 1的右支上一点,M、N分别是圆(X+ 5)2+ y2= 4和(X—5)2+ y2=1上的点,则|PM|—|PN|的最大值为()A. 6B. 7C. 8D. 96 . (2012南宁模拟)已知点F i, F2分别是双曲线的两个焦点,P为该曲线上一点,若厶PF1F2为等腰直角三角形,则该双曲线的离心率为()A. + 1B.+ 1C. 2D. 2x2 y27.方程2 —m + |m| —3 = 1表示双曲线.那么m的取值范围是& (2012大连测试)在双曲线4x2—y2= 1的两条渐近线上分别取点A和B,使得|OA| OB|= 15,其中0为双曲线的中心,则AB中点的轨迹方程是______________x2 y2 b2 + 19.双曲线a2 —b2 = 1(a> 0 , b >0)的离心率是2,贝U 3a的最小值是_____________10(2012肇庆模拟)已知中心在原点的双曲线C的一个焦点是F1(—3,0), 一条渐近线的方程是x—2y= 0.(1)求双曲线C的方程;⑵若以k(k丸)为斜率的直线I与双曲线C相交于两个不同的点M , N ,且线段MN的一81垂直平分线与两坐标轴围成的三角形的面积为2,求k的取值范围.11.(文用)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).⑴求双曲线C的方程;(2)若直线:y= kx+ m(k丸,m丸)与双曲线C交于不同的两点M、N ,且线段MN的垂直平分线过点A(0,- 1),求实数m的取值范围.12已知中心在原点,顶点A i、A2在x轴上,离心率e=' 的双曲线过点P(6 , 6) (1)求双曲线方程.(2)动直线丨经过△ A1PA2的重心G,与双曲线交于不同的两点M、N,问:是否存在直线I,使G平分线段MN ,证明你的结论■13 .已知双曲线,问过点A (1 , 1)能否作直线*,使'与双曲线交于P、Q两点,并且A为线段PQ的中点?若存在,求出直线I的方程,若不存在,说明理由di14已知点N (1,2),过点N的直线交双曲线工于A、B两点,求直线AB的方程;(2)若过N的直线丨交双曲线于C、D两点,且⑵ D四点是否共圆?为什么?(二)双曲线知识点及巩固复习1.双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F1,F2为两定点,P为一动点,⑴若||PR|-|PF2||=2a①______________________________________________________ 0<2a<|F1F2I则动点P的轨迹是___________________________________________② 2a=|F 则动点P 的轨迹是 ___________________________________ ③ 2a=0则动点P 的轨迹是 _________________________________ ⑵若 |P F i |-|PF 2|=2a①0<2a<|F 1F 2I 则动点P 的轨迹是 _________________________________ ②2a=|F 1F 2I 则动点P 的轨迹是 ________________________________ ③ 2a=0则动点P 的轨迹是3. 双曲线的性质(1)焦点在x 轴上的双曲线 标准方程 ________________________x,y 的范围 ___________________________________顶点 ___________ 焦点 _______________ 对称轴 ________________ 对称中心 实半轴的长虚半轴的长焦距离心率e= _____ 范围 ____________ e 越大双曲线的开口越 ____ e 越小双曲线[PF 2F ___________________________ (F i ,F 2分别为双曲线的左右两焦点,P 为椭圆上的2.双曲线的标准方程焦半径公式|PF i |=渐近线(2)焦点在y轴上的双曲线标准方程________________________x,y的范围___________________________________顶点___________ 焦点 ________________ 对称轴 _______________ 对称中心_____ 实半轴的长_____________ 虚半轴的长 ________________ 焦距________________ 离心率e= _____ 范围 ____________ e越大双曲线的开口越____ e越小双曲线的开口越_________准线__________________ 渐近线 ______________________ 焦半径公式|PF i|= [PF2|= _______________________ (F i, F2分别为双曲线的下上两焦点,P为椭圆上的一点)3. 等轴双曲线:° V-WF特点①实轴与虚轴长相等②渐近线互相垂直F一'*③离心率为 _____4. 共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线的共轭双曲线是6.双曲线系(3)共焦点的双曲线的方程为(0<k<c 2,c为半焦距)y3(4) 共渐近线的双曲线的方程为考点1。

高二数学双曲线知识点及例题

高二数学双曲线知识点及例题

高二数学双曲线知识点及例题一知识点1. 双曲线第一定义:平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。

这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。

2. 双曲线的第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数e (e>1)的点的轨迹叫双曲线。

定点叫双曲线的焦点,定直线叫双曲线的准线,常数e 叫双曲线的离心率。

3. 双曲线的标准方程:(1)焦点在x 轴上的:x ay ba b 2222100(),(2)焦点在y 轴上的:y ax ba b2222100(),(3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。

注:c 2=a 2+b24. 双曲线的几何性质:()焦点在轴上的双曲线,的几何性质:11002222x x ay ba b ()yxF 1F 2A 2A 1O1范围:,或x a x a<2>对称性:图形关于x 轴、y 轴,原点都对称。

<3>顶点:A 1(-a ,0),A 2(a ,0)线段A 1A 2叫双曲线的实轴,且|A 1A 2|=2a ;线段B 1B 2叫双曲线的虚轴,且|B 1B 2|=2b 。

41离心率:ec a e()e 越大,双曲线的开口就越开阔。

5渐近线:y b a x=62准线方程:xac5.若双曲线的渐近线方程为:xa b y则以这两条直线为公共渐近线的双曲线系方程可以写成:)0(2222by ax 【典型例题】例1.选择题。

121122.若方程表示双曲线,则的取值范围是()x m ym m A m B m m ..2121或C m mD m R..21且2022.abax byc 时,方程表示双曲线的是()A. 必要但不充分条件B. 充分但不必要条件C. 充分必要条件D. 既不充分也不必要条件322.s i n s i nc o s 设是第二象限角,方程表示的曲线是()x y A. 焦点在x 轴上的椭圆 B. 焦点在y 轴上的椭圆C. 焦点在y 轴上的双曲线D. 焦点在x 轴上的双曲线416913221212.双曲线上有一点,、是双曲线的焦点,且,xyP F F F PF 则△F 1PF 2的面积为()A B C D (9)633393例2. 已知:双曲线经过两点,,,,求双曲线的标准方程P P 12342945例3.已知B (-5,0),C (5,0)是△ABC 的两个顶点,且sin sin sin BCA 35,求顶点A 的轨迹方程。

双曲线知识点及题型总结精华

双曲线知识点及题型总结精华

双曲线知识点及题型总结精华双曲线知识点1 双曲线定义:①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同. 当|MF 1|-|MF 2|=2a 时,曲线仅表⽰焦点F 2所对应的⼀⽀;当|MF 1|-|MF 2|=-2a 时,曲线仅表⽰焦点F 1所对应的⼀⽀;当2a =|F 1F 2|时,轨迹是⼀直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.②动点到⼀定点F 的距离与它到⼀条定直线l 的距离之⽐是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线2.双曲线的标准⽅程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这⾥222a c b -=,其中|1F 2F |=2c.要注意这⾥的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准⽅程判别⽅法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不⼀定⼤于b ,因此不能像椭圆那样,通过⽐较分母的⼤⼩来判断焦点在哪⼀条坐标轴上.4.求双曲线的标准⽅程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准⽅程后,运⽤待定系数法求解.5.曲线的简单⼏何性质22a x -22by =1(a >0,b >0)⑴范围:|x |≥a ,y ∈R⑵对称性:关于x 、y 轴均对称,关于原点中⼼对称⑶顶点:轴端点A 1(-a ,0),A 2(a ,0)⑷渐近线:①若双曲线⽅程为12222=-b y a x ?渐近线⽅程?=-02222b y a x x aby ±=②若渐近线⽅程为x aby ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴④特别地当?=时b a 离⼼率2=e ?两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;y =a b x ,y =-abx ⑸准线:l 1:x =-c a 2,l 2:x =c a 2,两准线之距为2122a K K c=?⑹焦半径:21()a PF e x ex a c =+=+,(点P 在双曲线的右⽀上x a ≥);22()a PF e x ex a c=-=-,(点P 在双曲线的右⽀上x a ≥);当焦点在y 轴上时,标准⽅程及相应性质(略)⑺与双曲线12222=-b y a x 共渐近线的双曲线系⽅程是λ=-2222by a x )0(≠λ⑻与双曲线12222=-b y a x 共焦点的双曲线系⽅程是12222=--+kb y k a x 6曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ?-<. 7曲线的⽅程与渐近线⽅程的关系(1)若双曲线⽅程为12222=-b y a x ?渐近线⽅程:22220x y a b -=?x ay ±=.(2)若渐近线⽅程为x aby ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).8双曲线的切线⽅程(1)双曲线22221(0,0)x y a b a b -=>>上⼀点00(,)P x y 处的切线⽅程是00221x x y ya b-=.(2)过双曲线22221(0,0)x y a b a b -=>>外⼀点00(,)P x y 所引两条切线的切点弦⽅程是00221x x y ya b -=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.9线与椭圆相交的弦长公式AB =若斜率为k 的直线被圆锥曲线所截得的弦为AB , A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则弦长]4))[(1(1212212122x x x x k x x k AB -++=-?+= ]4)[()11(11212212122y y y y ky y k -+?+=-?+=,这⾥体现了解析⼏何“设⽽不求”的解题思想;⾼考题型解析题型⼀:双曲线定义问题1.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A.充分不必要条件B.必要不充分条件 C .充分必要条件 D.既不充分⼜不必要条件2.若R ∈k ,则“3>k ”是“⽅程13k x 表⽰双曲线”的( ) A .充分不必要条件. B.必要不充分条件. C.充要条件. D.既不充分也不必要条件.3.给出问题:F 1、F 2是双曲线162x -202y =1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学⽣的解答如下:双曲线的实轴长为8,由||PF 1|-|PF 2||=8,即|9-|PF 2||=8,得|PF 2|=1或17. 该学⽣的解答是否正确?若正确,请将他的解题依据填在下⾯横线上;若不正确,将正确结果填在下⾯横线上. _________.4.过双曲线x 2-y 2=8的左焦点F 1有⼀条弦PQ 在左⽀上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是 .题型⼆:双曲线的渐近线问题1.双曲线42x -92y =1的渐近线⽅程是( )A . y =±23x B.y =±32x C.y =±49x D.y =±94x2.过点(2,-2)且与双曲线22x -y 2=1有公共渐近线的双曲线⽅程是( )A .22y -42x =1 B.42x -22y =1 C.42y -22x =1 D.22x -42y =1题型三:双曲线的离⼼率问题1已知双曲线 x 2a 2 - y 2b2 = 1 (a >0,b >0)的左右焦点分别为F 1、F 2,点P 在双曲线的右⽀上,且∣PF 1∣=4∣PF 2∣,则此双曲线的离⼼率e 的最⼤值为()A .43B .53C .2D .732.已知21,F F 是双曲线)0(,12222>>=-b a b y a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左⽀交于A 、B 两点,若2ABF ?是正三⾓形,那么双曲线的离⼼率为 ( )A.2 B.3.过双曲线M:2221y x b -=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离⼼率是 ( )4.在给定双曲线中,过焦点垂直于实轴的弦长为2,焦点到相应准线的距离为21,则该双曲线的离⼼率为( )A.22 B. 2 C .2 D. 225..已知双曲线12222=-by a x (a>0,b<0)的右焦点为F ,若过点F 且倾斜⾓为60°的直线与双曲线的右⽀有且只有⼀个交点,则此双曲线离⼼率的取值范围是A.( 1,2)B. (1,2) C .[2,+∞) D.(2,+∞)题型四:双曲线的距离问题1.设P 是双曲线22ax -92y =1上⼀点,双曲线的⼀条渐近线⽅程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|等于( ) A.1或5 B.6 C .7 D.92.已知双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右⽀有且只有⼀个交点,则此直线斜率的取值范围是 A.(33-,33) B. (-3,3) C .[ 33-,33] D. [-3,3] 3.已知圆C 过双曲线92x -162y =1的⼀个顶点和⼀个焦点,且圆⼼在此双曲线上,则圆⼼到双曲线中⼼的距离是____________.题型五:轨迹问题1.已知椭圆x 2+2y 2 =8的两焦点分别为F 1、F 2,A 为椭圆上任⼀点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线基本知识点直线和双曲线的位置双曲线12222=-by a x 与直线y kx b =+的位置关系:利用22221x y a b y kx b ⎧-=⎪⎨⎪=+⎩转化为一元二次方程用判别式确定。

二次方程二次项系数为零直线与渐近线平行。

相交弦AB 的弦长2212121()4AB k x x x x =++- 通径:21AB y y =-补充知识点:等轴双曲线的主要性质有:(1)半实轴长=半虚轴长(一般而言是a=b ,但有些地区教材版本不同,不一定用的是a,b 这两个字母);(2)其标准方程为x^2-y^2=C ,其中C≠0; (3)离心率e=√2;(4)渐近线:两条渐近线 y=±x 互相垂直;(5)等轴双曲线上任意一点到中心的距离是它到两个焦点的距离的比例中项;(6)等轴双曲线上任意一点P 处的切线夹在两条渐近线之间的线段,必被P 所平分;(7)等轴双曲线上任意一点处的切线与两条渐近线围成三角形的面积恒为常数a^2; (8)等轴双曲线x^2-y^2=C 绕其中心以逆时针方向旋转45°后,可以得到XY=a^2/2,其中C≠0。

所以反比例函数y=k/x 的图像一定是等轴双曲线。

例题分析:例1、动点P 与点1(05)F ,与点2(05)F -,满足126PF PF -=,则点P 的轨迹方程为( )A.221916x y -= B.221169x y -+=C.221(3)169x y y -+=≥ D.221(3)169x y y -+=-≤同步练习一:如果双曲线的渐近线方程为34y x =±,则离心率为( )A.53B.54C.53或54例2、已知双曲线2214x y k+=的离心率为2e <,则k 的范围为( )A.121k -<< B.0k < C.50k -<<D.120k -<<同步练习二:双曲线22221x y a b -=的两条渐近线互相垂直,则双曲线的离心率为 .例3、设P 是双曲线22219x y a -=上一点,双曲线的一条渐近线方程为320x y -=,12F F ,分别是双曲线的左、右焦点,若13PF =,则2PF 的值为 .同步练习三:若双曲线的两个焦点分别为(02)(02)-,,,,且经过点(2,则双曲线的标准方程为 。

例4、下列各对曲线中,即有相同的离心率又有相同渐近线的是(A)x 23-y 2=1和y 29-x 23=1 (B)x 23-y 2=1和y 2-x 23=1(C)y 2-x 23=1和x 2-y 23=1 (D)x 23-y 2=1和92x -32y =1同步练习四:已知双曲线的中心在原点,两个焦点12F F ,分别为和(,点P 在双曲线上且12PF PF ⊥,且12PF F △的面积为1,则双曲线的方程为( )A.22123x y -=B.22132x y -=C.2214x y -=D.2214y x -=例5、与双曲线116922=-y x 有共同的渐近线,且经过点A }32,3(-的双曲线的一个焦点到一条渐近线的距离是( ) (A )8 (B )4 (C )2 (D )1同步练习五:以x y 3±=为渐近线,一个焦点是F (0,2)的双曲线方程为( ) 例6、下列方程中,以x±2y=0为渐近线的双曲线方程是(A)12y x )D (1y 2x )C (116y 4x )B (14y 16x 22222222=-=-=-=-同步练习六:双曲线8kx 2-ky 2=8的一个焦点是(0,3),那么k 的值是例7、经过双曲线的右焦点F 2作倾斜角为30°的弦AB ,(1)求|AB|.(2)F 1是双曲线的左焦点,求△F 1AB 的周长.同步练习七过点(0,3)的直线l 与双曲线只有一个公共点,求直线l 的方程。

高考真题分析1.【2012高考新课标文10】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =C 的实轴长为( )()A 2 ()B 22()C 4 ()D 8【答案】C【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解得y =216a ±-||AB =432216a -=3a =2, ∴C 的实轴长为4,故选C.2.【2012高考山东文11】已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 283x y =(B) 2163x y = (C)28x y = (D)216x y = 【答案】D考点:圆锥曲线的性质解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。

3.【2012高考全国文10】已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45【答案】C【命题意图】本试题主要考查了双曲线的定义的运用和性质的运用,以及余弦定理的运用。

首先运用定义得到两个焦半径的值,然后结合三角形中的余弦定理求解即可。

【解析】解:由题意可知,,2a b c ==∴=,设12||2,||PF x PF x ==,则12||||2PF PF x a -===,故12|||PF PF ==124F F =,利用余弦定理可得222121212123cos 24PF PF F F F PF PF PF +-∠===⋅。

4.(2011年高考湖南卷文科6)设双曲线2221(0)9x y a a -=>的渐近线方程为320,x y ±=则a 的值为( )A .4B .3C .2D .1 答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。

5.【2012高考辽宁文15】已知双曲线x 2 - y 2 =1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若P F 1⊥P F 2,则∣P F 1∣+∣P F 2∣的值为___________________.【答案】【命题意图】本题主要考查双曲线的定义、标准方程以及转化思想和运算求解能力,难度适中。

【解析】由双曲线的方程可知121,22,a c PF PF a ==-==22112224PF PF PF PF ∴-+=22212121221212,(2)8,24,()8412,PF PF PF PF c PF PF PF PF PF PF ⊥∴+==∴=∴+=+=∴+=【点评】解题时要充分利用双曲线的定义和勾股定理,实现差—积—和的转化。

6.【2012高考江苏8】(5分)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为 . 【答案】2。

【考点】双曲线的性质。

【解析】由22214x y m m -=+得a b c∴=c e a 244=0m m -+,解得=2m 。

课后作业1.双曲线14322=-y x 的实轴长和虑轴长分别是( )A. 32,4B.4,32C.3,4D. 2,32.双曲线12222=-by a x 的焦点到它的渐近线的距离等于( )A. 22b a b +B.bC. aD. 22b a a +3.如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( ) A.23 B. 26 C. 23 D.2 4.双曲线的渐近方程是x y 21±=,焦点在坐标轴一,焦距为10,其方程为( )A. 152022=-y xB. 152022=-y x 或 152022=-x yC. 120522=-y xD. 152022±=-x y5.双曲线116922=-y x 的右准线与渐近线在第一象限的交点和右焦点连线的斜率是( )A.43-B.34- C. 53- D. 35-6.双曲线1251622=-y x 的两条渐近线所成的角是( ) A.54arctan 2 B. 45arctan 2 C. 54arctan 2-π D. 45arctan 2-π7.双曲线12222=-b y a x 与其共轭双曲线有( ) A.相同的焦点 B. 相同的准线 C. 相同的渐近线 D. 相等的实轴长8.已知双曲线的渐近线方程为x y 43±=,则此双曲线的 ( )A .焦距为10B .实轴长与虚轴长分别为8与6C .离心率e 只能是45或35D .离心率e 不可能是45或35 9.等轴双曲线的一个焦点是F 1(4,0),则它的标准方程是 ,渐近线方程是10.若双曲线的实轴长,虚轴长,焦距依次成等差数列,则其离心率为_____________11.若双曲线1366422=-y x 上的一点P 到它的右焦点的距离是8,则到它的右准线之间的距离为 12.若双曲线的一条渐近线方程为023=-y x ,左焦点坐标为)0,26(-,则它的两条准线之间的距离为_______________13.写出满足下列条件的双曲线的标准方程:(1)双曲线的两个焦点是椭圆16410022=+y x 的两个顶点,双曲线的两条准线经过这个椭圆的两个焦点:______________________(2)双曲线的渐近线方程为x y ±=,两顶点之间的距离为2:____________________14.双曲线的其中一条渐近线的斜率为72,求此双曲线的离心率___________15.已知双曲线)0(122>=-m my x 的右顶点为A ,而B 、C 是双曲线右支上的两点,如果ABC ∆是正三角形,则m 的取值范围是_____________________16.设圆过双曲线116922=-y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是_____________________17.已知双曲线191622=-y x 上一点M 到左焦点F 1的距离是它到右焦点距离的5倍,则M 点的坐标为_________________18.已知直线l 过定点(0,1),与双曲线122=-y x 的左支交于不同的两点A 、B ,过线段AB 的中点M 与定点)0,2(-P 的直线交y 轴于),0(b Q ,求b 的取值范围.19.已知双曲线116822=-y x (1)过右焦点F 2作一条渐近线的垂线(垂中为A ),交另一渐近线于B 点,求证:线段AB 被双曲线的左准线平分;(2)过中心O 作直线分别交双曲线于C 、D 两点,且1CDF ∆)(1为左焦点F 的面积为20,求直线CD 的方程。

相关文档
最新文档