高中数学集合逻辑函数向量数列不等式立体几何综合
2023年高考数学试卷知识点分配
2023年高考数学试卷知识点分配
2023年高考数学试卷各部分知识点分配如下:
选择题40分,涉及集合、简易逻辑、数列、三角函数、立体几何、圆锥曲线、概率与统计、导数、算法、线性规划、不等式、向量、复数和三视图等知识点。
填空题30分,主要考察三角恒等变换的应用及正弦型函数的性质、数列知识点和几何计算等。
解答题80分,涉及三角函数、数列、统计与概率、立体几何、函数与导数和解析几何等知识点。
试题难度及分配比例为:较易试题占30%,中等试题占40%,较难试题占30%。
以上信息仅供参考,高考数学试卷的具体知识点分配可能会根据地区和考试科目的不同而有所差异。
建议查阅所在地区的高考数学大纲或考试说明,以获取更准确的信息。
高中数学知识点集合归纳总结
高中数学知识点集合归纳总结高中数学是学生在中学阶段接触的较为深入的数学知识体系,它涵盖了代数、几何、概率统计等多个领域。
本文将对高中数学的主要知识点进行归纳总结,以帮助学生更好地理解和掌握这些概念。
一、代数代数部分是高中数学的核心内容之一,主要包括以下几个方面:1. 集合与函数- 集合的概念、运算及其性质。
- 函数的定义、性质和常见类型(如一次函数、二次函数、指数函数、对数函数等)。
- 函数的图像、变换(平移、伸缩、对称)及其应用。
2. 代数式的运算- 整式的加减乘除、因式分解。
- 分式的运算法则及其化简。
- 二次根式的运算法则和化简。
3. 方程与不等式- 一元一次方程、一元二次方程的解法。
- 高次方程的解法(如因式分解、配方法)。
- 线性不等式及其解集的表示。
- 二次不等式的解法和图像表示。
4. 序列与数列- 等差数列、等比数列的定义、通项公式和求和公式。
- 数列的极限概念及其计算。
二、几何几何部分包括平面几何和立体几何,是培养学生空间想象能力和逻辑推理能力的重要内容:1. 平面几何- 平行线与垂线的性质。
- 三角形的分类、性质和面积计算。
- 圆的性质、圆周角定理、垂径定理等。
- 相似三角形和相似多边形的判定与性质。
2. 立体几何- 空间几何体的性质、表面积和体积计算。
- 棱柱、棱锥、圆柱、圆锥、球等立体图形的几何特征。
- 空间直线与平面的位置关系。
三、概率与统计概率与统计部分是高中数学中应用性较强的领域,涉及随机事件的概率计算、数据处理等:1. 概率- 随机事件的概率定义及其计算。
- 条件概率、独立事件的概率。
- 排列组合的基本原理和公式。
2. 统计- 数据的收集、整理和描述。
- 统计图表(如条形图、饼图、直方图)的绘制和解读。
- 样本与总体的概念,抽样分布,正态分布的特性。
四、微积分微积分是高中数学的进阶内容,主要介绍函数的极限、导数和积分的基本概念:1. 极限与连续- 函数极限的定义、性质和计算。
(超详)高中数学知识点归纳汇总
高中数学知识总结归纳(打印版)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B = A(B)或B A真子集 A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ A B B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集U A ð{|,}x x U x A ∈∉且1()U A A =∅ð 2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >> |x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.()()()U U U A B A B =痧?()()()U U U A B A B =痧?②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象.yxo利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nna a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域 R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.xa y =xy(0,1)O1y =xa y =xy (0,1)O 1y =(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 【2.2.2】对数函数及其性质(5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a >01a <<定义域 (0,)+∞ 值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f kxy1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔x y1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k 0<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kxy1x 2x O ∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k 2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k 2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k ∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2bf a-x>O-=f (p)f (q)()2bf a-(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高中数学大纲
高中数学大纲
高中数学大纲通常包括以下内容:
集合与逻辑:学生需要了解集合的基本概念、集合之间的关系,以及基本的逻辑概念。
函数与方程:学生需要理解函数的基本概念、函数的性质,以及如何求解方程。
不等式:学生需要掌握一元二次不等式、不等式的运算规则、不等式的解法等。
数列:学生需要了解等差数列、等比数列的基本概念、性质,以及如何求解数列的通项公式。
平面解析几何:学生需要掌握直线、圆、椭圆、双曲线、抛物线的概念、性质,以及如何求解这些曲线的方程。
立体几何:学生需要了解平面、直线、圆、球等基本几何概念、性质,以及如何求解立体几何问题。
概率与统计:学生需要理解概率的基本概念、统计的方法,以及如何进行概率计算和统计分析。
导数与微积分:学生需要了解导数的概念、性质,以及如何求解函数的导数。
同时还需要掌握微积分的基本概念、性质,以及如何进行微积分计算。
算法与程序:学生需要了解算法的基本概念、程序的基本结
构,以及如何编写程序实现特定的算法。
数学建模:学生需要了解数学建模的基本概念、方法,以及如何应用数学建模解决实际问题。
以上是高中数学大纲的一般内容,具体的教学内容和难度可能会因学校和地区的不同而有所差异。
高中数学集合逻辑函数向量数列不等式立体几何综合测试题
高中数学集合、逻辑、函数、向量、数列、不等式、立体几何综合测试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.每小题选出答案后,请填涂在答题卡上.1. 若非空集合}5,4,3,2,1{⊆S ,且若S a ∈,则必有S a ∈-6,则所有满足上述条件的集合S 共有A .6个B .7个C .8个D .9个 2. 命题P :若函数()f x 有反函数,则()f x 为单调函数;命题Q :111222a b c a b c == 是不等式21110a x b x c ++>与22220a x b x c ++>(121212a a b b c c ,,,,,均不为零)同解的充要条件,则以下是真命题的为A .P ⌝且QB .P 且QC .P ⌝或QD .P 或Q3. 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a =A .42 B .22 C .41 D .21 4. 如图,一个空间几何体的三视图如图所示,其中,主视图中ABC ∆是边长为2的正三角形,俯视图为正六边形,那么该几何体的体积为C.32D. 3左视图主视图俯视图5. 已知函数bx x x f +=2)(的图象在点))1(,1(f A 处的切线l 与直线0223=+-y x 平行,若数列})(1{n f 的前n 项和为n S , 则2012S 的值为 A .20102009 B .20112010 C .20122011 D .201320126. 若m b a m a f 2)13()(-+-=,当]1,0[∈m 时,1)(≤a f 恒成立,则b a +的最大值为A .31 B .32 C .35D .37 7. 已知a 、b 是不共线的向量,()AB AC R λμλμ=+=+∈,,a b a b ,那么A B C 、、三点共线的充要条件为A .1λμ=B .1λμ=-C .1=-μλD .2λμ+=8. 设平面上有四个互异的点A 、B 、C 、D ,已知(,0)()2=-⋅-+则ABC ∆的形状是A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9. 设函数()(sin cos )(02011),xf x e x x x π=-≤≤则函数()f x 的各极大值之和为A.20122(1)1e e e πππ-- B. 1006(1)1e e e πππ--C. 10062(1)1e e e πππ--D.20102(1)1e e eπππ-- 10. ()x f y =的定义域为R ,且()(),22x f x f -=+()()x f x f -=+77在[]7,0上只有()()031==f f ,则()x f 在]2012,2012[-上的零点个数为A .403B .402C .806D .80511. 函数()22x xf x -=-的反函数为)(1x f-,则使不等式1()2f x ->成立的x 的取值范围为 A .15(,)4-+∞ B .15[0,)4C .15(,0)4-D . 15(,)4-∞-12. 已知函数32()31f x x x =-+,21,0()468,0x x g x xx x x ⎧+>⎪=⎨⎪---≤⎩,关于方程()0g f x a -=⎡⎤⎣⎦(a 为正实数)的根的叙述有下列四个命题①存在实数a ,使得方程恰有3个不同的实根; ②存在实数a ,使得方程恰有4个不同的实根; ③存在实数a ,使得方程恰有5个不同的实根; ④存在实数a ,使得方程恰有6个不同的实根;其中真命题的个数是A .3B .2C .1D .0二、填空题:本大题共4小题,每小题5分,共20分.答案填在答题纸相应的空内. 13. 定义在R 上的函数()y f x =是减函数,且函数(1)y f x =-的图象关于)0,1(成中心对称,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,ts的取值范围 .14. 已知等差数列{}n a 的首项1a 及公差d 都是整数,前n 项和为n S ,若9,3,1341≤>>S a a ,设122,n n n n b a b b b =+++则的结果为 .15. 已知正项数列{}n a )0*,(>∈n a N n 的前n 项和n S 满足:12+=n n a S ;设392+-=n n a b ,则数列{}n b 的前n 项和的最大值为___________.16. 如图,直线l α⊥平面,垂足为O ,已知长方体1111ABCD A B C D -中,15,6,8AA AB AD ===该长方体做符合以下条件的自由运动:(1)A l ∈;(2)C α∈,则1,C O 两点间的最大距离为 .三、解答题:本大题共6小题,共70分.请将解答过程书写在答题纸上,并写出文字说明、证明过程或演算步骤.17. (本题满分10分)已知集合{}2150A x x px ⊆-+=,{}250B x x x q ⊆-+=,{}2,3,5A B =,{}3A B =,求集合A 和B.PABCC第20题图18. (本题满分12分)设数列{}n a 的前n 项和为n S ,21=a ,点(1+n S , n S )在直线n n y n nx +=+-2)1((*N n ∈)上.a1=2(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设,211-+=++n n n n n S S S S T 证明:.334321<++++≤n T T T T 19. (本题满分12分)阅读下面材料:根据两角和与差的正弦公式,有sin()sin cos cos sin αβαβαβ+=+------①sin()sin cos cos sin αβαβαβ-=-------②由①+② 得()()sin sin 2sin cos αβαβαβ++-=------③令,A B αβαβ+=-= 有,22A B A Bαβ+-==代入③得 sin sin 2sin cos22A B A BA B +-+=. (Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:cos cos 2sinsin22A B A BA B +--=-; (Ⅱ)若ABC ∆的三个内角,,A B C 满足cos 2cos 21cos 2A B C -=-,试判断ABC ∆的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)20. (本题满分12分)如图,在三棱锥ABC P -中,22,4======BC AB AC PC PB PA .(1)求证:平面ABC ⊥平面APC ;(2)求直线PA 与平面PBC 所成角的正弦值; (3)若动点M 在底面三角形ABC 上,二面角C PA M --的余弦值为322,求BM 的最小值. 21. (本题满分12分)已知正数数列}{n a 和{}n b 满足:对任意n ,1,,n n n a b a +成等差数列,且总有1n a +=(1)判断数列是否为等差数列;(2)若1121,2,3,a b a ===求数列}{n a 和{}n b 的通项公式.22. (本题满分12分)已知函数x x x f 2)(2-=, )(x g 是R 上的奇函数,且当]0,(-∞∈x 时,2)()(x x f x g =+.(Ⅰ)求函数)(x g 在R 上的解析式;(Ⅱ)若函数+-=)()([)(x f x g x x h λ23]在),0(+∞上是增函数,且0≤λ,求λ的取值范围.试题答案1-5BCBCD 6-10DABDD 11-12DA 13. 1[,1]2-14. 12n n +⋅ 15. 190 16. 255+ 17. 由3A ∈,{}2150A x x px ⊆-+=,得8;p =…….3分由3B ∈,{}250B x x x q ⊆-+=,得 6.q =………….6分{}2,2,2,2,3A B A B B ∈∉∴∈∴=………….8分 {}3,3,3,5,3A B B A A ∈∉∴∈∴=……….10分18. 解:(I )n n y n nx S S n n +=+-+21)1(),(在直线 上,,111=-+∴+nS n S nn …………………………………………1分 ∴{nS n}构成以S 1=a 1=2为首项,公差为1的等差数列, 分而时当分6*).(2,2,2)1()1(,24.,1)1(212212 N n n a a n n n n n S S a n n n S n n nS n n n n n n∈=∴==----+=-=≥+=∴+=⨯-+=∴- 证明:(II )n n S n +=2.322123)]211()4121()311[(210).1(34,0)2(4,*8,22222122122221121<+-+-=+-++-+-=+++==≥+++∴>+=∈+-=-+++-=-+++=∴n n n n T T T n T T T T n n T N n n n n n n n n n T n n n n 又分时取等号时分∴原不等式成立.……………………………………………………………………12分19. 解法一:(Ⅰ)证明:因为cos()cos cos sin sin αβαβαβ+=-,------①cos()cos cos sin sin αβαβαβ-=+,------②…………………1分①-② 得cos()cos()2sin sin αβαβαβ+--=-.------③……………………2分令,A B αβαβ+=-=有,22A B A Bαβ+-==, 代入③得cos cos 2sin sin22A B A BA B +--=-.………………………………5分 (Ⅱ)由二倍角公式,cos2cos21cos2A B C -=-可化为22212sin 12sin 112sin A B C --+=-+,…………………………………7分所以222sin sin sin A C B +=.…………………………………10分 设ABC ∆的三个内角A,B,C 所对的边分别为,,a b c ,由正弦定理可得222a cb +=.………………………………11分根据勾股定理的逆定理知ABC ∆为直角三角形.…………………………………12分 解法二:(Ⅰ)同解法一.(Ⅱ)利用(Ⅰ)中的结论和二倍角公式,cos2cos21cos2A B C -=-可化为()()22sin sin 112sin A B A B C -+-=-+,…………………………………7分因为A,B,C 为ABC ∆的内角,所以A B C π++=, 所以()()()2sin sin sin A B A B A B -+-=+. 又因为0A B π<+<,所以()sin 0A B +≠, 所以()()sin sin 0A B A B ++-=.从而2sin cos 0A B =.……………………………………………10分 又sin 0A ≠,所以cos 0B =,故2B π∠=.……………………………………11分所以ABC ∆为直角三角形. ………………………………12分 20. (满分12分)解:(1)取AC 中点O,因为AP=BP ,所以OP⊥OC 由已知易得三角形ABC 为直角三角形, ∴OA=OB=OC,⊿POA≌⊿POB≌⊿POC,∴OP⊥OB∴OP⊥平面ABC, ∵OP 在平面PAC 中,∴平面ABC ⊥平面APC 4分 (2) 以O 为坐标原点,OB 、OC 、OP 分别为x 、y 、z 轴建立如图所示空间直角坐标系.由已知得O(0,0,0),B(2,0,0),A(0,-2,0), C(0,2,0),P(0,0, 32), 5分 ∴)32,2,0(),32,0,2(),0,2,2(=-=-=→→→AP PB BC 设平面PBC 的法向量),,(1z y x n =,由0,011=∙=∙n n 得方程组⎩⎨⎧=-=+-0322022z x y x ,取)1,3,3(1=→n 6分∴ 721,cos 1>=<→→n AP ∴直线PA 与平面PBC 所成角的正弦值为721。
高中数学ppt课件全套
多面体
多面体由多个平面多 边形围成,具有顶点 对称的特点,常见的 多面体有四面体、六 面体等。
空间几何体的表面积和体积
总结词
掌握各类空间几何体的表 面积和体积计算公式,能 够进行相关计算。
球体的表面积公式
$4pi r^{2}$,其中$r$为 球半径。
球体的体积公式
$frac{4}{3}pi r^{3}$,其 中$r$为球半径。
掌握集合的基本运算规则
详细描述
介绍集合的运算,包括并集、交集、差集等,以及这些运算的性质和规则。
逻辑关系与推理
总结词
理解逻辑关系和推理的基本概念
详细描述
介绍逻辑关系和推理的概念,包括命题、条件语句、推理规则等,以及如何运用逻辑关系和推理解决实际问题。
02
函数与极限
函数的基本性质
函数的定义域和值域
高中数学PPT课件全套
• 集合与逻辑 • 函数与极限 • 三角函数与三角恒等变换 • 数列与数学归纳法 • 解析几何初步 • 立体几何初步
01
集合与逻辑
集合的基本概念
总结词
理解集合的基本定义和性质
详细描述
介绍集合的基本概念,包括元素、子集、并集、交集等,以及集合的表示方法 。
集合的运算
总结词
01
02
03
数列的定义
数列是一种按照一定顺序 排列的数集。它可以是无 限的,也可以是有限的。
数列的项
数列中的每一个数被称为 一项。
数列的项数
数列中的数的个数称为项 数。
等差数列与等比数列
1 2
等差数列的定义
如果一个数列从第二项起,后一项与前一项的差 等于同一个常数,则这个数列被称为等差数列。
高中数学学什么内容?
高中数学学什么内容?高中数学是学生接受高等教育的基础,它不仅为后续学习高等数学、物理、化学等学科打下良好基础,更能提升学生的逻辑思维能力、抽象思维能力和解决问题的能力。
那么,高中数学具体学什么内容呢?一、函数与方程函数是数学的核心概念之一,是解释变量之间关系的有力工具。
高中数学中,学生将学习多种函数类型,包括一次函数、二次函数、指数函数、对数函数、三角函数等,并掌握其性质和应用。
同时,方程是函数的另一种表达形式,在高中数学中也扮演着重要角色。
学生将学习一元一次方程、一元二次方程、二元一次方程组等,并掌握其解法和应用。
二、几何与向量几何是研究图形性质和空间关系的学科,高中数学中,学生将学习平面几何和立体几何,并掌握基本图形的性质和定理。
向量是描述力、速度等物理量的重要工具,在高中数学中也占有重要地位。
学生将学习向量的概念、运算和应用,并用向量解决几何问题。
三、数列与不等式数列是研究数的排列规律的学科,高中数学中,学生将学习等差数列、等比数列、等差数列等,并掌握其性质和应用。
不等式是比较大小关系的有力工具,在高中数学中也发挥着重要作用。
学生将学习不等式的性质、解法和应用,并用不等式解决问题。
四、概率与统计概率与统计是研究随机现象的学科,高中数学中,学生将学习概率的基本概念、计算方法和应用,并掌握数据的收集、整理、分析和推断等统计方法。
五、导数与积分导数与积分是微积分的重要组成部分,也是高等数学的基础。
高中数学中,学生将学习导数的概念、性质和应用,包括定积分的概念和简单的应用。
六、数学建模与应用数学建模是指用数学方法解决生活中的实际问题,高中数学中,学生将学习基本的数学建模方法,并尝试将数学知识应用到解决实际问题中。
总而言之,高中数学的内容涵盖了函数、方程、平面几何、向量、数列、不等式、概率、统计、导数、积分等多个方面,是学生接受高等教育和未来发展的重要基础。
学习高中数学,不仅能提升学生的数学素养,更能培养学生的逻辑思维能力和解决问题的能力。
高中数学知识点总结大全(最新版复习资料)
元素和它对应,那么这样的对应(包括集合 A , B 以及 A 到 B 的对应法则 f )叫做集合 A 到 B 的映射,记
作 f :AB.
②给定一个集合 A 到集合 B 的映射,且 a A,b B .如果元素 a 和元素 b 对应,那么我们把元素 b 叫做元
素 a 的象,元素 a 叫做元素 b 的原象.
以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、 数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时, 进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有 4 个系列: 系列 1:由 2 个模块组成。 选修 1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修 1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列 2:由 3 个模块组成。 选修 2—1:常用逻辑用语、圆锥曲线与方程、
不等式
解集
| x | a(a 0)
{x | a x a}
| x | a(a 0)
x | x a 或 x a}
| ax b | c,| ax b | c(c 0)
(2)一元二次不等式的解法 判别式
b2 4ac
二次函数
y ax2 bx c(a 0)
的图象
0
把 ax b 看 成 一 个 整 体 , 化 成 | x | a , | x | a(a 0) 型不等式来求解
③ f (x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
高中数学集合逻辑函数向量数列不等式立体几何综合测试题
高中数学集合、逻辑、函数、向量、数列、不等式、立体几何综合测试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.每小题选出答案后,请填涂在答题卡上.1. 若非空集合}5,4,3,2,1{⊆S ,且若S a ∈,则必有S a ∈-6,则所有满足上述条件的集合S 共有A .6个B .7个C .8个D .9个 2. 命题P :若函数()f x 有反函数,则()f x 为单调函数;命题Q :111222a b c a b c == 是不等式21110a x b x c ++>与22220a x b x c ++>(121212a a b b c c ,,,,,均不为零)同解的充要条件,则以下是真命题的为A .P ⌝且QB .P 且QC .P ⌝或QD .P 或Q3. 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a =A .42 B .22 C .41 D .21 4. 如图,一个空间几何体的三视图如图所示,其中,主视图中ABC ∆是边长为2的正三角形,俯视图为正六边形,那么该几何体的体积为C.32D. 3左视图主视图俯视图5. 已知函数bx x x f +=2)(的图象在点))1(,1(f A 处的切线l 与直线0223=+-y x 平行,若数列})(1{n f 的前n 项和为n S , 则2012S 的值为 A .20102009 B .20112010 C .20122011 D .201320126. 若m b a m a f 2)13()(-+-=,当]1,0[∈m 时,1)(≤a f 恒成立,则b a +的最大值为A .31 B .32 C .35D .37 7. 已知a 、b 是不共线的向量,()AB AC R λμλμ=+=+∈,,a b a b ,那么A B C 、、三点共线的充要条件为A .1λμ=B .1λμ=-C .1=-μλD .2λμ+=8. 设平面上有四个互异的点A 、B 、C 、D ,已知(,0)()2=-⋅-+则ABC ∆的形状是A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9. 设函数()(sin cos )(02011),xf x e x x x π=-≤≤则函数()f x 的各极大值之和为A.20122(1)1e e e πππ-- B. 1006(1)1e e e πππ--C. 10062(1)1e e e πππ--D.20102(1)1e e eπππ-- 10. ()x f y =的定义域为R ,且()(),22x f x f -=+()()x f x f -=+77在[]7,0上只有()()031==f f ,则()x f 在]2012,2012[-上的零点个数为A .403B .402C .806D .80511. 函数()22x xf x -=-的反函数为)(1x f-,则使不等式1()2f x ->成立的x 的取值范围为 A .15(,)4-+∞ B .15[0,)4C .15(,0)4-D . 15(,)4-∞-12. 已知函数32()31f x x x =-+,21,0()468,0x x g x xx x x ⎧+>⎪=⎨⎪---≤⎩,关于方程()0g f x a -=⎡⎤⎣⎦(a 为正实数)的根的叙述有下列四个命题①存在实数a ,使得方程恰有3个不同的实根; ②存在实数a ,使得方程恰有4个不同的实根; ③存在实数a ,使得方程恰有5个不同的实根; ④存在实数a ,使得方程恰有6个不同的实根;其中真命题的个数是A .3B .2C .1D .0二、填空题:本大题共4小题,每小题5分,共20分.答案填在答题纸相应的空内. 13. 定义在R 上的函数()y f x =是减函数,且函数(1)y f x =-的图象关于)0,1(成中心对称,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,ts的取值范围 .14. 已知等差数列{}n a 的首项1a 及公差d 都是整数,前n 项和为n S ,若9,3,1341≤>>S a a ,设122,n n n n b a b b b =+++则的结果为 .15. 已知正项数列{}n a )0*,(>∈n a N n 的前n 项和n S 满足:12+=n n a S ;设392+-=n n a b ,则数列{}n b 的前n 项和的最大值为___________.16. 如图,直线l α⊥平面,垂足为O ,已知长方体1111ABCD A B C D -中,15,6,8AA AB AD ===该长方体做符合以下条件的自由运动:(1)A l ∈;(2)C α∈,则1,C O 两点间的最大距离为 .三、解答题:本大题共6小题,共70分.请将解答过程书写在答题纸上,并写出文字说明、证明过程或演算步骤.17. (本题满分10分)已知集合{}2150A x x px ⊆-+=,{}250B x x x q ⊆-+=,{}2,3,5A B =,{}3A B =,求集合A 和B.PABCC第20题图18. (本题满分12分)设数列{}n a 的前n 项和为n S ,21=a ,点(1+n S , n S )在直线n n y n nx +=+-2)1((*N n ∈)上.a1=2(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设,211-+=++n n n n n S S S S T 证明:.334321<++++≤n T T T T 19. (本题满分12分)阅读下面材料:根据两角和与差的正弦公式,有sin()sin cos cos sin αβαβαβ+=+------①sin()sin cos cos sin αβαβαβ-=-------②由①+② 得()()sin sin 2sin cos αβαβαβ++-=------③令,A B αβαβ+=-= 有,22A B A Bαβ+-==代入③得 sin sin 2sin cos22A B A BA B +-+=. (Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:cos cos 2sinsin22A B A BA B +--=-; (Ⅱ)若ABC ∆的三个内角,,A B C 满足cos 2cos 21cos 2A B C -=-,试判断ABC ∆的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)20. (本题满分12分)如图,在三棱锥ABC P -中,22,4======BC AB AC PC PB PA .(1)求证:平面ABC ⊥平面APC ;(2)求直线PA 与平面PBC 所成角的正弦值; (3)若动点M 在底面三角形ABC 上,二面角C PA M --的余弦值为322,求BM 的最小值. 21. (本题满分12分)已知正数数列}{n a 和{}n b 满足:对任意n ,1,,n n n a b a +成等差数列,且总有1n a +=(1)判断数列是否为等差数列;(2)若1121,2,3,a b a ===求数列}{n a 和{}n b 的通项公式.22. (本题满分12分)已知函数x x x f 2)(2-=, )(x g 是R 上的奇函数,且当]0,(-∞∈x 时,2)()(x x f x g =+.(Ⅰ)求函数)(x g 在R 上的解析式;(Ⅱ)若函数+-=)()([)(x f x g x x h λ23]在),0(+∞上是增函数,且0≤λ,求λ的取值范围.试题答案1-5BCBCD 6-10DABDD 11-12DA 13. 1[,1]2-14. 12n n +⋅ 15. 190 16. 255+ 17. 由3A ∈,{}2150A x x px ⊆-+=,得8;p =…….3分由3B ∈,{}250B x x x q ⊆-+=,得 6.q =………….6分{}2,2,2,2,3A B A B B ∈∉∴∈∴=………….8分 {}3,3,3,5,3A B B A A ∈∉∴∈∴=……….10分18. 解:(I )n n y n nx S S n n +=+-+21)1(),(在直线 上,,111=-+∴+nS n S nn …………………………………………1分 ∴{nS n}构成以S 1=a 1=2为首项,公差为1的等差数列, 分而时当分6*).(2,2,2)1()1(,24.,1)1(212212 N n n a a n n n n n S S a n n n S n n nS n n n n n n∈=∴==----+=-=≥+=∴+=⨯-+=∴- 证明:(II )n n S n +=2.322123)]211()4121()311[(210).1(34,0)2(4,*8,22222122122221121<+-+-=+-++-+-=+++==≥+++∴>+=∈+-=-+++-=-+++=∴n n n n T T T n T T T T n n T N n n n n n n n n n T n n n n 又分时取等号时分∴原不等式成立.……………………………………………………………………12分19. 解法一:(Ⅰ)证明:因为cos()cos cos sin sin αβαβαβ+=-,------①cos()cos cos sin sin αβαβαβ-=+,------②…………………1分①-② 得cos()cos()2sin sin αβαβαβ+--=-.------③……………………2分令,A B αβαβ+=-=有,22A B A Bαβ+-==, 代入③得cos cos 2sin sin22A B A BA B +--=-.………………………………5分 (Ⅱ)由二倍角公式,cos2cos21cos2A B C -=-可化为22212sin 12sin 112sin A B C --+=-+,…………………………………7分所以222sin sin sin A C B +=.…………………………………10分 设ABC ∆的三个内角A,B,C 所对的边分别为,,a b c ,由正弦定理可得222a cb +=.………………………………11分根据勾股定理的逆定理知ABC ∆为直角三角形.…………………………………12分 解法二:(Ⅰ)同解法一.(Ⅱ)利用(Ⅰ)中的结论和二倍角公式,cos2cos21cos2A B C -=-可化为()()22sin sin 112sin A B A B C -+-=-+,…………………………………7分因为A,B,C 为ABC ∆的内角,所以A B C π++=, 所以()()()2sin sin sin A B A B A B -+-=+. 又因为0A B π<+<,所以()sin 0A B +≠, 所以()()sin sin 0A B A B ++-=.从而2sin cos 0A B =.……………………………………………10分 又sin 0A ≠,所以cos 0B =,故2B π∠=.……………………………………11分所以ABC ∆为直角三角形. ………………………………12分 20. (满分12分)解:(1)取AC 中点O,因为AP=BP ,所以OP⊥OC 由已知易得三角形ABC 为直角三角形, ∴OA=OB=OC,⊿POA≌⊿POB≌⊿POC,∴OP⊥OB∴OP⊥平面ABC, ∵OP 在平面PAC 中,∴平面ABC ⊥平面APC 4分 (2) 以O 为坐标原点,OB 、OC 、OP 分别为x 、y 、z 轴建立如图所示空间直角坐标系.由已知得O(0,0,0),B(2,0,0),A(0,-2,0), C(0,2,0),P(0,0, 32), 5分 ∴)32,2,0(),32,0,2(),0,2,2(=-=-=→→→AP PB BC 设平面PBC 的法向量),,(1z y x n =,由0,011=∙=∙n n 得方程组⎩⎨⎧=-=+-0322022z x y x ,取)1,3,3(1=→n 6分∴ 721,cos 1>=<→→n AP ∴直线PA 与平面PBC 所成角的正弦值为721。
高中数学知识点总结(最全版)
1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用第 - 2 -页共 110页⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算高中数学必修1知识点第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是a M,或者a M,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质第 - 3 -页共 110页示意图A(B)A B子集(或(1)A AA中的任一元素都属于B(2) A(3)若A B且B C,则A C (4)若A B且B A,则A BAB A)A B或A(A为非空子集) A B,且B中至(1)BA真子集少有一元素不属于(或B A) A(2)若A B且B C,则A C集合相等A BA中的任一元素都(1)A B属于B,B中的任一(2)B A元素都属于AnnnA(B)n(7)已知集合A有n(n1)个元素,则它有2个子集,它有21个真子集,它有21个非空子集,它有22非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质(1)AI(2)AI(3)AI AI示意图交集AIB{x|x A,且x B} {x|x A,或x B}并集A AB A B B(1)AUA A (2)AU A (3)AUB A AUB B1痧U(AIB)(UA)U(?UB)痧U(AUB)(UA)I(?UB)AI(ðUA)ABAB补集ðUA{x|x U,且x A}2AU(ðUA)U【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x|a(a0) {x|a x a}|x|a(a0) x|x a或x a}把ax b看成一个整体,化成|x|a,|ax b|c,|ax b|c(c0)|x|a(a0)型不等式来求解(2)一元二次不等式的解法第 - 4 -页共 110页判别式b24ac二次函数0 0y ax2bx c(a0)的图象一元二次方程Oax2bx c0(a0)的根b b24acx1,22a(其中x1x2)x1x2b 2a无实根ax2bx c0(a0)的解集{x|x x1或x x2}{x|xb} 2aRax2bx c0(a0)的解集{x|x1x x2}〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设a,b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,x a,x b,x b的实数x的集合分别记做[a,),(a,),(,b],(,b).注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须a b.(3)求函数的定义域时,一般遵循以下原则:第 - 5 -页共 110页①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y tanx中,x k2(k Z).⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a g(x)b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y f(x)可以化成一个系数含有y的关于x的二次方程a(y)x b(y)x c(y)0,则在a(y)0时,由于x,y为实数,故必须有b(y)4a(y)c(y)0,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的第 - 6 -页共 110页22元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作f:A B.②给定一个集合A到集合B的映射,且a A,b B.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的性质定义如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x<1...x时,都有f(x)<f(x),212.............那么就说f(x)在这个区间上是增函数....如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x<1...x时,都有f(x)>f(x),212.............那么就说f(x)在这个区间上是减函数....图象判定方法(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数yy=f(X)f(x )1f(x )2ox1x2x函数的单调性yf(x )1y=f(X)f(x )2ox1x2x②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y f[g(x)],令u g(x),若y f(u)为增,u g(x)为增,则y f[g(x)]为增;若y f(u)为减,u g(x)为减,则y f[g(x)]为增;若y f(u)为增,u g(x)为减,则y f[g(x)]为减;若y f(u)为减,u g(x)为增,则y f[g(x)]为减.a(2)打“√”函数f(x)x(a0)的图象与性质xf(x)分别在(,a]、[a,)上为增函数,分别在[a,0)、(0,a]上为减函数.(3)最大(小)值定义①一般地,设函数y f(x)的定义域为I,如果存在实数M第 - 7 -页共 110页yo x满足:(1)对于任意的x I,都有f(x)M;(2)存在x0I,使得f(x0)M.那么,我们称M是函数f(x)的最大值,记作fmax(x)M.②一般地,设函数y f(x)的定义域为I,如果存在实数m满足:(1)对于任意的x I,都有f(x)m;(2)存在x0I,使得f(x0)m.那么,我们称m是函数f(x)的最小值,记作fmax(x)m.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的性质定义如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函...........数f(x)叫做奇函数....函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数..........f(x)叫做偶函数....②若函数f(x)为奇函数,且在x0处有定义,则f(0)0.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换h0,左移h个单位k0,上移k个单位y f(x)y f(x h)y f(x)y f(x)kh0,右移|h|个单位k0,下移|k|个单位图象判定方法(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)②伸缩变换01,伸y f(x)y f(x) 1,缩第 - 8 -页共 110页0A1,缩y f(x)y Af(x) A1,伸③对称变换y轴x轴y f(x) y f(x)y f(x) y f(x)直线y x原点y f(x)y f(x) y f(x)y f1(x) 去掉y轴左边图象y f(x)y f(|x|) 保留y轴右边图象,并作其关于y轴对称图象保留x轴上方图象y f(x)y|f(x)| 将x轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果x a,a R,x R,n1,且n N,那么x叫做a的n次方根.当n是奇数时,a的n次方根用符号na表示;当n是偶数时,正数a的正的n次方根用符号na表示,负的n次方根用符号na表示;0的n次方根是0;负数a没有n次方根.②式子na叫做根式,这里n叫做根指数,a叫做被开方数.当n为奇数时,a为任意实数;当n为偶数时,a0.③根式的性质:(na)n a;当n为奇数时,a a;当n为偶数时,nan|a|(2)分数指数幂的概念①正数的正分数指数幂的意义是:a②正数的负分数指数幂的意义是:amnnnna(a0).a(a0)nam(a0,m,n N,且n1).0的正分数指数幂等于0.mn1m1()n n()m(a0,m,n N,且n1).0的负分数指数幂aa 没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①a a arrsr s(a0,r,s R) ②(ar)s ars(a0,r,s R)③(ab)ab(a0,b0,r R)第 - 9 -页共 110页rr【2.1.2】指数函数及其性质(4)指数函数函数名称定义x指数函数函数y a(a0且a1)叫做指数函数a 1y y ax(0,1)0a 1y axy图象y1y1(0,1)O定义域值域过定点奇偶性单调性在R上是增函数xR(0,)Ox图象过定点(0,1),即当x0时,y1.非奇非偶在R上是减函数ax1(x0)函数值的变化情况ax1(x0)ax1(x0) ax1(x0)ax1(x0) ax1(x0)图象的影响在第一象限内,a越大图象越高;在第二象限内,a越大图象越低. a变化对〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义x①若a N(a0,且a1),则x叫做以a为底N的对数,记作x logaN,其中a叫做底数,N叫做真数.②负数和零没有对数.x③对数式与指数式的互化:x logaN a N(a0,a1,N0).(2)几个重要的对数恒等式loga10,logaa1,logaab b.(3)常用对数与自然对数常用对数:lgN,即log10N;自然对数:lnN,即logeN(其中e 2.71828…).第 - 10 -页共 110页(4)对数的运算性质如果a0,a1,M0,N0,那么①加法:logaM logaN loga(MN) ②减法:logaM logaN logalogNn③数乘:nlogaM logaM(n R) ④aa NM N⑤logabMnlogbNn(b0,且b1) logaM(b0,n R) ⑥换底公式:logaN logabb【2.2.2】对数函数及其性质(5)对数函数函数名称定义对数函数函数y logax(a0且a1)叫做对数函数a 1 0a 1y logaxy图象x 1y1xO(1,0)xOy logax(1,0)x定义域值域过定点奇偶性单调性在(0,)上是增函数(0,)R图象过定点(1,0),即当x1时,y0.非奇非偶在(0,)上是减函数logax0(x1)函数值的变化情况logax0(x1)logax0(x1)logax0(0x1)logax0(x1)logax0(0x1)图象的影响 a变化对(6)反函数的概念在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.设函数y f(x)的定义域为A,值域为C,从式子y f(x)中解出x,得式子x(y).如果对于y在C中的任何一个值,通过式子x(y),x在A中都有唯一确定的值和它对应,那么式子x(y)表示x是y第 - 11 -页共 110页11的函数,函数x(y)叫做函数y f(x)的反函数,记作x f(y),习惯上改写成y f(x).(7)反函数的求法1①确定反函数的定义域,即原函数的值域;②从原函数式y f(x)中反解出x f(y);11③将x f(y)改写成y f(x),并注明反函数的定义域.(8)反函数的性质1①原函数y f(x)与反函数y f(x)的图象关于直线y x对称.1②函数y f(x)的定义域、值域分别是其反函数y f(x)的值域、定义域.'1③若P(a,b)在原函数y f(x)的图象上,则P(b,a)在反函数y f(x)的图象上.④一般地,函数y f(x)要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x叫做幂函数,其中x为自变量,是常数.(2)幂函数的图象第 - 12 -页共 110页(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).③单调性:如果0,则幂函数的图象过原点,并且在[0,)上为增函数.如果0,则幂函数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当qpq(其中p,q互质,ppqp和q Z),若p为奇数q为奇数时,则y x是奇函数,若p为奇数q为偶数时,则y x是偶函数,若p为偶数q为奇数时,则y x是非奇非偶函数.⑤图象特征:幂函数y x,x(0,),当1时,若0x1,其图象在直线y x下方,若x1,其图象在直线y x上方,当1时,若0x1,其图象在直线y x上方,若x1,其图象在直线y x下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:f(x)ax bx c(a0)②顶点式:f(x)a(x h)k(a0)③两根式:22qpf(x)a(x x1)(x x2)(a0)(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.(3)二次函数图象的性质第 - 13 -页共 110页b,顶点坐标是2a①二次函数f(x)ax bx c(a0)的图象是一条抛物线,对称轴方程为x2b4ac b2(,). 2a4a②当a0时,抛物线开口向上,函数在(,bbb时,]上递减,在[,)上递增,当x2a2a2a4ac b2bbbfmin(x);当a0时,抛物线开口向下,函数在(,在[当x]上递增,,)上递减,4a2a2a2a4ac b2时,fmax(x).4a③二次函数f(x)ax bx c(a0)当b24ac0时,图象与x轴有两个交点2M1(x1,0),M2(x2,0),|M1M2||x1x2|2. |a|(4)一元二次方程ax bx c0(a0)根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.22设一元二次方程ax bx c0(a0)的两实根为x1,x2,且x1x2.令f(x)ax bx c,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:x①k<x1≤x2 b③判别式:④端点函数值符号. 2ayf(k)0•ya0xb2ax2kx1Ox2xk•x1Oxbx2af(k)0a0②x1≤x2<k第 - 14 -页共 110页ya0f(k)0•yx Ob2ax1Ox2x1x2•kxbx2aa0f(k)0③x1<k<x2 af(k)<0 ya0y•f(k)0x2x1Okx2xx1Okx•f(k)0a0④k1<x1≤x2<k2y•f(k1)0•a0f(k2)0x2k2yk1xb2ak2Ok1x1xO•x1f(k1)0•xbx2af(k2)0a0⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2 f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合y•f(k1)0a0yf(k1)0•Ok1x1•k2x2xOx1k1x2•k2xf(k2)0a0f(k2)0⑥k1<x1<k2≤p1<x2<p2 此结论可直接由⑤推出.(5)二次函数f(x)ax bx c(a0)在闭区间[p,q]上的最值设f(x)在区间[p,q]上的最大值为M,最小值为m,令x0第 - 15 -页共 110页21(p q). 2(Ⅰ)当a0时(开口向上)①若bbbbq,则m f(q) p,则m f(p) ②若p q,则m f() ③若2a2a2a2af(q)Of(p)xOf(b)2af(q)xf(p)Ofbf((p) )2axb)2aff((q)bb①若x0,则M f(q) ②x0,则M f(p)2a2aff(p) x0gxOx(q)0gxb)2afbf((p) )2aff((q)(Ⅱ)当a0时(开口向下)①若bf()2af (p) Oxf (q) ①若bf()2abbbbq,则M f(q) p,则M f(p) ②若p q,则M f() ③若2a2a2a2aff(b)2af(p)O(q)xOxf(q)f(p)bb x0,则m f(q) ②x0,则m f(p). 2a2af(b)2af(p)ff(b)2a(q)x0gxx0f(q)gOxf(p)第三章函数的应用第 - 16 -页共 110页一、方程的根与函数的零点 1、函数零点的概念:对于函数y f(x)(x D),把使f(x)0成立的实数x叫做函数y f(x)(x D)的零点。
高中数学知识点汇总(2021全国卷新课标)
以下是几个特殊情况的奇偶性,除此以外就要判断
函数形式
f(x)单调性
g(x)单调性
总的单调性
f(x) +g(x)
增
增
增
减
减
减பைடு நூலகம்
f(x) -g(x)
增
减
增
减
增
减
结论:①f(x)≤f(x0) f(x0)为f(x)最大值
②f(x)≤M M为f(x)最大值(除非M在f(x)上)
2.定义域(常错点):一般地,设 的定义域为 ,如果存在 使得对于任意的 ,都有 ,那么称 为 的最大值,记为 ;如果存在 使得对于任意的 ,都有 ,那么称 为 的最小值,记为 .
高中数学知识点汇总(新课标)
引言:
1.课程内容:
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数)
必修2:立体几何初步、平面解析几何初步。
必修3:统计、概率。
必修4:三角函数、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
选修课程有3个模块:
选修2—1:常用逻辑用语、圆锥曲线与方程、
②单调性
③配凑
④分离常数
⑤基本不等式
⑥导数法确定单调性
3.对含参函数f(x)在某一范围的值域为A,要求参数范围
让f(x)在定义域内值域为B,求满足B A的参数范围即可
4.f[g(x)]=N,求f(x)
设g(x)为参数t,用t表示g(x),代入N,化简并把t换成x即可。(注意x范围即为g(x)的值域)
1、函数的三种表示方法:解析法、图象法、列表法.
2、判断两个函数是否相同:看定义域和对应法则
高中数学思维导图(新课标)
'
f x 与 f x 0 的区别
vt S , at vt
'
0 0
第 二 部 分 映 射 、 函 数 、 导 数 、 定 积 分 与 微 积 分
导 数
导数概念
运动的平均速度 曲线的割线的斜率
'
0
k f
'
'
x
0
' '
; x
n
nx 1 x
定
映
A中元素在B中都有唯一的象;可一对一 (一一映射),也可多对一,但不可一对多 定义 函数的概念 表示 定义域
列表法 解析法 图象法 使解析式有意义及实际意义
第 二 部 分 映 射 、 函 数 、 导 数 、 定 积 分 与 微 积 分
射
三要素
区间 单调性 奇偶性 周期性 对称性
对应关系 值域
常用换元法求解析式 观察法、判别式法、分离常数法、单调性法、最值法、 重要不等式、三角法、图象法、线性规划等
函数的 基本性质
函 数
函数常见的
最值
几种变换
基本初等函数 分段函数 复合函数 抽象函数 函数与方程 函数的应用
平移变换、对称变换 翻折变换、伸缩变换
三角函数 单调性:同增异减 赋值法,典型的函数 零点 建立函数模型 求根法、二分法、图象法;一元二次方程根的分布 退出 上一页
函数的平均变化率
函数的瞬时变化率 运动的瞬时速度 曲线的切线的斜率
第一部分 第二部分 第三部分 第四部分 第五部分 第六部分
集合与简易逻辑 映射、函数、导数、定积分与微积分 三角函数与平面向量 数列 不等式 立体几何与空间向量
高二数学知识点总结(人教版)
高二数学知识点总结(人教版)高考数学可是一个拉分科目,因为有些数学是真的挺差的,今天小编在这给大家整理了高二数学知识点总结,接下来随着小编一起来看看吧!高二数学知识点总结(一)一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
高中数学知识点总结(最全版)
数学知识点总结引言1. 课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2 个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由 3 个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由 6 个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10 个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑: 集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算高中数学必修1 知识点第一章集合与函数概念〖1.1 〗集合【1.1.1 】集合的含义与表示1)集合的概念集合中的元素具有确定性、互异性和无序性.2)常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.4)集合的表示法①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{ | 具有的性质} ,其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集().【1.1.2 】集合间的基本关系非空真子集1.1.3 】集合的基本运算8)交集、并集、补集 名称 记号 意义 性质示意图且交集 或 并集 1补集 1) 2) 3)1) 2) 3)【补充知识】含绝对值的不等式与一元二次不等式的解法不等式 解集或把看成一个 整体, 化成 ,型不等式来求解21)含绝对值的不等式的解法 判别式二次函数的图象无实根其中的根元二次方程的解集的解集〖 1.2 〗函数及其表示1.2.1 】函数的概念1)函数的概念①设 、 是两个非空的数集,如果按照某种对应法则,对于集合 中任何一个数 有唯一确定的数 和它对应,那么这样的对应(包括集合 合 到 的一个函数,记作 . ②函数的三要素 : 定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数.2)区间的概念及表示法①设 是两个实数, 且 ,满足 的实数 的集合叫做开区间,记做 间,分别记做,在集合 中都, 以及 到 的对应法则 )叫做集 ;满足, ; 满 足的实数 的集合叫做闭区间, ,或记做 ;满足 的实数 的集合叫做半开半闭区 的 实 数 的 集 合 分 别 记 做注意:对于集合与区间,前者可以大于或等于,而后者必须,(前者可以不成立,为空集;而后者必须成立).3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数.②是分式函数时,定义域是使分母不为零的一切实数.③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤中,.⑥零(负)指数幂的底数不能为零.⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2 】函数的表示法5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.6)映射的概念①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作.②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.〖1.3 〗函数的基本性质【1.3.1 】单调性与最大(小)值1)函数的单调性①定义及判定方法如果对于属于定义域 I 内 某个区间上的任意两个 自变量的值x 1、x 2 ,当 x .1.<. x .2.时,都有 f.(.x.1.).>.f (.x..2.).,那么就说 f (x ) 在这个区间上是减.函.数..(1)利用定义 (2)利用已知函数 的单调性 (3)利用函数图象 (在某个区间图 象下降为减) (4)利用复合函数【 1.3.2 】奇偶性4)函数的奇偶性 ①定义及判定方法② 若函数 为奇函数,且在 处有定义,则 .③ 奇函数在 轴两侧相对称的区间增减性相同,偶函数在 轴两侧相对称的区间增减性相反.④ 在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数) ,两个偶函数(或奇 函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象1)作图 利用描点法作图: ①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性) ; ④画出函数的图象. 利用基本函数图象的变换作图: 要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等 函数的图象.2) 3) 函数,减函数减去一个增函数为减函数.③对于复合函数若为减;若为减, 为增,则、上为减函数.最大(小)值定义 ①一般地, 设函数为增, ;若 为增, 为减.为增,则为减,则 为增;的定义域为 ,如果存在实数 满足:( 1)对于任意的 ,都有( 2)存在 ,使得 数 的最大值,记作 ②一般地,设函数 .那么,我们称 是函 的定义域为 ,如果存在实数 ;( 2)存在,.那么,我们称 是函数 的最小值,1使得 记作函数的 性质 定义图象判定方法函数的 奇偶性如果对于函数 f (x ) 定义 域内任意一个 x ,都有 f(.-.x .).=.-.f .(.x )..,那么函数 f (x ) 叫做奇.函.数..(1)利用定义(要 先判断定义域是否 关于原点对称) ( 2)利用图象(图 象关于原点对称)如果对于函数 f (x ) 定义 域内任意一个 x ,都有f .(.-.x .).=.f .(x.).., 那 么 函 数f (x ) 叫做 偶.函.数..(1)利用定义(要 先判断定义域是否 关于原点对称) ( 2)利用图象(图 象关于 y 轴对称)为减,的图象与性质 ,令 减,则 ,若 打“√”函数分别在上为增函数,分别在①正数的正分数指数幂的意义是:②正数的负分数指数幂的意义是:且.0 的正分数指数幂等于0.且.0 的负分数指③对称变换2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1 〗指数函数【2.1.1 】指数与指数幂的运算(1)根式的概念①如果,且,那么叫做的次方根.当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0 的次方根是0;负数没有次方根.②式子叫做根式,这里叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.③根式的性质:;当为奇数时,;当为偶数时,2)分数指数幂的概念①平移变换②伸缩变换数幂没有意义.注意口诀:底数取倒数,指数取相反数.3)分数指数幂的运算性质2.1.2 】指数函数及其性质〖 2.2 〗对数函数2.2.1 】对数与对数运算② 减法:③ 数乘:⑥换底公式:2.2.2 】对数函数及其性质(1)对数的定义①若 真数.②负数和零没有对数. ③对数式与指数式的互化: 几个重要的对数恒等式 ,则 叫做以 为底 的对数,记作,其中 叫做底数, 叫做2)3)4)常用对数与自然对数 常用对数: 对数的运算性质 ,即 如果;自然对数:,即 (其中 ,那么 ⋯).①加法:(6反函数的概念设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域.8)反函数的性质①原函数与反函数的图象关于直线对称.②函数的定义域、值域分别是其反函数的值域、定义域.③若在原函数的图象上,则在反函数的图象上.④一般地,函数要有反函数则它必须为单调函数.〖2.3 〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数.3)幂函数的性质① 图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象 .幂函数是偶函数时,图象分布在第一、 二象限 (图象关于 轴对称 );是奇函数时, 图象分布在第一、 三象限 (图象关于原点对称 );是非奇非偶函数时, 图象只分布在第一象限 . ② 过定点:所有的幂函数在 都有定义,并且图象都通过点 .③ 单调性:如果 ,则幂函数的图象过原点,并且在 上为增函数.如果 ,则幂函数的图象 在 上为减函数,在第一象限内,图象无限接近 轴与 轴.④ 奇偶性:当 为奇数时,幂函数为奇函数,当 为偶数时,幂函数为偶函数.当 (其中 互质,① 已知三个点坐标时,宜用一般式.② 已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③ 若已知抛物线与 轴有两个交点,且横线坐标已知时,选用两根式求 更方便.3)二次函数图象的性质;当 时,抛物线开口向下,函数在 上递增,在 上递减,当统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理 二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程 的两实根为 ,且 .令 ,从以下四个方面来分析此类问题: ①开口方向: ②对称轴位置: ③判别式: ④端点函数值符号. ①k <x 1≤ x 2 ②x 1≤x 2<k③ x 1<k < x 2 af(k)<0和 ),若 为奇数 为奇数时,则是奇函数,若 为奇数 为偶数时,则 是偶函数,若 为偶数 ⑤图象特征: 图象在直线 下方.幂函数 上方,当时,当时,若,其图象在直线上方,若下方,若,其,若,其图象在直线,其图象在直线1)二次函数解析式的三种形式①一般式:②顶点式:的图象是一条抛物线,对称轴方程为 顶点坐标是.②当 时,抛物线开口向上,函数在上递减,在 上递增,当 时,③二次函数当.4)一元二次方程 根的分布时,图象与 轴有两个交点这部分知识在初中代数中虽有所涉及, 但尚不够系韦达定理)的运用, 下面结合 为奇数时,则是非奇非偶函数.补充知识〗二次函数2)求二次函数解析式的方法③两根式:时,元二次方程根的分布是二次函数中的重要内容,④k1<x1≤x2<k2⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)< k2 f( k1)f(k2) 0,并同时考虑f( k1)=0 或f( k2)=0 这两种情况是否也符合⑥k1<x1< k2≤p1<x2<p2 此结论可直接由⑤推出.5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令.(Ⅰ)当时(开口向上)①若,则②若,则③若,则的零点:○1 (代数法)求方程○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的性质找出零点.4、二次函数的零点: 二次函数1)△>0,方程 两个零点. 2)△=0,方程(Ⅱ) 当(时p )(开口向下 )(q),则 ②若,则③若 ,则有实数根 函数 的图象与 轴有交点 函数 有零点.3、函数零点的求法:求函数的实数根;的图象联系起来,并利用函数有两不等实根,二次函数的图象与 轴有两个交点,二次函数有(p)(p)xOOxx,(p 则)则(q)①若(p)Oxx①若(pOxOOx(p)①若(pOxx第三章(p )函数的应用②(q )方程的根与函数的零点(q )② ,则O (f (q)O(q)则O的零点就是方程的图象与实数根,亦即函数 1、函数零点的概念:对于函数 的零点。
高中数学基础知识
高中数学基础知识一、集合与简易逻辑二、函数三、不等式四、三角函数五、数列六、向量七、解析几何八、立体几何九、排列、组合、二项式、概率统计十、导数一.集合与简易逻辑一、理解集合中的有关概念(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。
集合元素的互异性:如:)}lg(,,{xy xy x A =,}|,|,0{y x B ,求A ; (2)集合与元素的关系用符号∈,∉表示。
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。
注意:区分集合中元素的形式:如:}12|{2++==x x y x A }12|{2++==x x y y B }12|),{(2++==x x y y x C}12|{2++==x x x x D },,12|),{(2Z y Z x x x y y x E ∈∈++== }12|)',{(2++==x x y y x F },12|{2xy z x x y z G =++==(5)空集是指不含任何元素的集合。
(}0{、φ和}{φ的区别;0与三者间的关系)空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。
如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。
二、集合间的关系及其运算(1)符号“∉∈,”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ; 符号“⊄⊂,”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。
(2)}{_________=B A ;}{_________=B A ;}{_________=A C U(3)①若n 为偶数,则=n ;若n 为奇数,则=n ;②若n 被3除余0,则=n ;若n 被3除余1,则=n ;若n 被3除余2,则=n ;(4)对于任意集合B A ,,则:①A B B A ___;A B B A ___;B A B A ___; ②⇔=A B A ;⇔=A B A ;⇔=U B A C U ;⇔=φB A C U ;③=B C A C U U ; )(B A C U =;三、集合中元素的个数的计算:(1)若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
高三数学必背必考知识点
高三数学必背必考知识点高三数学必背必考知识点1第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二、平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三、数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法;第二类我们所讲的动点问题;第三类是弦长问题;第四类是对称问题,这也是2008年高考已经考过的一点;第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
高中数学考试范围
高中数学咨询一、新课标变化、内容展示内容:必修+选修(文科、理科必修相同,选修不同)必修:集合、函数、立体几何初步、解析几何初步、算法、统计、概率、三角、平面向量、数列、不等式文科:逻辑、圆锥曲线、导数、统计、证明、复数、框图选修理科:逻辑、圆锥曲线、空间向量、导数、统计、证明、复数、计数原理(排列组合)、概率新课标不变:(130分左右)小点---集合命题、函数、不等式、平面向量、复数(理)大点---三角、数列、立体几何、解析几何、概率、导数新课标新增:(20分左右)理科---零点、几何三视图、算法、统计、证明、条件概率文科---零点、三视图、算法、统计、证明、复合求导、复数、框图新课标删减:(5~18分)文科---排列组合、复杂立体几何二、所占分数、学习所需时间原则:老师+学生+助教如:每2小时正课,做2小时的作业,助教老师讲题1小时。
助教老师非常重要,每两次正课配一次助教课,学习效率会比较高。
1、集合、命题: 高考5~10分(讲课2小时,练习2小时,助教1小时)年年考,今年新增了逻辑、特称量词、全称量词,课上需3小时,练习需2小时。
2、函数:高考5分或15分(讲课4或10小时,练习10小时,助教4小时)常考---幂函数、指数、对数函数性质、计算,图像和定义域、值域等。
学知识点需2小时,学方法需8小时,课后练习需10小时。
此章是大块,非常纠结,花20小时也学不完。
由于高考占分少且不稳定,时间紧时最多学4小时最主要最常用的部分,时间充裕时学10个小时,有助于帮后面打基础。
3、不等式基本解法及常用方法:5或10分(讲课4小时,练习2~4小时,助教2小时)混合在最值问题考或单出小题。
外地新课标省会作为10分的附加题考。
学会基本知识需2小时,学习解题方法需2小时,配合课后练习2~4小时左右。
4、三角函数和解斜三角形:20分左右(讲课14小时,练习14小时,助教8小时)常出一个大题,加上一到二个小题。
学会基础知识和公式运用需6小时,讲解题型需8小时,配合课后练习需14小时以上。
高中数学知识点大全
高中数学知识点大全一、集合与函数概念1. 集合定义:集合是某些确定的、互不相同的对象的全体。
表示方法:列举法、描述法、图示法。
集合间的关系:子集、真子集、相等。
集合的运算:并集、交集、补集、差集。
常用数集:自然数集(N)、整数集(Z)、有理数集(Q)、实数集(R)。
2. 函数概念定义:函数是两个非空数集之间的映射,使得每一个自变量都有唯一的函数值与之对应。
表示方法:列表法、图象法、解析法。
函数的性质:单调性、奇偶性、周期性、最值。
3. 函数的基本类型一次函数:\( y = ax + b \),图象为直线。
二次函数:\( y = ax^2 + bx + c \),图象为抛物线。
指数函数:\( y = a^x \),\( a > 0 \且 a \neq 1 \)。
对数函数:\( y = \log_a x \),\( a > 0 \且 a \neq 1 \)。
三角函数:正弦函数、余弦函数、正切函数等。
二、立体几何1. 空间几何体多面体:棱柱、棱锥、棱台。
旋转体:圆柱、圆锥、圆台、球。
2. 点、线、面的位置关系点与线:点在直线上、点在直线外。
点与面:点在平面上、点在平面外。
线与线:相交、平行、异面。
线与面:线在面上、线与面相交、线与面平行。
面与面:相交、平行。
3. 空间几何体的表面积与体积棱柱:\( V = Sh \),\( S = 2S_{底} + S_{侧} \)。
棱锥:\( V = \frac{1}{3}Sh \),\( S = S_{底} + S_{侧} \)。
圆柱:\( V = \pi r^2 h \),\( S = 2\pi r(h + r) \)。
圆锥:\( V = \frac{1}{3}\pi r^2 h \),\( S = \pi r(l + r) \),其中 \( l = \sqrt{r^2 + h^2} \)。
三、解析几何1. 坐标系直角坐标系:由两条互相垂直的数轴构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学集合、逻辑、函数、向量、数列、不等式、立体几何 综合测试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.每小题选出答案后,请填涂在答题卡上.1. 若非空集合}5,4,3,2,1{⊆S ,且若S a ∈,则必有S a ∈-6,则所有满足上述条件的集合S 共有A .6个B .7个C .8个D .9个2. 命题P :若函数()f x 有反函数,则()f x 为单调函数;命题Q :111222a b c a b c == 是不等式21110a x b x c ++>与22220a x b x c ++>(121212a a b b c c ,,,,,均不为零)同解的充要条件,则以下是真命题的为A .P ⌝且QB .P 且QC .P ⌝或QD .P 或Q3. 若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a =A .42 B .22 C .41 D .21 4. 如图,一个空间几何体的三视图如图所示,其中,主视图中ABC ∆是边长为2的正三角形,俯视图为正六边形,那么该几何体的体积为C.32D. 3左视图主视图俯视图5. 已知函数bx x x f +=2)(的图象在点))1(,1(f A 处的切线l 与直线0223=+-y x 平行,若数列})(1{n f 的前n 项和为n S , 则2012S 的值为A .20102009B .20112010C .20122011D .201320126. 若m b a m a f 2)13()(-+-=,当]1,0[∈m 时,1)(≤a f 恒成立,则b a +的最大值为A .31 B .32 C .35D .37 7. 已知a 、b 是不共线的向量,()AB AC R λμλμ=+=+∈,,a b a b ,那么A B C 、、三点共线的充要条件为 A .1λμ= B .1λμ=- C .1=-μλ D .2λμ+=8. 设平面上有四个互异的点A 、B 、C 、D ,已知(,0)()2=-⋅-+则ABC ∆的形状是A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9. 设函数()(sin cos )(02011),xf x e x x x π=-≤≤则函数()f x 的各极大值之和为A.20122(1)1e e e πππ-- B. 1006(1)1e e e πππ--C. 10062(1)1e e e πππ--D.20102(1)1e e e πππ--10. ()x f y =的定义域为R ,且()(),22x f x f -=+()()x f x f -=+77在[]7,0上只有()()031==f f ,则()x f 在]2012,2012[-上的零点个数为A .403B .402C .806D .80511. 函数()22x xf x -=-的反函数为)(1x f -,则使不等式1()2f x ->成立的x 的取值范围为A .15(,)4-+∞ B .15[0,)4C .15(,0)4-D . 15(,)4-∞- 12. 已知函数32()31f x x x =-+,21,0()468,0x x g x x x x x ⎧+>⎪=⎨⎪---≤⎩,关于方程()0g f x a -=⎡⎤⎣⎦(a 为正实数)的根的叙述有下列四个命题 ①存在实数a ,使得方程恰有3个不同的实根; ②存在实数a ,使得方程恰有4个不同的实根; ③存在实数a ,使得方程恰有5个不同的实根; ④存在实数a ,使得方程恰有6个不同的实根; 其中真命题的个数是A .3B .2C .1D .0二、填空题:本大题共4小题,每小题5分,共20分.答案填在答题纸相应的空内.13. 定义在R 上的函数()y f x =是减函数,且函数(1)y f x =-的图象关于)0,1(成中心对称,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,ts的取值范围 .14. 已知等差数列{}n a 的首项1a 及公差d 都是整数,前n 项和为n S ,若9,3,1341≤>>S a a ,设122,n n n n b a b b b =+++则的结果为 .15. 已知正项数列{}n a )0*,(>∈n a N n 的前n 项和n S 满足:12+=n n a S ;设392+-=n n a b ,则数列{}n b 的前n 项和的最大值为___________.16. 如图,直线l α⊥平面,垂足为O ,已知长方体1111ABCD A B C D -中,15,6,8AA AB AD ===该长方体做符合以下条件的自由运动:(1)A l ∈;(2)C α∈,则1,C O 两点间的最大距离为 .三、解答题:本大题共6小题,共70分.请将解答过程书写在答题纸上,并写出文字说明、证明过程或演算步骤.17. (本题满分10分)已知集合{}2150A x x px ⊆-+=,{}250B x x x q ⊆-+=,{}2,3,5A B =,{}3A B =,求集合A 和B .18. (本题满分12分)设数列{}n a 的前n 项和为n S ,21=a ,点(1+n S , n S )在直线n n y n nx +=+-2)1((*N n ∈)上.a1=2(Ⅰ)求数列{}n a 的通项公式;PABCC第20题图(Ⅱ)设,211-+=++n n n n n S S S S T 证明:.334321<++++≤n T T T T 19. (本题满分12分)阅读下面材料:根据两角和与差的正弦公式,有sin()sin cos cos sin αβαβαβ+=+------①sin()sin cos cos sin αβαβαβ-=-------②由①+② 得()()sin sin 2sin cos αβαβαβ++-=------③令,A B αβαβ+=-= 有,22A B A Bαβ+-==代入③得 sin sin 2sin cos22A B A BA B +-+=. (Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:cos cos 2sinsin22A B A BA B +--=-; (Ⅱ)若ABC ∆的三个内角,,A B C 满足cos2cos21cos2A B C -=-,试判断ABC ∆的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)20. (本题满分12分)如图,在三棱锥ABC P -中,22,4======BC AB AC PC PB PA .(1)求证:平面ABC ⊥平面APC ;(2)求直线PA 与平面PBC 所成角的正弦值; (3)若动点M 在底面三角形ABC 上,二面角C PA M --的余弦值为322,求BM 的最小值. 21. (本题满分12分)已知正数数列}{n a 和{}n b 满足:对任意n ,1,,n n n a b a +成等差数列,且总有1n a +=(1)判断数列是否为等差数列;(2)若1121,2,3,a b a ===求数列}{n a 和{}n b 的通项公式.22. (本题满分12分)已知函数x x x f 2)(2-=, )(x g 是R 上的奇函数,且当]0,(-∞∈x 时,2)()(x x f x g =+.(Ⅰ)求函数)(x g 在R 上的解析式;(Ⅱ)若函数+-=)()([)(x f x g x x h λ23]在),0(+∞上是增函数,且0≤λ,求λ的取值范围.试题答案1-5BCBCD 6-10DABDD 11-12DA 13. 1[,1]2-14. 12n n +⋅ 15. 190 16. 255+ 17. 由3A ∈,{}2150A x x px ⊆-+=,得8;p =…….3分由3B ∈,{}250B x x x q ⊆-+=,得 6.q =………….6分{}2,2,2,2,3A B A B B ∈∉∴∈∴=………….8分 {}3,3,3,5,3A B B A A ∈∉∴∈∴=……….10分18. 解:(I )n n y n nx S S n n +=+-+21)1(),(在直线 上,,111=-+∴+nS n S nn …………………………………………1分 ∴{nS n}构成以S 1=a 1=2为首项,公差为1的等差数列, 分而时当分6*).(2,2,2)1()1(,24.,1)1(212212 N n n a a n n n n n S S a n n n S n n nS n n n n n n∈=∴==----+=-=≥+=∴+=⨯-+=∴- 证明:(II )n n S n +=2.322123)]211()4121()311[(210).1(34,0)2(4,*8,22222122122221121<+-+-=+-++-+-=+++==≥+++∴>+=∈+-=-+++-=-+++=∴n n n n T T T n T T T T n n T N n n n n n n n n n T n n n n 又分时取等号时分∴原不等式成立.……………………………………………………………………12分19. 解法一:(Ⅰ)证明:因为cos()cos cos sin sin αβαβαβ+=-,------①cos()cos cos sin sin αβαβαβ-=+,------②…………………1分①-② 得cos()cos()2sin sin αβαβαβ+--=-.------③……………………2分令,A B αβαβ+=-=有,22A B A Bαβ+-==, 代入③得cos cos 2sin sin22A B A BA B +--=-.………………………………5分 (Ⅱ)由二倍角公式,cos2cos21cos2A B C -=-可化为22212sin 12sin 112sin A B C --+=-+,…………………………………7分所以222sin sin sin A C B +=.…………………………………10分 设ABC ∆的三个内角A,B,C 所对的边分别为,,a b c ,由正弦定理可得222a cb +=.………………………………11分根据勾股定理的逆定理知ABC ∆为直角三角形.…………………………………12分 解法二:(Ⅰ)同解法一.(Ⅱ)利用(Ⅰ)中的结论和二倍角公式,cos2cos21cos2A B C -=-可化为()()22sin sin 112sin A B A B C -+-=-+,…………………………………7分因为A,B,C 为ABC ∆的内角,所以A B C π++=, 所以()()()2sin sin sinA B A B A B -+-=+.又因为0A B π<+<,所以()sin 0A B +≠, 所以()()sin sin 0A B A B ++-=.从而2sin cos 0A B =.……………………………………………10分 又sin 0A ≠,所以cos 0B =,故2B π∠=.……………………………………11分所以ABC ∆为直角三角形. ………………………………12分 20. (满分12分)解:(1)取AC 中点O,因为AP=BP ,所以OP⊥OC 由已知易得三角形ABC 为直角三角形, ∴OA=OB=OC,⊿POA≌⊿POB≌⊿POC,∴OP⊥OB∴OP⊥平面ABC, ∵OP 在平面PAC 中,∴平面ABC ⊥平面APC 4分 (2) 以O 为坐标原点,OB 、OC 、OP 分别为x 、y 、z 轴建立如图所示空间直角坐标系.由已知得O(0,0,0),B(2,0,0),A(0,-2,0), C(0,2,0),P(0,0, 32), 5分 ∴)32,2,0(),32,0,2(),0,2,2(=-=-=→→→AP PB BC 设平面PBC 的法向量),,(1z y x n =,由0,011=•=•n n 得方程组⎩⎨⎧=-=+-0322022z x y x ,取)1,3,3(1=→n 6分∴ 721,cos 1>=<→→n AP ∴直线PA 与平面PBC 所成角的正弦值为721。