FHZHJSZ0010 水质 锌的测定 双硫腙分光光度法.T...
水质中锌的测定方法
水质中锌的测定方法一、引言水是人类生活中不可或缺的重要资源之一。
然而,由于工业、农业和生活废水的排放,水体中常常含有各种有害物质,其中包括重金属元素锌。
锌是一种重要的微量元素,但过高的锌含量会对水生态系统和人体健康造成严重危害。
因此,准确测定水体中锌的含量对于环境保护和人类健康至关重要。
二、测定方法目前常用的水质中锌的测定方法主要包括原子吸收光谱法、电感耦合等离子体质谱法和阳极溶出法。
1. 原子吸收光谱法原子吸收光谱法是一种常用的测定水质中金属元素含量的方法,包括锌。
该方法基于锌原子在特定波长下对吸收光的特性。
首先,将水样中的锌溶解为可测定的形态,通常是以酸为介质进行溶解。
然后,使用原子吸收光谱仪测定样品溶液对特定波长的光的吸收程度,根据吸光度与锌的浓度之间的关系,计算出样品中锌的含量。
2. 电感耦合等离子体质谱法电感耦合等离子体质谱法是一种高灵敏度的测定方法,可用于测定水质中微量元素的含量,包括锌。
该方法通过将水样中的锌原子或离子转化为带电粒子,并通过质谱仪测定这些带电粒子的质量和相对丰度,从而确定锌的含量。
3. 阳极溶出法阳极溶出法是一种基于电化学原理的测定方法,适用于测定水质中锌的含量。
该方法使用锌电极和参比电极,以水样为电解液,在特定电位下进行电解反应。
锌电极上的锌原子在电解液中溶解,并伴随着电流的通过。
通过测定电解液中的电流强度和时间,计算出锌的溶解量,从而确定水样中锌的含量。
三、测定步骤无论采用哪种测定方法,测定水质中锌的含量都需要经过一系列的步骤。
1. 水样采集首先需要采集代表性的水样。
根据需要测定的水体类型,选择合适的采样器具,避免样品受到外界污染。
严格遵守采样方法,避免误差。
2. 预处理根据测定方法的要求,对采集的水样进行预处理。
通常包括过滤、酸化等步骤,以消除干扰物质的影响,保证测定结果的准确性。
3. 测定操作根据所选择的测定方法,进行相应的操作。
如果使用原子吸收光谱法,需要将样品溶解为可测定的形态,并通过原子吸收光谱仪测定吸光度。
镉的测定双硫腙分光光度法
此时溶液的 pH 值为 2.8 备作测定用
6 操作步骤 6.1 测定
6.1.1 显色萃取 6.1.1.1 向试份(6.3)加入 1mL 酒石酸钾钠溶液(3.13) 5mL 氢氧化钠 氰化钾溶液(3.8)及 1mL
盐酸羟胺溶液(3.7) 每加入一种试剂后均需摇匀 特别是加入酒石酸钾钠溶液后须充分摇匀
6.1.1.2 加入 15mL 双硫腙氯仿溶液(3.11) 振摇 1 min 此步骤应迅速进行操作 6.1.1.3 打开分液漏斗塞子放气(不要通过转动下面的活塞放气) 将氯仿层放入第二套已盛有
(参考件)
B.1 在第一次萃取时双硫腙溶液要有足够的浓度 否则萃取不完全 B.2 形成的双硫腙镉络合物在被氯仿所饱和的强碱中容易分解 要迅速将有机相放入事先准 备好的第二套分液漏斗中 B.3 冷酒石酸可以减轻碱同酒石酸反应所产生的热的影响 酒石酸贮冰箱中可延长使用时 间 B.4 气温较高时 氢氧化钠 氰化钾溶液配制后须放置一星期到十天后才使用 否则将会影 响测定结果 B.5 试剂空白值的高低与双硫腙的纯度有关 一般双硫腙必须经过提纯 测定时应以氯仿调 零 从观察空白的吸光度以考查试剂纯度 B.6 为消除硬水地区水样中 Mg2+的干扰 当取样体积为 100mL 时 可用 2mL 酒石酸钾钠溶 液(3.13)掩蔽之 B.7 如果水样中镉的含量高于 10ìg 取样量可以改为 25mL 或 50mL
注 此溶液剧毒 因氰化钾是剧毒药品 因此称量和配制溶液时要特别小心 取时要带胶皮手套 避
免沾污皮肤 禁止用嘴通过移液管来吸取氰化钾溶液
3.9 400g/L 氢氧化钠 0.5g/L 氰化钾溶液 称取 400g 氢氧化钠和 0.5g 氰化钾溶于水中并稀释至 1L 贮存于聚乙烯瓶中
3.10 双硫腙 2g/L 氯仿贮备液 称取 0.5g 双硫腙(C13H12N4S)溶于 250mL 氯仿中 贮于棕色瓶中 放置在冰箱内
水质 铅的测定 双硫腙分光光度法
FHZHJSZ0008 水质铅的测定双硫腙分光光度法F-HZ-HJ-SZ-0008水质双硫腙分光光度法1 范围 本方法规定水样经酸消解处理后本方法适用于测定天然水和废水中微量铅铅浓度高于0.30mg/Ll.l 检出限试份体积为100mL×îµÍ¼ì³öŨ¶È¿É´ï0.010mg/LÓÃËÄÂÈ»¯Ì¼ÝÍÈ¡ÆäĦ¶ûÎü¹âϵÊýԼΪ 6.7 cmÇ軯ÎïµÄ»¹Ô-ÐÔ½éÖÊÖÐÝÍÈ¡µÄÂȷ»ìÉ«Òº´Ó¶øÇó³öǦµÄº¬Á¿3 试剂 本方法所用试剂除另有说明外所有试剂试验中应使用不含铅的蒸馏水或去离子水3.2 高氯酸(HClO4) 1.67g/mL3.3 硝酸(HNO3) 1.42g/mL1+4溶液3.3.2 硝酸溶液 取2mL硝酸(3.3)用水稀释到1000mL0.5mo1/L3.5 氨水(NH3ñ3.5.1 氨水溶液 取10mL氨水(3.5)用水稀释到100mL0.143mol/L3.6 柠檬酸盐将400g柠檬酸氢二铵[(NH4)2HC6H5O7]10g盐酸羟胺(NH2OH²¢Ï¡Ê͵½1000mL若此溶液含有微量铅直到有机层为纯绿色注因此称量和配制溶液时要特别谨慎小心避免沾污皮肤将5g无水亚硫酸钠(Na2SO3)溶解在100mL无铅去离子水中0.05mo1/L将40g碘化钾(KI)溶解在25mL去离子水中然后用水稀到1000mL 将0.1599g硝酸铅(纯度)溶解在约200mL水中或将0.1000g纯金属铅(纯度)溶解在20mL 1+1硝酸中3.10 铅标准工作溶液用水稀释到标线此溶液每毫升含2.00ìg铅称取100mg纯净双硫腙(C6H5NNCSNHNHC6H5)溶于1000mL氯仿(3.1)中此溶液每毫升含100ìg双硫腙可按下述步骤提纯用定量滤纸滤去不溶物每次用20mL氨水(3.5.2)提取五次合并水层然后用盐酸(3.4)中和含并氯仿层保存于冰箱内备用取一定量上述双硫腙氯仿溶液, 置50mL容量瓶中以氯仿稀释定容于606nm波长测量其吸光度104L/mol3.12 双硫腙工作溶液用氯仿稀释到标线3.13 双硫腙专用溶液此溶液不需要纯化4 仪器 所用玻璃仪器在使用前需用硝酸清洗4.1 分光光度计4.3 1505试样制备5.1 实验室样品按照国家标准的有关规定进行采集每1000mL水样立即加入2.0mL硝酸(3.3)加以酸化(pH约为1.5)5.2 试样除非证明试样的消化处理是不必要的否则要按下述二种情况进行预处理每100mL试样加入lmL硝酸(3.3)冷却后用快速滤纸过滤然后用硝酸(3.3.2)稀释到一定体积5.2.2 含悬浮物和有机物较多的地面水或废水1ìg)加入5mL 硝酸(3.3)ÉÔÀäÈ´ÑϽû½«¸ßÂÈËá¼Óµ½º¬Óл¹Ô-ÐÔÓлúÎïµÄÈÈÈÜÒºÖзñÔò»áÒýÆðÇ¿ÁÒ±¬Õ¨)Õô·¢ÖÁ½ü¸É(但勿蒸干)ÓÃÏõËá(3.3.2)温热溶解残渣用快速滤纸过滤滤液用硝酸(3.3.2)稀释定容每分析一批试样要平行操作两个空白试验铋在510nm和465nm 分别测量试份的吸光度从每个波长位置的试份吸光度中扣除同一波长位置空白试验的吸光度计算510nm 处吸光度校正值与465nm 处吸光度校正值的比值而对双硫腙铋盐为1.076如果分析试份时求得的比值明显小于2.08ÕâʱÐèÁíÈ¡100mL 试样(5.2)并按以下步骤处理加入5mL 亚硫酸纳溶液(3.7)以还原残留的碘在pH 计上将试样转入250mL 分液漏斗中每次用10mLÈ»ºóÓÃÂÈ·Â(3.1)萃取以除去双硫腙(绿色消失)6 操作步骤 6.l 测定6.1.1 显色萃取向试份(含铅量不超过30ìgÇ軯¼Ø»¹Ô-ÐÔÈÜÒº(3.6)¼ÓÈë10mL 双硫腙工作溶液(3.12)¾çÁÒÒ¡¶¯·ÖҺ©¶·30s 6.1.2 吸光度的测量在分液漏斗的茎管内塞入一小团无铅脱脂棉花弃去1~2mL 氯仿层后在510nm 测量萃取液的吸光度第一次采用本方法时应检验最大吸光度波长由测量所得吸光度扣除空白试验吸光度再从校准曲线上查出铅量6.2 空白试验按5.3和6.1的方法进行处理其他试剂用量均相同向一系列250mL 分液漏斗中0.505.0010.0015.00mL然后按6.l 所述步骤进行操作从上述测得吸光度扣除试剂空白(零浓度)的吸光度后这条线应为通过原点的直线特别当每次使用一批新试剂时要检查Vm c =式中ìg mL8 精密度和准确度对河水中含铅0.010mg/L进行测定时测定的相对标准偏差为4.8相对误差为15 9 参考文献GB7470-87。
水质 总汞的测定 高锰酸钾过硫酸钾消解法 双硫腙分光光度法
FHZHJSZ0007 水质 总汞的测定 高锰酸钾过硫酸钾消解法 双硫腙分光光度法 F-HZ-HJ-SZ-0007水质高锰酸钾工业废水和受汞污染的地面水在酸性条件下在双硫腙(二苯硫代偕肼腙)洗脱液中加入1至少可掩蔽300ìg铜离子的干扰104 L cm-1¹¯µÄ×îµÍ¼ì³öŨ¶ÈΪ2ìg/L1 定义 总汞经剧烈消解后测得的汞浓度有机结合的2 原理在95°ÑËùº¬¹¯È«²¿×ª»¯Îª¶þ¼Û¹¯ÔÚËáÐÔÌõ¼þÏÂÓÃÓлúÈܼÁÝÍÈ¡3 试剂和材料 除另有说明外其中含汞量要尽可能少如采用的试剂导致空白试验值偏高3.1 去离子水cm(253.2 无水乙醇(C2H5OH)3.3 氯仿(CHCl3)3.4 硫酸(H2SO4) 1.84g/mL3.5 硝酸(HNO3) 1.4g/mL3.6 硝酸将50mL硝酸(3.5)用水稀释至1000mL50g/L溶液优级纯 注避免未溶解颗粒沉淀或悬浮于溶液中(必要时可加热助溶)3.8 过硫酸钾将5g过硫酸钾(K2S2O8)溶于水并稀释至100mL3.9 盐酸羟胺将10g盐酸羟胺(NH2OH每次用5mL双硫腙溶液(3.12)萃取再用少量氯仿(3.3)洗两次200g/L溶液7H2O)溶于水并稀释至100mL1g/L氯仿溶液C6H5N溶于20mL氯仿中置分液漏斗中合并水层再用100mL氯仿(3.3)分三次提取置冰箱内保存透光率约为7010mm比色皿)的氯仿溶液3.13 双硫腙洗脱液将8g氢氧化钠(NaOH¼ÓÈë10g EDTA二钠(C10H14N2O8Na2稀释至1000mLÃÜÈû4g/L酸溶液优级纯)溶于500mL水中3.15 汞称取1.354g氯化汞(HgCl2)通过漏斗转移至1000mL容量瓶溶解后用水稀释至标线并混匀1.00mL此标准溶液含1.00mg汞在稀释到标线先加入50mL酸性重铬酸钾溶液(3.14)可以稳定此溶液至少三个月相当于50mg/L汞的标准溶液用硝酸溶液(3.6)稀释至标线并混匀当天配制相当于lmg/L汞的标准溶液用硝酸溶液(3.6)稀释至标线并混匀临用前配制而应充满硝酸溶液(3.6)ÔÙÓÃË®(3.1)冲洗干净用1+l硝酸溶液浸泡过夜4份体积硫酸(3.4)加1份体积高锰酸钾溶液(3.7)用盐酸羟胺溶液(3.9)清洗最后用水(3.1)冲洗数次4.1 500mL锥形瓶4.2 500mL及60mL分液漏斗4.3 水浴锅5 试样制备 5.1 实验室样品每采集1000mL水样后立即加入约7mL硝酸(3.5)ʹ֮µÍÓÚ»òµÈÓÚ1ÏòÿÉýÑùÆ·ÖмÓÈë¸ßÃÌËá¼ØÈÜÒº(3.7)4mLʹÆä³ÊÏֳ־õĵ-ºìÉ«注以便在空白试验中按同样量操作注意在样品和空白试验中使用同样的试剂使所有二氧化锰完全溶解每份250mLʹµÃµ½Èܽⲿ·ÖºÍÐü¸¡²¿·Ö¾ù¾ßÓдú±íÐÔµÄÊÔÑùµÚ¶þ·ÝÊÔÑùÓÃÓÚÖƱ¸Ð£ºËÊÔÑé(6.4)中使用的试份(D)ÈçÑùÆ·Öк¬¹¯»òÓлúÎïµÄŨ¶È½Ï¸ß6 操作步骤 6.1 校准取6个500mL锥形瓶(4.1)0.50 2.5010.00mL然后完全按照测定试验的步骤(见6.2.1和6.2.2)立即对每一种标准溶液进行处理和对应的汞含量绘制校准曲线放入锥形瓶(4.1)中每次加后均混合之如果不能在15min内维持深紫色然后加入8mL过硫酸钾溶液(3.8)含悬浮物和(或)有机物较少的水可把加热时间缩短为1hÈ»ºó¼ÌÐøµÚ1个试份的测定直至溶液的颜色刚好消失和所有锰的氧化物都溶解为止将溶液转移至500mL分液漏斗中一并移入分液漏斗中如加入30mL高锰酸钾溶液还不足以使颜色持久或者考虑改用其他消解方法本方法就不再适用了.6.2.2 萃取和测定分别向各份消解液加入lmL亚硫酸钠溶液(3.10)ÔÙ¼ÓÈë10.0mL双硫腙氯仿溶液(3.12)ÔÙÃÜÈûÕñÒ¡1min将有机相转入已盛有20mL双硫腙洗脱液(3.13)的60mL分液漏斗(4.2)中静置分层直至有机相不带绿色塞入少许脱脂棉在485nm波长下以试份的吸光度减去空白试验(6.3)的吸光度后6.3 空白试验按6.2.1和6.2.2的规定进行空白试验并加入与测定时相同体积的试剂 当测定在接近检出限的浓度下进行时如 超过0.01单位试剂和器皿等或对沾污的器皿重新处理6.4 校核试验向6.2.1中保留的第2个试份(D)中加入已知体积的汞标准溶液(3.17)ÔòÈ¡ÓÃÊԷݵÄÒ»²¿·ÖÖظ´½øÐвÙ×÷7 结果计算 总汞含量c (ìg/L)按式(1)计算m试份测得含汞量 V测定用试样体积 如果考虑采样时加入的试剂体积2100013210………………………………………………++⋅⋅=V V V V V m c 式中ìgmL mL mLmL8 精密度和准确度 4个实验室测定含汞5.0ìg/L 的统一分发标准溶液结果如下和4.7附 录 A 本方法一般说明 (参考件) A.1 氯仿和四氯化碳革取双硫腙汞均为理想的溶剂且四氯化碳对人体的毒性较大A.2 氯仿在贮存过程中常会生成光气不仅失去与汞螯合的功能用分光光度计测定时有一定吸光度加乙醇作保护剂避光避热密闭保存二氧化锰沉淀溶解以便均匀取出试样应注意在此操作中并且随即继续以后的操作以防在还原状态下汞挥发损失试份的pH 值小于l 时干扰很少硫酸的浓度为0.45mol/L 试验证明每250mL 试样中分别加515或20mL 硫酸对测定没有影响双硫腙汞对光敏感或加入乙酸防止双硫腙汞见光分解采用不纯的双硫腙时双硫腙汞见光分解很快双硫腙汞可在室内光线下稳定几小时以上因此A.6 双硫腙洗脱液有用氨水配制的但氨水的挥发性大氨雾影响比色(m/V)EDTA二钠溶液作为双硫腙洗脱液但应注意必须使用含汞量很少的优级纯氢氧化钠凡士林溶于氯仿可引进正误差则萃取液易漏溅而引入负误差可改用非油性润滑剂(溶于水或改为直接在锥形瓶(4.1)中振摇萃取(先缓缓旋摇并多次启塞放气倾去大部分水分用抽气泵吸出水相实践证明还减少了用分液漏斗反复转移溶液而引进的误差双硫腙汞的氯仿溶液切勿丢弃并与其他杂质一起随水相分离后将氯仿重蒸回收再于搅拌下加入硫化钠溶液至氢氧化物完全沉淀为止。
水质 锌的测定 双硫腙分光光度法
FHZHJSZ0010 水质锌的测定双硫腙分光光度法F-HZ-HJ-SZ-0010水质双硫腙分光光度法l 范围 本方法规定了用双硫腙分光光度法测定水中的锌有关干扰问题见附录Aµ±Ê¹Óùâ³Ì³¤20mm比色皿检出限为5ìg/LÔÚ×î´óÎü¹â²¨³¤535nm测量时104 L/mol本方法规定水样经酸消解处理后2 原理在pH为4.0~5.5的乙酸盐缓冲介质中用四氯化碳萃取后进行分光光度测定铜镉铋金银对锌的测定有干扰3 试剂 本方法所用试剂除另有说明外实验中均用不含锌的水将普通蒸馏水通过阴阳离子交换柱以除去水中锌3.2 高氯酸(HClO4) 1. 75g/mLñ3.3.1 盐酸取500mL盐酸(3.3)用水稀释至1000mL2mol/L溶液3.3.3盐酸取10mL盐酸(3.3.2)溶液用水稀释到1000mL3.5 氨水(NH3ñ3.5.1 氨水 取10mL氨水(3.5)用水稀释至1000mLñ3.6.1 硝酸溶液 取20mL硝酸(3.6)用水稀释到1000mL0.032mol/L3.7 乙酸钠缓冲溶液3H2O)溶于水中另取1份乙酸将上述两种溶液按等体积混合直到最后的萃取液呈绿色3.8 硫代硫酸钠溶液5H2O)溶于100mL水中直到双硫腙溶液呈绿色为止3.9 双硫腙称取0.25g双硫腙(C13H12N4S)溶于250mL四氯化碳(3.1)·ÅÖÃÔÚ±ùÏäÄÚ¿É°´ÏÂÊö²½ÖèÌá´¿ÂËÒºÖ÷ÖҺ©¶·ÖдËʱ˫Áòëê½øÈëË®²ãÈ»ºóÓÃÑÎËá(3.3.1)中和合并四氯化碳层保存于冰箱内备用0.1g/L四氯化碳溶液3.11 双硫腙取40mL双硫腙四氯化碳溶液(3.10)当天配制0.004g/L四氯化碳溶液用四氯化碳(3.1)稀释至100mL(此溶液的透光度在500nm波长处用10mm比色皿测量时)3.13 柠檬酸钠溶液2H2O)溶解在90mL水中此试剂用于玻璃器皿的最后洗涤称取0.1000g锌粒(纯度99.9ÒÆÈë1000mL容量瓶中此溶液每毫升含100ìg锌取锌标准贮备溶液(3.14)10.00mL置于1000mL容量瓶中此溶液每毫升含1.00ìg¹â³Ì10mm或更长的比色皿容量为125和150mL4.3 玻璃器皿5 试样制备 5.1 实验室样品根据水样的类型提出的特殊建议进行采样使用前用硝酸然后用无锌水冲洗干净每1000mL水样立即加入2.0mL硝酸(3.6)加以酸化(pH约1.5)ÀýÈç·ñÔòÒª°´ÏÂÊö¶þÖÖ·½·¨´¦Àíÿ100mL水样加入1mL硝酸(3.6)冷却后用快速滤纸过滤然后用硝酸(3.6.2)稀释至一定体积5.2.2 含悬浮物和有机质较多的地面水或废水在电热板上加热消解到10mL左右再加入5mL硝酸(3.6)和2mL高氯酸(3.2)Õô·¢ÖÁ½ü¸ÉÀäÈ´ºóÂËÖ½ÓÃÏõËá(3.6.2)洗涤数次供测定用5.3 试份如果水样中锌的含量不在测定范围内如锌的含量太低如果取加酸保存的试样以除去过量酸(注意因为此类试剂中的含锌量往往过高)¼ÓÈÈÖó·Ð5min2~3之间6 操作步骤 6.1 测定6.1.l 显色萃取取10mL(含锌量在0.5~5置于60mL 分液漏斗中混匀后振摇4min½«ËÄÂÈ»¯Ì¼²ãͨ¹ýÉÙÐí½à¾»ÍÑÖ¬ÃÞ¹ýÂËÈë20mm 比色皿中采用合适的(如20mm)光程长的比色皿第一次采用本方法时以后的测定中均使用此波长)´ÓУ׼ÇúÏßÉϲé³ö²âÁ¿Ð¿Á¿6.2 空白试验 用适量(如10°´5.3和6.1的方法进行处理分别加入锌标准溶液(3.15)0 1.00 3.005.00mL向各分液漏斗中加入5mL 乙酸钠溶液(3.7)和1mL 硫代硫酸钠溶液(3.8)6.3.2 显色萃取上述溶液(6.3.1)用10.0mL 双硫腙四氯化碳溶液(3.12)摇动萃取4min ½«ËÄÂÈ»¯Ì¼²ãͨ¹ýÉÙÐí½à¾»ÍÑÖ¬ÃÞ¹ýÂËÈë20mm 比色皿中采用20mm 光程长的比色皿6.3.4 校准曲线的绘制从6.3.3测得的吸光度扣去试剂空白(零浓度)的吸光度后这条校准线应为通过原点的直线特别是分析一批水样或每使用一批新试剂时要检查一次Vm c =式中ìg mL8 精密度和准确度46个实验室曾用本方法分析过一个合成水样其他离子含量(以ìg/L计)为镉50铜470铅70得到的相对标准偏差为18.2相对误差为25.9 9 参考文献GB7472-87附录A 干扰及其消除 (补充件) 水中存在少量铋钴金汞钯对本方法均有干扰三价铁由于锌普遍存在于环境中因此需要采取特殊措施防止污染这种现象往往是起源于含氧化锌的玻璃橡胶制品试剂级化学药品或蒸馏水单独放置。
微孔滤膜富集—双硫腙四氧化碳一次萃取混色光度法测定锌的研究
速光度法测定锌的新方法。其线性范围 0—  ̄ / m ,Sn e = 00x 0 p m~,变异系数 3 1 % ,平均 回收率 4 g 5 l ad l 4 . t c l 1 g 6 9 .% 一13 4 77 0 . %。方法用于食 品、 粮食 、 生物材料等实 际样 品分析 , 结果满意。
U 76紫外 一 V一 5 可见分光光度计 ( 上海精密科学 速分析 方法 ,多采用 原子 吸收、等离 子体发 射光 仪器有 限公 司) 谱 、电位溶出法等 ,这些仪器非一般实验室所能 12 测定 方法 . 拥有 本文研究 出样品的混合酸消化 、微孔滤膜富 12 1 样 品消化 :称 l 2 .. 一 待测 样 品置 于 20 l 5 m 烧 集双硫腙四氯化碳一次萃取混色光度法测定微量锌 杯 中 ,加 入 浓 硝酸 2 0—3m ,摇 匀 ,置 30 电炉 0l 0W 的简易、快速、呈色稳定 、结果可靠且灵敏度高的 上 2 O 以 下 蒸 煮 3mi O℃ 0 n取 下 , 冷 后 加 混 合 酸 新 方 法 ,用 于食 品 、粮 食 、生 物材 料 中 锌 的测 定 , 2m ,继续加热并逐渐提高温度 ,待消化样 品残留 0l 结果满 意 。 较少 ,消耗 液呈 白色透 明 时 ( 否则 ,酌加 少 量 混 合
维普资讯
9 20,o2,o 8 02I1 3.. /. N 2
皇 嗣 曩学
※分析检验
微孔滤膜富集 一 双硫腙四氯化碳一次 萃取混色光度法测定锌的பைடு நூலகம்究
司文会
摘 要
朱金 坤
安徽 技术 师范学 院
风 阳 230 3 10
用 H O 一H I. N , CO 混合酸消化样品 , 微孔滤膜富集双硫腙四氯化碳一次萃取混色光度法测定锌 , 建立了直接快
环境监测思考题答案
环境监测思考题答案【篇一:环境监测习题答案汇总】1什么是环境监测?环境监测是运用物理、化学和生物等现代科学技术手段,通过对影响人类和环境质量的代表性环境要素进行测定(监视、监控、定性、定量)和系统的综合分析,以探索研究环境质量的变化规律,从而科学评价环境质量及其变化趋势的操作过程。
2环境检测全过程的一般程序是什么?环境监测的过程一般为:现场调查、监测方案设计、优化布点、样品采集、样品保存、分析测试、数据处理、综合评价。
3环境监测分为哪几类?(按监测目的)按监测目的或监测任务划分:①监视性监测;②特定目的性监测(污染事故监测,纠纷仲裁监测,考核验证监测,咨询服务监测);③研究性监测;4一个国家的常规监测水平反应了一个国家的监测水平,正确吗?答:正确,监视性监测是环境监测的主体,是监测工作中量最大面最广的工作,是纵向指令性任务,是监测站第一位的工作。
第二章习题--大气1、空气污染监测中,何时应采用浓缩(富集)采样法采集样品?有哪几种浓缩采样法?答:当大气中被测组分的浓度较小或用分析方法灵敏度不够高时,用浓缩采样法。
浓缩采样法分为:溶液吸收法、固体阻留法、低温冷凝法、静电沉降法、扩散法、自然积集法、综合采样法。
2、研究污染物对人体危害,采样口应距离地面高处。
3、飘尘的采样器中加入切割器(或分尘器)的作用是什么?4、按我国空气质量标准规定,表示大气污染物浓度时应采用何种体积?答:我国空气质量标准采用标准状况(0℃,101.kpa)时的体积(v。
),非标准状况下的气体体积(vt)可用气态方程式换算成标准状况下的体积。
5、烟道中颗粒物浓度的测定须用何种采样法?简述该采样法的要点。
答:①等速采样法:烟气进入采样嘴的速度应与采样点的烟气流速相等。
②要点:采样时,将烟尘采样管内采样孔插入烟道中的采样点上,对准气流,调节采样嘴的吸气与测点处气流速度相等时,抽取气样。
6、武汉市某日二氧化硫的日均浓度为0.15mg/m3,二氧化氮的日均浓度为0.13mg/m3,可吸入颗粒物的日均浓度为0.36mg/m3,报告这天武汉市的空气污染指数和首要污染物及空气质量级别。
水质 铜的测定 二乙基二硫代氨基甲酸钠分光光度法
相对误差为-4.0
9 参考文献
GB7473-87
其分析结果如下
3
6.1.2.3 加入 10mLEDTA 柠檬酸铵溶液(3.13) 2 滴甲酚红指示液(3.15) 用 l+1 氨水(3.8)调 至 pH8~8.5(由红色经黄色变为浅紫色) 本条款适用于消解后废水试份(6.1.1.2)的测定 6.1.2.4 加入 5.0mL 0.2 二乙基二硫代氨基甲酸钠溶液(3.11) 摇匀 静置 5min 6.1.2.5 准确加入 l0.0mL 四氯化碳(3.5) 用力振荡不少于 2min(若用振荡器振摇 应振摇 4min 静置 使分层
3.14 氯化铵 氢氧化铵缓冲溶液 将 70g 氯化铵(NH4Cl)溶于适量水中 加入 570mL 氨水(3.4) 用水稀释至 lL
3.15 甲酚红指示液 0.4g/L 称取 0.02 克甲酚红(C21H18O5S)溶于 50mL 95 (V/V)乙醇(3.7)中
4 仪器
4.1 分光光度计 10 或 20mm 光程长的比色皿 4.2 125mL 锥形分液漏斗 具磨口玻璃塞 活塞上不得涂抹油性润滑剂 5 试样制备
1
将 5g 乙二胺四乙酸二钠二水合物((Na2 EDTA 2H2O)和 20g 柠檬酸铵[(NH4)3 C6H5O7] 溶于水中并稀释至 100mL 加入 4 滴甲酚红指示液(3.15) 用 1+1 氨水(3.4)调至 pH 8~8.5(由 黄色变为浅紫色) 加入少量 0.2 二乙基二硫代氨基甲酸钠溶液(3.11) 用四氯化碳(3.5)萃取 提纯
铜的含量 c (mg/L)按下式计算
2
式中 m
c= m V
从校准曲线上求得的铜量 ìg
V 萃取用的水样体积 mL 结果以两位小数表示
水质 铅的测定 双硫腙分光光度法
FHZHJSZ0008 水质铅的测定双硫腙分光光度法F-HZ-HJ-SZ-0008水质双硫腙分光光度法1 范围 本方法规定水样经酸消解处理后本方法适用于测定天然水和废水中微量铅铅浓度高于0.30mg/Ll.l 检出限试份体积为100mL×îµÍ¼ì³öŨ¶È¿É´ï0.010mg/LÓÃËÄÂÈ»¯Ì¼ÝÍÈ¡ÆäĦ¶ûÎü¹âϵÊýԼΪ 6.7 cmÇ軯ÎïµÄ»¹Ô-ÐÔ½éÖÊÖÐÝÍÈ¡µÄÂȷ»ìÉ«Òº´Ó¶øÇó³öǦµÄº¬Á¿3 试剂 本方法所用试剂除另有说明外所有试剂试验中应使用不含铅的蒸馏水或去离子水3.2 高氯酸(HClO4) 1.67g/mL3.3 硝酸(HNO3) 1.42g/mL1+4溶液3.3.2 硝酸溶液 取2mL硝酸(3.3)用水稀释到1000mL0.5mo1/L3.5 氨水(NH3ñ3.5.1 氨水溶液 取10mL氨水(3.5)用水稀释到100mL0.143mol/L3.6 柠檬酸盐将400g柠檬酸氢二铵[(NH4)2HC6H5O7]10g盐酸羟胺(NH2OH²¢Ï¡Ê͵½1000mL若此溶液含有微量铅直到有机层为纯绿色注因此称量和配制溶液时要特别谨慎小心避免沾污皮肤将5g无水亚硫酸钠(Na2SO3)溶解在100mL无铅去离子水中0.05mo1/L将40g碘化钾(KI)溶解在25mL去离子水中然后用水稀到1000mL 将0.1599g硝酸铅(纯度)溶解在约200mL水中或将0.1000g纯金属铅(纯度)溶解在20mL 1+1硝酸中3.10 铅标准工作溶液用水稀释到标线此溶液每毫升含2.00ìg铅称取100mg纯净双硫腙(C6H5NNCSNHNHC6H5)溶于1000mL氯仿(3.1)中此溶液每毫升含100ìg双硫腙可按下述步骤提纯用定量滤纸滤去不溶物每次用20mL氨水(3.5.2)提取五次合并水层然后用盐酸(3.4)中和含并氯仿层保存于冰箱内备用取一定量上述双硫腙氯仿溶液, 置50mL容量瓶中以氯仿稀释定容于606nm波长测量其吸光度104L/mol3.12 双硫腙工作溶液用氯仿稀释到标线3.13 双硫腙专用溶液此溶液不需要纯化4 仪器 所用玻璃仪器在使用前需用硝酸清洗4.1 分光光度计4.3 1505试样制备5.1 实验室样品按照国家标准的有关规定进行采集每1000mL水样立即加入2.0mL硝酸(3.3)加以酸化(pH约为1.5)5.2 试样除非证明试样的消化处理是不必要的否则要按下述二种情况进行预处理每100mL试样加入lmL硝酸(3.3)冷却后用快速滤纸过滤然后用硝酸(3.3.2)稀释到一定体积5.2.2 含悬浮物和有机物较多的地面水或废水1ìg)加入5mL 硝酸(3.3)ÉÔÀäÈ´ÑϽû½«¸ßÂÈËá¼Óµ½º¬Óл¹Ô-ÐÔÓлúÎïµÄÈÈÈÜÒºÖзñÔò»áÒýÆðÇ¿ÁÒ±¬Õ¨)Õô·¢ÖÁ½ü¸É(但勿蒸干)ÓÃÏõËá(3.3.2)温热溶解残渣用快速滤纸过滤滤液用硝酸(3.3.2)稀释定容每分析一批试样要平行操作两个空白试验铋在510nm和465nm 分别测量试份的吸光度从每个波长位置的试份吸光度中扣除同一波长位置空白试验的吸光度计算510nm 处吸光度校正值与465nm 处吸光度校正值的比值而对双硫腙铋盐为1.076如果分析试份时求得的比值明显小于2.08ÕâʱÐèÁíÈ¡100mL 试样(5.2)并按以下步骤处理加入5mL 亚硫酸纳溶液(3.7)以还原残留的碘在pH 计上将试样转入250mL 分液漏斗中每次用10mLÈ»ºóÓÃÂÈ·Â(3.1)萃取以除去双硫腙(绿色消失)6 操作步骤 6.l 测定6.1.1 显色萃取向试份(含铅量不超过30ìgÇ軯¼Ø»¹Ô-ÐÔÈÜÒº(3.6)¼ÓÈë10mL 双硫腙工作溶液(3.12)¾çÁÒÒ¡¶¯·ÖҺ©¶·30s 6.1.2 吸光度的测量在分液漏斗的茎管内塞入一小团无铅脱脂棉花弃去1~2mL 氯仿层后在510nm 测量萃取液的吸光度第一次采用本方法时应检验最大吸光度波长由测量所得吸光度扣除空白试验吸光度再从校准曲线上查出铅量6.2 空白试验按5.3和6.1的方法进行处理其他试剂用量均相同向一系列250mL 分液漏斗中0.505.0010.0015.00mL然后按6.l 所述步骤进行操作从上述测得吸光度扣除试剂空白(零浓度)的吸光度后这条线应为通过原点的直线特别当每次使用一批新试剂时要检查Vm c =式中ìg mL8 精密度和准确度对河水中含铅0.010mg/L进行测定时测定的相对标准偏差为4.8相对误差为15 9 参考文献GB7470-87。
双硫腙分光光度法
7.5.1、食品中有害矿物质元素的测定—— 双硫腙分光光度法测定汞含量
概述: 汞俗称水银为银白色液态金属,汞易蒸发,在空 气中以蒸气状态存在。汞的化合物能溶于水或稀 酸,毒性很大,常见的汞化物有氯化高汞、氧化 汞、硝酸汞、碘化汞等,均属于烈性毒物。汞的 化合物在工农业和医药等方面应用极广,极容易 造成环境污染,环境中的微生物能使无机汞转化 为有机汞,如甲基汞、二甲基汞等烷基汞化合物 其毒性更大,所以不慎混入食品或误食或食用污 染了汞的食品而引起中毒的事件较为多见。
试 剂:
①酒石酸溶液(100g/L)。②抗坏血酸溶液(10g/L),临用时配制。 ③动物胶溶液(5g/L),临用时配制。 ④酚酞指示液(10g/L):称取1g酚酞,用乙醇溶解至100mL。 ⑤氨水(1+1)。 ⑥硫酸(体积比1+9) ⑦苯芴酮溶液(0.1g/L):称取0.010g苯芴酮,加少量甲醇及 硫酸 (1+9) 数滴溶解,以甲醇稀释至 100mL。 ⑧锡标准储备液:准确称取0.1000g金属锡(99.99%),置于小烧 杯中,加l0mL硫酸,盖以表面皿,加热至锡完全溶解,移去 表面皿,继续加热至发生浓白烟,冷却,慢慢加50mL水, 移入100mL容量瓶中,用硫酸(1+9)多次洗涤烧杯,洗液并入 容量瓶中,并稀释至刻度,混匀。此溶液每毫升相当于1.0mg锡。 ⑨锡标准使用液:用硫酸 (1+9)稀释稀释至每毫升相当于 10.0ug 锡。
来源: (1)由自然条件(如地质、地理、生物种类、品种 等)所决定的,食物本身天然存在的矿物质元素 (2)为营养强化而添加到食品中的微量矿物质元素 或食品加工、包装、贮存时,受到污染,引入了 重金属元素。像锡来自于铁皮上的镀锡,接触中 的焊锡;像铜来自加工的铜镀浓缩锅,铜勺等造 成。 (3)随着经济的发展,各种新材料的出现,造成了 新的食物污染。 (4)工业“三废(废水、废气、废渣)以及农药、 化肥用量的增加,造成土壤、水源、空气等的污 染,使重金属及有毒元素在动、植物体内富集并 直接影响人类的健康。
复混肥料中锌的测定
复混肥料中锌的测定方法GB/T 14540.4—93本标准采用原子吸收光谱法和双硫腙分光光度法测定复混肥料中锌的含量。
第一篇原子吸收光谱法原子吸收光谱法为测定锌含量的仲裁方法。
1 主题内容与适用范围本标准规定了测定锌的原子吸收光谱法。
本标准适用于复混肥料中0.01%~0.5%锌含量的测定。
2 引用标准GB 6682 分析实验室用水规格和试验方法GB 6819 溶解乙炔GB 8571 复混肥料实验室样品制备3 原理试样溶液中的锌,在空气-乙炔火焰中原子化,所产生的原子蒸气吸收从锌空心阴极灯射出的特征波长213.9nm的光,吸光度的大小与火焰中锌基态原子浓度成正比。
4 试剂和材料分析方法中,除特殊规定外,均使用分析纯试剂,所使用的水应符合GB 6682中三级水要求,所使用的乙炔,应符合GB6819的规定。
4.1 盐酸(GB 622);4.2 硝酸(GB 626);4.3 盐酸(GB 622):c(HCl)=5mol/L 溶液;4.4 盐酸(GB 622):1+5溶液;4.5锌标准溶液:1mL溶液含有0.1mgZn。
称取0.1250g氧化锌(ZnO,基准试剂),精确至0.0001g,溶于100mL水及1mL硫酸(GB625)中,转移至1000mL容量瓶中,稀释至刻度,摇匀,贮于聚乙烯瓶中。
5 仪器、设备通常的实验室仪器、设备和5.1 原子吸收分光光度计:附有空气-乙炔燃烧器,锌空心阴极灯;5.2 振荡器:35~40r/min上下旋转式振荡器,或者其他相同效果的水平往复式振荡器。
6 样品的制备按GB 8571制备样品。
7 分析步骤7.1 试验溶液的制备7.1.1总锌试验溶液的制备:称取1~5g试样(预计试样中含锌0.5~5mg),精确至0.001g,置于250mL烧杯中,加入30mL盐酸(4.1)和10mL硝酸,盖上表面皿,放在电热板上煮沸30min后,移开表面皿,徐徐蒸发干涸,再加入5mL盐酸(4.1),再次蒸发干涸,放置冷却后,再加入约50mL盐酸溶液(4.4),加热煮沸5min,冷却后定量转移入500mL容量瓶中,用水稀释至刻度,摇匀干过滤,弃去最初几毫升滤液后,保留滤液,作为测定总锌的试液。
中华人民共和国环境分析测量标准目录
中华人民共和国环境分析测量标准环境分析测量标准(目录)城市环境噪声测量方法 GB3222-82 1982年10月12日发布 1983年7月1日实施汽油车怠速污染物测量方法 GB3845-83 1983年9月14日发布 1984年4月1日实施柴油车自由加速烟度测量方法 GB3845-83 1983年9月14日发布 1984年4月1日实施汽车柴油机全负荷烟度测量方法 GB3845-83 1983年9月14日发布 1984年4月1日实施工业废水总硝基化合物的测定分光光度法 GB4918-85 1985年1月18日发布 1985年8月1日实施工业废水总硝基化合物的测定气相色谱法 GB4919-85 1985年1月18日发布 1985年8月1日实施硫酸浓缩尾气硫酸雾的测定铬酸钡比色法 GB4920-85 1985年1月18日发布 1985年8月1日实施工业废气耗氧值和氧化*的测定重铬酸钾氧化、萘乙二胺比色法 GB4921-85 1985年1月18日发布 1985年8月1日实施有色金属工业固体废物浸出毒性试验方法标准 GB5086-85 1985年4月25日发布 1985年10月1日实施有色金属工业固体废物腐蚀型试验方法标准 GB5087-85 1985年4月25日发布 1985年10月1日实施有色金属工业固体废物急性毒性初筛试验方法标准 GB5088-85 1985年4月25日发布 1985年10月1日实施摩托车排气污染物测量怠速法 GB/T5466-93 1993年摩托车噪声测量方法 GB5467-85 1985年10月4日发布 1986年2月1日实施锅炉烟尘测试方法 GB5468-85 1991年9月14日发布 1992年8月1日实施水中锶-90放射化学分析方法发烟硝酸沉淀法 GB6764-86 1986年9月4日发布 1987年3月1日实施水中锶-90放射化学分析方法离子交换法 GB6765-86 1986年9月4日发布 1987年3月1日实施水中锶-90放射化学分析方法二-(2-乙基已基)磷酸萃取色层法 GB6766-86 1986年9月4日发布 1987年3月1日实施水中铯-137放射化学分析方法 GB6767-86 1986年9月4日发布 1987年3月1日实施水中微量铀分析方法 GB6768-86 1986年9月4日发布 1987年3月1日实施水质 PH值的测定玻璃电极法 GB6920-86 1986年10月10日发布 1987年3月1日实施大气飘尘浓度测定方法 GB6921-86 1986年10月10日发布 1987年3月1日实施放射性废物固化长期浸出试验 GB7023-86 1987年12月3日发布 1987年4月1日实施水质总铬的测定 GB7466-87 1987年3月14日发布 1987年8月1日实施水质六价铬的测定二苯碳酰二肼分光光度法 GB7467-87 1987年3月14日发布 1987年8月1日实施水质总汞的测定冷原子吸收分光光度法 GB7468-87 1987年3月14日发布 1987年8月1日实施水质总汞的测定高锰酸钾-过硫酸钾消解法双硫腙分光光度法 GB7469-87 1987年3月14日发布1987年8月1日实施水质铅的测定双硫腙分光光度法 GB7470-87 1987年3月14日发布 1987年8月1日实施水质镉的测定双硫腙分光光度法 GB7471-87 1987年3月14日发布 1987年8月1日实施水质锌的测定双硫腙分光光度法 GB7472-87 1987年3月14日发布 1987年8月1日实施水质铜的测定 2,9-二甲基-1,10菲罗啉分光光度法 GB7473-87 1987年3月14日发布 1987年8月1日实施水质铜的测定二乙基二硫代氨基甲酸钠分光光度法 GB7474-87 1987年3月14日发布 1987年8月1日实施水质铜、锌、铅、镉的测定原子吸收分光光度法 GB7475-87 1987年3月14日发布 1987年8月1日实施水质钙的测定 EDTA滴定法 GB7476-87 1987年3月14日发布 1987年8月1日实施水质钙和镁总量的测定 EDTA滴定法 GB7477-87 1987年3月14日发布 1987年8月1日实施水质铵的测定蒸馏和滴定法 GB7478-87 1987年3月14日发布 1987年8月1日实施水质铵的测定钠氏试剂比色法 GB7479-87 1987年3月14日发布 1987年8月1日实施水质硝酸盐*的测定酚二磺酸分光光度法 GB7480-87 1987年3月14日发布 1987年8月1日实施水质铵的测定水杨酸分光光度法 GB7481-87 1987年3月14日发布 1987年8月1日实施水质*化物的测定茜素磺酸锆目视比色法 GB7482-87 1987年3月14日发布 1987年8月1日实施水质*化物的测定*试剂分光光度法 GB7483-87 1987年3月14日发布 1987年8月1日实施水质*化物的测定离子选择电极法 GB7484-87 1987年3月14日发布 1987年8月1日实施水质总砷的测定二乙基二硫代氨基甲酸银分光光度法 GB7485-87 1987年3月14日发布 1987年8月1日实施水质氰化物的测定第一部分:总氰化物的测定 GB7486-87 1987年3月14日发布 1987年8月1日实施水质氰化物的测定第二部分:氰化物的测定 GB7487-87 1987年3月14日发布 1987年8月1日实施水质五日生化需氧量(BOD)的测定稀释与接种法 GB7488-87 1987年3月14日发布 1987年8月1日实施水质溶解氧的测定碘量法 GB7489-87 1987年3月14日发布 1987年8月1日实施水质挥发酚的测定蒸馏后4-氨基安替比林分光光度法 GB7490-87 1987年3月14日发布 1987年8月1日实施水质挥发酚的测定蒸馏后溴化容量法 GB7491-87 1987年3月14日发布 1987年8月1日实施水质六六六、滴滴涕的测定气相色谱法 GB7492-87 1987年3月14日发布 1987年8月1日实施水质亚硝酸盐*的测定分光光度法 GB7493-87 1987年3月14日发布 1987年8月1日实施水质阴离子表面活性剂的测定亚甲蓝分光光度法 GB7494-87 1987年3月14日发布 1987年8月1日实施空气质量*氧化物的测定盐酸萘乙二胺比色法 GB8969-88 1988年3月26日发布 1988年8月1日实施空气质量二氧化硫的测定四氯汞盐-盐酸副玫瑰苯胺比色法 GB8970-88 1988年3月26日发布1988年8月1日实施空气质量飘尘中苯并(A)芘的测定乙酰化滤纸层析荧光分光光度法 GB8971-88 1988年3月26日发布 1988年8月1日实施水质五氯酚的测定气相色谱法 GB8972-88 1988年3月26日发布 1988年8月1日实施工业炉窑烟尘测量方法 GB9079-88 1988年5月4日发布 1988年6月1日实施机场周围飞机噪声测量方法 GB9661-88 1988年8月11日发布 1988年11月1日实施空气质量一氧化碳的测定非散光红外法 GB9801-88 1988年8月15日发布 1988年12月1日实施水质五氯酚的测定藏红T分光光度法 GB9803-88 1988年8月15日发布 1988年12月1日实施烟度卡标准 GB9804-88 1988年8月15日发布 1988年12月1日实施城市区域环境振动测量方法 GB10071-88 1988年12月10日发布 1989年7月1日实施水中镭-226分析 GB11214-89 1989年3月16日发布 1990年1月1日实施核设施流出物和环境放射性监测质量保证计划的一般要求 GB11216-89 1989年3月16日发布 1990年1月1日实施核设施流出物监测的一般规定 GB11217-89 1989年3月16日发布 1990年1月1日实施水中镭的*放射性核素的测定 GB11218-89 1989年3月16日发布 1990年1月1日实施土壤中钚的分析测定 GB11219-89 1989年3月16日发布 1990年1月1日实施土壤中铀的分析测定 GB11220-89 1989年3月16日发布 1990年1月1日实施生物样品灰中铯-137的放射化学分析方法 GB11221-89 1989年3月16日发布 1990年1月1日实施生物样品灰中锶-90的放射化学分析方法 GB11222-89 1989年3月16日发布 1990年1月1日实施生物样品灰中铀的测定方法 GB11223-89 1989年3月16日发布 1990年1月1日实施水中钍的分析方法 GB11224-89 1989年3月16日发布 1990年1月1日实施水中钚的分析方法 GB11225-89 1989年3月16日发布 1990年1月1日实施水中钾-40的分析方法 GB11338-89 1989年6月15日发布 1990年1月1日实施轻型汽车排气污染测试方法 GB11642-89 1989年8月17日发布 1990年4月1日实施水质苯胺类的测定 N-(1-萘基)乙二胺偶*分光光度法 GB11889-89 1989年12月25日发布 1990年7月1日实施水质苯系物的测定气相色谱法 GB11890-89 1989年12月25日发布 1990年7月1日实施水质凯氏*的测定 GB11891-89 1989年12月25日发布 1990年7月1日实施水质高锰酸盐指数的测定 GB11892-89 1989年12月25日发布 1990年7月1日实施水质总磷的测定钼酸铵分光光度法 GB11893-89 1989年12月25日发布 1990年7月1日实施水质总*的测定碱性过硫酸钾消解分光光度法 GB11894-89 1989年12月25日发布 1990年7月1日实施水质苯并(A)芘的测定乙酰化滤纸层析荧光分光光度法 GB11895-89 1989年12月25日发布 1990年7月1日实施水质氯化物的测定硝酸银滴定法 GB11896-89 1989年12月25日发布 1990年7月1日实施水质游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺滴定法 GB11897-89 1989年12月25日发布 1990年7月1日实施水质游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺光度法 GB11898-89 1989年12月25日发布 1990年7月1日实施水质硫酸盐的测定重量法 GB11899-89 1989年12月25日发布 1990年7月1日实施水质痕量砷的测定硼氢化钾-硝酸银分光光度法 GB11900-89 1989年12月25日发布 1990年7月1日实施水质悬浮物的测定重量法 GB11901-89 1989年12月25日发布 1990年7月1日实施水质硒的测定二胺基萘荧光法 GB11902-89 1989年12月25日发布 1990年7月1日实施水质色度的测定 GB11903-89 1989年12月25日发布 1990年7月1日实施水质钾和钠的测定火焰原子吸收分光光度法 GB11904-89 1989年12月25日发布 1990年7月1日实施水质钙和镁的测定原子吸收分光光度法 GB11905-89 1989年12月25日发布 1990年7月1日实施水质锰的测定高碘酸钾分光光度法 GB11906-89 1989年12月25日发布 1990年7月1日实施水质银的测定火焰原子吸收分光光度法 GB11907-89 1989年12月25日发布 1990年7月1日实施水质银的测定镉试剂2B分光光度法 GB11908-89 1989年12月25日发布 1990年7月1日实施水质银的测定 3,5-BR2-PADAP分光光度法 GB11909-89 1989年12月25日发布 1990年7月1日实施水质镍的测定丁二酮*分光光度法 GB11910-89 1989年12月25日发布 1990年7月1日实施水质铁、锰的测定火焰原子吸收分光光度法 GB11911-89 1989年12月25日发布 1990年7月1日实施水质镍的测定火焰原子吸收分光光度法 GB11912-89 1989年12月25日发布 1990年7月1日实施水质溶解氧的测定电化学探头法 GB11913-89 1989年12月25日发布 1990年7月1日实施水质化学需氧量的测定重铬酸盐法 GB11914-89 1989年12月25日发布 1990年7月1日实施水质词汇(第三部分 ̄第七部分) GB11915-89 1989年12月25日发布 1990年7月1日实施工厂企业厂界噪声测量方法 GB12349-90 1990年5月1日发布 1990年11月1日实施水中氚的分析方法 GB12375-90 1990年6月9日发布 1990年12月1日实施水中*-210的分析方法 GB12376-90 1990年6月9日发布 1990年12月1日实施空气中微量铀的分析方法激光荧光法 GB12377-90 1990年6月9日发布 1990年12月1日实施空气中微量铀的分析方法 T.B.P萃取荧光法 GB12378-90 1990年6月9日发布 1990年12月1日实施环境核辐射监测规定 GB12379-90 1990年6月9日发布 1990年12月1日实施建筑施工场界噪声测量方法 GB12524-90 1990年12月7日发布 1990年3月1日实施铁路边界噪声限值及其测量方法 GB12525-90 1990年12月7日发布 1990年3月1日实施水质微型生物P.F.U测定方法 GB/T12990-91 1991年8月19日发布 1992年4月1日实施水质采样方案设计 GB12997-91 1991年1月25日发布 1992年3月1日实施水质采样技术指导 GB12998-91 1991年1月25日发布 1992年3月1日实施水质采样样品的保存和管理技术规定 GB12999-91 1991年1月25日发布 1992年3月1日实施水质有机磷农药的测定 GB13192-91 1991年8月31日发布 1992年4月1日实施水质总有机碳的测定 GB13193-91 1991年8月31日发布 1992年6月1日实施水质硝基苯、硝基甲苯、二硝基甲苯的测定 GB13194-91 1991年8月31日发布 1992年6月1日实施水质水温的测定 GB13195-91 1991年8月31日发布 1992年6月1日实施水质硫酸盐的测定 GB13196-91 1991年8月31日发布 1992年6月1日实施水质甲醛的测定 GB13197-91 1991年8月31日发布 1992年6月1日实施水质六种特定多环芳*的测定 GB13198-91 1991年8月31日发布 1992年6月1日实施水质阴离子洗涤剂的测定 GB13199-91 1991年8月31日发布 1992年6月1日实施水质浊度的测定 GB131200-91 1991年8月31日发布 1992年6月1日实施水质物质对蚤类急性毒性测定方法 GB/T13266-91 1991年9月14日发布 1992年8月1日实施水质物质对淡水鱼急性毒性测定方法 GB/T13267-91 1991年9月14日发布 1992年8月1日实施水质试验粉尘标准样品黄土尘 GB13268-91 1991年10月8日发布 1992年8月1日实施水质试验粉尘标准样品煤飞灰 GB13269-91 1991年10月8日发布 1992年8月1日实施水质试验粉尘标准样品模拟大气尘 GB13270-91 1991年10月8日发布 1992年8月1日实施水中碘-131测定方法 GB/T13272-91 1991年10月31日发布 1992年8月1日实施水中碘-131测定方法 GB/T13272-91 1991年10月31日发布 1992年8月1日实施动物甲状腺和植物中碘-131的分析方法 GB/T13273-91 1991年10月31日发布 1992年8月1日实施大气降水采样和分析方法总则 GB/13580-92 1993年3月1日发布大气降水样品的采集与保存 GB/13580-92 1993年3月1日发布大气降水电导率的测定方法 GB/13580-92 1993年3月1日发布大气降水PH值的测定-电极法 GB/13580-92 1993年3月1日发布大气降水中*、氯、亚硝酸盐、硝酸盐、硫酸盐的测定──离子色谱法 GB/13580-92 1993年3月1日发布大气降水硫酸盐测定 GB/13580-92 1993年3月1日发布大气降水亚硝酸盐测定──N-(1-萘基)-乙二胺光度法 GB/13580-92 1993年3月1日发布大气降水中硝酸盐测定 GB/13580-92 1993年3月1日发布大气降水氯化物的测定──硫氰酸汞高铁光度法 GB/13580-92 1993年3月1日发布大气降水*化物的测定──新*试剂光度法 GB/13580-92 1993年3月1日发布大气降水中铵盐的测定 GB/13580-92 1993年3月1日发布大气降水中钠、钾的测定──原子吸收分光光度法 GB/13580-92 1993年3月1日发布大气降水中钙、镁的测定──原子吸收分光光度法 GB/13580-92 1993年3月1日发布水质阴离子洗涤剂样品 GSBZ10001-88 1988年8月15日发布 1988年12月1日实施水质COD标准样品 GSBZ50001-87 1987年10月5日发布 1988年2月1日实施水质 BOD标准样品 GSBZ50002-87 1987年10月5日发布 1988年2月1日实施水质酚标准样品 GSBZ50003-87 1987年10月5日发布 1988年2月1日实施水质砷标准样品 GSBZ50004-87 1987年10月5日发布 1988年2月1日实施水质氨*标准样品 GSBZ50005-87 1987年10月5日发布 1988年2月1日实施水质亚硝酸盐标准样品 GSBZ50006-87 1987年10月5日发布 1988年2月1日实施水质硬度标准样品 GSBZ50007-87 1987年10月5日发布 1988年2月1日实施水质硝酸盐*标准样品 GSBZ50008-87 1987年10月5日发布 1988年2月1日实施水质铜、铅、锌、镉、镍、铬混合标准样品 GSBZ50009-87 1987年10月5日发布 1988年2月1日实施水质*、氯、硫酸根混合标准样品 GSBZ50010-87 1987年10月5日发布 1988年2月1日实施土壤ESS-1标准样品 GSBZ50011-87 1987年10月24日发布 1987年10月24日实施土壤ESS-2标准样品 GSBZ50012-87 1987年10月24日发布 1987年10月24日实施土壤ESS-3标准样品 GSBZ50013-87 1987年10月24日发布 1987年10月24日实施土壤ESS-4标准样品 GSBZ50014-87 1987年10月24日发布 1987年10月24日实施空气质量*氧化物标准样品 GSBZ50015-89 1989年2月22日发布 1989年2月22日实施水质汞标准样品 GSBZ50016-90 1990年4月1日发布 1990年4月1日实施水质 PH标准样品 GSBZ50017-90 1990年4月1日发布 1990年4月1日实施水质总氰化物标准样品 GSBZ50018-90 1990年4月1日发布 1990年4月1日实施水质铁、锰混合标准样品 GSBZ50019-90 1990年4月1日发布 1990年4月1日实施水质钾、钠、钙、镁混合标准样品 GSBZ50020-90 1990年4月1日发布 1990年4月1日实施BF-1 黄土尘 GSBZ50021-91 1991年12月7日发布 1991年12月7日实施BF-2 模拟大气尘 GSBZ50022-91 1991年12月7日发布 1991年12月7日实施FA-1 煤飞灰 GSBZ50023-91 1991年12月7日发布 1991年12月7日实施FA-2 煤飞灰 GSBZ50024-91 1991年12月7日发布 1991年12月7日实施水质硫氰酸盐的测定异烟酸吡唑酮分光光度法 GB/T13897-92水质铁(II、III)氰络合物的测定原子吸收分光光度法 GB/T13898-92水质铁(II、III)氰络合物的测定三氯化铁分光光度法 GB/T13899-92水质黑索金的测定分光光度法 GB/T13900-92水质二硝基甲苯的测定示波极谱法 GB/T13901-92水质硝化甘油的测定示波极谱法 GB/T13902-92水质梯恩梯黑索金地恩梯的测定气相色谱法分光光度法 GB/T13903-92水质梯恩梯黑索金地恩梯的测定气相色谱法 GB/T13904-92水质梯恩梯测定亚硫酸钠分光光度法 GB/T13905-92空气质量*氧化物的测定 GB/T13906-92摩托车排气污染物的测定工况法 GB/T14622-93空气质量氨的测定纳氏试剂比色法 GB/T14668-93空气质量氨的测定离子选择电极法 GB/T14669-93空气质量苯乙稀的测定气相色谱法 GB/T14670-93水质钡的测定电位滴定法 GB/T14671-93水质吡啶的测定气相色谱法 GB/T14672-93水质钒的测定石墨炉原子吸收分光光度法 GB/T14673-93。
环境监测习题答案汇总
9、空气污染监测采样布点的主要方法有哪些?
答:①功能区布点法;②网格布点法;③同心圆布点法;④扇形布点法。
10、总悬浮颗粒和可吸入颗粒物分别是指粒径小于多少μm的颗粒物?
答:吸收液中含有硝酸、硝酸银、聚乙烯醇、乙醇,直接反应的是硝酸银,砷化氢将银离子还原成单质胶态银。硝酸为稳定剂,有利于胶态银的稳定;聚乙烯醇为分散剂,使产生的胶态银均匀地分散在溶液中;乙醇为消泡剂。
5、测定金属元素时,水样消解的目的?
答:将有机物氧化消解,将各种形态的金属转化为金属离子。
6、理解COD、BOD、TOC、TOD指标的含义:
⑥方法的灵敏度要满足准确定量的要求。
6.双硫腙在不同条件下可与20多种金属离子反应生成有色络合物,用双硫腙分光光度法测铜、铅、铬、锌等金属离子时,为避免其他共有的金属离子的相互干扰,应严格控制哪些因素?
答:①pH;在pH不同时,干扰离子也不同,加入干扰抑制剂时应严格控制pH。测Cd2+时溶液应处于强碱状态,测Pb2+时PH(8.5~9.5),测Zn2+时PH(4.0~4.5)
3、飘尘的采样器中加入切割器(或分尘器)的作用是什么?
答:作用是分离出粒径大于10μm的颗粒物。
4、按我国空气质量标准规定,表示大气污染物浓度时应采用何种体积?
答:我国空气质量标准采用标准状况(0℃,101.KPa)时的体积(V。),非标准状况下的气体体积(Vt)可用气态方程式换算成标准状况下的体积。
14、现欲对某大型商场的污水排放实施污染物总量的监测,商场内污水主要来源于餐饮和盥洗,营业时间为10:00~22:00,请确定监测方案,包括总量检测项目,采样时间与频率,水样类型,样品容器和保存方法等。
锌水质自动在线监测仪技术要求及检测方法
锌水质自动在线监测仪技术要求及检测方法锌是一种重要的金属元素,广泛应用于冶金、化工、电子等领域。
然而,过量的锌元素对环境和人体健康都具有一定的危害性。
因此,对锌水质进行监测和控制显得尤为重要。
本文将介绍锌水质自动在线监测仪的技术要求及检测方法。
一、技术要求1. 精确度要求高:锌水质自动在线监测仪必须具备高精确度的测量能力,能够准确地测量锌的浓度。
这要求监测仪具备较高的分辨率和灵敏度,能够在低浓度范围内进行准确的测量。
2. 实时监测:锌水质自动在线监测仪应能够实时监测水体中锌的含量,并能够及时反馈监测结果。
这样可以及时发现和处理锌超标的情况,保证水质的安全性。
3. 自动化程度高:监测仪应具备自动化程度高的特点,能够自动完成样品的采集、处理和测量等工作。
这样可以减少人工操作的干扰,提高监测的准确性和可靠性。
4. 抗干扰能力强:监测仪应具备较强的抗干扰能力,能够在复杂的环境条件下正常工作。
例如,能够正确处理水体中的其他金属离子对锌测量的干扰,确保监测结果的准确性。
5. 数据传输方便:监测仪应具备方便的数据传输功能,能够将监测结果快速传输给相关部门或人员。
这样可以及时掌握锌水质的监测数据,做出相应的处理和决策。
二、检测方法1. 原子吸收光谱法:原子吸收光谱法是一种常用的锌测量方法。
它利用锌原子对特定波长的光谱线的吸收特性进行测量,从而确定水体中锌的浓度。
这种方法准确度高,适用范围广,但需要专用的仪器设备和较为复杂的操作。
2. 电化学法:电化学法是一种简便易行的锌测量方法。
它利用电极和电流的变化来测量水体中锌的浓度。
这种方法操作简单,响应速度快,适用于现场快速监测,但准确度相对较低。
3. 光谱分析法:光谱分析法是一种非常灵敏的锌测量方法。
它利用锌离子与特定试剂反应后产生的荧光或吸收光谱进行测量。
这种方法对锌的检测限度低,但需要特殊的试剂和仪器设备。
总结起来,锌水质自动在线监测仪的技术要求包括高精确度、实时监测、自动化程度高、抗干扰能力强和数据传输方便等方面。
双硫腙分光光度法测定锌含量
双硫腙四氯化碳溶液10ml萃取,直到双硫腙溶液呈绿色不变为止。然后再用四氯化碳萃取以除去多余的双硫腙。 (16)0.05%(m,V)双硫腙四氯化碳贮储溶液: 称取0.10g双硫腙(CHNNCSNHNH?CH)溶解于200ml四氯化碳,6565
(7)0.02mol/L盐酸:取2mol,L盐酸10ml用水稀释到1000ml。
(8)乙酸(含量36%))1,100氨溶液:取氨水10ml用水稀释至1000ml。
(11) 硝酸(ρ,1.4g,ml)。
(12) 2,(V,V)硝酸溶液:取硝酸20ml 用水稀释至1000 ml。
贮于棕色瓶中,放置在冰箱内,如双硫腙试剂不纯,可按下述步骤提纯:
将上述双硫腙四氯化碳溶液滤去不溶物,滤液置分液漏斗中,每次用1+100氨水20ml提取,共提取 5次,此时双硫腙进入水层,合并水层。然后用6 mol,L盐酸中和,再用200ml四氯化碳分三次提取,合并四氯化碳层。将此双硫腙四氯化碳溶液放入棕色瓶中,保存于冰箱内备用。
此时溶液的pH为2.8,备作测定用。
试 样
如果水样中锌的含量太高而不在测定范围,可将试样作适当的稀释或减少取样量。如锌的含量太低,也可取较大量试样置于石英皿中进行浓缩。如果取加酸保存的试样,则要取一份试样放在石英皿中,蒸发至干,以除去过量酸(注意:不要用氢氧化物中和,因为此类试剂中的含锌量往往过高)。然后加无锌水,加热煮沸5min,用稀盐酸或经提纯的氨水调节试样的pH在2—3之间,最后以无锌水定容。 样 品 测 定
(17)0.01%(m,V)双硫腙四氯化碳中间溶液:临用前将0.05,(m,V)双硫腙四氯化碳溶液用四氯化碳稀释5倍。 (18)0.0004%(m,V)双硫腙四氯化碳溶液:量取0.01%(m/V)双硫腙四氯化碳溶液10m1,用四氯化碳稀释至250ml(此溶液
天然水中锌含量很少
锌天然水中锌含量很少,水流经镀锌管道可被污染,能含有4~5mg/L锌,使水质的浑浊度增高,并具有不愉快的金属味。
水中锌用原子吸收分光光度法测定较为快速、简便。
用双硫腙分光光度法测定也能满足一般要求,但干扰因素较多。
一、原子吸收入分光光度法参阅铜进行。
1、精密度与准确度有11个实验室用本法测定含锌478和26μg/L的合成水样,其他成分的浓度(μg/L)为:铝,852和435;砷,182和61;铍,261和183;;镉,59和27;钴,304和65;铜,374和37;铁,796和78;汞7.6和4.4;锰,478和47;镍,165和96;铅,383和113;硒,48和16;钒,848和470。
相对标准差分别为9.2%和7.6%,相对误差分别为4.0%和0。
二、双硫腙分光光度法1、应用范围1.1 本法适用于测定生活饮用水及其水源中锌的含量。
1.2 本法最低检测量为0.5μg,若取10ml水样测定,则最低检测浓度为0.05mg/L。
2、原理在pH4.0~5.5的水溶液中,锌离子与双硫腙生成红色螯合物,用四氯化碳萃取后比色定量。
在选定的pH条件下,用足够量的硫代硫酸钠可掩蔽水中存在的少量铅、铜、汞、镉、钴、铋、镍、金钯、银、亚锡等干扰金属离子。
3、仪器所用玻璃仪器均须用1+1硝酸洗涤,然后再用不含锌的纯水冲洗干净。
不得用自来水冲洗。
3.1 60ml分液漏斗。
3.2 10ml比色管。
3.3 分光光度计。
4、试剂配制试剂和稀释用纯水均为去离子蒸馏水。
4.1 0.100mg/ml锌标准贮备溶液:如无金属锌,可称取0.4398g硫酸锌(ZnSO4·7H2O)溶于纯水中,加入10ml浓盐酸,用纯水定容至1000ml。
此溶液1.00ml含0.100mg锌。
4.2 1.00μg/ml锌标准溶液:吸取10.00ml锌标准贮备溶液,用纯水定容至1000ml。
此锌标准溶液1.00ml含1.00μg锌。
4.3 0.1%双硫腙四氯化碳贮备溶液:称取0.10g双硫腙(C18H12N4S),在干燥的烧杯中用四氯化碳溶解后稀释至100ml,倒入棕色瓶中。
锌离子的分光光度法测定
水质锌离子的测定锌试剂分光光度法1.主要内容锌试剂与锌离子在pH=8.5~9.5的碱性溶液中生成蓝色络合物,对620nm单色光产生最大吸收。
本方法适用于锅炉用水和冷却水中微量锌的测定,测定范围为0.4~5.0mg/L。
2.仪器和试剂本标准所用试剂除另有说明外,均应使用符合国家标准或专业标准的分析试剂和蒸馏水或同等纯度的水。
2.1分光光度计,10mm比色皿;2.2锌贮备溶液准确称取已除去氧化膜的优级纯锌0.5000g (或基准氧化锌0.6224g)于烧杯中,加少量水和1+1盐酸20mL,缓缓加热溶解,冷却后转移入1000mL容量瓶中,用去离子水稀释至刻度,摇匀,此溶液1mL中含锌0.5mg(即500μg/mL);2.3硼酸盐缓冲溶液pH=8.8~9.0,称取37.8g氯化钾和31g硼酸、8.34g氢氧化钠,用60~80℃水溶解,冷却后稀释为1000mL;2.4锌试剂溶液称0.2g锌试剂溶于250mL乙醇中,放置过夜使之全部溶解,贮于棕色瓶中,可稳定一个月,溶液由红变黄表示失效;2.5过硫酸铵溶液1mL溶液含4mg过硫酸铵,临用前配制。
3.测定步骤3.1绘制标准曲线吸取50.00mL(或20.00,10.00,5.00mL)500μgZn2+/mL的锌贮备溶液于1000mL容量瓶中,用去离子水稀释至刻度。
此锌标准溶液含锌离子为25μg/mL(或10,5,2.0μg/mL)。
取此锌标准溶液0.00,1.00,2.00,3.00,4.00mL分别置于5只50mL容量瓶中,用去离子水稀释至约30mL时,再加10mL硼酸盐缓冲溶液和5.0mL锌试剂溶液,最后用去离子水稀释至刻度,摇匀。
放置10min后于620nm 处用10mm比色皿以一号溶液为参比,测定各溶液的吸光度并绘制吸光度-锌离子微克数标准曲线。
3.2测定水样3.2.1含有机膦酸盐的水样取水样10.0mL(视试样中锌含量可适当增减取水样的量)于100mL锥形瓶中,另一锥形瓶不加水样作空白,各加0.5mLc(H2SO4)=0.5mol/L溶液和1mL过硫酸铵溶液,再加去离子水至约30mL,加热煮沸约5min后取下冷却至室温,各加1滴0.02%甲基橙溶液,用1mol/L氢氧化钠溶液调节至溶液呈黄色,再分别加入10mL硼酸盐缓冲溶液及5.0mL锌试剂溶液,转移入50mL容量瓶中,用去离子水稀释至刻度,摇匀。
锌离子浓度的测定
双硫腙分光光度法GB7472--87 概述1方法原理在pH为4.0—5.5的醋酸盐缓冲介质中。
锌离子与双硫腙形成红色螯合物,其反应为:H GH*CH1 1 1 I1N—N—H N—N N = N——> S —\ Z mZn +2£ _ C JN = N N = N N—N11 1 1C4H,C»H,H该螯合物可被四氯化碳(或三氯甲烷)定量萃取。
以混色法完成测定。
用四氯化碳萃取,锌一双硫腙螯合物的最大吸收波长为535 nm,其摩尔吸光系数约为9.3 x 104。
2 •干扰及消除在本法规定的实验条件下,天然水中正常存在的金属离子不干扰测定。
水中存在少量铋、镉、钴、铜、金、铅、汞、镍、钯、银和亚锡等金属离子时,对本法均有干扰,但可用硫代硫酸钠掩蔽剂和控制溶液的pH值来消除这些干扰。
三价铁、余氯和其它氧化剂会使双硫腙变成棕黄色。
由于锌普遍存在于环境中,而锌与双硫腙反应又非常灵敏,因此需采取特殊措施防止污染。
3.方法的适用范围当使用光程为20mm比色皿,试份体积为100ml时,锌的最低检出浓度为0.005mg/L。
本法适用于测定天然水和轻度污染的地表水中的锌。
仪器(1)分光光度计,应用10 mm或更长光程的比色皿。
(2)分液漏斗:容量为125和150ml,最好配有聚四氟乙烯活塞。
(3)玻璃器皿:所有玻璃器皿均先后用 1 + I硝酸浸泡和无锌水清洗。
试齐U(1 )无锌水:将普通蒸馏水通过阴阳离子交换柱以除去水中痕量锌,用于配制试剂。
(2)四氯化碳(CCI4)。
(3)高氯酸(p= 1.75g/ml)。
(4)盐酸(p= 1.18g/ ml)。
(5)6moI/L盐酸:取500ml浓盐酸用水稀释至1000ml。
(6)2mol/L盐酸:取100ml浓盐酸用水稀释至600ml。
(7)0.02mol/L盐酸:取2mol/ L盐酸10ml用水稀释到1000ml。
(8)乙酸(含量36% )。
(9)氨水(p= 0.90g/ ml)。
双硫腙
双硫腙比色法测定汞
标准曲线的绘制 测定 计算
标准曲线的绘制
取分液漏斗六个,各加1M硫酸100mL,精确吸取 标准汞溶液(1g/mL)0,1,2,3,4,5mL,分 别加入分液漏斗中,再各加20%盐酸羟胺溶液 2.5mL,30%醋酸溶液5mL,4%乙二胺四乙酸二钠 溶液2.5mL,再添加1M硫酸溶液使其总体积为 140mL,准确加双硫腙工作液10mL,猛烈振摇约 2min,静置分层,通过脱脂棉滤入2cm比色皿中, 用分光光度计在492纳米波长下,以零管为零点, 测定其吸光度.以吸光度为纵坐标,汞含量为横 坐标,绘制标准曲线.
测定
取试样消化液100mL于分液漏斗中,加20%盐酸 羟胺溶液2.5mL,30%醋酸溶液5mL,4%乙二胺 四乙酸二钠溶液2.5mL,加重蒸水使其总体积为 140mL,加氯仿10mL,振摇约1分钟,放置分层 后,弃去氯仿层,准确加双硫腙工作液10mL,猛 烈振摇2分钟,静置分层后,能过脱脂棉滤入2cm 比色皿中.同时作试剂空白.用分光光度计在 492纳米波长下,以试剂空白为零点,测定其吸 光度.
适当利用下面条件时,测定某种金 属才是特效的.
(1)调节溶液的PH值 (2)改变干扰金属的原子价 (3)加入掩蔽剂,使干扰性元素不与双硫 腙发生反应
用双硫腙比色法测定金属
单色法 在有机溶剂只存在双硫腙金属络合物时进 行比色测定,即此时无过多的双硫腙. 混色法(常用) 在有机溶剂中同时存在过量的双硫腙与其 金属络合物时进行比色测定.双硫腙含量不 大于0.001%(W/V).
双硫腙双硫腙分光光度法腙双硫腙分光光度法测铅铀双硫腙比色法二硫腙双硫腙染色球探网双硫腙分光光度法测锌
浅谈双硫腙在食品 重金属分析中的应用
余泉
02081112
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FHZHJSZ0010 水质锌的测定双硫腙分光光度法
F-HZ-HJ-SZ-0010
水质双硫腙分光光度法
l 范围
本方法规定了用双硫腙分光光度法测定水中的锌
有关干扰问题见附录A
µ±Ê¹Óùâ³Ì³¤20mm比色皿
检出限为5ìg/LÔÚ×î´óÎü¹â²¨³¤535nm测量时
104 L/mol
本方法规定水样经酸消解处理后
2 原理
在pH为4.0~5.5的乙酸盐缓冲介质中用四氯化碳萃取后进行分光光度测定铜镉铋金银
对锌的测定有干扰
3 试剂
本方法所用试剂除另有说明外实验中均用不含锌的水
将普通蒸馏水通过阴阳离子交换柱以除去水中锌
3.2 高氯酸(HClO4) 1. 75g/mL
ñ
3.3.1 盐酸
取500mL盐酸(3.3)用水稀释至1000mL
2mol/L溶液
3.3.3盐酸
取10mL盐酸(3.3.2)溶液用水稀释到1000mL
3.5 氨水(NH3ñ
3.5.1 氨水
取10mL氨水(3.5)用水稀释至1000mL
ñ
3.6.1 硝酸溶液
取20mL硝酸(3.6)用水稀释到1000mL
0.032mol/L
3.7 乙酸钠缓冲溶液
3H2O)溶于水中另取1份乙酸将上述两种溶液按等体积混合
直到最后的萃取液呈绿色
3.8 硫代硫酸钠溶液
5H2O)溶于100mL水中
直到双硫腙溶液呈绿色为止
3.9 双硫腙
称取0.25g双硫腙(C13H12N4S)溶于250mL四氯化碳(3.1)·ÅÖÃÔÚ±ùÏäÄÚ¿É°´ÏÂÊö²½ÖèÌá´¿
ÂËÒºÖ÷ÖҺ©¶·ÖÐ
´Ëʱ˫Áòëê½øÈëË®²ãÈ»ºóÓÃÑÎËá(3.3.1)中和
合并四氯化碳层保存于冰箱内备用
0.1g/L四氯化碳溶液
3.11 双硫腙
取40mL双硫腙四氯化碳溶液(3.10)当天配制
0.004g/L四氯化碳溶液
用四氯化碳(3.1)稀释至100mL(此溶液的透光度在500nm波长处用10mm比色皿测量时)
3.13 柠檬酸钠溶液
2H2O)溶解在90mL水中
此试剂用于玻璃器皿的最后洗涤
称取0.1000g锌粒(纯度99.9ÒÆÈë1000mL容量瓶中此溶液每毫升含100ìg锌
取锌标准贮备溶液(3.14)10.00mL置于1000mL容量瓶中此溶液每毫升含1.00ìg
¹â³Ì10mm或更长的比色皿
容量为125和150mL
4.3 玻璃器皿
5 试样制备
5.1 实验室样品
根据水样的类型提出的特殊建议进行采样使用前用硝酸然后用无锌水冲洗干净每1000mL水样立即加入2.0mL硝酸(3.6)加以酸化(pH约1.5)
ÀýÈç
·ñÔòÒª°´ÏÂÊö¶þÖÖ·½·¨´¦Àí
ÿ100mL水样加入1mL硝酸(3.6)
冷却后用快速滤纸过滤然后用硝酸(3.6.2)稀释至一定体积
5.2.2 含悬浮物和有机质较多的地面水或废水在电热板上加热消解到10mL左右再加入5mL硝酸(3.6)和2mL高氯酸(3.2)
Õô·¢ÖÁ½ü¸ÉÀäÈ´ºóÂËÖ½ÓÃÏõËá(3.6.2)洗涤数次供测定用
5.3 试份
如果水样中锌的含量不在测定范围内如锌的含量太低如果取加酸保存的试样
以除去过量酸(注意因为此类试剂中的含锌量往往过高)¼ÓÈÈÖó·Ð5min
2~3之间
6 操作步骤 6.1 测定
6.1.l 显色萃取
取10mL(含锌量在0.5~5置于60mL 分液漏斗中
混匀后
振摇4min
½«ËÄÂÈ»¯Ì¼²ãͨ¹ýÉÙÐí½à¾»ÍÑÖ¬ÃÞ¹ýÂËÈë20mm 比色皿中
采用合适的(如20mm)光程长的比
色皿
第一次采用本方法时以后
的测定中均使用此波长)´ÓУ׼ÇúÏßÉϲé³ö
²âÁ¿Ð¿Á¿
6.2 空白试验 用适量(如10
°´5.3和6.1的方法进行处理
分别加入锌标准溶液(3.15)0 1.00 3.00
5.00mL
向各分液漏斗中加入5mL 乙酸钠溶液(3.7)和1mL 硫代硫酸钠溶液(3.8)
6.3.2 显色萃取
上述溶液(6.3.1)用10.0mL 双硫腙四氯化碳溶液(3.12)摇动萃取4min ½«ËÄ
ÂÈ»¯Ì¼²ãͨ¹ýÉÙÐí½à¾»ÍÑÖ¬ÃÞ¹ýÂËÈë20mm 比色皿中
采用20mm 光程长的比色皿
6.3.4 校准曲线的绘制
从6.3.3测得的吸光度扣去试剂空白(零浓度)的吸光度后这
条校准线应为通过原点的直线
特别是分析一批水样或每使用一批新试剂时要检查一次
V
m c =
式中
ìg mL
8 精密度和准确度
46个实验室曾用本方法分析过一个合成水样其他离子含量(以ìg/L
计)为镉50铜470铅70得到的相对标准偏
差为18.2相对误差为25.9 9 参考文献
GB7472-87
附录A
干扰及其消除
(补充件)
水中存在少量铋钴金汞钯对本方法均有干扰三价铁
由于锌普遍存在于环境中
因此需要采取特殊措施防止污染这种现象往往是起源于含氧化锌的玻璃橡胶制品试剂级化学药品或蒸馏水单独放置。