常微分方程(王高雄)第三版 4.2ppt课件

合集下载

常微分方程(讲课)

常微分方程(讲课)
2
解:将原方程变形为
dx 3 y − x=− dy y 2
−∫ 3 dy y
通解
x= e

3 dy y
y (∫− e 2
dy + C )
1 2 = Cy + y 2
3
可微, 例3:设函数 f (x) 可微,且 f (1) = 2,又对右半平面 ( x > 0)内任意 : 闭曲线 C,有 ∫C 4x3y dx + xf (x)dy = 0. , ⑴ 求 f (x);
例(函授)
的一段弧. ⑵ 计算 ∫L 4x3y dx + xf (x)dy 其中 L 是从 (1, 0)到 (2, 3)的一段弧 , ∂Q ∂P ,即 f (x) + xf ′(x) = 4x3 , = 依题意, 解:⑴ 依题意,有 ∂x ∂y y 1 2 ( 2, 3 ) f ′(x) + f (x) = 4x , . x
第二节 一阶微分方程
⒈ 可分离变量的一阶微分方程
dy 一般形式: 一般形式: = f (x) ⋅ g(y) dx 1 解法: 解法: ⑴ 分离变量 dy = f (x) dx, g(y) ≠ 0 g(y) 1 即得通解. ⑵ 两边分别对各自的变量积分 ∫ dy = ∫ f (x)dx, 即得通解 g(y)
⒉ 齐次方程
例5:求 x y′ = y ( 1 + ln y − ln x ) 的通解. 的通解 dy y y 解:方程变为 = (1 + ln ) dx x x y 令 u = , 则 y = ux x dy du = u+x dx dx du 则 u+x = u( 1 + lnu ) dx 1 1 分离变量得 du = dx ulnu x 两边积分得 lnlnu = lnx + lnC

第四章 高阶微分方程 常微分方程课件 高教社 王高雄教材配套ppt

第四章 高阶微分方程 常微分方程课件 高教社 王高雄教材配套ppt

5/8/2021
第四章
10
x1
t 2 , 0,
1 t 0 0t 1
注 仅对函数而言 线性相关时W(t)≡0的
逆定理一般不成立。
例 函数

x1
t 2 , 0,
x2
0,
t
2
,
1 t 0 0t 1
1 t 0 0t 1
在区间-1≤t≤1上有W[x1(t),x2(t)]≡0 ,但却线性无 关。
证 5/8/2021 用反证法证。
第四章
12
(续)定理4 齐次线性微分方程的线性 无关解的伏朗斯基行列式恒不为零
dn x dtn
a1(t)
dn1 x d t n1
an1 (t )
d d
x t
an
(t ) x
0
证 用反证法证。设有t0 (a≤t0≤b) 使得W(t0)=0,则t = t0时 的 (6)、(7)组成的n个齐次线性代数方程组有非零解 c1 ,c2 ,…,cn。 根椐叠加原理,函数 x(t)=c1x1(t)+ c2x2(t)+…+ cnxn(t) 是方程(2)的解,
第四章
13
定理5 齐次线性方程(2)的基本 解组必存在且其伏朗斯基行列式 恒不为零。
证 根据定理1,线性 方程(2)的满足初值 条件:
的解x1(t),x2(t),…,xn(t)必 存在,且有
x1
(t0
)
1,
x1'
(t0
)
0,
x2
(t0
)
0,
x2'
(t0
)
1,
xn
(t0
)
0,
xn'

常微分方程 ppt课件

常微分方程  ppt课件

量,x是未知函数,是未知函数对t导数. 现
在,我们还不会求解方程(1.1),但是,如果
考虑k=0的情形,即自由落体运动,此时方程
(1.1)可化为
d2x dt 2

g
(1.2)
将上式对t积分两次得
x(mt)xk12xgt2mgc1t c2
(1.3) (1.1)
ppt课件
11
一般说来,微分方程就是联系自变量、 未知函数以及未知函数的某些导数之间的关 系式. 如果其中的未知函数只是一个自变量 的函数,则称为常微分方程;如果未知函数 是两个或两个以上自变量的函数,并且在方 程中出现偏导数,则称为偏微分方程. 本书 所介绍的都是常微分方程,有时就简称微分 方程或方程.
这样,从定义1.1可以直接验证:
F(x, y, y) 0
(1.8)
如果在(1.8)中能将 y 解出,则得到方程
y f (x, y)
(1.9)

M (x, y)dx N(x, y)dy 0
(1.10)
(1.8)称为一阶隐式方程,(1.9)称为一阶显式方程,(1.10)称为微 分形式的一阶方程.
ppt课件
14
n 阶隐式方程的一般形式为
常微分方程
ppt课件
1
常微分方程课程简介
常微分方程是研究自然科学和社会科学中的事物、 物体和现象运动、演化和变化规律的最为基本的数 学理论和方法。物理、化学、生物、工程、航空航 天、医学、经济和金融领域中的许多原理和规律都 可以描述成适当的常微分方程,如牛顿运动定律、 万有引力定律、机械能守恒定律,能量守恒定律、 人口发展规律、生态种群竞争、疾病传染、遗
ppt课件
2
传基因变异、股票的涨伏趋势、利率的 浮动、市场均衡价格的变化等,对这些 规律的描述、认识和分析就归结为对相 应的常微分方程描述的数学模型的研究.

常微分方程总结 PPT

常微分方程总结 PPT
2. 可分离变量方程的求解方法: 分离变量后积分; 根据定解条件定常数 . y 3 .齐次方程的求解方法: 令 u , x
8
机动 目录 上页 下页 返回 结束
3. 解微分方程应用题的方法和步骤
(1) 找出事物的共性及可贯穿于全过程的规律列方程. 常用的方法: 1) 根据几何关系列方程 ( 如: P263,5(2) ) 2) 根据物理规律列方程 ( 如: 例4 , 例 5 )
线性无关概念.
23
机动 目录 上页 下页 返回 结束
定义: 设 y1 ( x), y2 ( x),, yn ( x) 是定义在区间 I 上的
n 个函数, 若存在不全为 0 的常数 使得
则称这 n个函数在 I 上线性相关, 否则称为线性无关. 例如, 在( , )上都有
故它们在任何区间 I 上都线性相关;
微分方程的基本概念
含未知函数及其导数的方程叫做微分方程 . 常微分方程 (本章内容)
分类
偏微分方程
方程中所含未知函数导数的最高阶数叫做微分方程
的阶. 一般地 , n 阶常微分方程的形式是
F ( x, y, y,, y ( n ) ) 0

y ( n ) f ( x, y, y,, y ( n 1) ) ( n 阶显式微分方程)
y p( x) y q( x) y f ( x) ,
y
( n) ( n 1)
为二阶线性微分方程.
n 阶线性微分方程的一般形式为
a1 ( x) y an 1 ( x) y an ( x) y f ( x) f ( x) 0 时, 称为非齐次方程 ;
f ( x) 0 时, 称为齐次方程.
若 Q(x) 0, 称为非齐次方程 . dy P( x) y 0 1. 解齐次方程 dx

§3.4数值解常微分方程课件高教社王高雄教材配套ppt(精)

§3.4数值解常微分方程课件高教社王高雄教材配套ppt(精)
目录 上页 下页 返回 结束
欧拉方法
dy f ( x, y ), dx y ( x0 ) y0
• 欧拉方法 用差分代替微分
yn1 yn h f ( xn , yn ), xn x0 n h.
称为欧拉(Euler)公式。 • 相当于解用泰勒级数展开取第1项
y( xn1 ) y( xn h) y( xn ) h y '( xn ) O(h2 )
h yi 1 yi (k1 2k2 2k3 k4 ), 6 h h k1 f ( xi , yi ), k2 f ( xi , yi k1 ), 2 2 h h k3 f ( xi , yi k2 ), k4 f ( xi h, yi hk3 ), 2 2
目录 上页 下页 返回 结束
误差与步长选择
1 1 1 1 , 2 , 3 d 2 2d 2 2d 2
• 而要h3项系数相同的条件更多且无法同时满足. • 因此r=2时龙格-库塔公式最大阶数为p(2)=2.
目录 上页 下页 返回 结束
二阶龙格-库塔公式 r=2 情形
• 应用双变量泰勒级数展式
k2 f ( xn d 2 h, yn 21k1h) f ( xn , yn ) h d 2 21k1 f ( xn , yn ) y x h d k 2 21 1 ( p 1)! x y
目录 上页 下页 返回 结束
梯形公式
• 方程解的积分形式
y( x) f ( x, y( x))d x
x0 x
• 用定积分的梯形公式近似代換
yn1 yn

常微分方程第三版

常微分方程第三版
f'(x)2x,
即 f(x)2xd x C x2C .
给出了未知函数的导数与未知函数之间的关系式.如何由此式
子求得 u与 t 之间的关系式, 以后再介绍.
.
例3 R-L-C电路
如图所示的R-L-C电路. 它包含电感L,电阻R,电容C及电源e(t). 设L,R,C均为常数,e(t)是时间t的已知函数.试求当开关K合上后,电 路中电流强度I与时间t之间的关系.
因为 I dQ , 于是得到 dt
d2I RdI I 1d(et)
d2tLdtLC L
. dt
这就是电流强度I与时间t所满足的. 数学关系式.
例4 传染病模型: 长期以来,建立传染病的数学 模型来描述传染病的传播过程,一直是各国有关专 家和官员关注的课题.人们不能去做传染病传播的 试验以获取数据,所以通常主要是依据机理分析的 方法建立模型.
第一章 绪论
常微分方程是现代数学的一个重要分支,是人们解决各 种实际问题的有效工具,它在几何,力学,物理,电子技术,自 动控制,航天,生命科学,经济等领域都有着广泛的应用,本 章将通过几个具体例子,粗略地介绍常微分方程的应用,并 讲述一些最基本概念.
.
§1.1 微分方程模型
微分方程:
联系着自变量,未知函数及其导数的关系式.
.
解: 电路的Kirchhoff第二定律:
在闭合回路中,所有支路上的电压的代数和为零.
设当开关K合上后, 电路中在时刻t的电流强度为I(t), 则电流 经过电感L, 电阻R和电容的电压降分别为 L dI , RI, Q, 其中Q 为电量,于是由Kirchhoff第二定律, 得到 dt C
e(t)LdIR IQ0. dt C
.
解: 设t时该时镭元素的量为R(t),

常微分方程_高教出版社_第三版

常微分方程_高教出版社_第三版

第一章 绪论微分方程: 联系自变量、未知函数以及它的导数间的关系式。

自变量只有一个的称为常微分方程.§1.1 常微分方程模型例1 RLC 电路包括电感L , 电阻R 和电容C 及电源的电路称为RLC电路. 电流I 流经R,L,C 的电压降分别是RI, d d I Lt , Q C,其中Q 为电量, 它与电流的关系为d d QI t =. 基尔霍夫第二定律: 闭合回路中, 所有支路上的电压的代数和为零.如图所示的 RL 电路, 电感L , 电阻R 和电源电压E 为常数.设0t =时, 电路中没有电流. 开关S 合上后电流应满足的微分方程d 0d I E L RI t--=, 即d d I R E I t L L +=, 求出的()I t 应满足: 0t =时, 0I =.如果在0t t =时, 0I I =, 电源E 突然短路, 则E 变为0并且此后一直保持为0, 则电流I 满足方程d 0d I RI t L +=, 及条件0t t =时, 0I I =.再看如图所示的RLC 电路, 电阻R, 电感L 和电容C 都是常数. 电源()e t 是时间t 的已知函数.开关S 合上后, 电流I 应满足的微分方程()d d I Qe t L RI t C=++, 微分上式可得()22d d d 1d d d e t I R I I t L t LC L t++=, 如果()e t =常数, 则有22d d 10d d I R I t L t LC++=. 如果电阻R =0, 则有22d 10d I t LC+= 例2 数学摆解 设摆在铅垂线右边时所成夹角ϕ为正. 质点M 沿圆周切向速度v 可表示为d d v l tϕ=. 重力mg 沿圆周切向的分力为MP, 数值为sin mg ϕ-, 于是摆的运动方程为 d sin d vmmg tϕ=-, 即22d sin d gt l ϕϕ=-. 如果是微小振动, 即ϕ比较小时, 可取sin ϕϕ≈, 于是微小振动方程为22d 0d gt lϕϕ+=. 如果摆在一个粘性介质中运动, 设阻力系数为μ, 则摆的运动方程为22d d 0d d gt m t lϕμϕϕ++=. 如果沿摆的运动方向恒有一个外力()F t 作用于它, 则称受迫微小振动, 方程为()22d d 1d d g F t t m t l mlϕμϕϕ++=.摆的初始条件为0t =时, 0ϕϕ=,0d d tϕω=. 例3 人口模型Malthus 假定: 人口出生率是常数r , 则从t 到t t +∆这段时间人口数量()N t 的增长量为()()()N t t N t rN t t +∆-=∆于是人口数量满足d d NrN t = 改写为d d Nr t N= 两边积分可得ln N rt c =+ 这里c 为任意常数, 上式又可变形为rt N ce =这里c c e =, 注意0N =也是解, 所以c 可以是任意常数. 如果设初值条件为0t t =时, ()0N t N =代入上式可得00rt c N e -=, 即方程满足此初始条件的解为()()00r t t N t N e -=.Logistic 模型: 引入环境最大容纳量m N , 假定净相对增长率为()1m N t r N ⎛⎫- ⎪⎝⎭, 则人口模型变为d 1d m N N r N t N ⎛⎫=- ⎪⎝⎭. 例4 传染病模型设某地区在某种传染病传播期间总人数保持不变, 为常数n . 开始感染人数为0x , 在t 时刻的健康人数为()y t ,染病人数为()x t , 则有()()x t y t n +=设单位时间内一个病人能传染的人数和当时健康人数成正比, 比例常数为k , 称之为传染系数, 于是()()()d d x t ky t x t t= 注意到总人数不变, 可得()()0d ,0d xkx n x x x t=-= 此模型称为SI 模型, 即Susceptible, Infective.对无免疫性的疾病, 病人治愈后会再次感染. 设单位时间治愈率为μ, 则SI 模型应修正为 ()()()()()0d ,0d x t ky t x t x t x x tμ=-=, 即()()0d 1,0d x kx n x x kx n x x x t μσ⎛⎫=--=--= ⎪⎝⎭这个称为SIS 模型. 其中1μ是这个传染病的平均传染期,kσμ=是整个传染期内每个病人有效接触的平均人数(接触数).对于免疫性很强的疾病, 病人治愈后不会再被感染, 即在t 时刻的治愈后免疫人数为()r t , 称为移除者(Removed), 设治愈率l 为常数, 即()()d d r t lx t t= 注意到总人口不变, ()()()x t y t r t n ++=, 我们得到d d d d xkxy lx ty kxy t⎧=-⎪⎪⎨⎪=-⎪⎩这个模型称为SIR 模型.例5 两生物种群生态模型某环境中有两种鱼: 被食鱼与捕食鱼. 设t 时刻被食鱼的总数为()x t , 捕食鱼的总数为()y t , 如果没用捕食鱼, 则被食鱼的增长规律为d d xax t=, 设捕食率为b , 则有d d xax bxy t=- 而捕食鱼有一个自然减少率c , 被食鱼供养捕食鱼的能力为d , 则有d d ycy dxy t=-+ 这个称之为Volterra 捕食-被捕食模型.其更一般的模型为()()d d d d d xx a bx cy ty y ex fy t⎧=++⎪⎪⎨⎪=++⎪⎩ 从数学的角度归类:d d I R E I t L L +=, d d N rN t =可以写为d d yay c t+=. 而 ()22d d d 11d d d e t I R I t L t LC L t++= 和()22d d 1d d g F t t m t l ml ϕμϕϕ++= 可以写为()22d d d d y yb cy f t t t++=.§1.2 基本概念和常微分方程的发展历史1.2.1 常微分方程的基本概念(1) 常微分方程和偏微分方程如果在微分方程中自变量的个数只有一个, 则称为常微分方程; 自变量的个数多于一个的微分方程则称为偏微分方程.第一节中的例子都是常微分方程. 以下是偏微分方程2222220T T Tx y z ∂∂∂++=∂∂∂,224T Tx t∂∂=∂∂. 阶数: 微分方程中出现的最高阶导数的阶数称为微分方程的阶数. 一般的n 阶常微分方程具有如下形式:d d ,,,,0d d n n y y F x y x x ⎛⎫= ⎪⎝⎭ ,这里F 是d d ,,,,d d n n y y x y x x 的表达式, 且必含有d d n n yx, y 是未知函数, x 是自变量.此书中常微分方程也简称为微分方程或方程. (2) 线性和非线性如果方程d d ,,,,0d d n n y y F x y x x ⎛⎫= ⎪⎝⎭ 左端为y 及d d ,,d d n n y yx x的一次有理整式, 则称方程为n 阶线性微分方程. 一般n 阶线性微分方程的形式为()()()()1111d d d d d d n n n n n n y y ya x a x a x y f x x x x---++++= , 这里()()()1,,,n a x a x f x 是x 的已知函数.不是线性方程的方程统称为非线性方程. 例如22d sin d gt lϕϕ=- 是二阶非线性方程.(3) 解和隐式解如果函数()y x ϕ=代入方程d d ,,,,0d d n n y y F x y x x ⎛⎫= ⎪⎝⎭ 后能使它变为恒等式, 则称()y x ϕ=为方程的解. 如果关系式(),0x y Φ=决定的隐函数()y x ϕ=是方程的解, 则称(),0x y Φ=为方程的隐式解.例: 一阶微分方程d d y xx y=-的有解y =y =则关系式221x y +=就是此方程的隐式解.解和隐式解统称为方程的解而不加以区别. (4) 通解和特解含有n 个独立的任意常数12,,,n c c c 的解()12,,,,n y x c c c ϕ=称为方程d d ,,,,0d d n n y y F x y x x ⎛⎫= ⎪⎝⎭ 的通解. 同样可定义隐式通解. 它们统称为方程的通解而不加以区分. 为了确定微分方程一个特解所需的条件称为定解条件. 常见的定解条件是初始条件, 方程d d ,,,,0d d n n y y F x y x x ⎛⎫= ⎪⎝⎭ 的初始条件是指当0x x =时, ()()1110001d d ,,,d d n n n y y y y y y x x---=== ,()()110000,,,,n x y y y - 是给定的n +1个常数.求微分方程满足定解条件的解, 就是定解问题. 当定解条件为初始条件时, 称为初值问题, 这也是本书讨论的主要内容.满足初始条件的解称为微分方程的特解. 初始条件不同, 特解也不同.例: 人口模型的解rt N ce =含有一个任意常数c , 所以是d d NrN t=的通解, 而()()00r t t N t N e -=就是满足初始条件0t t =时, ()0N t N =的特解, 它可在通解中令00rt c N e-=得到.例: 二阶微分方程22d d 540d d y yy x x++= 的通解为412x x y c e c e --=+,这里12,c c 是任意常数, 满足初始条件()()d 002,1d y y x== 的特解为43x x y e e --=-. 5) 积分曲线和方向场 一阶微分方程()d ,d yf x y x= 的解()y x ϕ=代表xy 平面上一条曲线, 称为微分方程的积分曲线. 而通解(),y x c ϕ=则对应一族曲线, 称为积分曲线族.满足初始条件()00y x y =的解就是过点()00,x y 的积分曲线. 积分曲线上每一点(),x y 的切线斜率正好就是(),f x y . 反之, 如果有某条曲线, 它在点(),x y 的切线斜率是(),f x y , 则它就是一条积分曲线.方向场: 设(),f x y 的定义域为D , 在每个(),x y D ∈上画一个方向, 此方向的斜率等于(),f x y , 这种带有方向的区域称为方程()d ,d yf x y x=确定的方向场. 等斜线: 在方向场中, 方向相同的点的轨迹称为等斜线. ()d ,d yf x y x =的等斜线方程为(),f x y k =,其中k 是参数.例 d 1d yxy x=+. 利用Maple 模拟出的此方程的方向场:6) 微分方程组用两个及两个以上的关系式表示的涉及多个函数的导数的微分方程称为微分方程组.第二章 一阶微分方程的初等解法初等解法: 即将微分方程的求解问题转化为积分问题 注1 不一定要求用初等函数表示积分.注2 并不是所有的微分方程都有初等解法. §2.1 变量分离方程与变量变换2.1.1 变量分离方程形如()()d d y f x y x ϕ= 的方程, 称为变量分离方程, 这里()f x 和()y ϕ分别是x,y 的连续函数.解法: 如果()0y ϕ≠, 则方程可改写为()()d d y f x x y ϕ=, 两边积分, 得到()()d d y f x x c y ϕ=+⎰⎰,其中c 是任意常数, 而()d y y ϕ⎰和()d f x x ⎰则分别表示()1y ϕ和()f x 的一个原函数. 容易验证方程()()d d y f x x c y ϕ=+⎰⎰所确定的隐函数(),y y x c =就是原微分方程的通解.如果存在0y 使得()00y ϕ=, 则0y y =也是原方程的解, 它不包含的通解中, 须补上.例1 求解方程d d y x x y=-. 解 分离变量, 可得d d y y x x =-,两边积分 2222y x c =-+, 化简可得通解为22x y c +=.例2 求解两种群模型 ()()d d d y c x y x x a by -+=-, 0,0x y ≥≥. 解 分离变量 d d d c a x b y x y ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭, 积分得 ln ln c x dx a y by k -=-++化简为d c x a by xe y e k --=±考虑条件0,0x y ≥≥以及0y =是解, 可得方程的通解为 d c x a by x e y e k --=这里0k ≥是任意常数.例3 求解Logistic 模型 ()()00d 1,,0d m N N r N N t N N t t N ⎛⎫=-=≥ ⎪⎝⎭. 解 分离变量()d d d d m m m N N N N r t N N N N N N ==+--积分可得()ln ln m rt c N N N +=-- 其中c 为任意常数, 化简 ()1rt c m N e N-+=- 即 1m rtN N ce -=+ 这里c c e -=, 代入初值得 001rt m N ce N -=- 最后得到 ()()0011mN r t t mN N N e --=+-.例4 求方程()d d y P x y x=的通解, 其中()P x 是x 的连续函数. 解 分离变量 ()d d y P x x y=, 两边积分()ln d y P x x c =+⎰ , 即()d P x x c y e +⎰= , 于是()d P x x c y e e ⎰=±⋅ ,令c c e =± , 于是()d P x x y ce ⎰=. 此外0y =也是方程的解, 但它已包括在上述解中. 故通解为()d P x x y ce ⎰=, 其中c 为任意常数.2.1.2 可化为变量分离方程的类型介绍两种简单情形:1) 形如 d d y y g x x ⎛⎫= ⎪⎝⎭的方程称为齐次方程, 这里()g u 是u 的连续函数.求解方法: 作变量变换 y u x= 于是 d d d d y u x u x x=+, 将上两式代入原方程可得 ()d d u x u g u x+=, 整理后可得 ()d d g u u u x x-=, 这是一个关于u,x 的变量分离方程, 可求解, 再代回原来的变量即可.例5 求解方程d tan d y y y x x x=+. 解 这是齐次方程, 令y u x =, d d d d y u x u x x =+, 代入原方程d tan d u x u u u x +=+, 即d tan d u u x x=, 分离变量 d cot d x u u x=, 两边积分 ln sin ln u x c=+ , c 是任意常数, 整理可得sin c u e x =±⋅ ,令c c e =± , 可得sin u cx =, 此外方程还有解tan 0u =, 此解已包括在上式中, 故通解为sin u cx =, c 是任意常数, 代回原来的变量可得到原方程的通解为 sin y cx x=, c 是任意常数. 例6求解方程()d 0d y x y x x+=<. 解 将方程改写为d d y y x x= ()0x <, 这是齐次方程, 令y u x =, d d d d y u x u x x =+, 代入原方程得d d u xx=分离变量d x x =, 两边积分()ln x c =-+, 即()()()2ln ln 0u x c x c =-+-+>⎡⎤⎣⎦,这里c 是任意常数, 此外0u =也是方程的解, 它不包括在通解中.代回原来的变量, 得到原方程的通解为()()()2ln ln 0y x x c x c =-+-+>⎡⎤⎣⎦及0y =.或者也可将方程的解表示为 ()()()2ln ,ln 0,0,ln 0.x x c x c y x c ⎧-+-+>⎡⎤⎪⎣⎦=⎨-+≤⎪⎩2) 形如111222d x a x b y c =++ 的方程也可化为变量分离方程. 分三种情形讨论.(1) 120c c ==的情形此时方程可化为 11112222d d yx y x a b a x b y y y g x a x b y x a b ++⎛⎫=== ⎪++⎝⎭ , 从而变为一个齐次方程求解. (2) 11220a b a b =, 即1122a b a b =的情形. 设上面的比值为k , 即1122a b k a b ==, 则方程可写为 ()()22122222d d k a x b y c y f a x b y x a x b y c ++==+++, 令22a x b y u +=, 则有()22d d u a b f u x=+, 这是一个关于u , x 的变量分离方程, 可求解. (3) 11220a b a b ≠, 及1c , 2c 不全为零的情形. 此时方程组11122200a x b y c a x b y c ++=⎧⎨++=⎩ 有解, 设解为(),αβ. 显然()(),0,0αβ≠, 否则与1c , 2c 不全为零矛盾.可通过坐标平移将原点移至(),αβ, 可令,X x Y y αβ=-⎧⎨=-⎩, 从而原方程化为1122d X a X b Y=+, 又转化为情形(1). 对于方程111222d d a x b y c y f x a x b y c ⎛⎫++= ⎪++⎝⎭, 也可用同样方法求解.此外, 下面各种方程也可通过适当的变量变换化为变量分离方程求解.()d d y f ax by c x =++ 令ax by c u ++=. 则()d d d d u y a b a bf u x x=+=+ ()()d d 0yf xy x xg xy y +=令xy u =, 则 ()()()()d d 11d d f u f u u y u y x y x x g u x g u ⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. ()2d d y x f xy x= 令xy u =, 则 ()()()d d 11d d u y y x y f u u f u x x x x=+=+=+. 2d d y y xf x x ⎛⎫= ⎪⎝⎭令2y u x =. ()2d d 2d d y u xu x xf u x x=+=, 方程变为()2d d f u u u x x-= ()()()(),d d ,d d 0M x y x x y y N x y x y y x ++-=, 其中M, N 为x, y 的齐次函数. 令y u x =. d d d d y u u x x x=+,方程变为12d d 10d d y y y y y y g g x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫++-= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 代入可得()()12d d 10d d u u g u u u x g u u x u x x ⎛⎫⎛⎫⎛⎫++++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 整理可得()()()()()21121d d u g u u x x ug u g u +=-+ 例7 求解方程d 1d 3y x y x x y -+=+-. 解 解方程组1030x y x y -+=⎧⎨+-=⎩, 解得1,2x y ==, 令12X x Y y =-⎧⎨=-⎩原方程变为 d d Y X Y X X Y-=+ 再令 Y u X=, 即 Y uX = 方程又变为 d 1d 1u u u X X u-+=+, 分离变量得 2d 1d 12X u u X u u+=-- 两边积分 22ln ln 21X u u c=-+-+ 整理得 ()2221c X u u e +-=±令1c c e =± , 则有()22121X u u c +-=代回原变量2212Y XY X c +-=, ()()()()22122121y x y x c -+----= 又2210u u +-=也是原方程的解, 故整理上式可得原方程的通解为22262y xy x y x c +---=这里c 为任意常数.2.1.3 应用举例例7 电容器的充电和放电如图所示的R-C 电路, 开始电容C 没有电荷, 其两端电压为零, 开关合上1后, 电容开始充电, 电压逐渐升高, 充电完毕后, 合上开关2, 电容开始放电, 求充放电过程中电容C 两端的电压c u 随时间t 的变化规律.解 对充电过程, 由基尔霍夫第二定律c u RI E +=,由于c Q Cu =, 微分得到 d d d d c u Q I C t t==, 代入可得d d c c u RC u E t+=, 这是c u 满足的微分方程, 分离变量 d d c c u t u E RC=-- 两边积分 11ln c u E t c RC-=-+ 即 1112RC RC t t c c u E e e c e ---=±=,代入初始条件0,0c t u ==可得2c E =-, 于是 ()11RC t c u E e -=-.函数图象如下放电过程类似可讨论.例8 探照灯反射镜面的形状.探照灯要求将点光源射出的光线平行反射出, 求反射镜面的形状.解 将点光源设为坐标原点, 设所求曲面为曲线 ()0y f x z =⎧⎪⎨=⎪⎩绕x 轴旋转而成的. 下面求曲线()f x , 如图.过曲线()y f x =上任一点(),M x y 做切线NT , 由反射定律可得12αα=从而 OM ON =切线斜率为 2d tan d y MP x NPα==,又OP x =, MP y =, OM =可得()y f x =满足的微分方程d d y x = 此为齐次方程, 可令y u x =进行求解. 此外, 齐次方程还可令x v y=, 此时x yv =, 微分可得d d d d x v v y y y=+ 代入方程得到d sgn d v v y v y y+=+整理可得d sgn y y y =ln x c ⎛⎫=+ ⎪⎝⎭ 注意到0y >, 可解得(y c v = 代入x v y =可得2y cx =+,整理得 ()22y c c x =+, c 为任意常数.此曲线为抛物线, 反射镜面即为旋转抛物面()222y z c c x +=+.§2.2 线性方程与常数变易法一阶线性微分方程()()()d 0d y a x b x y c x x ++= 当()0a x ≠时可写为 ()()d d y P x y Q x x=+, 下面主要讨论这种形式, 这里()P x 和()Q x 都是连续函数.当()0Q x =时, 方程 ()d d y P x y x= 称为一阶齐线性方程. 若()0Q x ≠称为一阶非齐线性方程.一阶齐线性方程为变量分离方程, 上节例3已求得其通解为()d P x x y ce ⎰=, 其中c 为任意常数.下面讨论一阶非齐线性方程的求解问题. 设想两种方程( 齐次与非齐次) 的解必有某种联系或者形式上的相似. 但是()d P x x y ce ⎰=必不可能是一阶非齐线性方程的解. 设想c 不是常数, 而是一个关于x 的函数()c x , 这是一个待定的函数. 于是, 将()()d P x x y c x e ⎰=代入到一阶非齐线性方程: ()()()()()()()()()d d d d d P x x P x x P x x c x e c x P x e P x c x e Q x x⎰⎰⎰+=+ 即()()()d d d P x x c x Q x e x-⎰= 积分后可得()()()d d P x x c x Q x e x c -⎰=+⎰ 代入得到()()()d d d P x x P x x y e Q x e x c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 这就是非齐线性方程的通解. 此法称为常数变易法.例1 求方程()()1d 11d n x y x ny e x x++-=+的通解, 其中n 为常数.解 将方程改写为 ()d 1d 1n x y n y e x x x =+++, 先求对应的齐次方程 d d 1y n y x x =+ 的通解, 由公式可知通解为()1n y c x =+.下面应用常数变易法, 令 ()()1n y c x x =+ 微分之可得()()()()1d d 11d d n n c x y x n x c x x x-=+++ 代入原方程()d d x c x e x= 积分可得()x c x e c=+ 因此非齐次方程的通解为()()1n x y x e c =++ 其中c为任意常数. 例2 求方程2d d 2y y x x y =-的通解. 解 将方程改写为 d 2d x x y y y=-, 这是一个关于未知函数x 的非齐线性方程.其对应的齐次方程 d 2d x x y y= 的通解是2x cy =.应用常数变易法, 令()2x c y y =并代入方程可得 ()d 1d c y y y=- 积分可得()ln c y y c=-+ 从而原方程的通解为()2ln x y c y =- 这里c是任意常数. 伯努利方程:()()d d n y P x y Q x y x=+ 这里()(),P x Q x 都是连续函数, 且0,1n ≠.可以利用变量变换将伯努利方程化为线性方程. 当0y ≠时, 用n y -乘方程两边()()1d d n n y y y P x Q x x --=+, 令1n z y -=可得 ()d d 1d d n z y n y x x-=- 于是原方程化为 ()()()()d 11d z n P x z n Q x x=-+- 这是一个关于z,x 的线性方程, 可求通解. 此外方程还有解0y =.例3 求方程2d 6d y y xy x x=-的通解. 解 这是2n =时的伯努利方程. 令1z y -=可得 2d d d d z y y x x-=- 代入原方程 d 6d z z x x x=-+, 这是线性方程, 它的通解为 268c x z x =+ 代回原变量y 得到2618c x y x =+ 或688x x c y -= 这里c 是任意常数, 此外方程还有解0y =.§2.3 恰当方程与积分因子2.3.1 恰当方程将一阶方程 ()d ,d y f x y x= 写成微分形式(),d d 0f x y x y -=或写成具有对称形式的一阶微分方程()(),d ,d 0M x y x N x y y +=, 这里假设M, N 是x, y 的连续函数, 且具有连续的一阶偏导数.如果方程左端恰好是某个二元函数(),u x y 的全微分, 即()()(),d ,d d ,d d u u M x y x N x y y u x y x y x y ∂∂+≡≡+∂∂ 则称为恰当方程.恰当方程的通解是(),u x y c =, c 是任意常数.下面将解决两个问题(1) 如何判定方程是恰当方程?(2) 如果方程是恰当方程, 如何求出函数(),u x y ? 分析:如果()(),d ,d 0M x y x N x y y +=是恰当方程, 则有 ,u u M N x y ∂∂==∂∂,上两式对y, x 分别再求偏导 22,u M u N y x y x y x∂∂∂∂==∂∂∂∂∂∂ 由假设上面的混合偏导相等, 于是 M N y x∂∂=∂∂ 这是恰当方程的必要条件. 下证这也是恰当方程的充分条件, 即证明当方程满足此条件时能找到函数(),u x y 满足 ,u u M N x y∂∂==∂∂. 首先积分u M x ∂=∂, 得到 ()(),d u M x y x y ϕ=+⎰这里()y ϕ是y 的任意可微函数, 现在选择()y ϕ使u 能满足u N y∂=∂, 即 ()()d ,d d y M x y x N y yϕ∂+=∂⎰, 所以 ()()d ,d d y N M x y x y yϕ∂=-∂⎰. 上式右端与x 无关, 事实上右端对x 的偏导数()()(),d ,d ,d 0N N M x y x M x y x x y x x y N M x y x x y x N M x y ⎡⎤⎡⎤∂∂∂∂∂-=-⎢⎥⎢⎥∂∂∂∂∂⎣⎦⎣⎦∂∂∂⎡⎤=-⎢⎥∂∂∂⎣⎦∂∂=-≡∂∂⎰⎰⎰ 这样()y ϕ就可以积分得到()(),d d y N M x y x y y ϕ⎡⎤∂=-⎢⎥∂⎣⎦⎰⎰ 即求得()(),d ,d d u M x y x N M x y x y y ⎡⎤∂=+-⎢⎥∂⎣⎦⎰⎰⎰, 于是恰当方程的通解即为()(),d ,d d M x y x N M x y x y c y ⎡⎤∂+-=⎢⎥∂⎣⎦⎰⎰⎰ 这里c 是任意常数.例1 求()()222336d 64d 0x xy x x y y y +++=的通解.解 这里2236M x xy =+, 2364N x y y =+ 12,12M N xy xy y x∂∂==∂∂ 所以这是一个恰当方程.现求u 使得它同时满足 2236u x xy x∂=+∂ 和 2364u x y y y ∂=+∂ 积分上面第一式可得()3223u x x y y ϕ=++再对y 求导 ()223d 664d y u x y x y y y yϕ∂=+=+∂ 所以()3d 4d y y y ϕ= 积分可得()4y y ϕ=所以得到32243u x x y y =++ 方程的通解为32243x x y y c ++=,这里c 是任意常数.恰当方程可以采用”分项组合”的方法. 此法须熟记一些已知的二元函数的全微分, 如()d d d y x x y xy += 2d d d y x x y x y y ⎛⎫-= ⎪⎝⎭2d d d y x x y y x x -+⎛⎫= ⎪⎝⎭ d d d ln y x x y x xy y ⎛⎫-= ⎪⎝⎭22d d d arctan y x x y x x y y ⎛⎫-= ⎪+⎝⎭ 22d d 1d ln 2y x x y x y x y x y ⎛⎫--= ⎪-+⎝⎭例2 用”分项组合”的办法求例1. 解 分组23223d 4d 6d 6d 0x x y y xy x x y y +++= 即342222d d 3d 3d 0x y y x x y +++=再写成()3422d 30x y x y ++= 于是通解为34223x y x y c ++= 这里c 是任意常数.例3 求解方程211cos d d 0x x x y y y y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭. 解 因为2211,M N y y x y ∂∂=-=-∂∂, 故方程是恰当方程, 分项组合:211cos d d d d 0x x x y x y y y y ⎛⎫++-= ⎪⎝⎭ 即2d d dsin d ln 0y x x y x y y -++= 或 d sin ln 0x x y y ⎛⎫++= ⎪⎝⎭ 所以方程的通解是 sin ln x x y c y ++= 这里c 是任意常数.2.3.2 积分因子这一部分介绍如何将一个非恰当方程转化为恰当方程.如果存在连续可微的函数(),0x y μ≠使得()()()(),,d ,,d 0x y M x y x x y N x y y μμ+= 成为一个恰当方程, 则称(),x y μ为方程()(),d ,d 0M x y x N x y y +=的积分因子.注: 理论上微分方程有解必存在积分因子且不唯一, 从而通解也可能有不同形式.(),x y μ成为方程()(),d ,d 0M x y x N xy y +=的积分因子的充要条件是()()M N y xμμ∂∂=∂∂ 即 M N N M x y y x μμμ⎛⎫∂∂∂∂-=- ⎪∂∂∂∂⎝⎭这是一个关于μ的一阶线性偏微分方程, 事实上, 解这个方程可能会比解原方程更困难. 但对于特殊形式的μ求解会相对容易许多.如果方程存在只与x 有关的积分因子()x μμ=, 则0yμ∂=∂, 这时上述关于μ的一阶线性偏微分方程变为d d M N N x y x μμ⎛⎫∂∂=- ⎪∂∂⎝⎭ 即 d d M N y x x Nμμ⎛⎫∂∂- ⎪∂∂⎝⎭= 于是方程有只与x 有关的积分因子的充要条件是 ()M N y x x Nψ∂∂-∂∂= 这里()x ψ是仅为x 的函数, 如果此条件成立, 则可积分求得方程的一个只与x 有关的积分因子()d x x e ψμ⎰=.同样, 方程有只与y 有关的积分因子的充要条件是 ()M N y x y Mϕ∂∂-∂∂=- 积分可求得方程的一个只与y 有关的积分因子 ()d y y e ϕμ⎰=.例4 试用积分因子法解一阶线性方程.解 将一阶线性方程改写为()()d d 0P x y Q x x y +-=⎡⎤⎣⎦设()()(),M x y P x y Q x =+, (),1N x y =-, 计算可得()M N y x P x N ∂∂-∂∂=- 因此方程有只与x 有关的积分因子()d P x x e μ-⎰=, 用它乘以方程两边得()()()()()d d d d d d 0P x x P x x P x x P x e y x e y Q x e x ---⎰⎰⎰-+= 即()()()()d d d d d d 0P x x P x x P x x y e e y Q x e x ---⎰⎰⎰+-=或()()()d d d 0P x x P x x ye Q x e --⎛⎫⎰⎰-= ⎪⎝⎭⎰ 故通解为()()()d d d P x x P x x ye Q x e x c --⎰⎰-=⎰或改写为()()()d d d P x x P x x y e Q x e x c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰. 例5求解方程d d y x x y =-+()0y >.解 改写方程d d x x y y x +=即 ()221d 2x y x +=容易看出此方程有积分因子μ=, 用它乘以方程两边22d d x y x +=或写为d x =故通解为x c =+ 或()22y c c x =+.例6 求解方程()d d 0y x y x y +-=解 设M y =, N y x =-,1M y ∂=∂, 1N x ∂=-∂, 此方程不是恰当方程.方法1 因为2M N y x M y∂∂-∂∂=--, 故方程有只与y 有关的积分因子 ()2d 2ln 21y y y e e y μ--⎰=== 用它乘以方程的两边得到211d d d 0x x y y y y y+-= 或 2d d d 0y x x y y y y -+= 故通解为 ln x y c y+=. 方法2 将方程改写为d d d y x x y y y -=-由公式知左端有多种积分因子, 其中只和y 有关的积分因子有21y μ=, 用它乘以方程两边可得同样结果. 方法3 改写方程为 d d y y x x y=- 这是一个齐次方程, 令y u x =可求解. 方法4 改写方程为 d 1d x x y y=-这是一个x 作为未知函数的线性方程, 直接用公式可求解. §2.4 一阶隐方程与参数表示一阶隐微分方程的一般形式(),,0F x y y '=如果能够解出y ', 则方程可以采用前面介绍的方法处理. 如果不能解出y '或者解出后形式太复杂, 则可考虑利用变量变换将其变为导数解出的方程. 本节主要介绍一下四种类型1) (),y f x y '= 2) (),x f y y '= 3) (),0F x y '= 4) (),0F y y '=.2.4.1 可以解出y (或x )的方程1) 先讨论形如 d ,d y y f x x ⎛⎫= ⎪⎝⎭的方程, 假设f 有连续偏导数. 引进参数d d y p x =, 则方程变为 (),y f x p =两边对x 求导可得 d d f f p p x p x∂∂=+∂∂ 这是关于p 的导数解出的方程, 若已求得其通解为 (),p x c ϕ=则原方程的通解为()(),,y f x x c ϕ=.若求得通解为 (),x p c ψ=,则原方程的通解为如下参数形式()()(),,,x p c y f p c p ψψ=⎧⎪⎨=⎪⎩若求得通解为(),,0x p c Φ=,则原方程的通解为()(),,0,x p c y f x p Φ=⎧⎪⎨=⎪⎩ 其中p 是参数, c 是任意常数.例1 求方程3d d 20d d y y x y x x ⎛⎫+-= ⎪⎝⎭的解. 解 解出y , 并令d d y p x =, 得到 32y p xp =+两边对x 求导 2d d 322d d p p p p x p x x=++ 整理得23d 2d d 0p p x p p x ++=当0p ≠时, 用p 乘以方程两边3223d d d 0p p x p p x ++=即 423d 04p xp ⎛⎫+= ⎪⎝⎭ 故通解为 4234p xp c += 解出x 并代入32y p xp =+可得 ()43342c p y p p -=+ 因此原方程的参数式的通解为22334212c x p p c y p p ⎧=-⎪⎪⎨⎪=-⎪⎩ 0p ≠ 当0p =时, 直接计算可知0y =也是原方程的解.例2 求方程22d d d d 2y y x y x x x ⎛⎫=-+ ⎪⎝⎭的解. 解 令d d y p x =, 得到 222x y p xp =-+ 两边对x 求导 d d 2d d p p p p x p x x x=--+ 即()d 120d p p x x ⎛⎫--= ⎪⎝⎭ 由d 10d p x-= 解得p x c =+, 并得到原方程的通解 222x y cx c =++ 又20p x -=可解得2x p =, 代入后可解得原方程的另一个解 24x y = 此解和通解中每一条曲线相切, 称之为奇解, 下一章将详细介绍.2) 形如 d ,d y x f y x ⎛⎫= ⎪⎝⎭的方程解法与1)类似. 引入参数d d y p x =, 方程变为 (),x f y p =两边对y 求导再以d 1d x y p=代入得 1d d f f p p y p y∂∂=+∂∂ 此为关于p 的导数解出方程, 可求解, 设通解为 (),,0y p c Φ=则原方程的通解为()(),,,0x f y p y p c =⎧⎪⎨Φ=⎪⎩ 例3 求解例1中的方程3d d 20d d y y x y x x ⎛⎫+-= ⎪⎝⎭. 解 解出x , 并以d d y p x =代入 ()3,02y p x p p-=≠ 两边对y 求导()()232d d d d 1312p p y y p p y p p p ---= 即3d d 2d 0p y y p p p ++=积分可得42yp p c +=因而 42c p y p-= 代入得 4234c p x p -=, 于是原方程的通解为424342c p x p c p y p ⎧-=⎪⎪⎨-⎪=⎪⎩ 此外还有0y =.2.4.2 不显含y (或x )的方程3) 形如(),0F x y '=的方程, 可令d d y p y x'==, 则(),0F x p =代表xp 平面上一条曲线, 设这条曲线有参数式 ()(),x t p t ϕψ==因为d d y p x =, 代入上面的参数式可得()()d d y t t t ψϕ'=积分可得()()d y t t t c ψϕ'=+⎰ 于是原方程的参数式通解为()()(),d .x t y t t t c ϕψϕ=⎧⎪⎨'=+⎪⎩⎰ 例4 求解方程3330x y xy ''+-=.解 令y p tx '==, 方程变为333230x t x x t +-=可得 331t x t =+ 从而2331t p t =+ 于是()()3233912d d d 1t t y tx x t t -==+积分可得()32331421t y c t +=++ 因此原方程的通解为 ()332331314.21t x t t y c t ⎧=⎪+⎪⎨+=+⎪⎪+⎩4) 形如(),0F y y '=可采用同样方法求解. 令p y '=, 将(),0F y p =表示为参数式()(),y t p t ϕψ==由d d y p x =可得()()d d t t t x ϕψ'=, 所以()()d d t x t t ϕψ'=积分得()()d t x t c t ϕψ'=+⎰于是原方程的通解为()()()d .t x t c t y t ϕψϕ'⎧=+⎪⎨⎪=⎩⎰ 此外若(),00F y =有实根y k =, 则y k =亦是原方程的解.例5 求解方程()()2212y y y ''-=-. 解 令2y yt '-=, 代入原方程得 ()2221y yt y t -=即 1y t t=+故21y t '=-所以2d 1d d y x t y t==-', 积分得1x c t=+于是原方程的通解为11x c ty t t ⎧=+⎪⎪⎨⎪=+⎪⎩此外0y '=时原方程变为24y =, 所以2y =±也是原方程的解.§2.5 习题选讲1. 求下列方程的解(1) d sin cos 1d yy x x x+= 解 方程变形为sin d cos d d y x x x y x +=, 左端寻找只和x 有关的积分因子2cos x -, 积分可得2cos d tan cos yx x c x c x-=+=+⎰. (2) 2d d d y x x y x y y -=. 解 方程两边同乘以21x , 可得 2d d d y x x yy y x -=,即d d y y y x ⎛⎫-= ⎪⎝⎭, 通解为212y y c x +=. (3)d 4sin 1d y ye x x-=- 解 方程变为()4sin d d 0y yx e x e y --=, 因为1M Ny x N∂∂-∂∂= 故方程有积分因子x e , 用x e 乘以方程两边可得4sin d d d 0x y x x y e x x e e x e e y --=,即 4sin d x y xe e e x x c =+⎰,所以通解为()2sin cos y x e x x ce -=-+.(5) 22d d 0xxy y xye y x x e y ⎛⎫+-= ⎪⎝⎭解 方程可变形为齐次方程22d d xyxyy xye y x x e+=. 令x u y=, 则x uy =, d d d d x u u y y y =+,代入方程可得2d d 1u uu u e u y y ue +=+, 化简并且变量分离1d d u y e u u y ⎛⎫+=- ⎪⎝⎭, 两边积分可得 ln ln uu e y c +=-+代入原来的变量ln x yex c +=.(6) ()1d d 0xy y x x y +-= 解 方程改写为2d d d xy x x y y x =-容易看出有积分因子2y -.(7) ()()221d 2d 0x y x x y y +-++-= 解 令u x y =+d d d u x y =+, 方程化为()()()()()()()21d 2d 21d 2d d 1d 2d 0u x u yu x u u x u x u u -+-=-+--=++-= 当1u ≠-时, 变量分离可得2d d 1u u x u -=-+, 积分可得3ln 1u u x c -+=-+, ()31u x c e u +-=+代入u 得到方程通解()321x y x y ce +++=,另外1u =-即1x y +=-也是解, 包含于通解中.(8) 23d d y y y x x x=+(伯努利方程)(9)d 32d yy x x=+-(线性方程) (10) 2d d 1d d y y x x x ⎛⎫=+ ⎪⎝⎭(x 可解出的隐方程) (11)2d 1d 3y x y x x y -+=++ 解 方程化为()()21d 3d 0x y x x y y -+-++=,可验证M Ny x∂∂=∂∂, 此为恰当方程. (12) d 1d y x y e xe x -⎛⎫+=⎪⎝⎭解 方程变形为d d d y y xe x e x xe x --+=容易看出方程有积分因子x e -.(13) ()22d 2d 0x y x xy y +-=(14)d 1d yx y x=++ (15) d d yx y y e x x=+(16) ()d 112d y yx e x-++= 解 方程变形为()()12d 1d 0ye x x y --++=方程有只和y 有关的积分因子.(17) ()()2d 1d 0x y x y x y -++=解 方程改写为1d 1d 11y x y y x x x -=-++ 此为1n =-的伯努利方程.(18) ()2234d 21d 0x y x x y y +-=提示: 寻找只和y 有关的积分因子.22M Nx y y x∂∂-=∂∂, 12M Ny x M y∂∂-∂∂=--,方程有积分因子12y -.(19) 2d d 240d d y y x y x x x ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭. (20) 22d 11d y y x ⎡⎤⎛⎫-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦解 令sin y p t '==, 代入得sec y t =±, 由d sin d yt x=可得 sec tan d sin d t t t t x ±=, 整理得2sec d d t t x ±=, 积分得tan x t c =±+消去参数可得()221y x c =++, 此外还有解1y =±.第三章 一阶微分方程的解的存在定理在实际应用当中, 如果能够找出方程的通解表达式, 则可以通过它了解和掌握所研究对象的性质. 但是, 很多一阶方程并不能用初等解法求出通解, 而且实际问题中很多情况下都是要求满足初始条件的解, 因此研究初值问题的解的存在和唯一性具有重要的地位.反例 解存在而不唯一的例子, 方程d d yx=()0,0的解不止一个,0y =和2y x =都是解.解的存在唯一性的意义: 在解的近似计算中提供的理论依据. 在初值问题中对初值测量偏差所产生的影响.§3.1 解的存在唯一性定理与逐步逼近法3.1.1 存在唯一性定理1) 先考虑导数解出的一阶微分方程()d ,d yf x y x= 这里(),f x y 定义在矩形域00:,R x x a y y b -≤-≤上的连续函数.利普希兹条件 如果存在常数0L >使得不等式()()1212,,f x y f x y L y y -≤-对所有()()12,,,x y x y R ∈都成立, 则称函数(),f x y 在R 上满足利普希兹条件, L 成为利普希兹常数.定理1 如果(),f x y 在R 上连续且关于y 满足利普希兹条件, 则方程()d ,d yf x y x=存在唯一的解()y x ϕ=, 定义于区间0x x h -≤上, 连续且满足初始条件()00x y ϕ=这里()(),min ,,max ,x y Rbh a M f x y M∈⎛⎫== ⎪⎝⎭. 证明思路 皮卡逐步逼近法 首先将为微分方程转化为积分方程()00,d xx y y f x y x =+⎰再任取一个连续函数()0x ϕ代入上面积分方程右端的y , 得到()()()0100,d xx x y f x x x ϕϕ≡+⎰,则()1x ϕ也是连续函数, 如果()()10x x ϕϕ≡, 则()0x ϕ就是积分方程的解, 否则继续把()1x ϕ代入积分方程右端的y ,()()()0201,d xx x y f x x x ϕϕ≡+⎰如果()()21x x ϕϕ≡, 则()2x ϕ就是积分方程的解, 否则可以继续此步骤从而得到一个连续函数列()()()01,,,,n x x x ϕϕϕ可以证明上面的函数列有极限函数()x ϕ, 而它正是积分方程的解. 函数列中的第n 项称为n 次近似解.命题 1 设()y x ϕ=是方程()d ,d yf x y x=的定义于区间00x x x h ≤≤+上, 且满足初始条件()00x y ϕ=的解, 则()y x ϕ=是积分方程()00,d xx y y f x y x =+⎰定义于区间00x x x h ≤≤+上的连续解, 反之亦然.取()00x y ϕ=, 构造皮卡逐项逼近函数列()()()()00001,d x nn x x y x y f ϕϕξϕξξ-⎧=⎪⎨=+⎪⎩⎰ 命题 2 对所有的n , 上式中的()n x ϕ在[]00,x x h +上有定义、连续且满足不等式()0n x y b ϕ-≤.命题3 函数列(){}n x ϕ在[]00,x x h +上是一致收敛的.设()()lim n n x x ϕϕ→∞=, 则()x ϕ连续且()0x y b ϕ-≤. 命题 4 ()x ϕ是积分方程()00,d xx y y f x y x =+⎰定义于[]00,x x h +上的连续解.命题 5 设()x ψ是积分方程()00,d xx y y f x y x =+⎰定义于[]00,x x h +上的一个连续解, 则()()x x ϕψ≡.命题1——5即为定理1的证明.注1 利普希兹条件常用(),f x y 在R 上有对y 的连续偏导代替. 此时, 在R 上,fL y∂≤∂,()()()()212121212,,,f x y y y f x y f x y y y yL y y θ∂+--=-∂≤-注 2 对于线性方程()()d d yP x y Q x x=+, 当()P x 和()Q x 都连续时, 则定理条件就能满足.2) 现在考虑一阶隐方程(),,0F x y y '=根据隐函数定理, 如果在()000,,x y y '的某一邻域内F连续且()000,,0F x y y '=, 而0Fy∂≠'∂, 则y '必可唯一的看成是x, y 的函数(),y f x y '=且导数f FFy y y∂∂∂=-'∂∂∂ 也是连续有界的, 这样(),f x y 即满足利普希兹条件, 于是可得到下面定理.定理2 如果在()000,,x y y '的某一邻域中: 1. (),,F x y y '对所有变元连续, 且存在连续偏导数;2. ()000,,0F x y y '=;3.()000,,0F x y y y '∂≠'∂ 则方程(),,0F x y y '=存在唯一解()0,y y x x x h =-≤满足初始条件()()0000,y x y y x y ''==. 3.1.2 近似计算和误差估计§3.2 解的延拓上节中解的存在唯一性定理是局部性的, 即解只在初值附近较小领域存在. 本节讨论如何延拓解的区间至最大范围.解的延拓定理 如果方程()d ,d yf x y x=右端的函数(),f x y 在有界区域G 中连续, 且在G 内关于y 满足局部利普希兹条件, 那么此方程通过G 内任何一点()00,x y 的解()y x ϕ=可以延拓, 直到点()(),x x ϕ任意接近区域G 的边界.推论 如果G 是无界区域, 在上面解的延拓定理的条件下, 方程通过点()00,x y 的解()y x ϕ=可以延拓, 以向x 增大的方向来说, 有两种情况: (1) 解()y x ϕ=可以延拓到区间0[,)x +∞;(2) 解()y x ϕ=只可以延拓到区间0[,)x m , m 为有限数,则当x 趋向于m 时, 或者y 无界, 或者()(),x x ϕ趋向于区域的边界.如果函数(),f x y 在整个xy 平面上定义、连续且有界, 同时存在关于y 的一阶连续偏导数, 则方程()d ,d yf x y x=的任一解可以延拓到区间x -∞<<+∞.§3.3 解对初值的连续性和可微性方程()d ,d yf x y x=的解经过初值()00,x y 是唯一的,当初值()00,x y 变化时,解也随之变化. 因此可以把方程的解看成是三元函数()00,,y x x y ϕ=满足()0000,,y x x y ϕ=.解关于初值的对称性 设方程()d ,d yf x y x=的经过初值()00,x y 的解是唯一的, 记为()00,,y x x y ϕ=, 则此表达式中(),x y 和()00,x y 可以对调位置, 即成立()00,,y x x y ϕ=。

常微分方程课件

常微分方程课件

常微分方程课件常微分方程是数学中的一个重要分支,它研究的是描述自然现象中变化规律的方程。

在物理、生物、经济等领域中,常微分方程都有着广泛的应用。

本文将介绍常微分方程的基本概念、解的存在唯一性以及一些常见的解法方法。

一、常微分方程的基本概念常微分方程是描述未知函数及其导数之间关系的方程。

一般形式为dy/dx = f(x, y),其中y是未知函数,f(x, y)是已知函数。

常微分方程可以分为一阶和高阶两类。

一阶常微分方程只涉及到一阶导数,而高阶常微分方程则涉及到高阶导数。

二、解的存在唯一性对于一阶常微分方程dy/dx = f(x, y),解的存在唯一性定理告诉我们,在一定条件下,该方程存在唯一的解。

这一定理的证明通常基于柯西-利普希茨定理,该定理表明如果f(x, y)在某个区域内连续且满足利普希茨条件,那么解是存在且唯一的。

三、常见的解法方法1. 可分离变量法:当方程可以写成dy/dx = g(x)h(y)的形式时,我们可以通过分离变量的方式将方程化简成两个可积分的方程,然后分别对x和y进行积分得到解。

2. 线性方程:形如dy/dx + p(x)y = q(x)的一阶线性方程可以通过积分因子法求解。

通过找到一个合适的积分因子,将方程变换为(d(xy)/dx) = r(x),然后对两边进行积分得到解。

3. 齐次方程:对于形如dy/dx = f(y/x)的齐次方程,我们可以通过变量替换y =vx将方程转化为可分离变量的形式,然后进行积分得到解。

4. 变量代换法:当方程形式复杂或者无法直接求解时,我们可以通过适当的变量代换将方程化简为更简单的形式,然后再进行求解。

四、应用举例常微分方程在各个领域都有着广泛的应用。

以生物学为例,常微分方程可以用来描述生物种群的增长和衰减规律,从而帮助我们研究生物种群的动态变化。

在经济学中,常微分方程可以用来描述经济模型中的供需关系、市场价格等因素的变化规律,从而帮助我们预测和分析经济现象。

常微分方程(王高雄)第三版 4.2ppt课件

常微分方程(王高雄)第三版 4.2ppt课件
故解组(4.22)线性无关.
10
若 i (i 1,2, , n)均 为 实 数,
则(4.22)是方程(4.19)的基本解组, 从而
(4.19)的通解为 x(t ) c1e 1t c2e 2t cne nt
其中c1, c2 , cn是任常数.
若 i (i 1,2, , n)中 有 复 数,
把方程 (4.19 )的2k个复值解 , 换成2k个实值解.
et cos t, tet cos t, , t k 1et cos t;
et sin t, tet sin t, , t k 1et sin t.
17
(3) 求方程(4.19)通解的步骤
第一步: 求(4.19)特征方程的特征根 1, 2, , k ,
a1xn1
d n1 y dxn1
dy an1x dx
an y
0,
(4.29)
的方程,称为欧拉方程. 这里a1, a2 , , an为常数,
(1) 引进变换 x et (t ln x)
dy dx
dy dt dt dx
et
dy dt
1 x
dy , dt
24
d2y dx2
d
dy
d
dy dx
18
(d ) 对每一个重数是 m 1的共轭复数 i,方程有
2m个如下形式的解
et cos t, tet cos t, , t m1et cos t; et sin t, tet sin t, , t m1et sin t;
第三步: 根据第二步中的(a),(b),(c),(d)情形, 写出方程(4.19)的基本解组及通解.
29
例6
求解方程 x2
d2y dx2

常系数线性微分方程的解法常微分方程课件高教社王高雄教材配套

常系数线性微分方程的解法常微分方程课件高教社王高雄教材配套
收敛速度:数值解法的误差随着计算步长的减小而减小的速度,决定了数值解法的精度和计算 效率
汇报人:
特征值和特征向量
特征值:线性变 换的特征值是线 性变换矩阵的特 征多项式的根
特征向量:线性 变换的特征向量 是线性变换矩阵 的特征多项式的 解
特征值和特征向 量的关系:特征 值和特征向量是 线性变换矩阵的 特征多项式的解 和根
特征值和特征向量 的应用:特征值和 特征向量在常系数 线性微分方程的解 法中有广泛的应用, 如求解线性微分方 程的解、求解线性 微分方程组的解等
积分因子法
积分因子法的定义:通过求解积分因子,将微分方程转化为积分方程,从而求解微分方程的方法。 积分因子法的步骤:首先,求解积分因子;然后,将微分方程转化为积分方程;最后,求解积分方程。
积分因子法的应用:适用于求解常系数线性微分方程,如二阶常系数线性微分方程。
积分因子法的优缺点:优点是简单易行,缺点是适用范围有限,仅适用于常系数线性微分方程。
,
汇报人:
目录
定义和形式
常系数线性微分方程:含有未知函数及其导数的方程,其系数为常数
一阶常系数线性微分方程:形如y' + py = q(t)的方程,其中p和q(t)为常数
二阶常系数线性微分方程:形如y'' + py' + qy = r(t)的方程,其中p、q和r(t)为 常数
高阶常系数线性微分方程:形如y(n) + p(n-1)y(n-1) + ... + qy = r(t)的方程,其中p(n-1)、q和r(t)为常 数
描述物体运动:如自由落体、弹簧 振子等
在物理中的应用
描述热传导:如热传导方程、热扩 散方程等

常微分方程(王高雄)第三版-4.2

常微分方程(王高雄)第三版-4.2
把方程 (4.19 )的2k个复值解 , 换成2k个实值解.
et cos t, tet cos t, , t e k 1 t cos t;
et sin t, tet sin t, , t k 1et sin t.
(3) 求方程(4.19)通解的步骤
第一步: 求(4.19)特征方程的特征根 1, 2,, k ,
d n1 y dxn1
an1x
dy dx
an y
0,
(4.29)
的方程,称为欧拉方程. 这里a1, a2 ,, an为常数,
(1) 引进变换 x et (t ln x)
dy dx
dy dt dt dx
et
dy dt
1 x
dy , dt
d2y dx2
d
dy
d
dy dx
dt
dx dx dt dx
an an1 ank1 0, ank 0;
从而特征方程有如下形式
n a1n1 ank k 0,
而对应方程(4.19)变为
dnx dt n
a1
d n1x dt n1
ank
dkx dt k
0
显然它有 k个解1,t,t 2,,t k1,且它们是线性无关的 ;
从而可得 : 特征方程(4.21)的k重零根对应着
F () n a1n1 an1 an 0, (4.21)
的根,方程(4.21)称为方程(4.19)的特征方程,它的根为 方程(4.19)的特征根.
(1) 特征根是单根的情形
设1, 2,, n是特征方程(4.21)的n个彼此不相
等的特征根,则相应方程(4.19)有如下n个解
e1t , e2t ,, ent
例6

第七章 一阶线性偏微分方程 常微分方程课件 高教社ppt 王高雄教材配套课件

第七章  一阶线性偏微分方程 常微分方程课件 高教社ppt 王高雄教材配套课件

第七章一阶线性偏微分方程§7.1 首次积分和求解常微分方程组基本概念(,,)ni 1n i 1i u X x x 0x =∂=∂∑(,,)(,,)ni1n1ni 1iuX x x Z x x x =∂=∂∑(,,,)(,,,)ni 1n 1n i 1i uY x x u Z x x u x =∂=∂∑例丨例1解x yu uc0u cu0 x y∂∂+=+=∂∂即例2例2 解(,,)(,,)x y y x u g x y u u g x y u 0-=(,)()()(,)xy x y y x x y u y y x u x x y y u xyu u u v u v u v u g g u u g g u u g u g 0v v x y ∂==-=-⋅--⋅=-⋅=∂(,(,,))((,,))u g x y u 0u g x y u ϕΦ==或特征方程定义•齐次线性偏微分方程特征方程•拟线性偏微分方程特征方程(,,)ni1n i 1iu X x x 0x =∂=∂∑(,,,)(,,,)ni 1n 1n i 1iu Y x x u Z x x u x =∂=∂∑d d d n1212nx x x X X X ===d d d d n 1212n x x x uY Y Y Z====首次积分定义首次积分d (,,,),(),,,6d 0ii 1n i 0i y f x y y y x y i 1nx===()首次积分彼此独立彼此独立(,,)(,,)n 1111n 1n n 1nny y D D y y y y ψψψψψψ∂∂∂∂=∂∂∂∂n 1111n 11nn x x x x ϕϕϕϕ--∂∂⎡⎤⎢⎥∂∂⎢⎥⎢⎥⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦一阶线性偏微分方程与常微分方程组的关系d (,)d yf x y 8x=()d (,)d y f x y 0x y x x yψψψψ∂∂∂∂+=+=∂∂∂∂(,)u u f x y 09x y∂∂+=∂∂()d d (,)d d u u u y u uf x y 0x x y x x y ∂∂∂∂=+=+=∂∂∂∂定理1定理112n 12nf f f 010x y y y ψψψψ∂∂∂∂++++=∂∂∂∂()d (,,,),(),,,d 0ii 1n i 0i y f x y y y x y i 1n 6x===()证(,,,)0001n x y y G∈()(,,,)i i 0y x i 12n ϕ==(,(),,())1n x x x const ψϕϕ=d(,(),,())d 1n x x x 0x ψϕϕ=(,,,)(,,,)(,,,)n00000001n i 01n 01n i 1i x y y f x y y x y y 0x y ψψ=∂∂+=∂∂∑(,,,)0001n x y y G ∈12n 12nf f f 010x y y y ψψψψ∂∂∂∂++++=∂∂∂∂()(),,,d(,(),,())d i i 1n 12n y x 12n i 12nx x x f f f 0xxy y y ϕψψψψψϕϕ==⎛⎫∂∂∂∂=++++= ⎪∂∂∂∂⎝⎭(,(),,())1n x x x constψϕϕ=d (,,,),(),,,d 0ii 1n i 0i y f x y y y x y i 1n 6x===()§7.3 利用首次积分求解常微分方程组定理2d(,,,),,,dii1nyf x y y i1n11x==()(,,,),,,i1n ix y y c i1n12ψ==(),证(,,,)(,,,)12n 12n 0y y y ψψψ∂≠∂(,,,),,,i 1n i x y y c i 1n 12ψ==()(,,,),,,i 1n i x y y c i 1n 13ϕ==()(,(,,,),,(,,,)),,,j 11n n 1n j x x c c x c c c j 12n ψϕϕ==d (,,,)(,,,),,,d n i j 1n j 1n i 1ix x 0j 12nxy xϕψϕϕψϕϕ=∂∂+⋅==∂∂∑,,,,j j j1n 1nf f 0j 12n 14x y y ψψψ∂∂∂+++==∂∂∂()(,,,),,,nj ii 1n d f x 0j 12ny dxψϕϕϕ∂⎡⎤-==⎢⎥∂⎣⎦∑(,,,)(,,,)(,,,),,,nj 1n i 1n j 1n i 1i x f x x 0j 12n x y ψϕϕϕϕψϕϕ=∂∂+⋅==∂∂∑d (,,,),,,d ii 1n y f x y y i 1n 11x==()(,,,),,,i 1n i x y y c i 1n 12ψ==()(,,,)(,,,)12n 12n 0y y y ψψψ∂≠∂d (,,,),,,d ii 1n f x j 12nx ϕϕϕ==(,,,),,,,i i 1n y x c c i 12nϕ==(,,,,),,,,i i 01n y x x y y i 12nϕ==(,,,)(,,,)i i 01n c x y y i 12n ψ==(,,,)(,,,)i i 1n y x c c i 12n ϕ==(,,,,)(,,,)(,,,)i 001n i i 01n x x y y y x c c i 12n ϕϕ===(,,,)(,,,,),,,,i 1n i 01n x c c x x y y i 12n ϕϕ==(,,,,)(,,,)i i 01n y x x y y i 12n ϕ==(,,,)(,,,)i i i 01n c c x y y i 12n ψ===,d (,,,),,,d ii 1n y f x y y i 1n 11x==()求首次积分方法(,)(,,)x c y x c 00c cϕψ∂∂≠≠∂∂或d d d d n12012ny y y x g g g g ====(,,)i 0i g g f i 1n ==,,,01nμμμ,d d d d 0011n n 011n n g g g 0x y y μμμμμμϕ+++=+++=d (,,,),,,d ii 1n y f x y y i 1n 11x==()例1 求解方程组d d d d 222222y2xy x x y z z 2xz x x y z ⎧=⎪--⎪⎨⎪=⎪--⎩d d d 222x y zx y z 2xy 2xz==--d d y z yz=1y c z=d d d d ()222x x y y z z yx x y z 2xy++=++2222x y zc y++=12222yc z x y z c y ⎧=⎪⎪⎨++⎪=⎪⎩例2 求方程组的通积分d d d x y z xz yz xy==,,012g xz g yz g xy===,,012y x 2z μμμ===-001122g g g 0μμμ++=()2012dx dy dz d xy z μμμ++=-21xy z c -=2xc y=212xy z c x cy ⎧-=⎪⎨=⎪⎩。

常微分方程PPT

常微分方程PPT

• 参考书目: [1] 常微分方程, 东北师大数学系编,高教出版社 [2] 常微分方程讲义,王柔怀、伍卓群编,高教出版社 [3] 常微分方程及其应用,周义仓等编,科学出版社 [4] 微分方程定性理论,张芷芬等编,科学出版社。
教学安排
• 第1周——第12周,共48学时 (第5周四,第6周国庆,实际授课时42学时) • 考试安排:在结课后一周考试, • 总成绩=平时(40%)+期末(60%),有 小论文可以加分,每周四课后交作业 • 答疑时间:周四晚7:00-9:00,地点7112
• 基本思想: 把研究的问题中已知函数和未知函数之间的关系 找出来,从列出的包含未知函数及其导数的一个 或几个方程中去求得未知函数的表达式,即求解 微分方程
• 微分方程差不多是和微积分同时先后产生的 • 牛顿在建立微积分的同时,对简单的微分方程用 级数来求解 • 瑞士数学家雅各布·贝努利、欧拉、法国数学家 克雷洛、达朗贝尔、拉格朗日等人又不断地研究 和丰富了微分方程的理论 • 法国数学家Poincare及前苏联数学家Lyapunov等 对现代微分方程理论的建立做出了巨大的贡献
N (t ) r (1 ) Nm
logistic模型
传染病模型
• 假设传染病传播期间其地区总人数不变, 为常数n,开始时染病人数为x0,在时刻t的 健康人数为y(t),染病人数为x(t) • 假设单位时间内一个病人能传染的人数与 当时的健康人数成正比,比例系数为k
SI模型 易感染者:Susceptible 已感染者:Infective
SIS模型
• 对无免疫性的传染病,假设病人治愈后会再次被 感染,设单位时间治愈率为mu
SIR模型(R:移出者(Removed))
• 对有很强免疫性的传染病,假设病人治愈后不会在 被感染,设在时刻t的愈后免疫人数为r(t),称为移出 者,而治愈率l为常数

常微分方程(王高雄)第三版 4.3ppt课件

常微分方程(王高雄)第三版 4.3ppt课件
§4.3高阶微分方程的降阶和幂级数解法
.
1
一、可降阶的一些方程类型
n阶微分方程的一般形式: F(t,x,x',,x(n))0
1 不显含未知函数x,
或更一般不显含未知函数及其直到k-1(k>1)阶导数的方程是
F (t,x (k ),x (k 1 ), ,x (n )) 0 (4 .5)7
若令 x(k) y,则可把方 y的 程 nk化 阶为 方程
y,
则方程化为
dy1 y 0
dt t
这是一阶方程,其通解为 yct,
即有
d 4x dt 4 ct ,
对上式积分4次, 得原方程的通解为
x c 1 t5 c 2 t3 c 3 t2 c 4 t c 5 ,
.
4
2 不显含自变量t的方程,
一般形式:
F (x,x', ,x(n))0 , (4 .5)9
此时 y以 x'作为新的,而 未x把 知 作函 为数 新的 ,
代入(4.69)得
x'' x1y'' 2x1 'y' x1 ''y
x 1 y '' [ 2 x 1 ' p ( t ) x 1 ] y ' [ x 1 '' p ( t ) x 1 ' q ( t ) x 1 ] y 0

x1y''[2x1 ' p(t)x1]y' 0
.
9
引入新的未知函数 z y ' , x1 y'' [2x1' p(t)x1]y' 0
显 然 xi 0 ,i1 ,2 ,L,k,令xxky,则 x' xky' xk' y

常微分方程(第三版)课件第一章

常微分方程(第三版)课件第一章
2u 2u 2u 8. 2 2 4 xy y
§1.1 Sketch of ODE n阶隐式方程 n阶显式方程 方程组
偏微分方程 偏微分方程 不是微分方程
9. f 2 ( x) sin x
§1.1 Sketch of ODE
微分方程模型举例/Modeling of ODE/
CH.1 Introduction
本章要求/Requirements/
能快速判断微分方程的类型;
掌握高阶微分方程及其初值问题的一般形式;
理解微分方程解的意义。
§1.1 Sketch of ODE
§ 1.1 微分方程概述/ Sketch of ODE/
微分方程理论起始于十七世纪末,是研究自然现象强有 力的工具,是数学科学联系实际的主要途径之一。
§ 1.2 基本概念/Basic Conception/
1. 常微分方程和偏微分方程 2. 一阶与高阶微分方程 3. 线性和非线性微分方程 4. 解和隐式解 5. 通解和特解 6. 积分曲线和积分曲线族 7. 微分方程的几何解释-----方向场
§1.2 Basic Conception
常微分方程与偏微分方程/ODE and PDE/
电子课件
常微分方程
Ordinary differential equation
王高雄 周之铭 朱思铭 王寿松编
常微分方程
Ordinary differential equation
• • • • • • • 第一章 第二章 第三章 第四章 第五章 第六章 第七章 绪 论 一阶微分方程的初等解法 一阶微分方程的解的存在定理 高阶微分方程 线性微分方程组 定性理论初步1 2 一阶线性偏微分方程
常微分方程的解的表达式中,可能包含一个或者几个常
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4.22)
由于
e1t
W [e1t , e2t , , ent ] 1e1t
e n1 1t 1
e2t
2e2t
e n1 2t 2
ent
nent
e n1 nt n
9
1 1 1
1 2 n
e(12 n )t
n1 1
n1
2
n1 n
e (12 n )t (i j ) 0 1 jin
d n1x dt n1
an (t)x
f
(t)
dnx dt n
a1(t)
d n1x dt n1
an (t)x 0
(4.1) (4.2)
(1)定义 定义于区间a t b上的实变量复值函数z(t),
称为方程(4.1)的复值解, 如果
d n z(t) dt n
a1(t)
d n1z(t) dt n1
(4.19)
其中a1, a2, , an为常数, 称(4.19)为n阶常系数齐线性方程. 显然,一阶常系数齐线性方程
有解
dx ax 0 dt
x ceat ,
7
对(4.19)尝试求指数函数形式的解
x et , (4.20)
这里是待定常数, 可以是实数也可以是复数。
把它代入方程(4.19)得
L[et ] (n a1n1 an1 an )et 0 因此, et为(4.19)的解的充要条件是 : 是代数方程
5
(3)定理9 若方程
dnx dt n
a1
(t
)
d n1x iv(t)
有复值解x U (t) iV (t),这里ai (t)(i 1, 2,L , n)及u(t),
v(t)都是实值函数,则这个解的实部U (t)和虚部V (t)分
别是方程
dnx dt n
F () n a1n1 an1 an 0, (4.21)
的根,方程(4.21)称为方程(4.19)的特征方程,它的根为 方程(4.19)的特征根.
8
(1) 特征根是单根的情形
设1, 2, , n是特征方程(4.21)的n个彼此不相
等的特征根,则相应方程(4.19)有如下n个解
e1t , e2t , , ent
解为
et cos t, et sin t;
(2) 特征根是重根的情形
设特征方程 (4.21)有k重根 1,则有 F (1) F ' (1) F (k1) (1) 0, F (k) (1) 0; 下面分1 0和1 0两种情形加以讨论
12
(a) 设1 0 则 特 征 方 程 有 因 子 k ,因 此
a t b上连 续.
若(t)与 (t)在a t b上可微,则称z(t)在
a t b上可微,且z(t)的导数为 z' (t) ' (t) i ' (t)
复函数的求导法则与实函数求导法则相同
2
2 复指数函数
定义 z(t) ekt e( i)t et (cos t i sin t)
an an1 ank1 0, ank 0;
从而特征方程有如下形式
n a1n1 ank k 0,
而对应方程(4.19)变为
dnx dt n
a1
d n1x dt n1
ank
dkx dt k
0
显然它有 k个解1,t,t 2, ,t k1,且它们是线性无关的 ;
从而可得 : 特征方程(4.21)的k重零根对应着
因方程的系数为实常数,复根将成对共轭出现,
设1 i是特征根,则2 i也是特征根 ,
相应方程(4.19)有两个复值解,
e( i)t et (cos t i sin t), e( i)t et (cos t i sin t);
11
由定理8知,它的实部和虚部也是方程的解, 对方程
的一对共轭复根: 1 i , 得(4.19)的两个实值
欧拉公式:
cost sin t
1 (eit eit ) 2 1 (eit eit )
2i
性质: (1) ekt ekt,
(2)
e e e , (k1k2 )t
k1t k2t
(3)
d ekt kekt, (4) dt
dn dt n
ekt
k nekt,
3
3 复值解
dnx dt n
a1(t)
a1(t)
d n1x dt n1
an (t)x
u(t)

dnx dt n
a1
(t
)
d n1x dt n1
an (t)x
v(t)
的解.
6
二、常系数齐线性方程和欧拉方程
1 常系数齐线性方程的求解方法(Euler待定系数法) 考虑方程
L[x]
dnx dt n
a1
d n1x dt n1
an x 0
L1[ y]
dny dt n
b1
d n1 y dt n1
bn y
0,
(4.23)
其中b1, b2 , , bn仍为常数 , 方程(4.23)相应特征方程为
G() n b1 n1 bn1 bn 0, (4.24)
方程(4.19)的k个线性无关的解 1, t, t 2 , , t k1;
13
(b) 设1 0
作 变 换 x ye1t并 把 它 代 入 方 程 (4.19), 经 整 理 得
L[
ye1t
]
(
dn dt
y
n
b1
d n1 y dt n1
bn y)e1t
L1[ y]e1t
于是方程(4.19)化为
an (t)z(t)
f
(t)
对于a t b恒成立.
4
(2)定理8 如果方程(4.2)的所有系数ai (t)(i 1,2,L , n) 都是实值函数,而x z(t) (t) i (t)是方程的复值 解,则z(t)的实部(t)和虚部 (t)及z(t)的共轭复数z(t) 也都是方程(4.2)的解.
故解组(4.22)线性无关.
10
若 i (i 1,2, , n)均 为 实 数,
则(4.22)是方程(4.19)的基本解组, 从而
(4.19)的通解为 x(t ) c1e 1t c2e 2t cne nt
其中c1, c2 , cn是任常数.
若 i (i 1,2, , n)中 有 复 数,
常微分方程 Ordinary Differential Equations
第四章
§4.2 常系数线性方程的解法
1
一、复值函数与复值解
1 复值函数
如果(t)与 (t)是区间a t b上定义的实函数, 我们称z(t) (t) i (t)为区间a t b上的复值函数.
若(t)与 (t)在区间a t b上连续,则称z(t)在
相关文档
最新文档