一元一次方程说课PPT
合集下载
《一元一次方程》PPT优秀课件
列方程:方程是根据题中的等量关系列出的等式. 既可用已知数,又可用未知数,解决问题从比算较式方到便方.程是数
学的进步!
探究新知
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个 问题2:说一说每个方程中未知数的次数. 1次 问题3:等号两边的式子有什么共同点? 都是整式
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其 是不是一元一次方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可以 跑3000m?
一周长×周数=总路程 解:设沿跑道跑x周.
400x=3000, 是一元一次方程.
含有未知数的等式
方程
探究新知
一辆快车和一辆慢车同时从A地出发沿同一公路同方 向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是 60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程 是多少?
60 km/h
1h
70 km/h
探究新知 (1) 上述问题中涉及到了哪些量? 路程:AB之间的路程. 速度:快车70 km/h,慢车60 km/h. 时间:快车比慢车早1h经过B地.
程,则 m= 1 .
加了限制条件,需进行取舍.
方法总结:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
巩固练习
方程3x5-2k -8=0是关于x的一元一次方程,则 k=___2__. 方程x|m| +4=0是关于x的一元一次方程,则 m=_1_或__-1_. 方程(m-1)x -2=0是关于x的一元一次方程,则 m__≠_1__.
学的进步!
探究新知
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个 问题2:说一说每个方程中未知数的次数. 1次 问题3:等号两边的式子有什么共同点? 都是整式
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其 是不是一元一次方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可以 跑3000m?
一周长×周数=总路程 解:设沿跑道跑x周.
400x=3000, 是一元一次方程.
含有未知数的等式
方程
探究新知
一辆快车和一辆慢车同时从A地出发沿同一公路同方 向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是 60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程 是多少?
60 km/h
1h
70 km/h
探究新知 (1) 上述问题中涉及到了哪些量? 路程:AB之间的路程. 速度:快车70 km/h,慢车60 km/h. 时间:快车比慢车早1h经过B地.
程,则 m= 1 .
加了限制条件,需进行取舍.
方法总结:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
巩固练习
方程3x5-2k -8=0是关于x的一元一次方程,则 k=___2__. 方程x|m| +4=0是关于x的一元一次方程,则 m=_1_或__-1_. 方程(m-1)x -2=0是关于x的一元一次方程,则 m__≠_1__.
《一元一次方程》数学教学PPT课件(4篇)
根据这个等量关系,可以列出什么方程?
3x+1=64
观察3x+1=64,4+3(x-1)=64,以及上节
中的方程9x-0.75=393,32+x-8=29等,
它们有什么共同特点?
共同特点:
(1) 方程两边都是整式
(2)只含一个未知数
(3)未知数的次数都是1
定义: 方程两边都是整式,只含有一个未
这些方程都只含有一个未知数,并且
请同学们讨论分析
让我们做几道练习题吧
请同学们小组讨论这道题目
请同学们对照自己的答案,并与小组同学讨论
课堂巩固
拓展提高
课堂小结
课下作业
巩固课堂知识,并完成课本P80练习1、2(必做题),3、4(选做题)。
第7章
7.2 一元一次方程
回顾
方程: 含有未知数的等式.
你能判断下列各式中,哪些是方程吗?
Concise And Concise Do Not Need Too Much Text
前言
学习目标
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。
2、初步学会如何寻找问题中的相等关系了解方程的概念。
难点:从实际问题中寻找相等的关系。
• 1700 + 150x = 2450
• 4x=24
• 25x-1=124
• 有什么共同点?
归纳共同点
• 1都只含有一个未知数
• 2未知数的次数都是1
• 3等号两边都是整式
• 4都是方程
• 概念理解:只含有一个未知数(元),并且未知数的
次数都是1,等号两边都是整式,这样的方程叫做
一元一次方程
让我们来练习吧
3.1 从算式到方程
3x+1=64
观察3x+1=64,4+3(x-1)=64,以及上节
中的方程9x-0.75=393,32+x-8=29等,
它们有什么共同特点?
共同特点:
(1) 方程两边都是整式
(2)只含一个未知数
(3)未知数的次数都是1
定义: 方程两边都是整式,只含有一个未
这些方程都只含有一个未知数,并且
请同学们讨论分析
让我们做几道练习题吧
请同学们小组讨论这道题目
请同学们对照自己的答案,并与小组同学讨论
课堂巩固
拓展提高
课堂小结
课下作业
巩固课堂知识,并完成课本P80练习1、2(必做题),3、4(选做题)。
第7章
7.2 一元一次方程
回顾
方程: 含有未知数的等式.
你能判断下列各式中,哪些是方程吗?
Concise And Concise Do Not Need Too Much Text
前言
学习目标
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。
2、初步学会如何寻找问题中的相等关系了解方程的概念。
难点:从实际问题中寻找相等的关系。
• 1700 + 150x = 2450
• 4x=24
• 25x-1=124
• 有什么共同点?
归纳共同点
• 1都只含有一个未知数
• 2未知数的次数都是1
• 3等号两边都是整式
• 4都是方程
• 概念理解:只含有一个未知数(元),并且未知数的
次数都是1,等号两边都是整式,这样的方程叫做
一元一次方程
让我们来练习吧
3.1 从算式到方程
人教版七年级上册(新)第三章《一元一次方程》说课课件(30张PPT)
本节课是在学生已具备的感性认识基础上,重点研究什么是方程,一元
一次方程和找相等关系列方程。通过对这一部分内容的学习,使学生认识到 方程是更方便、更有力的数学工具,从算术方法到代数方法是数学的进步, 让学生充分感受到方程作为刻画现实世界有效模型的意义,体会列方程中蕴 涵的“数学建模思想”。
2、教学目标分析
础.它一方面是对小学学段学习的有关算术方法解题和简单方程的运 用的进一步发展,也是今后学习二元一次方程组、一元二次方程、函 数等知识的基础,有承上启下的作用。
1、教材的地位和作用
《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程
的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学 模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在 解决问题中与他人合作的重要性,获得解决问题的经验.
(1)一台计算机已使用1700小时,预计每月再使用150小时, 经过多少月这台计算机的使用时间达到规定的检修时间2450小时? (2)用一根长24cm的铁丝围成一个长方形,使它的长是宽的1.5倍, 长方形的长、宽各应是多少? (3)某校女生占全校学生数的52%,比男生多80人,这个学校有多 少学生?
情感目标
程是刻画现实世界的一种有效的数学模型,初步体会建立
数学模型的思想。
3、教材重点、难点分析
知道什么是方程,一元一次方程,使学生理解问题情
境,探究情境中包含的数量关系,最终用方程来描
Hale Waihona Puke 重点述和刻画事物间的相等关系。
难点
思维习惯的转变, 从问题情境中找等量关系列方程
二、学情分析
学生刚刚进入中学,理性思维的发展还很有限,他们在知识经 验、心理品质等方面依然保留有小学生的特点:天真活泼,对新鲜 事物很感兴趣,具有强烈的求知欲,形象思维已经比较成熟,但抽 象思维能力还比较薄弱。
一元一次方程课件20张PPT
WENKU DESIGN
代数问题
代数式化简
通过一元一次方程,我们 可以对代数式进行化简, 简化计算过程。
解方程
一元一次方程是解代数方 程的基础,通过解一元一 次方程,我们可以找到代 数方程的解。
方程组求解
利用一元一次方程,我们 可以求解更复杂的方程组, 找到多个未知数的值。
实际问题
比例问题
利润和折扣问题
培养学生对数学的兴趣 和热爱,提高数学素养。
PART 02
一元一次方程的基本概念
REPORTING
WENKU DESIGN
定义与形式
定义
一元一次方程是只含有一个未知 数,且该未知数的次数为1的方程 。
形式
ax + b = 0,其中a和b是已知数, x是未知数。
方程的解与根
解的概念
满足方程的未知数的值称为方程的解。
移项法
总结词
通过将方程两边的同类项进行移动,使得未知数的系数为1,从 而求解未知数。
详细描述
移项法是一元一次方程中最常用的解法之一。具体操作是将含 有未知数的项移到等号的左边,常数项移到等号的右边,使得 未知数的系数为1,从而可以通过简单的除法计算得出未知数的 值。
合并同类项法
总结词
通过将方程两边的同类项进行合并,简化方程的形式,从而更容易求解未知数。
历史背景
一元一次方程是数学中一 个基础而重要的概念,起 源于古代数学,是代数和 数学分析的基础。
重要性
一元一次方程在日常生活 和科学研究中有着广泛的 应用,是解决实际问题的 重要工具。
课程目标
01
掌握一元一次方程的基 本概念和性质。
02
学会解一元一次方程的 方法。
《一元一次方程》PPT优质课件
D、3x+1=2属于一元一次方程,故此选项正确.
故选:D.
课堂练习
2.已知x =1是关于x的方程2-ax = x+a的解,则a的值是(
1
3
A.2
B.-1 C. 2 D.1
)
【答案】A
【分析】把x=1代入方程2-ax=x+a得到关于a的一元一次方程,解之即可.
【详解】
解:把x=1代入方程2-ax=x+a 得:2-a=1+a,
故答案是:﹣2.
课堂练习
4.一个两位数,个位上的数是1,十位上的数是x,把1与x对调,新两位
数比原两位数小18,x应是哪个方程的解?你能想出x是几吗?
客车行驶的时间可表示为: 70 ℎ
时间=路程/速度
卡车行驶的时间可表示为:
ℎ
60
而小汽车比大货车早1h经过B地,也就是大货车行驶时间
比小汽车多 1 h。
=1
‒
60
70
新知探究
比较用算术方法和列方程解题的特点?
用算术方法解
用方程解
未知数不参加列式
未知数用字母表示来列式
根据题中的已知数和未知数间的关
重点难点
重点:列出方程,了解方程的概念。
难点:从实际问题中寻找相等的关系。
02
新 课 导 入
新知探究
一辆客车和一辆卡车同时从A地出发同向行驶,客车的行驶速度是70 km/h,卡车的
行驶速度是60 km/h,客车比卡车早1 h到达B地. A,B两地间的路程是多少?
A
B
你会用算术方法解决这个问题吗?
B.3x+1>2
)
C.y=2x+1 D.3x+1=2
故选:D.
课堂练习
2.已知x =1是关于x的方程2-ax = x+a的解,则a的值是(
1
3
A.2
B.-1 C. 2 D.1
)
【答案】A
【分析】把x=1代入方程2-ax=x+a得到关于a的一元一次方程,解之即可.
【详解】
解:把x=1代入方程2-ax=x+a 得:2-a=1+a,
故答案是:﹣2.
课堂练习
4.一个两位数,个位上的数是1,十位上的数是x,把1与x对调,新两位
数比原两位数小18,x应是哪个方程的解?你能想出x是几吗?
客车行驶的时间可表示为: 70 ℎ
时间=路程/速度
卡车行驶的时间可表示为:
ℎ
60
而小汽车比大货车早1h经过B地,也就是大货车行驶时间
比小汽车多 1 h。
=1
‒
60
70
新知探究
比较用算术方法和列方程解题的特点?
用算术方法解
用方程解
未知数不参加列式
未知数用字母表示来列式
根据题中的已知数和未知数间的关
重点难点
重点:列出方程,了解方程的概念。
难点:从实际问题中寻找相等的关系。
02
新 课 导 入
新知探究
一辆客车和一辆卡车同时从A地出发同向行驶,客车的行驶速度是70 km/h,卡车的
行驶速度是60 km/h,客车比卡车早1 h到达B地. A,B两地间的路程是多少?
A
B
你会用算术方法解决这个问题吗?
B.3x+1>2
)
C.y=2x+1 D.3x+1=2
一元一次方程ppt课件
计算精度要求
因式分解法和配方法相对公式法而言,计算过程较为简单,更适 合对计算精度要求较高的场合。
理解难度
因式分解法和配方法更易于理解,适合初学者学习。
解法的局限性
1 2
公式法的局限性
对于某些特殊形式的一元一次方程,公式法可能 无法求解或求解过程非常复杂。
因式分解法的局限性
对于没有公因子的一元一次方程,因式分解法无 法使用。
03
未知数
一元一次方程中的未知数可以是一个字母,通常表示为 x。
特点
01
02
03
只有一个未知数
一元一次方程只包含一个 未知数 x。
未知数的指数为1
一元一次方程中未知数的 最高次数为1。
方程的解是实数
一元一次方程的解是实数 ,因为它的形式简单,解 容易找到。
示例
2x + 5 = 0
输标02入题
01
总结词
根号的引入使得一元一次方程的解法 变得较为特殊。
详细描述
含根号的一元一次方程通常表示为 ax + b = c√x,其中 a、b、c 是常数。 根号的引入使得方程的解法变得较为 特殊,需要利用根式的性质进行化简 ,并采用特定的方法求解。
一元一次方程的解法总结与比
05
较
三种解法的比较
公式法
01
含绝对值的一元一次方程
总结词
绝对值的引入使得一元一次方程的解法变得相对复杂。
详细描述
含绝对值的一元一次方程通常表示为 f(x) = ax + b |x - c|,其中 a、b、c 是常数 。绝对值的引入使得方程的解法变得相对复杂,需要分情况讨论绝对值内部的正 负情况,从而得到不同的解。
含根号的一元一次方程
因式分解法和配方法相对公式法而言,计算过程较为简单,更适 合对计算精度要求较高的场合。
理解难度
因式分解法和配方法更易于理解,适合初学者学习。
解法的局限性
1 2
公式法的局限性
对于某些特殊形式的一元一次方程,公式法可能 无法求解或求解过程非常复杂。
因式分解法的局限性
对于没有公因子的一元一次方程,因式分解法无 法使用。
03
未知数
一元一次方程中的未知数可以是一个字母,通常表示为 x。
特点
01
02
03
只有一个未知数
一元一次方程只包含一个 未知数 x。
未知数的指数为1
一元一次方程中未知数的 最高次数为1。
方程的解是实数
一元一次方程的解是实数 ,因为它的形式简单,解 容易找到。
示例
2x + 5 = 0
输标02入题
01
总结词
根号的引入使得一元一次方程的解法 变得较为特殊。
详细描述
含根号的一元一次方程通常表示为 ax + b = c√x,其中 a、b、c 是常数。 根号的引入使得方程的解法变得较为 特殊,需要利用根式的性质进行化简 ,并采用特定的方法求解。
一元一次方程的解法总结与比
05
较
三种解法的比较
公式法
01
含绝对值的一元一次方程
总结词
绝对值的引入使得一元一次方程的解法变得相对复杂。
详细描述
含绝对值的一元一次方程通常表示为 f(x) = ax + b |x - c|,其中 a、b、c 是常数 。绝对值的引入使得方程的解法变得相对复杂,需要分情况讨论绝对值内部的正 负情况,从而得到不同的解。
含根号的一元一次方程
《方程》一元一次方程PPT课件(第1课时从算式到方程)
探究新知
解决问题:(1)x=2,x=
3 2
是方程2x=3的解吗?
(2)x=10,x=20是方程3x=4(x-5)的解吗?
探究新知
解:(1)当x=2时,方程2x=3的左边=2×2=4,右边=3,方程左、 右两边的值不相等,所以x=2不是方程2x=3的解;
当x=
3 2
时,方程2x=3的左边=2
×
3 2
⑤
4 y
=5.
A.1个 B.2个 C.3个 D.4个
3.当m=__3_或___1__时,关于x的方程x|2-m|+1=0是一元一
次方程.
巩固练习
4.x=3是下列哪个方程的解 ( B )
A.2x+7=11
B.5x-8=2x+1
C.3x=1
D.-x=3
5.根据“x的2倍与3的和比x的二分之一少4”可列方程 ( D )
根据“女生比男生多80人”列方程 0.52x 1 0.52 x 80.
探究新知
根据下列问题,设未知数并列出方程: (2)如图,一块正方形绿地沿某一 方向加宽5m,扩大后的绿地面积 是500m²,求正方形绿地的边长. 解:设正方形绿地的边长为x m,那么沿某一方向加 宽5m后的长为(x+5)m,根据“扩大后的绿地面积是 500 m2”,列方程 x(x+5)=500 .
第五章 一元一次方程
5.1 方程
第1课时 从算式到方程
学习目标
1.通过引入实际问题情境,让学生在算式、代数两种方式下进行问题 的解决,体会由算术到代数是数学的一大进步,从而培养学生分析、 归纳、抽象概括的思维能力,初步认识建立数学模型的思想. 2.经历用含有未知数的等式表示实际问题中的相等关系,感悟方程的 现实意义,理解方程的定义,培养学生获取信息、分析问题、处理问 题的能力,提升方程模型的应用意识. 3.通过数学背景材料,让学生理解并掌握方程、一元一次方程及其相 关概念的内涵,培养学生的阅读理解、拓展探究的能力,增强学生的 数学应用意识,调动学生学习数学的主动性。
《一元一次方程》课件完美版
《一元一次方程》课件完美版(PPT优 秀课件 )
定义
注意:移项一定要变号 移项
步骤 合并同类项
应用
系数化为1
《一元一次方程》课件完美版(PPT优 秀课件 )
布置作业
1.教科书第92页习题3.2第6,10,11题。 2.补充作业:周末,甲、乙两个商场搞促销活动,甲商场的 活动为所有商品全部按标价的8折出售,乙商场的活动为标价 200元以下的商品按标价出售,超出200元的部分打7折。现有 某件商品在两个商场的标价都为400元,应当在哪个商场购买 更实惠?如果标价为600元呢?为800元呢?你能否给顾客一 些建议,以便获得更大的实惠呢?
怎样才能使它向 x=a (a为常数)的形式转化呢?
一、用移项解一元一次方程
合作探究 请运用等式的性质解下列方程:
(1) 4x-15 = 9;
你有什么发现?
解:两边都加15,得 4x-15 +15 = 9 +15 合并同类项,得 4x = 9 +15。 4x = 24 系数化为1,得 x=6
(1) 4x--1155= 9
①
4x = 9 +15 ②
问题1 观察方程①到方程②的变形过程,说一说有 改变的是哪一项?它有哪些变化?
(1) 4x--1155 = 9
①
4x = 9 +15 ② “-15”这项移动后,从方程的左边移到了方程的右边。
符号由“-”变“+”
(2) 2x = 5x -21 解:两边都减5x,得
2x-5x = 5x-21-5x 2x-5x = -21 合并同类项,得
例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最 大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t。 新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?
定义
注意:移项一定要变号 移项
步骤 合并同类项
应用
系数化为1
《一元一次方程》课件完美版(PPT优 秀课件 )
布置作业
1.教科书第92页习题3.2第6,10,11题。 2.补充作业:周末,甲、乙两个商场搞促销活动,甲商场的 活动为所有商品全部按标价的8折出售,乙商场的活动为标价 200元以下的商品按标价出售,超出200元的部分打7折。现有 某件商品在两个商场的标价都为400元,应当在哪个商场购买 更实惠?如果标价为600元呢?为800元呢?你能否给顾客一 些建议,以便获得更大的实惠呢?
怎样才能使它向 x=a (a为常数)的形式转化呢?
一、用移项解一元一次方程
合作探究 请运用等式的性质解下列方程:
(1) 4x-15 = 9;
你有什么发现?
解:两边都加15,得 4x-15 +15 = 9 +15 合并同类项,得 4x = 9 +15。 4x = 24 系数化为1,得 x=6
(1) 4x--1155= 9
①
4x = 9 +15 ②
问题1 观察方程①到方程②的变形过程,说一说有 改变的是哪一项?它有哪些变化?
(1) 4x--1155 = 9
①
4x = 9 +15 ② “-15”这项移动后,从方程的左边移到了方程的右边。
符号由“-”变“+”
(2) 2x = 5x -21 解:两边都减5x,得
2x-5x = 5x-21-5x 2x-5x = -21 合并同类项,得
例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最 大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t。 新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?
《一元一次方程——认识一元一次方程》数学教学PPT课件(6篇)
未知数的指数
且方程中的代数式都是整式,______________
都是1,这样的方程叫做一元一次方程.
做一做
判断下列各式是不是一元一次方程.
√
√
x
√
⑤x+3>0;⑥2x -2(x -x)=1;⑦
2
①2x2-5=4;②-m+8=1;③x=1;④x+y=1;
7 4
2
2
√
;⑧πx=12.
判断一个方程是一元一次方程,化简后必须
所以得到等式:___________
像这样含有未知数的等式叫做方程.
情境引入
小颖种了一株树苗,开
始时树苗高为40厘米,栽种
后每周树苗长高约15厘米,
大约几周后树苗长高到1米?
如果设x周后树苗长高
到1米,那么可以得到方程:
40+15x =100
情境引入
第六次全国人口普查统计数据, 2010年全
国每10万人中具有大学文化程度的人数为8930
例3 根据下列问题,设未知数并列出方程
(1)用一根长24 cm的铁丝围成一个正方形,正
方形的边长是多少?
解:设正方形的边长为x cm.
等量关系:正方形边长×4=周长.
列方程: 4 x 24
x
.
(2)一台计算机已使用1700 h,预计每月再使用
150 h,经过多少月这台计算机的使用时间达到规
定的检修时间2450 h?
的值,叫做方程的解.
x=2是方程3x+(10-x)=20的解吗?
新知探究
练一练
(1)下列四个方程中,一元一次方程是 ( D )
A. x2-1=0
B.x+y=1
C.12-7=5
且方程中的代数式都是整式,______________
都是1,这样的方程叫做一元一次方程.
做一做
判断下列各式是不是一元一次方程.
√
√
x
√
⑤x+3>0;⑥2x -2(x -x)=1;⑦
2
①2x2-5=4;②-m+8=1;③x=1;④x+y=1;
7 4
2
2
√
;⑧πx=12.
判断一个方程是一元一次方程,化简后必须
所以得到等式:___________
像这样含有未知数的等式叫做方程.
情境引入
小颖种了一株树苗,开
始时树苗高为40厘米,栽种
后每周树苗长高约15厘米,
大约几周后树苗长高到1米?
如果设x周后树苗长高
到1米,那么可以得到方程:
40+15x =100
情境引入
第六次全国人口普查统计数据, 2010年全
国每10万人中具有大学文化程度的人数为8930
例3 根据下列问题,设未知数并列出方程
(1)用一根长24 cm的铁丝围成一个正方形,正
方形的边长是多少?
解:设正方形的边长为x cm.
等量关系:正方形边长×4=周长.
列方程: 4 x 24
x
.
(2)一台计算机已使用1700 h,预计每月再使用
150 h,经过多少月这台计算机的使用时间达到规
定的检修时间2450 h?
的值,叫做方程的解.
x=2是方程3x+(10-x)=20的解吗?
新知探究
练一练
(1)下列四个方程中,一元一次方程是 ( D )
A. x2-1=0
B.x+y=1
C.12-7=5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一
1
教材分析
教材的地位和作用
通过对这一部分内容的学 习,使学生认识到方程是 更方便、更有力的数学工 具,从算术方法到代数方 法是数学的进步,让学生 充分感受到方程作为刻画 现实世界有效模型的意义 ,体会列方程中蕴涵的“ 数学建模思想”。“数学 来源于生活,又应用于生 活”,以方程为工具分析 问题、解决问题,即建立 方程模型是全章的重点, 同时也是难点。
义务教育教科书七年级上册
教材分析
教材的地位和作用 教学目标分析 教学重难点分析
教法学法分析
教法
教学过程分析 教学反思
定义方程 回顾举例 创设情境 引入新课 呈现问题 归纳定义 拓广探索 训练提升 导读自学 自主探究 交流收获 归纳总结
学法
第一
教材分析
1
教材的地位和作用
2
教学目标分析
3
教学重难点分析
(1)相同的时间客车比货车多走 60 km, (2)客车每小时比货车多走 10 km, (3)客车走了 6 h,
(4)襄阳、武汉两地相距
420
km
货车
襄 阳
60 km
武 汉
客车
第三
11
教学过程分析
定义方程,回顾举例
教师提出问题
探索发现
解决问题
第三
教学过程分析
设计意图
考虑到用算术方法解决有一定的难度,我 就画出路线图引导学生分析问题中的数量 关系让学生思考解决,体会数形结合的数 学思想方法。一个一个小问题的解决增强 学生继续探究的信心。
学法分析
亲身经历知识的产生、发展、形成的认知过程 观察 比较 交流 应用
思考 探索
学法
自主探究法、合作交流顾举例 创设情境,引入新课 呈现问题,归纳定义 拓广探索,训练提升 导读自学,自主探究 交流收获,归纳总结
2
3 4 5 6 5
定义方程 回顾举例
1+2=3 。 5=7-2 2、像这样含有未知数的等式叫做 方程 。 3+b=2b+1 判断方程的两个关键要素:①有未知数 ②是等式 4+ x =7 0.7 x =1400 2: 判断下列是不是方程,是打“√”,不是打“×”: 2 x -2=6 问题 ①;x +3( ) ②3+4=7;( )
x x
70 60
x x 1 根据客车比货车少用1h,可得等式: 60 70
x 70 x 60
第三
2
教学过程分析
创设情境,引入新课
设计说明
用方程的方法解答时,我利用表格 的形式将问题的数量关系列出来, 易于学生观察各个量之间的关系, 对于找相等关系有一定的难度,理 解题意是寻找相等的关系的前提, 我在此有意加以了引导。学生自己 列出了含有未知数的等式即方程,
第三
教学过程分析
问题 一辆客车和一辆货车同时从襄阳出发沿同一公路同方 向行驶,客车的行驶速度是70km/h,货车的行驶速度是 60km/h,客车比货车早1h到达武汉。襄阳,武汉两地间的 路程是多少? 货车行驶时间 - 客车行驶时间=1 解:设襄阳、武汉两地路程为x km
路程 客车 货车 速度 时间
本节内容是人教版义 务教育教科书七年级 上册3.1从算式到方程 中的第一节一元一次 方程,它是学生在小 学所学的简易方程的 延伸,同时也为以后 学习一元二次方程, 二元一次方程组,分 式方程及一次函数奠 定基础。因此在内容 上本节主要起着承前 启后的作用,可以说 是内容上的衔接点。
地位
作用
第一
教材分析 教学目标分析
观察 思考 分析
讨论
归纳
一个未知数x, 指数都是1, 整式.
一元一次方程
第三
4
教学过程分析 拓广探索,训练提升
练习1 判断下列式子是不是一元一次方程,为什么? (1); 7 x 5 9 (2); 3 x 6 (3); 2 x 2 4 x 5 x 7 y 5 (6). 2a 9 (4); 2 y 3 6 (5); 练习2.如果关于x的方程是一元一次方程,则k= 。 练习3 根据下列问题,设未知数,列出方程,并判断所列方程是不是一元一次方 程: 1.环形跑道一周长400m,沿跑道跑多少周,可以跑3000m? 2.甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支, 两种铅笔各买了多少支? 3.一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底。 4.用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元, 两种水杯的单价各是多少元?
0.52 x-(1-0.52) x=80
第三
教学过程分析
小组合作
展示结果
这一组例题的设置,其目的是让学生更进一步 加强列方程解决实际问题的能力,体会用方程 的方法可以解决生活中的各种类型的实际问题。
第三
3
教学过程分析
呈现问题,归纳定义 这些方程有什么 共同的特点? x x 1 70x 60( x 1) 60 70
2
经历过程
体会模型
掌握概念
培养思想
第一
3
教材分析
重难点分析
知道什么是方程、 一元一次方程,找 相等关系列方程。
重 点
难 点
分析数量关系,找 相等关系,设未知 数,列方程。
第二
教法分析
启发式
引导式
讲解式
教法
通过提出问题,激发学生求知的欲望,引导他们思 考问题、解决问题,并掌握解决问题的规律和方法
第二
2.
教师参加讨 论,对于有 闪光点的作 品要及时予 以鼓励和表 扬。
2013年11月
4 x 24
1700 150 x 2450
0.52x (1 0.52) x 80
(1)只含有一个未知数x, (2)未知数x的指数都是1, (3)等号两边都是整式.
只含有一个未知数(元),未知数的次数都是1,等 号两边都是整式,这样的方程叫做一元一次方程。
第三
3
教学过程分析
呈现问题,归纳定义
第三
教学过程分析
问题 一辆客车和一辆货车同时从襄阳出发沿同一公路同方向行驶,客 车的行驶速度是70km/h,货车的行驶速度是60km/h,客车比货车早1h 到达武汉。襄阳,武汉两地间的路程是多少?
解:设客车所用的时间为x h
客车行驶路程=货车行驶路程
70 x
货车
x
x+1
60(x +1))
根据襄阳、武汉两地路程一定,可得等式: 70x =60(x +1)
第三
5
教学过程分析
导读自学,自主探究 练一练
设计 意图
1、请你判断x= -3是下列给定方程中哪个 方程的解( )。
A.3 x+5=5
通过练一练进 一步理解方程 的解的意义和 本质。 C.4x+12=1
B.-3x-1=0
D.5(x-1)=4(x-2)
2、已知x=1是方程mx=x+2的解, 则 。 m 2 =_______ 1
③;2x +13=6-y( ⑤;2x-8>-10( ) ④ x2-1=0 ;( ⑥ ) ) )
请大家观察左边的这些式子,看看它们有什么 共同的特征? 1、像这种用等号“=”来表示相等关系的式子叫 等式
-2 x +3≠1 ;(
第三
教学过程分析
问题 一辆客车和一辆货车同时从襄阳出发沿同一公路同方向行驶,客 车的行驶速度是70km/h,货车的行驶速度是60km/h,客车比货车早1h 到达武汉。襄阳,武汉两地间的路程是多少?
及时总结
我结合上面的过程简单归纳列方程解决实际问题 的步骤:(1)用字母表示问题中的未知数;(2)根 据问题中的相等关系,列出方程. 设计意图:让学生体会到:有了方程后人们解决 许多问题就更方便了,通过今后的学习,会逐步 认识:从算式到方程是数学的进步.
第三
3
教学过程分析
呈现问题,归纳定义
例、 根据下列问题,设未知数并列方程: (1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少? 解:设正方形的边长为x cm。列方程得: 4 x =24 (2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月 这台计算机使用时间达到规定的检修时间2450小时? 解:设经过x个月这台计算机使用时间达到规定的检修时间2450小时,那 么在x月里这台计算机使用了150 xh,列方程得: 1700+150 x =2450 (3)某校女学生占全体学生数的52%,比男生多80人,这个学校有多少学生? 解:设这个学校的学生数为x,那么女生数为0.52 x,男生数为(1-0.52) x, 列方程得
第三
5
教学过程分析
导读自学,自主探究
问题:使得方程70x =60(x +1)成立, x的值应为多少? 如果x =1,等号左边=70 ×1=70 等号右边=60 ×(1+1)=120 如果x =2,等号左边=70 ×2=140 等号右边=60 ×(2+1)=180
x 左边70x 1 2 3 4 5 6 7 … …
第三
2 6 知
教学过程分析
交流收获,归纳总结
一元一次方程,
识
方程的解, CEO 解方程
方程思想 过程与方法
实际问题 设未知数 列方程
一元一次方程
自我检查
知识整理 并系统化
总结能力 语言表达能力 自我评价能力
自我小结
第三
教学过程分析
第四
2
教学反思
CEO 从教师的角度来看:节省重复操作的时 间,教师可以更多地关注课堂的效果。
第三
4
练习1
教学过程分析
拓广探索,训练提升