多重共线性检验与修正
计量经济学实验五 多重共线性的检验与修正 完成版
习题1.下表给出了中国商品进口额Y 、国内生产总值GDP 、消费者价格指数CPI 。
年份 商品进口额 (亿元)国内生产总值(亿元)居民消费价格指数(1985=100)1985 1257.8 8964.4 1001986 1498.3 10202.2 106.5 1987 1614.2 11962.5 114.3 1988 2055.1 14928.3 135.8 1989 2199.9 16909.2 160.2 1990 2574.3 18547.9 165.2 1991 3398.7 21617.8 170.8 1992 4443.3 26638.1 181.7 1993 5986.2 34634.4 208.4 1994 9960.1 46759.4 258.6 1995 11048.1 58478.1 302.8 1996 11557.4 67884.6 327.9 1997 11806.5 74462.6 337.1 1998 11626.1 78345.2 334.4 1999 13736.4 82067.5 329.7 2000 18638.8 89468.1 331.0 2001 20159.2 97314.8 333.3 2002 24430.3 105172.3 330.6 200334195.6117251.9334.6资料来源:《中国统计年鉴》,中国统计出版社2000年、2004年。
请考虑下列模型:i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
解:ln 3.6489 1.796ln 1.2075ln t t t Y GDP CPI =--+t= (-11.32) (9.93) (-3.415)20.988770.6.0.1124R F S E ===(2)你认为数据中有多重共线性吗?多重共线性的检验 1)综合统计检验法若 在OLS 法下:R 2与F 值较大,但t 检验值较小,则可能存在多重共线性。
第四章 多重共线性
2
( x2 i x3 i ) 2 x [1 2 x3 i
2 2i
2
2 2 x2 i (1 r23 )
ˆ Var( 3 ) 同样可得
2
2 2 x3 i (1 r23 )
ˆ ˆ Cov( 2 , 3 )
r23 2
2 2 2 (1 r23 ) x2 i x3 i
1 X X 21 X 31
1 X 22 X 32
1 X 2n X 3n
nX 3 X 2 i X 3 i 2 X 3 i
X 2 i
2 X 2 i X 2 i X 3 i
X 3 i n nX 2 2 X 2 i X 3 i nX 2 X 2 i 2 X 3 i nX 3 X 2 i X 3 i
其中vi为随机变量,则称解释变量X2、X3、 …、 Xk 之间存在着不完全的多重共线性。 注意:解释变量之间不存在线性关系,并非不存在 非线性关系,当解释变量之间存在非线性关 系时,并不违反古典假定。
5
二、产生多重共线性的背景
多重共线性产生的经济背景主要有几种情形:
1.经济变量之间具有相同的变化趋势。
10
n X X nX 2 nX 3 n 0
nX 2 X
2 2i
nX 3 X 2 i X 3 i
2 X 3 i
X 2 i X 3 i nX 2
2 2 X 2 i nX 2
X 2 i x2 i X 2 X 3 i x3 i X 3
nX 3
X 2 i X 3 i nX 2 X 3
这里r23是X2,X3的相关系数。
16
EViews计量经济学实验报告-多重共线性的诊断与修正的讨论
实验题目 多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。
二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。
研究“农业的发展反而会减少财政收入”这个问题。
设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。
图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 1994 5218.1 9572.7 19480.7 2964.7 119850 29242.2 55043 19956242.2 12135.8 24950.6 3728.8 12112136748.2458211996 7407.99 14015.4 29447.6 4387.4 122389 43919.5 46989 1997 8651.14 14441.9 32921.4 4621.6 123626 48140.6 53429 1998 9875.95 14817.6 34018.4 4985.8 124761 51588.2 50145 1999 11444.08 14770 35861.5 5172.1 125786 55636.9 49981 2000 13395.23 14944.7 40036 5522.3 126743 61516 54688 2001 16386.04 15781.3 43580.6 5931.7 127627 66878.3 52215 2002 18903.64 16537 47431.3 6465.5 128453 71691.2 47119 2003 21715.25 17381.7 54945.5 7490.8 129227 77449.5 54506 2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV 软件,生成i Y 、2X 、3X 、4X 、5X 、6X 、7X 等数据,采用这些数据对模型进行OLS 回归。
4.4 多重共线性的补救措施
• 如果模型出现了严重的多重共线性,就应采取 必要的措施进行补救。然而,由于经济系统的 复杂性,要将多重共线性消除干净几乎是不可 能的,只能选择合适的方法减弱多重共线性对 模型的影响。目前,常用的方法有以下几种: • 一、增加样本容量
• 在计量经济模型中,如果变量样本数据太少,很 容易产生多重共线性。在这种情况下,增加样本容量, 将有助于减弱,甚至消除多重共线性。
• 本章实例参见教材P85~P88.
8
3
三、逐步回归法
• 1.目的:寻找最优回归方程——使R2较 大,F显著;每个回归系数显著 • 2.种类 • (1)逐个剔除法 • (2)逐个引入法 • (3)有进有出法 • 3.准则:一次只能引入或剔除一个自变 量,直至模型中所有自变量均显著 4
• 4、基本做法:
将应变量 Y 的每一个解释变量Xi (i=1,2, …,k)分别进行回归,对每一个回归方程根据 经济理论和统计检验进行综合分析判断,从中挑出一 个最优的基本回归方程,在此基础上,再逐一引入其 它解释变量,重新作回归,逐步扩大模型的规模,直 至从综合情况看,出现最好的模型估计形式。 5、变量取舍标准:在引进新解释变量的回归方程中: (1)如果新解释变量在符合经济意义的前提下,能使 拟合优度R2有所提高,并且,每个参数统计检验显著, 则采纳改变量。 (2)如果新解释变量不能改善拟合优度,同时,对 其它参数无明显影响,则可舍弃该变量。 (3)如果新解释变量能使拟合优度有所改善, R2 有所提高,但对其它参数的符号和数值有明显影响, 统计检验也不显著,则可以断定新解两个变量中,舍去 对应变量影响较小,经济意义相对次要的一个,保留 影响较大,经济意义相对重要的一个。 5
五、将时间序列数据与界面数据相结合
第五 多重共线性(共54张PPT)
▪ 但是应注意:
▪ 如果研究的目的仅在于预测被解释变量Y,而各个解释变量X之间的 多重共线性关系的性质在未来将继续保持,这时虽然无法精确估计 个别的回归系数,但可估计这些系数的某些线性组合,因此多重共 线性可能并不是严重问题。
第三节 多重共线性的检验
多重共线性检验的任务是:
1)检验多重共线性是否存在;
4、变量的显著性检验失去意义
存在多重共线性时
参数估计值的方差与标准差变大
容易使通过样本计算的t值小于临界值, 误导作出参数为0的推断
可能将重要的解释变量排除在模型之外
5、模型的预测功能失效
▪ 变大的方差容易使区间预测的“区间”变大,使预测
失去意义。
▪其次,由于参数估计量的方差变大,因而对样本值的 反映十分敏感,即当样本观测值稍有变化时,模型参数 就有很大差异,致使模型难以应用。
2)估计多重共线性的范围,即判断哪些变量之间存在
共线性。
一、 检验多重共线性是否存在
1.简单相关系数检验法
利用解释变量之间的线性相关程度去判断是否存在严重多重 共线性的一种简便方法。
一般而言,如果每两个解释变量的简单相关系数比较高,如 大于0.8,则可认为存在着较严重的多重共线性。
注意 较高的简单相关系数只是多重共线性存在的充分条件, 而不是必要条件。特别是在多于两个解释变量的回归模型中, 有时较低的简单相关系数也可能存在多重共线性。因此并不 能简单地依据相关系数进行多重共线性的准确判断。
如果拟合优度变化显著,则说明新引入的变量是一个独立的解释 变量;
如果拟合优度变化很不显著,则说明新引入的变量不是一个独立 的解释变量,它可以用其他变量的线性组合代替,也就是说它与其 他变量之间存在多重共线性。
多重共线性修正
则 zi=β0+β2Inx2i+ui 这时方程就成为了一元线性回归模型, 显然已不存在多重共线性。
第三类: 第三类:减少参数估计量的方法
多重共线性的主要后果是参数估计量 具有较大的方差,所以采取适当方法减小 参数估计量的方差,虽然没有消除模型中 的多重共线性,但确能消除多重共线性造 成的后果。
且从理论上可以证明,存在k>0,使得的ˆ (k ) β ˆ 均方误差比 β 的均方误差小。因此,用岭回 归来估计偏回归系数比用普通最小二乘法估 计要稳定得多。这样就消除了多重共线性对 参数估计的危害。
确定岭回归系数K值
确定k值需要使用搜索法。在0到1区间 内,按照一定的间隔(如0.01等)取k值,观 ˆ (k ) = X T X + kI −1 X T Y 察岭回归估计量β 随 k值变化的情况,当k从0慢慢变大时,开 ˆ 始岭回归估计量 β (k )的变动剧烈,以后慢慢 趋于稳定。选择岭回归系数应满足的条件是 : (1)所有的岭回归估计量大小和符号符合经 济理论 ˆ (2)所有的岭回归估计量β (k ) 趋于稳定
多重共线性的修正
多重共线性修正方法的汇总:
第一类:删除引起共线性解释变量 第二类:重新设定模型 第三类:减少参数估计量的方法 第四类:其他
第一类: 第一类:删除引起共线性解释变量
找出引起多重共线性的解释变量,将 它排除出去,是最为有效的克服多重共线 性问题的方法。 这类方法以逐步回归法为代表,得到 了最广泛的应用。
ˆ β (k ) = X T X + kI
其中k称为岭参数。
(
)
−1
计量经济学第四章 多重共线性
x2i
3 2
x3i
x3i
参数的估计值为:
ˆ2
x32i x2i yi x2i x3i x3i yi
(
x22i )(
x32i ) (
x2i
x 3i
)2
x32i
2
x3i yi x32i 2 2
x32i x32i
x2i x3i x22i
x2i x3i
ˆ1 Y ˆ2 X 2 ˆ3 X 3
ˆ2
x32i x2i yi x2i x3i x3i yi ( x22i )( x32i ) ( x2i x3i )2
ˆ3
x22i x3i yi x2i x3i x2i yi •
(
x22i )(
x32i ) (
x2i
x 3i
)
2
x2i yi x3i yi
x2i x3i x32i
4.2多重共线性的后果
如果X1和X2完全线性相关,则存在非0的λ使得:
1 2 X 2i 3 X 3i 0
则有:
1 2 X 2 3 X 3 0
2 X 2i X 2 3 X3i X3 0
X 2i X3i X 2iYi
X
2 3i
X
3iYi
VAR
COV
(βˆ )
2
(XX)1
2
N X 2i
X 3i
X2i
X
2 2i
X 2i X 3i
计量经济第六章多重共线性
• 2、数据采集的范围有限,或采集 的样本量小于模型的自变量个数。
• 如在罕见疾病的研究过程中,由于病 情罕见、病因又相当复杂,而只能在 少数的患者身上采集大量的变量信息。
3、模型中采用滞后变量
在计量经济模型中,往往需要引入 滞后变量来反映真实的经济关系。 例如,消费=f(当期收入, 前期收入) 显然,两期收入间有较强的线性相 关性。
up
三、方差膨胀因子法
• 自变量间的共线性程度越大时,VIF值也随之 增大。所以也可利用方差膨胀因子来检验 多重共线性问题。 • 一般来说,当VIF >10时,表明 涉及的两个 变量存在高度线性相关,模型存在不完全 多重共线性。
P111 【经典实例】
• 计算得到的方差膨胀因子值分别为
VIF1 =10000,VIF2 =10000,VIF3 =9.6525,VIF4 =11.5875
2 2 2 1
同理易得
ˆ ) Var( 2
• EVIEWS遇到完全多重共线性时,会 显示 • Near singular matrix,无法进行估 计
2、不完全多重共线性下的后果
(1)估计量的方差增大 2 2 x 2 ˆ) 由于 Var ( 1 2 x12x2 (x1 x2 )2
• 可以看出,除了 VIF3 10 ,其余的方 差膨胀因子值均大于10,表明模型中 存在较严重的多重共线性问题。
up
第三节 多重共线性的修正 一、改变模型的形式 二、删除自变量 三、减少参数估计量的方差 四、其它方法 习题
up
• 一、改变模型的形式
• (一)变换模型的函数形式
• 例如将线性回归模型转化为对数模 型或者多项式模型。 • (二)改变模型的自变量的形式
计量经济学:多重共线性
影响比较大的,略去影响较小的。
元线性回归模型并进行OLS估计,拟合优度最大且接近1时,说明
这个变量与其他所有解释变量间存在共线性。
第三节 多重共线性的检验
辅助回归法中的方差膨胀因子:
对 于 多 元 线 性 回 归 模: 型Yi 0 1 X 1i ... k X ki ui 为 判 断 诸 自 变 量 间 是存 否在 多 重 共 线 性 , 进如 行下 辅 助 回 归 : X ji 0 1 X 1i ... j 1,i X j 1,i j 1,i X j 1,i ... k X ki v i , j 1,2,...,k 若 上 述 辅 助 回 归 的 可系 决数 为 R2 X j的 方 差 膨 胀 因 子 为 : j, 则 定 义 自 变 量 1 VIF j 1 R2 j
第一节 多重共线性的概念
若有c0+c1X1i+c2X2i+…+ckXki=0 i=1,2,…,n。其中: ci不全为0,则称
解释变量间存在完全多重共线性
若存在:c0+c1X1i+c2X2i+…+ckXki≈0 i=1,2,…,n。 其中:ci不全为0,
则称为解释变量间存在近似多重共线性。
完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,
第二节 多重共线性的来源与后果
4、参数估计值不稳定,经济含义不合理
样本观测值稍有变动、增加或减少解释变量等都会使参数估计值发生较大变 化,甚至出现符号错误,从而不能正确反映解释变量对被解释变量的影响。
5、模型的预测功能失效
较大的方差容易使预测区间变大,从而使预测失去意义
注意:只要模型满足经典假设,则在近似多重共线性情况下,OLS估计量仍 然满足无偏性、线性性和有效性。但此时,无偏性并不意味着对某一给定样 本,其参数估计值就等于真实值。有效性也不意味着参数估计量的方差一定 很小。
实验四-多重共线性模型的检验和处理
实验报告课程名称:计量经济学实验项目:实验四多重共线性模型的检验和处理实验类型:综合性□设计性□验证性 专业班别:11本国贸五班姓名:学号:实验课室:厚德楼A207指导教师:实验日期:2014/5/20广东商学院华商学院教务处制一、实验项目训练方案小组合作:是□否 小组成员:无实验目的:掌握多重共线性模型的检验和处理方法:实验场地及仪器、设备和材料实验室:普通配置的计算机,Eviews软件及常用办公软件。
实验训练内容(包括实验原理和操作步骤):【实验原理】多重共线性的检验:直观判断法(R2值、t值检验)、简单相关系数检验法、方差扩大因子法(辅助回归检验)多重共线性的处理:先验信息法、变量变换法、逐步回归法【实验步骤】(一)多重共线性的检验1.直观判断法(R2值、t值检验)根据广东数据(见附件1),先分别建立以下模型:【模型1】财政收入CS对第一产业产值GDP1、第二产业产值GDP2和第三产业产值GDP3的多元线性回归模型;(请对得到的图表进行处理,以上在一页内)【模型2】固定资产投资TZG对固定资产折旧ZJ、营业盈余YY和财政支出CZ的多元线性回归模型。
观察模型结果,初步判断模型自变量之间是否存在多重共线性问题。
【模型1】从上图可以得到,估计方程的判定系数R 2很高,但三个参数t检验值两个不显著,有一个较显著,其中一个参数估计值还是负的,不符合经济理论。
所以,出现了严重的多重共线性。
【模型2】1】从上图可以得到,估计方程的判定系数R 2很高,方程显著性F检验也显著,但只有两个参数显著性t检验比较显著,这与很高的判定系数不相称,出现了严重的多重共线性。
2.简单相关系数检验法分别计算【模型1】和【模型2】的自变量的简单相关系数。
【模型1】【模型2】(请对得到的图表进行处理,以上在一页内)根据计算的简单相关系数,判断模型是否存在多重共线性。
【模型1】可看出三个解释变量GDP1 、GDP2和GDP3之间高度相关,存在严重的多重共线性。
多重共线性问题的几种解决方法【最新】
多重共线性问题的几种解决方法在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1,X2,……,X k中的任何一个都不能是其他解释变量的线性组合。
如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。
多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。
这里,我们总结了8个处理多重共线性问题的可用方法,大家在遇到多重共线性问题时可作参考:1、保留重要解释变量,去掉次要或可替代解释变量2、用相对数变量替代绝对数变量3、差分法4、逐步回归分析5、主成份分析6、偏最小二乘回归7、岭回归8、增加样本容量这次我们主要研究逐步回归分析方法是如何处理多重共线性问题的。
逐步回归分析方法的基本思想是通过相关系数r、拟合优度R2和标准误差三个方面综合判断一系列回归方程的优劣,从而得到最优回归方程。
具体方法分为两步:第一步,先将被解释变量y对每个解释变量作简单回归:对每一个回归方程进行统计检验分析(相关系数r、拟合优度R2和标准误差),并结合经济理论分析选出最优回归方程,也称为基本回归方程。
第二步,将其他解释变量逐一引入到基本回归方程中,建立一系列回归方程,根据每个新加的解释变量的标准差和复相关系数来考察其对每个回归系数的影响,一般根据如下标准进行分类判别:1.如果新引进的解释变量使R2得到提高,而其他参数回归系数在统计上和经济理论上仍然合理,则认为这个新引入的变量对回归模型是有利的,可以作为解释变量予以保留。
2.如果新引进的解释变量对R2改进不明显,对其他回归系数也没有多大影响,则不必保留在回归模型中。
3.如果新引进的解释变量不仅改变了R2,而且对其他回归系数的数值或符号具有明显影响,则认为该解释变量为不利变量,引进后会使回归模型出现多重共线性问题。
不利变量未必是多余的,如果它可能对被解释变量是不可缺少的,则不能简单舍弃,而是应研究改善模型的形式,寻找更符合实际的模型,重新进行估计。
4-2多重共线性的检验和补救措施
多重共线性的检验和补救措施
一、多重共线性的检验
1. 相关系数检验法
● 只有两个解释变量时:用二者相关系数判断。 ● 两个以上解释变量时:可用两两变量的相关系数。 ● 一般地,如果每两个解释变量的相关系数大于0.8,表明存在着较严 重的多重共线性。 ● 简单相关系数只是多重共线性的充分条件,不是必要条件。 ● 在有多个解释变量时,较低的相关系数也可能存在较严重多重共线性。
4.逐步回归法
● 例2:比率变换
●
=+
+
+
● 财政收入( 税收总额(
),财政支出( )
+ ),国内生产总值(
),
● 将总量指标变为相对指标,建立模型:
●
=+
+
+
4.逐步回归法
● 逐步回归既是判断是否存在多重共线性的方法,也是解决多重共线 性的方法。 ● 逐步回归法的具体步骤如下: ● 先用被解释变量对每一个解释变量做简单回归,得到每一个回归方程的
● 经验表明,当VIF≥10,说明该解释变量与其余解释变量之间有严重的 多重共线性。
4.逐步回归检测法
● 基本思想:将变量逐个的引入模型,每引入一个解释变量后,都要观 察可决系数的变化,进行F检验,并对已经选入的解释变量逐个进行t 检验。
如果引入新变量后,可决系数显著改善,并且原来的解释变量的显著性 不变化,说明新变量是独立解释变量。KtKt3 Nhomakorabea变换模型形式
● 对存在多重共线性的变量,进行对数变换、一阶差分变换、比率变换等, 有时可减轻多重共线性的影响。
● 例1:对于时间序列数据可采用差分法降低多重共线性。
=+
+
实验五__多重共线性检验参考案例共16页word资料
实验五 多重共线性检验实验时间: 姓名:学号: 成绩:【实验目的】1、掌握多元线性回归模型的估计、检验和预测;2、掌握多重共线性问题的检验方法3、掌握多重共线性问题的修正方法 【实验内容】1、数据的读取和编辑;2、多元回归模型的估计、检验、预测;3、多重共线性问题的检验4、多重共线性问题的修正 【实验背景】为了评价报账最低工资(负收入税)政策的可行性,兰德公司进行了一项研究,以评价劳动供给(平均工作小时数)对小时工资提高的反应,词研究中的数据取自6000户男户主收入低于15000美元的一个国民样本,这些数据分成39个人口组,并放在表1中,由于4个人口组中的某些变量确实,所以只给出了35个组的数据,用于分析的各个变量的定义如下:Y 表示该年度平均工作小时数;X1表示平均小时工资(美元);X2表示配偶平均收入(美元);X3表示其他家庭成员的平均收入(美元);X4表示年均非劳动收入(美元);X5表示平均家庭资产拥有量;X6表示被调查者的平均年龄;X7表示平均赡养人数;X8表示平均受教育年限。
μ为随机干扰项,考虑一下回归模型:μβββββββββ+++++++++=87654321876543210X X X X X X X X Y(1) 将该年度平均工作小时数Y 对X 进行回归,并对模型进行简单分析; (2) 计算各变量之间的相关系数矩阵,利用相关系数法分析变量间是否具有多重共线性;(3) 利用逐步回归方法检验并修正回归模型,最后再对模型进行经济意义检验、统计检验。
表5观测组Y X1 X2 X3 X4 X5 X6 X7 X81 2157 2.905 1121 291 380 7250 38.5 2.34 10.52 2174 2.97 1128 301 398 7744 39.3 2.335 10.53 2062 2.35 1214 326 185 3068 40.1 2.851 8.94 2111 2.511 1203 49 117 1632 22.4 1.159 11.55 2134 2.791 1013 594 730 12710 57.7 1.229 8.86 2185 3.04 1135 287 382 776 38.6 2.602 10.77 2210 3.222 1100 295 474 9338 39 2.187 1128 2105 2.495 1180 310 255 4730 39.9 2.616 9.39 2267 2.838 1298 252 431 8317 38.9 2.024 11.110 2205 2.356 885 264 373 6489 38.8 2.662 9.511 2121 2.922 1251 328 312 5907 39.8 2.287 10.312 2109 2.499 1207 347 271 5069 39.7 3.193 8.913 2108 2.796 1036 300 259 4614 38.2 2.4 9.214 2047 2.453 1213 397 139 1987 40.3 2.545 9.115 2174 3.582 1141 414 498 10239 40 2.064 11.716 2067 2.909 1805 290 239 4439 39.1 2.301 10.517 2159 2.511 1075 289 308 5621 39.3 2.486 9.518 2257 2.516 1093 176 392 7293 37.9 2.042 10.119 1985 1.423 553 381 146 1866 40.6 3.833 6.620 2184 3.636 1091 291 560 11240 39.1 2.328 11.621 2084 2.983 1327 331 296 5653 39.8 2.208 10.222 2051 2.573 1197 279 172 2806 40 2.362 9.123 2127 3.263 1226 314 408 8042 39.5 2.259 10.824 2102 3.234 1188 414 352 7557 39.8 2.019 10.725 2098 2.28 973 364 272 4400 40.6 2.661 8.426 2042 2.304 1085 328 140 1739 41.8 2.444 8.227 2181 2.912 1072 304 383 9340 39 2.337 10.228 2186 3.015 1122 30 352 7292 37.2 2.046 10.929 2188 3.01 990 366 374 7325 38.4 2.847 10.630 2077 1.901 350 209 95 1370 37.4 4.158 8.231 2196 3.009 947 294 342 6888 37.5 3.047 10.632 2093 1.899 342 311 120 1425 37.5 4.512 8.133 2173 2.959 1116 296 387 7625 39.2 2.342 10.534 2179 2.959 1116 296 387 7625 39.2 2.342 10.535 2200 2.98 1126 204 393 7885 39.2 2.341 10.6 【实验过程】一、利用Eviews软件建立年度平均工作小时数y的回归模型。
多重共线性的后果四、多重共线性的检验五、克服多重共线
多重共线性
一、多重共线性的概念 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验 五、克服多重共线性的方法 六、案例
问题的提出
• 在前述基本假定下OLS估计具有BLUE的优良性。 • 然而实际问题中,这些基本假定往往不能满足, 使OLS方法失效不再具有BLUE特性。 • 估计参数时,必须检验基本假定是否满足,并针 对基本假定不满足的情况,采取相应的补救措施 或者新的方法。 • 检验基本假定是否满足的检验称为计量经济学检 验
在矩阵表示的线性回归模型 Y=X+ 中,完全共线性指:秩(X)<k+1,即
1 1 X 1 X 11 X 12 X 1n X 21 X 22 X 2n X k1 X k2 X kn
中,至少有一列向量可由其他列向量(不包括第 一列)线性表出。 如:X2= X1,则X2对Y的作用可由X1代替。
具体可进一步对上述回归方程作F检验: 构造如下F统计量
Fj R2 j . /( k 2) (1 R ) /(n k 1)
2 j.
~ F (k 2, n k 1)
式中:Rj•2为第j个解释变量对其他解释变量的回 归方程的决定系数,
若存在较强的共线性,则Rj•2较大且接近 于1,这时(1- Rj•2 )较小,从而Fj的值较大。 因此,给定显著性水平,计算F值,并与 相应的临界值比较,来判定是否存在相关性。
– 时间序列数据经常出现序列相关
• 5、随机扰动项方差不等于常数=>异方差
– 截面数据时,经常出现异方差
解决问题的思路
• • • • 1、定义违反各个基本假定的基本概念 2、违反基本假定的原因、背景 3、诊断基本假定的违反 4、违反基本假定的补救措施(修正)
《计量经济学》第四章 多重共线性
σ2
R j 2 = X j 对其余 k − 2 个解释变量进行回归的 R 2 σ2 ˆ 还可写成 var( β j ) = VIF j 2
∑x
j
VIF的倒数被称为容许度(TOL j) 的倒数被称为容许度( 的倒数被称为容许度
TOL j = 1 = 1− Rj2 VIFj
采用普通最小二乘法得到以下估计结果
3
财政收入模型的EViews估计结果 财政收入模型的EViews估计结果 EViews
Variable 农业增加值NZ 农业增加值 工业增加值GZ 工业增加值 建筑业增加值JZZ 建筑业增加值 总人口TPOP 总人口 最终消费CUM 最终消费 受灾面积SZM 受灾面积 截距项 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient -1.535090 0.898788 -1.527089 0.151160 0.101514 -0.036836 -11793.34 0.995015 0.993441 481.5380 4405699. -193.4165 1.873809 Std. Error 0.129778 0.245466 1.206242 0.033759 0.105329 0.018460 3191.096 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic) t-Statistic -11.82861 3.661558 -1.265989 4.477646 0.963783 -1.995382 -3.695704 Prob. 0.0000 0.0017 0.2208 0.0003 0.3473 0.0605 0.0015 5897.824 5945.854 15.41665 15.75537 632.0999 0.000000 4
自-实验五多重共线性检验参考案例
282186 3.015 1122 30 352 7292 37.22.04610.9292188 3.01 990 366374 732538.4 2.847 10.6 3020771.901350209 95 137037.44.158 8.2 31 2196 3.009 947 294 342688837.5 3.047 10.632 2093 1.899 342 311 1201425 37.5 4.5128.133 2173 2.959 1116 296 3877625 39.2 2.342 10.534 2179 2.9591116296 387 762539.2 2.342 10.535 2200 2.98 1126 204 393 7885 39.2 2.34110.6【实验过程】一、利用Eviews软件建立年度平均工作小时数y的回归模型。
(一)首先创建Workfile(命令窗口输入Create U,再输入35个样本观测值),其次输入数据Y,X1,X2,X3,X4,X5,X6,X7,X8(命令窗口Data Y X1X 2X3 X4 X5 X6 X7 X8)将上述表格中的数据复制粘贴到数据窗口中。
(二)进行OLS回归命令窗口输入命令LSY C X1X2X3 X4 X5 X6X7 X8从表中可以看到,模型可能存在多重共线性。
因为拟合优度较高,F统计量对应的P值小于1%,说明回归方程是显著地,回归系数X3,X4,X6,X7在10%的水平下显著,其他回归系数的t统计量对应的P值大于0.1,是不显著变量,说明解释变量可能存在多重共线性。
二、多重共线性的检验1、简单相关系数法这种方法只适用于只有两个解释变量的情况。
当这两个解释变量相关系数的绝对值很大时,认为这两个解释变量存在共线性。
操作:Quick → Group statistics→Correlations→对话框→x1 x2 x3 x4 x5 x6x7 x8→ok,得到关于上述8个变量之间的相关系数矩阵。
EViews计量经济学实验报告-多重共线性的诊断与修正的讨论
实验题目多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。
二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV软件,做回归分析,判断是否存在多重共线性,以及修正。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。
研究“农业的发展反而会减少财政收入”这个问题。
设定如下形式的计量经济模型:=+++++++其中,为财政收入CS/亿元;为农业增加值NZ/亿元;为工业增加值GZ/亿元;为建筑业增加值JZZ/亿元;为总人口TPOP/万人;为最终消费CUM/亿元;为受灾面积SZM/千公顷。
图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元农业增加值NZ/亿元工业增加值GZ/亿元建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV软件,生成、、、、、、等数据,采用这些数据对模型进行OLS回归。
(二)诊断多重共线性1、双击“Eviews”,进入主页。
输入数据:点击主菜单中的File/Open /EV Workfile—Excel—多重共线性的数据.xls ;2、在EV主页界面的窗口,输入“ls y c x2 x3 x4 x5 x6 x7”,按“Enter”.出现OLS回归结果,图2:图2: OLS 回归结果Dependent Variable: Y由此可见,该模型的可决系数为0.995,修正的可决系数为0.993,模型拟和很好,F统计量为701.47,模型拟和很好,回归方程整体上显著。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多重共线性检验与修正
数据来源:《中国统计年鉴2014》12-10、4-3、12-4、12-5、12-8、
Eviews操作:
1、基本操作:
(1)录入数据:命令:data y l m f a ir
(y代表粮食产量,l代表第一产业劳动力数量,m代表农业机械总动力,f代表化肥施用量,a代表农作物总播种面积,ir为有效灌溉面积/农作总播种面积得出的灌溉率)
(2)做线性回归:命令:LS y c l m f a ir
2、检验多重共线性
(1)方差膨胀因子判断法
在生成的线性回归eq01中,view—coefficient diagnostics—variance inflation factors
看生成表格中的Centered VIF,发现L、M、F、A、IR的方差膨胀因子都很大,说明存在严重多重共线性。
(eg:L的Centered VIF指以L为因变量,M、A、F、IR为自变量所做出的辅助回归的判定系数R²,然后1/1-R²得出的值。
)
(由课本内容可知,当完全不共线性时,VIF=1;完全共线性时,VIF=正无穷)(2)相关系数矩阵判断法
命令:cor l m f a ir
这个是通过看各个解释变量之间的相关系数来判断是否存在多重共线性的。
可以看到大多数解释变量之间两两相关系数都大于0.9。
相关系数极大说明解释变量之间存在很高的相关性,因而也就很可能存在共线性。
3、修正多重共线性
(1)逐步回归排除引起共线性的变量
①菜单栏操作
在生成的线性回归eq01中,Estimate—Method—STEPLS
接下来会出现两个框框,上面的框框是固定住不做逐步回归的变量,一般设定为y和c
下面的框框是需要进行逐步回归选择是否剔除的变量,这里填入l m f a ir 然后出来一个新的表格,这个表格已经自动选择了可以保留的变量l a f,剔除了m ir
②命令栏操作
命令:STEPLS y c @ l m f a ir
这条命令其实和菜单栏操作的意思一样,stepls代表采用逐步回归方法,@前的y、c代表固定不做逐步回归的变量,@后的l、m、f、a、ir代表要做逐步回归的变量
出来的结果和菜单栏操作的结果是一样的。
(注:当然,固定保留的变量你也可以根据自己的需要进行选择,只不过一般是固定保留y和c)
做完逐步回归后,按照保留下来的变量,重新做线性回归就可以得到不存在多重共线性的新模型了。
(2)岭回归法减小参数估计量方差
这个方法没法在Eviews做。