电路理论基础 孙立山 陈希有主编 第6章课后习题答案详解

合集下载

电路理论教程答案陈希有

电路理论教程答案陈希有

电路理论教程答案陈希有【篇一:《电路理论基础》(第三版陈希有)习题答案第一章】电路电流的参考方向是从a指向b。

当时间t2s时电流从a流向b,与参考方向相同,电流为正值;当t2s时电流从b流向a,与参考方向相反,电流为负值。

所以电流i的数学表达式为2a t?2s? i??-3at?2s ?答案1.2解:当t?0时u(0)?(5?9e0)v??4v0其真实极性与参考方向相反,即b为高电位端,a为低电位端;当t??时u(?)?(5?9e??)v?5v0其真实极性与参考方向相同,即a为高电位端,b为低电位端。

答案1.3解:(a)元件a电压和电流为关联参考方向。

元件a消耗的功率为pa?uaia则ua?pa10w??5v ia2a真实方向与参考方向相同。

(b) 元件b电压和电流为关联参考方向。

元件b消耗的功率为pb?ubib则ib?pb?10w1a ub10v真实方向与参考方向相反。

(c) 元件c电压和电流为非关联参考方向。

元件c发出的功率为pc?ucic则uc?pc?10w10v ic1a真实方向与参考方向相反。

答案1.4解:对节点列kcl方程节点③: i4?2a?3a?0,得i4?2a?3a=5a节点④: ?i3?i4?8a?0,得i3??i4?8a?3a节点①: ?i2?i3?1a?0,得i2?i3?1a?4a节点⑤: ?i1?i2?3a?8a?0,得i1?i2?3a?8a??1a若只求i2,可做闭合面如图(b)所示,对其列kcl方程,得 i28a-3a+1a-2a0解得i2?8a?3a?1a?2a?4a答案1.5解:如下图所示(1)由kcl方程得节点①:i1??2a?1a??3a节点②:i4?i1?1a??2a节点③:i3?i4?1a??1a节点④:i2??1a?i3?0若已知电流减少一个,不能求出全部未知电流。

(2)由kvl方程得回路l1:u14?u12?u23?u34?19v回路l2:u15?u14?u45?19v-7v=12v回路l3:u52?u51?u12??12v+5v=-7v回路l4:u53?u54?u43?7v?8v??1v若已知支路电压减少一个,不能求出全部未知电压。

电路理论基础(陈希有主编)第六章ppt

电路理论基础(陈希有主编)第六章ppt

结构约束:∑i=0 ∑u=0
容易求解
直流电路
正弦电 流电路
分析 分析
建立电路方程 (代数方程)
建立电路方程 (微积分方程)
求解
不易求解
得直流解 (常量)
求解 得时域响应 (正弦量)
思考:能否采用适当方法避免三角函数的加、减、微分、积分运算? 答案:用复数表示正弦量,用复数运算代替正弦量运算,可简化运算
时域模型
相量模型
等效阻抗
相量方程:
U UR
UL
UC
RI
jLI
1 jC
I [R
j(L 1 )]I ZI C
等效阻抗::
Z

R
j(L 1 ) C

R
j(X L

XC)

R
jX
| Z
|

感 容 电 电阻 阻

抗 抗 阻 抗抗 抗
Re[(k1I1m k2 I2m ) e jt ]
3.微分规则:若 i(t) Im则
d i(t) dt
jIm
d dt
i(t)

d dt
Re[Im
e
jt
]

Re[Im

je
jt
]
正弦量求导运算变换 为对应相量乘 jω
6.2 正弦量的相量表示
例题6.4:设电感的磁链为正弦量 Re[&mejt ] 它所
解: U1m 32 (4)2 5 V
U1m 5 53.1 V
U2m (3)2 42 5 V U2m 5126.9 V
1

arctan
4 3

电路理论基础 孙立山 陈希有主编 第6章课后习题答案详解

电路理论基础 孙立山 陈希有主编 第6章课后习题答案详解

《电路理论基础》习题6答案答案解:所以频谱图如图(b)所示。

答案略答案解: (1) 电压有效值:电流有效值(2)平均功率注释:非正弦周期量分解成傅里叶级数后,某端口的平均功率等于直流分量和不同频率交流分量单独作用产生的平均功率之和。

答案解: 基波电压单独作用时,阻抗基波电流相量为:瞬时值为:三次谐波单独作用时瞬时值为:由叠加定理得电流瞬时值:电流有效值电压有效值电压中所含三次谐波百分数为电流中所含三次谐波百分数为答案解:直流单独作用时,电感短路,电容开路,故电压的直流分量为:基波单独作用时,由分压公式得:瞬时值二次谐波单独作用时,由分压公式得:瞬时值由叠加定理得:V电源提供的平均功率等于电阻吸收的平均功率,故答案略答案解:直流电流源单独作用时,电感处于短路。

由分流公式得电流i的直流分量为:正弦电压源单独作用时,由欧姆定律得:电流i的有效值答案解: 图(a)电路中不含电感和电容,不存在与频率有关的阻抗,因此,不必将非正弦周期电流展开为傅立叶级数形式。

在第一个周期内,电流源可表示为将图(a)电路化为戴维南等效电路,如图(c)所示。

图中,电阻消耗的平均功率为答案略答案解:(1)等效电路见图 (b)。

其中整个电路为电阻性电路。

(2)等效电路见图 (c),其中对基波,对三次谐波当基波单独作用时,由理想变压器特性方程和分压公式得:三次谐波单独作用时,由理想变压器特性方程和分压公式得:由叠加定理得。

电路基础课后答案一到六章

电路基础课后答案一到六章

(c)图电路中,R 与 3Ω电阻相串联,通过的电流相同,因此 Uˊ=3-0.6=2.4V I=2.4÷3=0.8A
R 与 3Ω电阻相串联,通过的电流相同且为
1.3 两个额定值分别是“110V,40W” “110V,100W”的灯泡,能否串联后接到 220V 的电源上使用?如果两只灯泡的额定功率相同时又如何? 解:两个额定电压值相同、额定功率不等的灯泡,其灯丝电阻是不同的, “110V,40W” 灯泡的灯丝电阻为:
R40 =
U 2 110 2 = = 302.5Ω ;“110V,100W”灯泡的灯丝电阻为: 40 P
U 2 110 2 = = 121Ω ,若串联后接在 220V 的电源上时,其通过两灯泡的电流相同,且 100 P 220 ≈ 0.52 A , 因 此 40W 灯 泡 两 端 实 际 所 加 电 压 为 : 为 : I= 302.5 + 121 R100 =
方向向下)为 I3= I1+ I2=(-1)+1.6=0.6A 由此可得 R3=UAB÷I3=24÷0.6=40Ω 1.13 接 1.12 题。若使 R2 中电流为零,则 US2 应取多大?若让 I1=0 时,US1 又应等于多 大? 解:若使 R2 中电流为零,则 US2 应等于 UAB;若让 I1=0 时,US1 也应等于 UAB。 1.14 分别计算 S 打开与闭合时图 1.36 电路中 A、B 两点的电位。 解:①S 打开时: 12 − (−12) VB = 12 − × 26 = −7.5 V 2 + 4 + 26 12 − (−12) VA = −7.5 − × 4 = −10.5 V 2 + 4 + 26 ②S 闭合时: VA=0V,VB=12
+ 200V -

电路理论基础第三版陈希有第六章答案

电路理论基础第三版陈希有第六章答案

第六章答案6.1解:将2i 和3i 改写为余弦函数的标准形式,即234cos(190)A 4cos(190180)A 4cos(10)A5sin(10)A 5cos(1090)A 5cos(80)Ai t t t i t t t ωωωωωω=-+︒=+︒-︒=+︒=+︒=+︒-︒=-︒电压、电流的有效值为12370.7V, 1.414A 2.828A, 3.54A U I I I ======== 初相位12310,100,10,80u i i i ψψψψ====-相位差111010090u i ϕψψ=-=-=- 11u i u i 与正交,滞后于; 2210100u i ϕψψ=-=︒-︒= u 与2i 同相; 3310(80)90u i ϕψψ=-=︒--︒= u 与3i 正交,u 超前于3i答案6.2()()()().a 10cos(10)V-8b arctg 10233.1V,233.1)V -6-20.8c arctg 20.889.4A,20.8cos(89.4)A 0.2d 30180A,180)A m u t U u t I i t I i t ωωωω=-︒==∠︒=+︒==∠-︒=-︒=∠︒=+︒答案6.3解:(a)利用正弦量的相量表示法的线性性质得:11221,U I n U I n ==- (b)磁通相量通常用最大值表示,利用正弦量的相量表示法的微分性质得:mj m U N ω=Φ (c) 利用正弦量的相量表示法的线性性质与微分性质得:j URI LI ω=+答案6.4解:由KCL 得电流i 的振幅相量m 1m 2m 3mI I I I =++ (2100410580)A =∠︒+∠︒+∠-︒(0.347j 1.97 3.939j0.6950.868j4.924)A =-++++-A 86.265︒-∠=电流i 的瞬时值为5cos(26.86)A i t ω=-︒答案6.5解:电压表和电流表读数为有效值,其比值为阻抗模,即/U I =将已知条件代入,得100V 15A 100V10⎧=⎪⎪=Ω 联立方程,解得13.7mH, 5.08L R ==Ω答案6.6解:(a) RC 串联电路中电阻电压与电容电压相位正交,各电压有效值关系为30V U ===电流i 的有效值为30V 3A 10C C U I I X ====Ω(b)302A 60V C C U X I ==Ω⨯=60V 1.2A 50R U I R ===ΩRC 并联电路中电阻电流与电容电流相位正交,总电流有效值为2.33I A === (c)30130C C C U X I A V ==Ω⨯=由30215C L C L L L U V U U X I I A X ==⇒===Ω并联电容、电感上电流相位相反,总电流为1L C I I I A =-= 电阻电压与电容电压相位正交,总电压为:50U V ===答案6.7解:感抗()3210rad/s 0.1H 200L X L ω==⨯⨯=Ω容抗()()3611100210rad/s 510FC X C ω--=-==-Ω⨯⨯⨯ 图(a)电路的相量模型如图(b)所示。

陈希有电路理论教程答案

陈希有电路理论教程答案

陈希有电路理论教程答案【篇一:电路理论基础课后答案(哈工大陈希有)第12章】图题12.1解:分别对节点①和右边回路列kcl与kvl方程:?iq?ir?ilc?c??u???u?q/clc将各元件方程代入上式得非线性状态方程:??q?f(?)?f(q/c)12???q/c方程中不明显含有时间变量t,因此是自治的。

题12.2图示电路,设u,列出状态方程。

?f(q),u?f(q)111222r图题12.2r4解:分别对节点①、②列kcl方程:节点①:??i?(u?u)/ri1?q 1s123节点②:??(u?u)/r?u/ri2?q 212324将u?f(q),u?f(q)111222代入上述方程,整理得状态方程:?q??f(q)/r?f(q)/r?i?1113223s??q?f(q)/r?f(q)(r?r)/(rr)2113223434?题12.322出电路的状态方程。

uu1解:分别对节点①列kcl方程和图示回路列kvl方程得:图题12.3?qiu (1)?1?2?3/r3????u?u(2)?2s3u3为非状态变量,须消去。

由节点①的kcl方程得:u?u3u31?i?i?i??i?0 2342rr34解得u?(u?ri)r/(r?r)?[f(q)?rf()]r/(r?r) 314233411422334将?及u3代入式(1)、(2)整理得:?q??f(q)/(r?r)?f()r/(r?r)?1113422334????f(q)r/(r?r)?f()rr/(r?r)?u211334223434s????题12.4,试分别写出用前向欧拉法、后向欧拉法和梯形法计算响?sin(?t) us图题12.4l解:由kvl列出电路的微分方程:ul?d???ri?u??)??sin(?t) sdt前向欧拉法迭代公式:????h[?)??sin(?t)]k?1kkk后向欧拉法迭代公式:????h[?)??sin(?t)]k?1kk?1k?1梯形法迭代公式:????0.5[)??(?t))??sin(?t)]k?1kkkk?1k?1题12.5?1f,u(0)?7v,u?10v电路及非线性电阻的电压电流关系如图所示。

电路理论课后答案,带步骤

电路理论课后答案,带步骤
题图3-4
解:(1)该电路有三个网孔。设网孔电流分别为 、 ,
参考方向如图3-4所示。并设受控源两端电压为U。
(2)列写网孔方程:
辅助方程为:
联立求解得:
U= V
所以: mW
3-5电路如题图3-5所示,试用网孔分析法求电流 和电压 。
题图3-5题图3-5(b)
解:(1)将原图中20A电流源与2 电阻并联部分等效为40V电压源与2 电阻串联,如图3-5(b)所示。
(2)列写节点方程:
整理得:
求解得: V
V
所以: V
3-7电路如题图3-7所示,①试用节点分析法列写电路的节点方程;②该电路能否用网孔分析法分析?为什么?
题图3-7题图3-7(b)
①解:
(1)将原图中的 电压源与 串联部分等效为 电流源与 并联。
且 。如图3-7(b)所示。
(2)该电路有5个节点,以节点5为参考点,节点电压分别设为: 、 、 ,
Ua=10-3I=4V
Ub=2I=4V
Uab=Ua–Ub=0V
题图1-2
1-3试计算题图1-3所示电路中I、Us、R和电源Us产生的功率。
解:做节点标识,A、B、C:
I1=6+12=18A
I2=I1-15=3A
I2+I3=12+5 I3=14A
I=15- I3=1A
US=3I1+12I2=90V
题图1-3
2-15题图2-15所示电路,试问当电阻R等于何值时,可获得最大功率,最大功率等于多少?
题图2-15图2-15(b)
解:先将a,b与R断开,则
得:
所以:共戴维南等效电路为图(a)所示
所以:当 时,获得最大功率

电子行业-电子电路基础第六章习题答案 精品

电子行业-电子电路基础第六章习题答案 精品

第六章习题6.1 求习题图6.1所示的电路的传递函数()/o i H V V ω=。

习题图6.1解:1//()i o oR V V jwCjwLV -=22()oi V j L RLCH R j L RLCV ωωωωω-==+- 6.2 对于习题图6.2所示的电路,求传递函数()o iI H I ω=。

习题图6.2解:2()11o iI R j CRH j CR CL I jwL R jwCωωωω===-+++ 6.3 串联RLC 网络有R=5Ω,L=10mH ,C=1F μ,求该电路的谐振角频率、特征阻抗和品质因数。

当外加电压有效值为24V 时,求谐振电流、电感和电容上的电压值。

解:电路的谐振角频率40110/rad s LCω== 特征阻抗100LCρ==Ω 品质因数020LQ Rω==谐振电流0 4.8mU I A R== 电感和电容上的电压值L 480V C m U U U Q ===6.4 设计一个串联RLC 电路,使其谐振频率050/rad s ω=,品质因数为80,且谐振时的阻抗为10Ω,并求其带宽。

解:00.625rad /B s Qω==6.5 对于习题图6.5所示的电路,求()v t 和()i t 为同相时的频率ω。

习题图6.5解:12()1Z (//)()v t jwL R L i t jwC==++ 121,1,1,1L H L H C F R ====Ω将代入2221Z ()11w w j w w w w-=+-+++谐振时虚部为零,2101w w w w -+=+ 0.7861w =得出,6.6 并联RLC 网络有R=50Ω,L 4mH =,C=160F μ,求并联电路谐振频率和品质因数。

若外接电流源有效值为2A ,求谐振时电阻、电感及电容上的电流值。

解:电路的谐振角频率3011.2510rad /s LCω==⨯ 品质因数010LQ CR RCω=== 谐振时电阻、电感及电容上的电流值2A,20A R L C R I I I I Q ====6.7 并联谐振电路,其品质因数为120,谐振频率是6610/rad s ⨯,计算其带宽。

电路分析基础第6章习题答案 ppt课件

电路分析基础第6章习题答案  ppt课件

7
dt
6-4 图题6-4所示电路中,各电源均在 t =0时开始作用于电路,
求 i (t),已知电容电压初始值为零。
i(t)
i(t)
4k +
1V -
1mA
4k

6k

uOC
2F
1V-

1mA 6k
把除电容元件以外的电路进行戴维南变换
(1 4k

1 6k
)uOC

10 3

1 4k
uOC 3 V

4
u
i1(t)

18
6-9 电路如图题6-8所示,电压源于 t =0 时开始作用于电路,试 求i (t),t≥0。
-10i1(t)+
4A 4 2H i1(t) i(t)
14

2H
-56V i(t)
时间常数为: 2 1 s
14 7
稳态时 i() 56 4 A 14
t
i(t) i()(1 e ) 4(1 e 7t ) V t≥0
4

103

ppt课件
(0.5

0.75e
208.3t
)
mA
t≥0
9
6-5 电路如图题6-5所示,开关在 t =0时闭合,求t=15s时ua及
各支路电流。 设电容的初始储能为零
+200V 60k 40k
6k 1000pF
+ ua uC -
-300V
时间常数为: RoC (60k // 40k 6k)109 3105 s
1.5 1.25 1.2 16
6-8 电路如图题6-7所示,电压源于 t =0 时开始作用于电路,试

《电路理论基础》(第三版 陈希有)习题答案第五章

《电路理论基础》(第三版  陈希有)习题答案第五章

解:(1)图(b)电压随时间分段连续,可描述为01s ()11s 2s 32s 3s t t u t t t t <≤⎧⎪=<≤⎨⎪-<≤⎩(1)图(a)电容电流与电压为关联参考方向,其关系可表示为d d d d u u i C t t== 将式(1)代入,可得1A 01s ()01s 2s1A 2s 3s t i t t t <≤⎧⎪=<≤⎨⎪-<≤⎩()i t 的变化规律如图(d)所示。

t /s 图 (d)(2)在关联参考方向下,电容上电压与电流关系又可表示为1()()d t u t i C ξξ-∞=⎰ 图(c)所示电流可描述为1A 01s 01s<2s ()0.5A 2s 3s3s t t i t t t <≤⎧⎪≤⎪=⎨-<≤⎪⎪>⎩已知(0)0.5C q =由q Cu =可求得(0)(0)0.5V q u C==当 3.5s t =时,电容上的电压取决于电流在此刻前的历史,即0123 3.5012311111()()d 1Ad 0d (0.5A)d 0d (0)(100.50)V 1V u t i C C C C C u ξξξξξξ-∞=+++-+=++-+=⎰⎰⎰⎰⎰解:(1)根据电容串、并联等效关系,可得ab 234110.060.1F 11520C C C C =+=+=++ eq 1ab 110.08F 11 2.510C C C ===++ (2)当电容原未充电时,各电容上的电压分别为ab 11ab 0.15010V 0.10.4C U U C C =⨯=⨯=++, 2140V U U U =-= 432340.05408V 0.20.05C U U C C =⨯=⨯=++,42332V U U U =-= 则各电容储存的电场能量为2C111120J 2W C U ==,2C222148J 2W C U ==, 2C3331 6.4J 2W C U ==,2C444125.6J 2W C U == 注释:只有对联接到电路前均未充电的电容,才可按电容分压来计算串联电容的电压。

电路理论基础(哈尔滨工业大学陈希有第3版) 第6章-第10章

电路理论基础(哈尔滨工业大学陈希有第3版) 第6章-第10章
m
例题
6.2
分别写出代表正弦量的相量
i3 5cos t 60) ( , 解 i1 I1m 30 A
( , i1 3cos t , i2 4cos t 150) i4 6sin( t 30) .
i2 I 2m 4 150 A 5120 A I i3 5 cos t 60 ) 5 cos( t 60 180 ) ( 3m i4 6 sin( t 30) 6 cos( t 30 90) I 4m 6 60 A
m

当u和ψ的参考方向符合右螺旋定则时 d
u dt
根据正弦量的相量表示的惟一性和微分规则,与上述微分关系 对应的相量关系式为
U m j m 或
1 m Um j
6.3
基尔霍夫定律的相量形式
基本要求:透彻理解相量形式的基尔霍夫定律方程,比较与线性直流电路相应方 程的异同。
2 2
U 3 j4 V 490 V
u3 4 2 cos t 90 ) (
关于相量说明
1. 相量是复值常量,而正弦量是时间的余弦函数,相量只是代表正弦量,而不 等于正弦量。 +j I m1 2. 复平面上一定夹角的有向线段 初 I m2 ——相量图6.7所示 振 相
m1 m2
充要条件为
(2) 线性性质
Am1 Am2
(3) 微分规则 正弦量(角频率为 ) 时间导数 的相量等于表示原正弦量的相 量乘以因子 j 即设 f (t ) Re[ Am e jt ] ,则 d f (t ) Re[ jAm e jt ] dt

N个同频率正弦量线性组合 (具有实系数)的相量等于 各个正弦量相量的同样的线 性组合。设 f k (t ) Re[ Amk e j t ] ( bk 为实数),则

电路理论基础(陈希有)课后题答案

电路理论基础(陈希有)课后题答案

答案13.1解: (1)、(4)是割集,符合割集定义。

(2)、(3)不是割集,去掉该支路集合,将电路分成了孤立的三部分。

(5)不是割集,去掉该支路集合,所剩线图仍连通。

(6)不是割集,不是将图分割成两孤立部分的最少支路集合。

因为加上支路7,该图仍为孤立的两部分。

答案13.2解:选1、2、3为树支,基本回路的支路集合为 {1,3,4},{2,3,5},{1,2,6}; 基本割集的支路集合为 {1,4,6},{2,5,6},{3,4,5}。

答案13.3 解:(1) 由公式l t I B I T t =,已知连支电流,可求得树支电流A 1595111011010654321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i i i i i i (2) 由公式t t U B U -=l ,已知树支电压,可求得连支电压V 321321100111110654⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡u u u (3) 由矩阵B 画出各基本回路,如图(a)~(c)所示。

将各基本回路综合在一起得题中所求线图,如图13.3(d)所示。

(a)(b)(c)(d)答案13.4解:连支电流是一组独立变量,若已知连支电流,便可求出全部支路电流。

因此除将图中已知电流支路作为连支外,还需将支路3或4作为连支。

即补充支路3或4的电流。

若补充3i ,则得A 11=i ,A 22-=i ,34A 3-i i -=;若补充4i ,则得A 11=i ,A 22-=i ,43A 3-i i -=答案13.5解:树支电压是一组独立变量,若已知树支电压,便可求出全部支路电压。

除将图中已知支路电压作为树支外,还需在支路1、2、3、4、5中任选一条支路作为树支。

即在1u 、2u 、3u 、4u 、5u 中任意给定一个电压便可求出全部未知支路电压。

电路基础(第三版)Alexander and Sadiku著 课后题答案chapter 06

电路基础(第三版)Alexander and Sadiku著 课后题答案chapter 06

Chapter 6, Solution 7.
∫ ∫ v = 1
C
idt
+
v(t o
)
=
1 50x10 −3
t 4tx10−3 dt + 10
o
= 2t 2 + 10 = 0.04t2 + 10 V 50
Chapter 6, Problem 8.
A 4-mF capacitor has the terminal voltage
Chapter 6, Problem 2.
A 20-μF capacitor has energy w(t) = 10 cos2 377t J. Determine the current through the capacitor.
Chapter 6, Solution 2.
w = 1 Cv2 2
Chapter 6, Solution 3.
i = C dv = 40x10−3 220 − 160 = 480 mA
dt
5
PROPRIETARY MATERIAL. © 2007 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

电路理论基础(陈希有)课后题答案

电路理论基础(陈希有)课后题答案

答案12.1解:分别对节点①和右边回路列KCL 与KVL 方程:Cq u u i i qi C L L R C C /===--==ψ将各元件方程代入上式得非线性状态方程:C q C q f f q/)/()(21=--=ψψ方程中不明显含有时间变量t ,因此是自治的。

答案12.2解:分别对节点①、②列KCL 方程: 节点①:=1i 321S 1/)(R u u i q--= 节点②:=2i 423212//)(R u R u u q--= 将)(),(222111q f u q f u == 代入上述方程,整理得状态方程:⎩⎨⎧+-=++-=)/())((/)(/)(/)(4343223112S 3223111R R R R q f R q f q i R q f R q f q答案12.3解:分别对节点①列KCL 方程和图示回路列KVL 方程得:⎩⎨⎧-=-=(2)(1) /323321u u R u i qS ψ 3u 为非状态变量,须消去。

由节点①的KCL 方程得:0413332432=-++-=++-R u u R u i i i i 解得)/()]()([)/()(433224114332413R R R f R q f R R R i R u u ++=++=ψ 将)(111q f u =、)(222ψf i = 及3u 代入式(1)、(2)整理得:⎩⎨⎧++-+-=+++-=Su R R R R f R R R q f R R R f R R q f q)/()()/()()/()()/()(4343224331124332243111ψψψ 答案12.4解:由KVL 列出电路的微分方程:=L u )(sin )(d d 3t R u Ri tS ωβψαψ+-=+-= 前向欧拉法迭代公式:)](sin )([31k k k k t R h ωβψαψψ+-+=+后向欧拉法迭代公式:)](sin )([1311++++-+=k k k k t R h ωβψαψψ梯形法迭代公式:)](sin )()(sin )([5.013131++++-+-+=k k k k k k t R t R h ωβψαωβψαψψ答案12.5解:由图(a)得:tu C u U t C t u Ci R R C R d d )(d dd d S -=-== (1) 由式(1)可知,当0>R i 时,0d d <t u R ,R u 单调减小;当0<R i 时,0d d >tuR ,R u 单调增加。

电路理论基础习题答案

电路理论基础习题答案

电路理论基础习题答案第一章1-1. (a)、(b)吸收10W ;(c)、(d)发出10W. 1-2. –1A; –10V; –1A; – 4mW.1-3. –0.5A; –6V; –15e –t V; 1.75cos2t A; 3Ω; 1.8cos 22t W.1-4. u =104 i ; u = -104 i ; u =2000i ; u = -104 i ; 1-5.1-6. 0.1A. 1-7.1-8. 2F; 4C; 0; 4J. 1-9. 9.6V,0.192W, 1.152mJ; 16V , 0, 3.2mJ.1-10. 1– e -106t A , t >0 取s .1-11. 3H, 6(1– t )2 J; 3mH, 6(1–1000 t ) 2 mJ;1-12. 0.4F, 0 .1-13. 供12W; 吸40W;吸2W; (2V)供26W, (5A)吸10W. 1-14. –40V , –1mA; –50V, –1mA; 50V , 1mA. 1-15. 0.5A,1W; 2A,4W; –1A, –2W; 1A,2W. 1-16. 10V ,50W;50V ,250W;–3V ,–15W;2V ,10W. 1-17. (a)2V;R 耗4/3W;U S : –2/3W, I S : 2W; (b) –3V; R 耗3W; U S : –2W, I S :5W; (c)2V ,–3V; R 耗4W;3W;U S :2W, I S :5W; 1-18. 24V , 发72W; 3A, 吸15W;24V 电压源; 3A ↓电流源或5/3Ω电阻. 1-19. 0,U S /R L ,U S ;U S /R 1 ,U S /R 1 , –U S R f /R 1 . 1-20. 6A, 4A, 2A, 1A, 4A; 8V, –10V , 18V . 1-21. K 打开:(a)0, 0, 0; (b)10V , 0, 10V; (c)10V,10V ,0; K 闭合: (a)10V ,4V ,6V; (b)4V ,4V ,0; (c)4V,0,4V; 1-22. 2V; 7V; 3.25V; 2V. 1-23. 10Ω.1-24. 14V .1-25. –2.333V , 1.333A; 0.4V , 0.8A.1-26. 12V , 2A, –48W; –6V , 3A, –54W . ※第二章2-1. 2.5Ω; 1.6R ; 8/3Ω; 0.5R ; 4Ω; 1.448Ω; . R /8; 1.5Ω; 1.269Ω; 40Ω; 14Ω. 2-2. 11.11Ω; 8Ω; 12.5Ω. 2-3. 1.618Ω.2-4. 400V;363.6V;I A =.5A, 电流表及滑线电阻损坏. 2-6. 5k Ω. 2-7. 0.75Ω.2-8. 10/3A,1.2Ω;–5V ,3Ω; 8V ,4Ω; 0.5A,30/11Ω. 2-9. 1A,2Ω; 5V,2Ω; 2A; 2A; 2A,6Ω. 2-10. –75mA; –0.5A.2-11. 6Ω; 7.5Ω; 0; 2.1Ω. 2-12. 4Ω; 1.5Ω; 2k Ω. 2-13. 5.333A; 4.286A. 2-14. (a) –1 A ↓; (b) –2 A ↓, 吸20W. 2-16. 3A. 2-17. 7.33V . 2-18. 86.76W. 2-19. 1V , 4W. 2-20. 64W.2-21. 15A, 11A, 17A. 2-23. 7V , 3A; 8V ,1A. 2-24. 4V , 2.5V, 2V. 2-26. 60V . 2-27. 4.5V. 2-28. –18V .2-29. 原构成无解的矛盾方程组; (改后)4V ,10V . 2-30. 3.33 k , 50 k . 2-31. R 3 (R 1 +R 2 ) i S /R 1 .2-32. 可证明 I L =-u S /R 3 . 2-33. –2 ; 4 .2-34. (u S1 + u S2 + u S3 )/3 . ※第三章3-1. –1+9=8V; 6+9=15V; sin t +0.2 e – t V. 3-2. 155V . 3-3. 190mA.i A0 s 1 12 3 1-e -t t 0 t ms i mA 410 0 t ms p mW 4 100 2 25i , A 0.4 .75 t 0 .25 1.25 ms -0.4 (d) u , V 80 0 10-20 t , ms(f ) u , V 1000 10 t , ms (e)p (W) 100 1 2 t (s) -103-4. 1.8倍.3-5. 左供52W, 右供78W. 3-6. 1; 1A; 0.75A.3-7. 3A; 1.33mA; 1.5mA; 2/3A; 2A. 3-8. 20V , –75.38V.3-9. –1A; 2A; –17.3mA. 3-10. 5V , 20; –2V, 4. 3-12. 4.6. 3-13. 2V; 0.5A. 3-14. 10V , 5k .3-15. 4/3, 75W; 4/3, 4.69W. 3-16. 1, 2.25W. 3-18. 50. 3-19. 0.2A. 3-20. 1A. 3-21. 1.6V . 3-22. 4A; –2A.3-23. 23.6V; 5A,10V . 3-24. 52V . ※第四章4-1. 141.1V , 100V , 50Hz, 0.02s,0o , –120o ; 120 o.4-2. 7.07/0 o A, 1/–45 o A, 18.75/–40.9 oA. 4-3. 3mU , 7.75mA .4-4. 10/53.13o A, 10/126.87o A, 10/–126.87oA,10/–53.13oA ;各瞬时表达式略。

电路理论基础第四版-孙立山-陈希有主编-第7章习题答案详解Word版

电路理论基础第四版-孙立山-陈希有主编-第7章习题答案详解Word版

《电路理论基础》习题7答案答案7.1解:由阻抗并联等效公式得:Ω+=+=---33636310j 110)10j /(110)10j /(10)j (ωωωωZ 阻抗模及幅角分别为:233)10(110)j (ωω-+=Z ,)10arctan()(3ωωθ--=令2/1)j (c=ωZ 求得截止角频率rad/s 103c =ω,故通带及阻带分别为: 通带=ω0~rad/s 103,阻带=ωrad/s 103~∞。

幅频特性和相频特性如图(b)和(c)所示。

(b)--答案7.2解: RC 并联的等效阻抗RCRC R C R Z RCωωωj 1j /1j /+=+= RCRC Z L Z U U H +==ωωj /)j (12 RL LC RC L R R /j 11)j 1(j 2ωωωω+-=++= 幅频特性222)/()1(1)j (R L LC H ωωω+-=当0→ω时, 1)j (=ωH ;当∞→ω时,)j (=ωH所以它具有低通特性。

答案7.3解:设1111111j j 1//C R R R C R Z ωω+==, 2222222j j 1//C R R R C R Z ωω+== 由分压公式得:12122U Z Z Z U += )j 1()j 1()j 1()j (11222111212C R R C R R C R R U U H ωωωω++++== 当R 1C 1=R 2C 2时,得212)j (R R R H +=ω,此网络函数模及辐角均不与频率无关。

答案7.4解:因为电路处于谐振状态,故电感与电容串联电路相当于短路,因此有50S12121==+I U R R R R Ω代以Ω=1001R ,解得Ω=1002R 又因为电路处于谐振状态 , 所以 Ω==100C L X X 故有V 5021S12=⨯+==LL L X R R I R X I U 答案7.5解:(1)根据题意,电路发生谐振时,存在下列关系:⎪⎩⎪⎨⎧======V10A1/rad/s 10/14LI U R U I LC L ωω 解得 ⎪⎩⎪⎨⎧==Ω=F 10mH 11.0μC L R 品质因数 1001.010===U U Q L(2)V 9010V 901001)(j ︒-∠=︒-∠⨯︒∠==C I U Cω即有V )90cos(210︒-=t u Cω 答案9.9解:由串联谐振规律得:⎪⎪⎩⎪⎪⎨⎧===∆==Ω=R L Q Q LC R /rad/s 100/rad/s10/1100030ωωωω 解得 ⎪⎩⎪⎨⎧==Ω=1μμC H 1100L R答案7.6解:(1)F 10034.132.0)8752(117220-⨯=⨯⨯==πωL C Qωω=∆ , 5.3250/875/0==∆=ωωQ R L Q /0ω=, Ω=⨯⨯==65.5025.3/32.08752/0πωQ L R 谐振频率为Hz 759)14121(021c ≈⨯++-=f Q Q f Hz 1009)14121(02c2≈⨯++=f QQ f(2) 谐振时电路的平均功率为:W 071.165.502)65.502/2.23(2200=⨯==R I P 在截止频率处,电流下降至谐振电流0I 的2/1,故功率减小到0P 的一半,所以当Hz 759=f 和Hz 1009=f 时,电路平均功率均为W 535.02/0==P P (3)V 2.812.235.3=⨯===QU U U CL 答案7.7解:由谐振时阻抗为Ω310得 Ω=1000RRLC 并联电路带宽:Q/0ωω=∆(参考题9.16) 由带宽与谐振角频率及品质因数的关系得:10/0=∆=ωωQ RLC 并联电路的品质因数为10/0==G C Q ω 由上式求得:μF10)10001000/(10/100=⨯==ωG C 由C L 00/1ωω=得 H1.0H )1010/(1/15620=⨯==-C L ω答案7.8略 答案7.9解:当两线圈顺接时,等效电感H 05.0221=++=M L L L 谐振角频率rad 10102005.011361=⨯⨯==-LC ω 取V06︒∠=U ,则谐振时的电流 A 04.0A 1050621︒∠=+︒∠=+=R R U I 由互感的元件方程得: j124(0.4]V j100.4j20)10[(j )j (j8)V 2(0.4]V j100.4j10)5[(j )j (1212211111+=⨯+⨯+=++=+=⨯+⨯+=++=I M I L R U I M I L R U ωωωω两线圈电压的有效值分别为V 24.882221=+=U ,V 65.12124222=+=U 当两线圈反接时,等效电感H 01.0221'=-+=M L L L 谐振角频率rad/s 10236.2102001.01362⨯=⨯⨯=-ω j8.94(0.4A j22.36)10(j )j (2V A 4.05j )j (2222221211+=⨯Ω+=-+==⨯Ω=-+=I M I L R U I M I L R U ωωωω此时两线圈电压的有效值分别为V 21=U ,V 8.995.84222=+=U 答案7.10略答案7.11图示电路,V )cos(22S t u ω=,角频率rad/s 100=ω,Ω=1R ,F 1021-=C ,F 105.022-⨯=C 。

《电路理论基础》(第三版 陈希有)习题解答第六章

《电路理论基础》(第三版  陈希有)习题解答第六章

答案6.22解:对图(a)电路做戴维南等效,如图(b)所示。

OC U inZ (b)i j 1/(j )Z L C ωω=+ (1)S OC j I U Cω=&& (2)由图(b)可知,当i 0Z =时,电阻两端电压U &与电阻R 无关,始终等于OC(0)U R ≠&。

由式(1)解得1/100rad/s ω== 将式(3)代入式(2)得OC1100A 1090V j100rad/s 0.01FU U ==∠︒⨯=∠-︒⨯&&90V u t ω=-o ()答案6.23解:先对图(a)电路ab 端左侧电路作戴维南等效,如图(b)所示。

U iZ (b)令32000rad/s 210H 4L X L ω-==⨯⨯=Ω得等效阻抗i 4j48//8//j42(1j)4j4Z Ω⨯Ω=ΩΩΩ==+ΩΩ+Ω由OCi 1j U i Z R Cω=++知,欲使电流i 有效值为最大,电容的量值须使回路阻抗虚部为零,即:012]j 1Im[=-=++CC R Z i ωω 等效后电路如图(b)所示。

解得1250μF 2C ω==答案6.24解:应用分压公式,输出电压oU &可表示为 o n1n 2U U U =-&&& i i 1j 12j U C U R Cωω=-⨯+&& i ii j 121j 2(j 1)U U CR U CR CR ωωω-=-=++&&& 当 0=R , o U &超前于iU &180o ; 当 1R Cω=,o U &超前于i U &︒90; 当 ∞→R , o U &与iU &同相位。

即当R 由零变到无穷时,oU&超前于iU &相位差从180o 到0o 变化。

答案6.25解:图示电路负载等效导纳为22221j j()j ()()R LY C C R L R L R L ωωωωωω=+=+-+++ (1) 22222222222)()(21)()(C L R LC L R L C L R R Yωωωωωωω++-=⎥⎥⎦⎤⎢⎢⎣⎡+-+⎥⎥⎦⎤⎢⎢⎣⎡+= (2) 由式(2)可见:当)2/(12LC =ω时,Y C ω=与R 无关,电流有效值CU U Y I ω==不随R 改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电路理论基础》习题6答案
答案6.1
解:
)/1()(T t A t f -= T t <<
0 ⎰⎰-==T T dt T t A T
dt t f T A 0
00)/1(1)(1A T t t T A T
5.0]2[02=-= ⎰-=T
k dt t k T t A T
a 0
)cos()/1(2ω
0)sin(2)]sin()/1(2[0
20=+⨯-=⎰T T
dt t k T k A t k Tk T t A ω
ωωω
⎰-=T
k dt t k T t A T b 0
)sin()/1(2ω
π
ωωωωω
k
A kT A dt t k T k A t k Tk T t A T T ==-⨯--=⎰2)cos(2)]cos()/1(2[0
20 所以
∑∞
=+=1
sin 5.0)(k t k k A
A t f ωπ 频谱图如图(b)所示。

.0
答案6.2略 答案6.3
解: (1) 电压有效值:
V 01.80)2
25()250()2100(2
22=++=U
电流有效值
58.74mA )2
10()220()280(22
2=++=I
(2) 平均功率
kW 42.345cos 2
10250cos 22050)45cos(280100=︒⨯+︒⨯+︒-⨯=P
Ω
︒∠=︒∠︒∠=Ω
=︒∠︒∠=Ω
︒-∠=︒∠︒-∠=
k 455.2mA
010V 4525k 5.2mA 020V
050k 4525.1mA 080V
45100)3()3()2()1(Z Z Z 注释:非正弦周期量分解成傅里叶级数后,某端口的平均功率等于直流分量
和不同频率交流分量单独作用产生的平均功率之和。

答案6.4
解: 基波电压单独作用时
V 010V 02
14.14)
1(︒∠=︒∠=U , 阻抗
Ω+=+Ω=
)j 1(j 1)1(L Z ω 基波电流相量为:
A 4525j)1(V 10)1()1(
)
1(︒-∠=Ω+==Z U I 瞬时值为:
A )45cos(10)()
1(︒-=t t i ω 三次谐波单独作用时
V 302V 302
83.2)
3(︒∠=︒∠=U Ω+=+Ω=
)j31(3j 1)3(L Z ω A 6.41632.0j3)1(V 302)
3()3()
3(︒-∠=Ω+︒∠==Z U I 瞬时值为:
A )6.41cos(2632.0)()
3(︒-=t t i ω 由叠加定理得电流瞬时值:
A )]6.41cos(2632.0)45cos(10[)
3()1(︒-+︒-=+=t t i i i ω
ω 电流有效值
A 1.7632.0)25(2
23)
3(2)1(=+=+=I I I 电压有效值
V 2.102102
22)
3(2)1(=+=+=U U U
电压u 中所含三次谐波百分数为
%
61.19%1002
.102%100)
3(=⨯=⨯U U 电流i 中所含三次谐波百分数为
%
9.8%1001
.7632
.0%100)
3(=⨯=⨯I I 答案6.5
解:直流V 1)0(S =U 单独作用时,电感短路,电容开路,故电压u 的直流分量
为:V 1)0(=U 基波
V 01
)1(S ︒∠=U 单独作用时,由分压公式得:
jV )
j 1(j )j 1()
1()1(-=⨯+++=S U CR R L CR R U ωωω 瞬时值
V )90cos(2)
1(︒-=t u ω 二次谐波
V 05
1)
2(S ︒∠=U 单独作用时,由分压公式得:
V 3.146055.0)
j21(j2)j21()2()2(︒∠=⨯+++=S U CR R L CR R U ωωω 瞬时值
V )3.146cos(2055.0)
2(︒-=t u ω 由叠加定理得:
)3.1462cos(2055.0)90cos(21)
2()1()0(︒-+︒-+=++=t t u u U u ω
ωV 电源提供的平均功率等于电阻R 吸收的平均功率,故
W 003.22
)
2(2
)1(2
)0(2
=++==R
U U U R U P
答案6.6略
答案6.7
解:直流电流源单独作用时,电感处于短路。

由分流公式得电流i 的直流分量为:
A 1A 4311S
2
11
)0(=⨯+=⨯+=I R R R I 正弦电压源V 04S
︒∠=U 单独作用时,由欧姆定律得: A 4525.04j 314j 2
1S )
1(︒-∠=++=++=L R R U I ω 电流i 的有效值
A 225.1)25.0(12
2)
1(2)0(=+=+=I I I 答案6.8
解: 图(a)电路中不含电感和电容,不存在与频率有关的阻抗,因此,不必将非正弦周期电流展开为傅立叶级数形式。

在第一个周期内,电流源可表示为
)10(2S
s t t i <<= 将图(a)电路化为戴维南等效电路,如图(c)所示。

(c )
图中
S
S OC 40U i u +Ω=, 230
50OC
+=+=t u i s)10(<<t Ω30电阻消耗的平均功率为
W 190d )2(30d )(110
2
2=+⨯===⎰⎰t t t R t i T P T 答案6.9略 答案6.10
解:(1)等效电路见图 (b)。

-
'+
1u -
''+
1
u
其中
Ω==
402
i R n R 整个电路为电阻性电路。

V )]3cos(4)cos(8[40
1040
2111
12t t u u n u ω
ω+=⨯+⨯='⨯=
(2)等效电路见图 (c),
其中对基波Ω=⨯=8j j 2)1(L n Z ω,对三次谐波Ω=⨯=
24j j32
)3(L n Z ω 当基波单独作用时,由理想变压器特性方程和分压公式得:
V 51.342247.6V 2201011)1()1()
1(1)1(2︒∠=⨯+⨯=''⨯=Z Z n U n U )V 34.51cos(247.6)()
1(2︒+=t t u ω 三次谐波单独作用时,由理想变压器特性方程和分压公式得:
V .6222615.4V 2101011)
3()3()3(1)3(2︒∠=⨯+⨯=''⨯=Z Z n U n U )V 6.223cos(615.4)()
3(2︒+=t t u ω 由叠加定理得
V ])6.223cos(615.4)34.51cos(247.6[)
3(2)1(22︒++︒+=+=t t u u u ω
ω。

相关文档
最新文档