常州大学数值分析09-10试卷及参考答案
数值分析试题与答案
一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
常州大学数值分析07-08试卷A及参考答案
江苏工业学院2007~2008学年第 2 学期硕士生考试试题参考解答一、(10分)叙述防止误差的几个基本原则,并举一例说明其在数值计算中的应用。
答:防止误差的几个基本原则主要有: 1) 防止大数“吃”小数;2) 避免除数绝对值远远小于被除数绝对值的除法; 3) 避免相近数相减;4) 避免使用不稳定的算法;5) 注意简化计算步骤,减少运算次数; ………… 5 分 例如:当x 充分大时,即1x >>时,计算可以用表达式来计算,以避免相近数相减。
………… 5 分二、(15分)(1)叙述Lagrange 插值或Newton 插值方法的方法思想。
(2) 设(1)0,(2)3,(3)10f f f ===, 试求)(x f 的二次Newton 插值多项式。
解:(1)拉格朗日插值、牛顿插值的方法思想分别如下: 对于给定的节点(,),0,1,2,,i i x y i n = 拉格朗日插值通过引入满足如下条件的基函数1,(),0,i j j il x j i=⎧=⎨≠⎩ 构造如下形式的插值多项式()()nn i i i P x l x y ==∑其中0()()()nj i j ijj ix x l x x x =≠-=-∏。
………… 4 分牛顿插值方法是通过构造如下形式的多项式01020101()()()()()()n n n N x a a x x a x x x x a x x x x -=+-+--++--其中,0,1,2,,i a i n =通过Newton 差商公式得到,且仅与0,1,,,i x x x 有关,由此可以保证在增加节点时, 原先的计算量能够被充分利用。
………… 4 分 (2) 根据列表函数可得差商表如下:0 0 0 3 3 0 10 7 2)(x f 的二次Newton 插值多项式为()3(1)2(1)(2)P x x x x =-+--即2()231P x x x =-+。
常州大学数值分析作业
常州大学数值分析作业1.解:(1)x = [ 3*π/8 π/2];Y = cos(x);x0 = π/3;[A,Y] = lagrange(x,y,x0);P1 = vpa(poly2sym(A),3)结果如下:P1 = 1.53*x - 0.974Y = 0.5102(2)x = [π/4 3*π/8π/2];Y = cos(x);[A,Y] = lagrange(x,y,x0);P2=vpa(poly2sym(A),3)结果如下:P2 = 1.18*x^2 - 0.455*x - 0.189Y = 0.4973(3)x = [0 π/8 π/4 3*π/8 π/2];Y = cos(x);[A,Y]=lagrange(x,y,x0);结果如下:P3 = x^4 + 0.00282*x^3 - 0.514*x^2 + 0.0232*x + 0.0287 Y = 0.50017.function [T]=aitken(x,y,x0,T0)If nargin == 3T0=[];endn0=size(T0,1);m=max(size(x));n=n0+m;T=zeros(n,n+1);T(1:n0,1:n0+1)=T0;T(n0+1:n,1)=x;T(n0+1:n, 2)=y; ifn0==0i0=2;elsei0=n0+1;Endx=[0 1];y=[0.5 1.25];x0=2.8;T0=aitken(x,y,x0);T=T0;x=[3.0,4.0]';y=[3.5,2.75]';x0=2.8;T=aitken(x,y,x0,T0);n=max(size(x))+size(T0,1);for i=1:nfor j=1:i+1fprintf('%10.4f',T(i,j));endfprintf('\n');EndReturn0.0000 0.5000 0 0 01.0000 1.25002.6000 0 03.0000 3.5000 3.3000 3.2300 04.0000 2.7500 2.0750 2.2850 3.419016.function [C,D,Y]=newpoly(x0,y0,x)if nargin < 2 | nargin> 3error( 'Incorrect Number of Inputs'); endif length(x0)~=length(y0)error('The length of x0 must be equal to it of y0');end n=length(x0); D=zeros(n,n); D(:,1)=y0'; for j=2:n%计算差商表for k=j:nIf abs(x0(k)-x0(k-j+1))<eps< bdsfid="127" p=""></eps<> error('DividedbyZero,therearetwonodesarethes ame');endD(k,j)=(D(k,j-1)-D(k-1,j-1))/(x0(k)-x0(k-j+1));EndEndC=D(n,n);For k=(n-1):-1:1C=conv(C,poly(x0(k)));m=length(C);C(m)=C(m)+D(k,k);endIf nargin==3Y=polyval(C,x);endC=fliplr(C);Returnx = [0 1 2 3 4 ];y = [0.5,1.25,2.75,3.5,2.75];[A,Y]=lagrange(x,y,x0)x0 = [0 1 2 3 4 ];y0 = [0.5,1.25,2.75,3.5,2.75];[C,D,X]=newpoly(x0,y0,x)plot(x,Y,'b-',x0,X,'r:')A = 0.5000 -0.3125 1.4687 -0.4375 0.0313Y = 0.5000 1.2500 2.75003.5000 2.7500C = 0.0313 -0.4375 1.4688 -0.3125 0.5000D = 0.5000 0 00 01.2500 0.7500 0 0 02.7500 1.5000 0.3750 0 03.5000 0.7500 -0.3750 -0.2500 02.7500 -0.7500 -0.7500 -0.1250 0.0313X = 0.5000 1.2500 2.7500 3.5000 2.7500fl(x)=0.5*x^4 - 0.312*x^3 + 1.47*x^2 - 0.438*x + 0.0312fn(x)=0.5*x^4 - 0.312*x^3 + 1.47*x^2 - 0.438*x + 0.03126. 解:对题中函数进行变形:原式→y/x = a* exp(b*x) →ln(y/x) = ln(a) + b*exp(x) 化为线性形式计算:>> a = [1 2 3 4 5];>> b = [1.222 2.984 5.466 8.902 13.592];>> x = exp(a);>> y = log(b)-log(a);>> n = 1; >> [C]=lspoly(x,y,n);>> y = vpa(poly2sym(C),3)结果如下:y = 0.00464*x + 0.384写成题中拟合函数的形式即为:y = 1.4679*x*exp(0.00464*x)7.function [a0,a1,a2]=ec2(h,w)S=log(s)';N=length(h);A=zeros(N,3);for i=1:5A(i,1)=1;A(i,2)=log(h(i));A(i,3)=log(w(i));endc=inv(A'*A)*(A'*S); a0=exp(c(1)); a1=c(2); a2=c(3);return%给出数据h=[175 172 183 164 156]; w=[80 90 80 70 65];s=[1000 900 1200 750 800]; [a0, a1,a2]=ec2(h,w,s)输出结果为:a0 =1.614815742043648e-04a1 =3.383163094165866a2 =-0.4191650115826638.x= lsqcurvefit(fun,x0,xdata,ydata)x=lsqcurvefit(fun,x0,xdata,ydata,lb,ub)x=lsqcurvefit(fun,x0,xdata,ydata,lb, ub,options)[x,resnorm] = lsqcurvefit(…)[x,resnorm,residual]=lsqcurvefit(…)[x,resnorm,residual,exitflag]= lsqcu rvefit(…)[x,resnorm,residual,exitflag,output] = lsqcurvefit(…)[x,resnorm,residual,exitflag,output,l ambda] = lsqcurvefit(…) [x,resnorm,residual,exitflag,output,l ambda,jacobian] =lsqcurvefit(…)function F = myfun(x,xdata)F=(x(1).*xdata).*(exp(x(2).*xdat a));xdata=[1,2,3,4,5];ydata=[1.222,2.984,5.466,8.902,13. 592]; x0=[0,0];[x,resnorm]=lsqcurvefit(@myfun,x0, xdata,ydata)输出结果为:Local minimum found.Optimization completed because t he size of the gradient is less than t he default value of the function toler ance.x =0.999958348976391 0.2000141328 12834aaresnorm = 8.067930437509675e -7。
《数值分析》所有参考答案
等价三角方程组
, ,
11.设计算机具有4位字长。分别用Gauss消去法和列主元Gauss消去法解下列方程组,并比较所得的结果。
解:Gauss消去法
回代
列主元Gauss消去
15.用列主元三角分解法求解方程组。其中
A= ,
解:
等价三角方程组
回代得
, , ,
16.已知 ,求 , , 。
解:
, ,
17.设 。证明
,(II)
,
当 时
当 时
迭代格式(II)对任意 均收敛
3) ,
构造迭代格式 (III)
,
当 时
当 时
迭代格式(III)对任意 均收敛
4)
取格式(III)
, , ,
4.用简单迭代格式求方程 的所有实根,精确至有3位有效数。
解:
当 时, ,
1 2
当 时
,
,
, ,
1)
迭代格式 ,
,
当 时, ,
任取 迭代格式收敛于
是中的一种向量范数。
解:
当 时存在 使得
,
,
所给 为 上的一个范数
18.设 。证明
(1) ;
(2) ;
(3) 。
解:(1)
(2)
(3)
19.设
A=
求 , , 及 , 。
解: ,
Newton迭代格式
,
20.设 为 上任意两种矩阵(算子)范数,证明存在常数
, 使得
对一切 均成立。
解:由向量范数的等价性知道存在正常数 使得
,
=0.187622
[23.015625 , 23.015625+0.187622]
数值分析试卷及答案
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
09下数值分析答案(A)
《数值分析》I课程试题参考答案及评分标准(中文试卷)( A卷)适用专业年级:信息与计算科学07级 考试时间: 100分钟命题人:吕勇一、解------------------------------------------------------5分则插值多项式。
---------------------------------------- -------10分二、 证明设,以为节点的Lagrange插值多项式为 --3分余项为-----------------------------------------------------6分由于为线性函数,当时,。
--------------------------------9分则:,所以结论得证-------------------------------------------------10分三、证明 ----------------------------------------------------5分-------------------------8分 ---------------------------------------------------10分四、证明设则根据插值多项式原理-------------------------------------------------------------------------------------6分两端在上积分-------------------------------------------------------------10分五、解设,。
--------------------------------------------------------------------3分,---------------------------------------------------------------6分,。
常州大学数值分析09-10试卷及参考答案
常州大学2009~2010学年第 2 学期硕士生考试试题评分标准1. (10分)当x 充分大时, 试比较算上的差异?并叙述常见的防止误差的一些原则。
解:当x 充分大时,两个表达式在理论上恒等, 但其数值计算结果不同,前者会出现相近数相减,失去有效数位,降低计算结果精度的问题;后者避免了相近数相减的问题,尽可能地保证了计算结果的精度。
防止误差的几个基本原则主要有: 1) 防止大数“吃”小数;2) 避免除数绝对值远远小于被除数绝对值的除法; 3) 避免相近数相减;4) 避免使用不稳定的算法;注意简化计算步骤,减少运算次数;………… 5 分2. (15分)已知列表函数利用Newton 插值方法求()f x 的插值逼近多项式3()N x ,利用插值多项式近似计算(1.52)f 。
解:Newton 差商表: D =1.0000 -1.0000 -2.00003.00004.0000 3.0000 2.0000 -1.0000 -2.5000 -1.8333………… 5 分3() 1.8333^38.5000^28.6667 1.0000N x x x x =-+-+………… 5 分3(1.52)(1.52) 1.0268f N ≈=。
………… 5 分3. (10分)已知列表函数解:写出正规方程组42 5.1526 6.09a b a b +=⎧⎨+=⎩ ………… 5 分解上述正规方程组得0.9360,0.7030a b ==………… 5 分4. (15分)写出龙贝格(Romberg )方法的数值积分公式,并用龙贝格方法计算1sin 0x e dx ⎰,要求误差不超过210-。
解:龙贝格(Romberg )方法计算定积分()baf x dx ⎰的数值积分公式如下:211122221(),,22413316115156416363n n n i i i i n n nn n nn n nh b aT T f x h x x n S T T C S S R C C --=-=+=-==-=-=-∑,其中1[()()]2b aT f a f b -=+。
《数值分析》练习题及答案解析
《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。
1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。
(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。
"(1)计算01)1(<-=f ,故有根区间为[1,2]。
(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。
(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。
(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。
常州大学数值分析作业(共六章)
第二章:20.(1)用 Jacobi 迭代法解方程组 AX=b. function [x,iternum,flag]=jacobi(A,b,x0,delta,max1) %检验输入参数,初始化 if nargin<2,error('more augments are needed');end if nargin<3,x0=zeros(size(b));end if nargin<4,delta=1e-13;end if nargin<5,max1=100;end if nargin>5,error('incorrect number of input');end n=length(b);x=0*b;flag=0;iternum=0; %用Jacobi迭代法解方程组 for k=1:max1 iternum=iternum+1; for i=1:n if abs(A(i,i))<eps error('A(i,i) equal to zero,divided by zero'); end x(i)=(b(i)-A(i,[1:i-1,i+1:n])*x0([1:i-1,i+1:n]))/A(i,i); end err=norm(x-x0); relerr=err/(norm(x)+eps); x0=x; if (err<delta)||(relerr<delta) flag=1; break; end end if flag==1 disp('The Jacobi method converges.') x=x; else disp(['The Jacobi method does not converge with '... ,num2str(max1),' iterations']) end return A=[1 2 -2;1 1 1;2 2 1]; b=[1;1;1]; [x,iternum,flag]=jacobi(A,b) 输出结果为: The Jacobi method converges. ans = -3 3 1 iternum =4 flag = 1
(完整word版)数值分析考试试卷和答案(word文档良心出品)
线封密三峡大学试卷班级姓名学号2011年春季学期《数值分析》课程考试试卷( A 卷)答案及评分标准注意:1、本试卷共3页;2、考试时间:120 分钟;3、姓名、学号必须写在指定地方;一、(16分)填空题1. 已知1125A ⎡⎤=⎢⎥⎣⎦,则1A 6= (1分),∞A 7= . (1分)2.迭代过程),1,0)((1 ==+n x x n n ϕ收敛的一个充分条件是迭代函数)(x ϕ满足1|)(|<'x ϕ. (2分)3. 设),,2,1,0(,,53)(2==+=k kh x x x f k 则差商0],,,[321=+++n n n n x x x x f .(2分)4. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是.2,1,0,)(1)(1='---=+k x f x f x x x k k k k k (2分)5. 用二分法求方程01)(3=-+=x x x f 在区间]1,0[内的根,迭代进行二步后根所在区间为]75.0,5.0[.(2分)6.为尽量避免有效数字的严重损失,当1>>x 时,应将表达式x x -+1改写为xx ++11以保证计算结果比较精确.(2分)7. 将2111A ⎛⎫= ⎪⎝⎭作Doolittle 分解(即LU 分解),则100.51L ⎛⎫= ⎪⎝⎭(2分),2100.5U ⎛⎫= ⎪⎝⎭(2分)二、(10分)用最小二乘法解下列超定线性方程组:⎪⎩⎪⎨⎧=-=+=+2724212121x x x x x x 解:23222121,e e e x x ++=)(ϕ221221221)2()72()4(--+-++-+=x x x x x x由 ⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=-+=∂∂0)1662(20)1323(2212211x x x x x x ϕϕ(8分)得法方程组 ⎩⎨⎧=+=+166213232121x x x x 7231=⇒x , 7112=x所以最小二乘解为: 7231=x 7112=x . (10分)三、(10分)已知)(x f 的函数值如下表25.15.001)(15.005.01---x f x用复合梯形公式和复合Simpson 公式求dx x f ⎰-11)(的近似值.解 用复合梯形公式,小区间数4=n ,步长5.0)]1(1[41=--⨯=h )]1())5.0()0()5.0((2)1([24f f f f f hT +++-+-=.线封密三峡大学试卷班级姓名学号25.1]2)5.15.00(21[25.0=++++-=(5分) 用复合Simpson. 小区间数2=n ,步长1)]1(1[21=--⨯=h)]1())5.0()5.0((4)0(2)1([62f f f f f hS ++-+⨯+-=33.168]2)5.10(45.021[61≈=+++⨯+-= (10分)四、(12分)初值问题 ⎩⎨⎧=>+='0)0(0,y x b ax y有精确解 bx ax x y +=221)(, 试证明: 用Euler 法以h 为步长所得近似解n y 的整体截断误差为n n n n ahx y x y 21)(=-=ε证: Euler 公式为:),(111---+=n n n n y x hf y y代入b ax y x f +=),(得:)(11b ax h y y n n n ++=-- 由0)0(0==y y 得:bh b ax h y y =++=)(001; 11122)(ahx bh b ax h y y +=++= )(3)(21223x x ah bh b ax h y y ++=++=……)()(12111---++++=++=n n n n x x x ah nbh b ax h y y (10分)因nh x n =,于是 )]1(21[2-++++=n ah bx y n n 2)1(2nn ah bx n -+==n n n bx x x a+-12∴n n n y x y -=)(ε)2(2112n n n n n bx x x abx ax +-+=-=n n n x x x a )(21--=n hx a 2 =221anh (12分)五、(10分) 取节点1,010==x x ,写出x e x y -=)(的一次插值多项式),(1x L 并估计插值误差.解: 建立Lagrange 公式为()=x L 110100101y x x x x y x x x x --+--=10101101-⨯--+⨯--=e x x x e x 11-+-=.(8分)())1)(0(!2)()()(11--''=-=x x y x L x y x R ξ )10(<<ξ ()811)0(max 2110≤--≤≤≤x x x(10分)六、(10分) 在区间]3,2[上利用压缩映像原理验证迭代格式,1,0,4ln 1==+k x x k k 的敛散性.解 : 在]3,2[上, 由迭代格式 ,1,0,4ln 1==+k x x k k , 知=)(x ϕx 4ln .因∈x ]3,2[时,]3,2[]12ln ,8[ln )]3(),2([)(⊂=∈ϕϕϕx (5分) 又1|1||)(|<='xx ϕ,故由压缩映像原理知对任意]3,2[0∈x 有收敛的迭代公式),1,0(,4ln 1 ==+k x x k k (10分)线封密三峡大学试卷班级姓名学号七、(10分)试构造方程组⎩⎨⎧=+=+423322121x x x x 收敛的Jacobi 迭代格式和Seidel Gauss -迭代格式,并说明其收敛的理由. 解:将原方程组调整次序如下:⎩⎨⎧=+=+324232121x x x x 调整次序后的方程组为主对角线严格占优方程组,故可保证建立的J 迭代格式和GS 迭代格式一定收敛.收敛的J 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=++)3(21)24(31)(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (5分)收敛的GS 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=+++)3(21)24(31)1(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (10分)八、(12分)已知43,21,41210===x x x 1)推导以这3个点作为求积节点在[0,1]上的插值型求积公式;2)指明求积公式所具有的代数精度.解:1)过这3个点的插值多项式)())(())(()())(())(()(121012002010212x f x x x x x x x x x f x x x x x x x x x p ----+----=+)())(())((2021201x f x x x x x x x x ----⎰⎰=∑=≈∴)()()(221010k k k x f A dx x p dx x f ,其中: ⎰⎰=----=----=32)4341)(2141()43)(21())(())((10201021100dx x x dx x x x x x x x x A ⎰⎰-=----=----=31)4321)(4121()43)(41())(())((10210120101dx x x dx x x x x x x x x A ⎰⎰=----=----=322143)(4143()21)(41())(())((10120210102dx x x dx x x x x x x x x A ∴所求的插值型求积公式为:⎰+-≈)]43(2)21()41(2[31)(10f f f dx x f (10分) 2)上述求积公式是由二次插值函数积分而来的,故至少具有2次代数精度,再将43,)(x x x f =代入上述求积公式,有:⎰+-==]43(2)21()41(2[3141333310dx x ⎰+-≠=])43(2)21(41(2[3151444410dx x 故上述求积公式具有3次代数精度. (12分)九、(10分)学完《数值分析》这门课程后,请你简述一下“插值、逼近、拟合”三者的区别和联系.。
常州大学数值分析第一章习题解答
1.1解:m=3;f=@(x)digit(digit(x^4,m)- digit(x^3,m)+ digit(3*x^2,m)+ digit(x-2,m),m);g=@(x)digit(digit(digit( digit(digit(digit( (x-1)*x,m)+3,m)*x,m)+1,m)*x,m)-2,m);f(3.33)g(3.33)有ans = 121ans =121实际上,当m=2时,就可以看出这两种算法在计算的精确度上的区别:m=2;f=@(x)digit(digit(x^4,m)- digit(x^3,m)+ digit(3*x^2,m)+ digit(x-2,m),m);g=@(x)digit(digit(digit( digit(digit(digit( (x-1)*x,m)+3,m)*x,m)+1,m)*x,m)-2,m);f(3.33)g(3.33)有ans = 120ans =130,可以看出,两者在计算精度上的不同区别,数学上恒等,在数值上不一定恒等。
1.2解:(1)精确到小数点后第三位,故有4位有效数字(2)精确到小数点后第三位,故有2位有效数字(3)精确到小数点后第三位,故有0位有效数字1.3 解;记圆的面积为S,由题意有|e(S)|≤1%。
由S=πr2知:dS=2πrdr所以dS/S=(2πrdr)/(πr2)=2(dr/r)∴|e(r)|≈1/2|e(S)|≤0.5×1%=0.5%1.4 解:由题有:|e(x)|≤1/2×10^-2 ; |e(y)|≤1/2×10^-2; |e(z)||≤1/2×10^-2∴|e(S)|≈|xe(x)+ye(y)|+ |ze(z)|^2≈x|e(x)|+y|e(y)|+z^2|z(z)|^2≤4.21×0.005+1.79×1.005+2.11×2.11×0.005^2=0.03≤1/2×10^-1又S=4.21*1.79+2.11^2=11.988∴S至少具有3位有效数字。
数值分析试题及答案
数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。
A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。
A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。
A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。
A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。
A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。
A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。
A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。
常州大学2012-2013级研究生数值分析试卷A解答及评分标准
一.(1)已知函数24()73f x x x =++,用秦九昭方法计算(2)f ;(2)秦九昭方法计算任一n 次多项式在任一点函数值至多需要多少次乘法? (3)至少写出四种减少误差危害的常用手段。
解:(1)2422()73(31)7f x x x x x =++=++22(2)(321)2759f =⨯++=………… 5 分(2) 秦九昭方法计算任一n 次多项式在任一点函数值至多需要n 次乘法。
………… 5 分(3) A )防止大数“吃”小数; B )避免除数绝对值远远小于被除数绝对值的除法;C )避免相近数相减;D )避免使用不稳定的算法;E )注意简化计算步骤,减少运算次数;………… 5 分二.给定方程组123311413132156x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ (1)以分量形式写出解此线性方程组的Jacobi 迭代格式和Gauss -Seidel 迭代格式; (2)求1A 和A∞;(3)判断Gauss -Seidel 迭代格式的敛散性。
解:(1)Jacobi 迭代(1)()()123(1)()()213(1)()()312(4)/3(3)/3(62)/5k k k k k k k k k x x x x x x x x x +++=--=+-=-+, 0,1,2,k = Gauss-Seidel 迭代(1)()()123(1)(1)()213(1)(1)(1)312(4)/3(3)/3(62)/5k k k k k k k k k x x x x x x x x x ++++++=--=+-=-+, 0,1,2,k =………… 5 分(2)17A =,8A∞=;………… 5 分(3)因为方程组系数矩阵严格对角占优,所以Gauss -Seidel 迭代格式收敛。
………… 5 分三. 已知方程2()30x f x e x =-=,(1)证明该方程在区间[0.6,1.2]上存在唯一实根; (2)叙述牛顿法求方程()0f x =根的方法思想;(3)以初值01x =,用牛顿法求上述方程的近似解,要求误差不超过210- 。
常州大学数值分析习题解答
1.1解:m=3;f=@(x)digit(digit(x^4,m)- digit(x^3,m)+ digit(3*x^2,m)+ digit(x-2,m),m);g=@(x)digit(digit(digit( digit(digit(digit( (x-1)*x,m)+3,m)*x,m)+1,m)*x,m)-2,m);f(3.33)g(3.33)有ans = 121ans =121实际上,当m=2时,就可以看出这两种算法在计算的精确度上的区别:m=2;f=@(x)digit(digit(x^4,m)- digit(x^3,m)+ digit(3*x^2,m)+ digit(x-2,m),m);g=@(x)digit(digit(digit( digit(digit(digit( (x-1)*x,m)+3,m)*x,m)+1,m)*x,m)-2,m);f(3.33)g(3.33)有ans = 120ans =130,可以看出,两者在计算精度上的不同区别,数学上恒等,在数值上不一定恒等。
1.2解:(1)精确到小数点后第三位,故有4位有效数字(2)精确到小数点后第三位,故有2位有效数字(3)精确到小数点后第三位,故有0位有效数字1.3 解;记圆的面积为S,由题意有|e(S)|≤1%。
由S=πr2知:dS=2πrdr所以dS/S=(2πrdr)/(πr2)=2(dr/r)∴|e(r)|≈1/2|e(S)|≤0.5×1%=0.5%1.4 解:由题有:|e(x)|≤1/2×10^-2 ; |e(y)|≤1/2×10^-2; |e(z)||≤1/2×10^-2∴|e(S)|≈|xe(x)+ye(y)|+ |ze(z)|^2≈x|e(x)|+y|e(y)|+z^2|z(z)|^2≤4.21×0.005+1.79×1.005+2.11×2.11×0.005^2=0.03≤1/2×10^-1又S=4.21*1.79+2.11^2=11.988∴S至少具有3位有效数字。
数值分析试题(卷)与答案解析
数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2位有效数字。
2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。
3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。
4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。
5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。
6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。
7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。
8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。
9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是(B)<1 。
10. 由下列数据所确定的插值多项式的次数最高是 5 。
x 0 0.5 1 1.5 2 2.5 y =f (x )-2-1.75-10.2524.2511. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。
数值分析参考答案
数值分析参考答案1.4 习题解答或提示1、解:(1)>> a=[1 2 3 ;4 5 6 ]'a =1 42 53 6(2)>> b=[9;7;5;3;1]b =97531(3)>> c=b(2:4)c =753(4)>> d=b(4:-1:1)d =3579(5)>> e=sort(b)e =13579(6)>> f=[3:b']f =3 4 5 6 7 8 92、解:>> x=[7 4 3 ];y=[-1 -2 -3];(1)>> u=[y,x]u =-1 -2 -3 7 4 3 (2)>> u=[x,y]u =7 4 3 -1 -2 -33、解:sum=0;a=[4 -1 2 -8 4 5 -3 -1 6 -7]; for i=1 : length(a)if a(i)>0, sum=sum+a(i); endendsumsum =214、解:m=input('input an array:')input an array:[1 2 5;3 1 2;4 1 3]m =1 2 53 1 24 1 35、解:sum(m)ans =8 4 10>> max(m)ans =4 2 5>> min(m)ans =1 1 26、解:function y=fun_es(x)y=0.5.*exp(x./3)-x.^2.*sin(x);>> fun_es(3)ans =0.0891>> fun_es([1 2 3])ans =-0.1437 -2.6633 0.08917、提示:本题主要考查的是随机数生成函数rand的使用方法,以及选取种子数的方法之一:使用clock命令。
可以参照课本的例1.5来编写函数。
8、解:function y=fun_xa()x=input('input the value of x:');n=input('input the value of n:');y=1;for i=1:1:ny=y+x^i/factorial(i); end>> fun_xa()input the value of x :1 input the value of n :4ans =2.70832.4 习题解答1 解:E(lnx)=(ln ’E(x)=)(1x E x =xδ=Er(x) 2. 解 Er(x 2)=)(22x Er x xx ⨯=4% 3. 解:123451.1021,0.031,385.6,56.430,7 1.0x x x x x *****=====⨯分别有5 位,2位,4位,5位,2位有效数字4 解 4*1105.0)(-⨯=x E3*2105.0)(-⨯=x E1*3105.0)(-⨯=x E3*4105.0)(-⨯=x E=++)(*4*2*1x x x E +)(*1x E +)(*2x E )(*4x E =0.00105))()((*4*2x E x E E =)()()(*42*4*2*4*2x E x x x x E -5. 解 V=334r π Er(v)=)(//x Er V x dx dV ⨯⨯=3Er(x)%1)(3≤x Er%33.0)(≤x Er6. 解 7830100-=Y Y)783()(100E Y E ==0.00057.解 x 1,2=24561122-±=56783±21,2105.0)x (-⨯=E 2105.0)783(-⨯=E98.27783≈x 1,2=83.98 或 28.02 8.略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常州大学2009~2010学年第 2 学期硕士生考试试题评分标准
1. (10分)当x 充分大时, 试比较
算上的差异?并叙述常见的防止误差的一些原则。
解:当x 充分大时,两个表达式在理论上恒等, 但其数值计算结果不同,前者会出现相近数相减,失去有效数位,降低计算结果精度的问题;后者避免了相近数相减的问题,尽可能地保证了计算结果的精度。
防止误差的几个基本原则主要有: 1) 防止大数“吃”小数;
2) 避免除数绝对值远远小于被除数绝对值的除法; 3) 避免相近数相减;
4) 避免使用不稳定的算法;
注意简化计算步骤,减少运算次数;
………… 5 分
2. (15分)已知列表函数
利用Newton 插值方法求()f x 的插值逼近多项式3()N x ,利用插值多项式近似计算
(1.52)f 。
解:
Newton 差商表: D =
1.0000 -1.0000 -
2.0000
3.0000
4.0000 3.0000 2.0000 -1.0000 -2.5000 -1.8333
………… 5 分
3() 1.8333^38.5000^28.6667 1.0000N x x x x =-+-+
………… 5 分
3(1.52)(1.52) 1.0268f N ≈=。
………… 5 分
3. (10分)已知列表函数
解:写出正规方程组
42 5.15
26 6.09
a b a b +=⎧⎨
+=⎩ ………… 5 分
解上述正规方程组得
0.9360,0.7030a b ==
………… 5 分
4. (15分)写出龙贝格(Romberg )方法的数值积分公式,并用龙贝格方法计算
1
sin 0
x e dx ⎰
,
要求误差不超过2
10-。
解:龙贝格(Romberg )方法计算定积分
()b
a
f x dx ⎰
的数值积分公式如下:
211122221(),,
2241
3316115156416363
n n n i i i i n n n
n n n
n n n
h b a
T T f x h x x n S T T C S S R C C --=-=+=-==-=-=-∑,
其中1[()()]2
b a
T f a f b -=
+。
………… 7 分
利用上述公式计算可得 romberg_table =
1.6599 1.6301 1.6319 1.6375 1.6318 1.6332
………… 8 分
5. (10分)设213212408A -⎡⎤⎢⎥=---⎢⎥⎢⎥--⎣⎦
, 3312b -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试用高斯消去法或LU 分解法解线性方程组Ax b =。
解:利用LU 分解法可得
121311212113A LU -⎡⎤⎡⎤
⎢⎥⎢⎥==--⎢⎥⎢⎥
⎢⎥⎢⎥--⎣⎦⎣⎦
分别解,Ly b Ux y ==可得方程组的解为112x ⎡⎤
⎢⎥=-⎢⎥⎢⎥-⎣⎦。
6. (15分)写出解线性方程组Ax b =的Jacobi 迭代法方法及Gauss-Seidel 迭代方法的分
量形式;对下述线性方程组
12312312
3335333
x x x x x x x x x --=⎧⎪
+-=⎨⎪+-=-⎩ 给出一个收敛的Gauss-seidel 迭代格式,并说明收敛的理由。
解:设()
()()
()
12(,,
,)'k k k k n x
x x x =为方程组的第k 次迭代解,
则解线性方程组Ax b =的Jacobi 迭代法方法及Gauss-Seidel 迭代方法的分量形式分别为
1
(1)()()1
1
()/,1,2,
,i n
k k k i
i ij j
ij j ii j j i x
b a x
a x a i n -+==+=--
=∑∑,
1
(1)
(1)()1
1
()/,1,2,
,i n
k k k i
i ij j
ij
j
ii j j i x
b a x
a x
a i n -++==+=--
=∑∑。
………… 8 分
将方程组123123123335333x x x x x x x x x --=⎧⎪+-=⎨⎪+-=-⎩改写为12312312
3533333
x x x x x x x x x +-=⎧⎪
--=⎨⎪+-=-⎩, 则新方程组的系数矩阵严格对角
占优, 从而解上述方程组的一个收敛的Guass-Seidel 迭代格式
(1)()()123(1)(1)()
213(1)(1)(1)3
12(3)/5(3)/3(3)/3
k k k k k k k k k x x x x x x x x x ++++++⎧=-+⎪=--+⎨⎪=++⎩, 1,2,,k =
对于任意(0)
x 收敛。
………… 7 分
7. (15分)写出Newton 迭代方法求非线性方程()0f x =根的方法思想;并选用适当的方
法求方程tan x x =在0 4.5x =附近的一个根,要求误差不超过3
10-。
解:解非线性方程()0f x =根的Newton 方法是迭代方法, 对于给定的第k 次初始近似解k x , Newton 迭代法的思想是用曲线()y f x =在点(,())k k x f x 的切线与x 轴的交点的横坐标
1k x +作为曲线()y f x =与x 轴交点*x ,即方程()0f x =根的第k+1次近似。
相应的迭代
公式如下:
)
(')
(1k k k k x f x f x x -
=+, ,2,1,0=k
当ε≤-+||1k k x x 时可以认为1+k x 为满足精度的近似解 本题取0 4.5x =, 由上述迭代公式, 容易得到: x1 = 4.4936 x2 = 4.4934
The root x is 4.4934
8. (10分)用四阶Runge -Kutta 方法解方程
2'2,1 1.6
(1)1
y x xy x y ⎧=-≤≤⎨
=⎩
取0.3h =。
解:写出Runge -Kutta 方法公式:
112341213243(22)
6
(,)(/2,/2)(/2,/2)(,)
k k k k k k k k k k h
y y K K K K K f x y K f x h y h K K f x h y h K K f x h y hK +=++++==++=++=++其中
利用y0=1及上述公式可得:
k1= -1.0000 k2= -0.5117 k3= -0.8104 k4= -0.1894 y1= 0.8083 k1= -0.3988 k2= -0.1747 k3= -0.3239 k4= -0.0183 y2= 0.7376
所得列表函数为:
x = 1.0000 1.3000 1.6000
y = 1.0000 0.8083 0.7376 ………… 5 分。