第四章图像增强直方图变换

合集下载

基于直方图变换实现的图像增强的课程设计(企业管理)

基于直方图变换实现的图像增强的课程设计(企业管理)

燕山大学课程设计说明书题目:基于直方图变换实现的图像增强学院(系):年级专业:学号:学生姓名:王大强指导教师:教师职称:副教授副教授燕山大学课程设计(论文)任务书目录第1章摘要 (1)第2章引言 (2)第3章图像增强的重要方法 (3)3.1灰度变换.......................................................................................3 3。

2 直方图修正 (3)3.3平滑 (3)3.4 锐化 (4)3.5 各种图像增强技术方法的优缺点………………………………………………4第4章直方图增强及matlab实现 (5)4.1 直方图均衡化 (5)4.2 直方图均衡化的公式……………………………………………………………54。

3直方图均衡化matlab的实现 (6)4.4直方图均衡化小结………………………………………………………………9第5章结论.......................................................................................10 第6章心得体会 (12)第7章参考文献……………………………………………………………………12第一章摘要摘要:图像增强不仅可以用于提高图像的视觉外观,而且还是图像边缘检测以及特征提取等技术的基础。

本课程设计主要研究用于增强图像的灰度变换方法,包括线性灰度变换、非线性灰度变换与直方图均衡化方法.采用MATLAB软件进行编程,运用上述算法对图像进行处理.实验结果表明,处理后的图像对比度得到了明显改善,增强了图像的视觉效果。

在以上算法中可以通过灵活设置相关参数获取不同的图像增强效果,并且具有处理速度快的优点。

通过对图像增强的方法进行比较之后,得出不同方法在使用过程中的优缺点,并且积极思考和掌握在特定图像下增强图像的最优方法。

第4章_图像增强(第二讲)[1]分析

第4章_图像增强(第二讲)[1]分析

数字图像处理第3章图像增强(第二讲)4.1.1 直方图4.1.2 直方图修改技术的基础4.1.3 直方图均衡化处理4.1.4 直方图规定化处理4.1.5 图像对比度处理由于图像的亮度范围不足或非线性会使图像的对比度不甚理想,可用像素幅值重新分配的方法来改善图像对比度。

扩大图像的亮度范围可以用线性映射的方法,这种方法如图3—10所示。

由图可以看出原图像的范围较小,经映射后的图像亮度范围展宽了。

图3—10 数字图像对比度增强在这种转换中,设计转换函数应考虑到灰度量化问题,如果原始图像的灰度级为k 级,映射后输出图像的灰度级仍然是k 级,这样由于输出图像的灰度范围加大了。

在对比度处理法中,根据不同的目的可以设计出不同的转换函数。

图3—11是线性转换函数,这种函数将图像在整个灰度范围内作线性映射。

图3—11 图像灰度的线性映射变换另外一种映射转换函数如图3—12所示。

这种转换是将图像中两个极端的灰度值加以限幅,这种限幅的比例也是可以选择的。

图3—12 限幅的线性映射变换除此之外,为了不同的目的还有其他一些类型的转换函数。

这些转换函数的形式如图3—13(a)、(b)、(c)所示。

图3—13 其他一些转换函数灰度变换的效果如图3-14 (a) (b) 所示,其中(a)是原像,(b)是处理后的图像。

图3—14 灰度变换处理效果灰度反转的转换函数是把图像的低亮度区域转到较高的亮度区,而高亮度区转换为低亮度区,其效果如图3—15所示,其中(a)是原像,(b)是处理后的图像。

图3—15 灰度反转处理效果锯齿形转换可以把几段较窄的输入灰度区间都扩展到整个输出灰度范围内,这种处理可以把灰度变化较平缓的区域也较鲜明地显示出来。

其效果如图3—16所示,其中(a)是原像,(b)是处理后的图像,这里选n=2 。

图3—16 锯尺状变换函数处理效果(n=2)开窗式转换的目的是只对部分输入灰度区间进行转换,通过窗口位置的选择可以观察某些灰度区间的灰度分布,并且对这一区域的灰度进行映射变换。

2012-第4章图像增强(学生课件)

2012-第4章图像增强(学生课件)

4.2.1 直方图

1.定义:数字图像中各灰度级与其出现的频数间
的统计关系,可表示为:
其中k为图像的第k级灰度值,nk是灰度值为k 的像素个数,n是图像的总像素个数。
直方图提供了原图的灰度值分布情况,也 可以说给出了一幅图所有灰度值的整体描述
Pr(r)
Pr(r)
p (r )
0
1
(b) (a) 图(a)的大多数象素灰度值取在较暗的区域。所以这 幅图像肯定较暗,一般在摄影过程中曝光过强就会造成 这种结果。 图(b)图像的象素灰度值集中在亮区,因此图像的特 性偏亮,曝光太弱,导致这种结果。 图(c)图像的象素灰度值集中在某个较小的范围内, 也就是说图像(c)的灰度集中在某一个小的亮区
k
F、应用以下公式计算映射后的输出图像的灰度级,P为输 出图像灰度级的个数,其中INT为取整符号:
gi INT [( g max g min )C ( f ) g min 0.5]
i 1,, P 1
G、用映射关系修改原始图像的灰度级,从而获得直方图 近似为均匀分布的输出图像。
第四章 图像增强
4.0 概述 4.1 灰度变换 4.2 直方图修正 4.2.4 图像的彩色增强 4.2.5 用算术/逻辑操作增强
4.0 概述
1 图像增强的定义
图像增强是对图像进行加工,以得到对视觉解释来说 视觉效果“更好”、或 “更有用”的图像。 (1)视觉效果更好的例子
4.目的:
(1)改善图像的视觉效果,提高图像的清晰度; (2)将图像转换成一种更适合于人或机器分析处理 的形式。

0 0.12 1 0.20 2 0.36 3 0.52
2 g
5
9
9

第4讲 直方图 图像增强

第4讲 直方图 图像增强

原图像的直方图
规定的直方图
规定化后图像的直方图

若在原图像一行上连续8个像素的灰度值分别为:0、1、 2、3、4、5、6、7,则规定化后,他们的灰度值为多少? 利用直方图规定化方法进行图像增强的主要困难在于 要构成有意义的直方图。图像经直方图规定化,其增强效 果要有利于人的视觉判读或便于机器识别。
r0→s0=1/7
790
0.19
0.25 0.21
z0=0
z1=1/7 z2=2/7
0.00
0.00 0.00
0.00
0.00 0.00
z0
z1 z2
0
0 0
0.00
0.00 0.00
r1→s1=3/7 1023 r2→s2=5/7 850
r3→s3=6/7
r4→s3=6/7 r5→s4=1 r6→s4=1 r7→s4=1 448 0.11 985 0.24
(a)
(b)
(c)
1 s0 , 7 6 s4 , 7
3 s1 , 7 s5 1,
5 s2 , 7 s6 1,
6 s3 7 s7 1
直方图均衡化示例
Lena图像
及 直方图
经直方图均衡化后的Lena图像及直方图
算法: 1. 对于L个灰度级(一般256)大小为M×N的图像,创建一个长为
②按照希望得到的图像的灰度概率密度函数 pz(z),求得变换函数G(z); ③用步骤①得到的灰度级s作逆变换z= G-1(s)。
规定化示例
采用与直方图均衡相同的原始图像数据(64×64像素 且具有8级灰度)
原图像的直方图
规定化直方图
rj →sk
nk
ps(sk)

数字图像处理(第二版)章 (4)

数字图像处理(第二版)章 (4)
一灰度区间进行扩展或压缩。例如,当[a,b]之间的变换直
线斜率大于1时,该灰度区间的动态范围增加,即对比度增强
了,而另外两个区间的动态范围被压缩了。当a=b,c=0,d=L-
1时,式(4-4)就变成一个阈值函数,变换后将会产生一个二值 图像。图4-3(c)是经由图4-3 (b)所示的分段线性变换对图43(a)的变换结果,它保持低灰度像素不变,增强了中间灰度的 对比度,并压缩了高灰度的动态范围。
2r 2 0 r 1
pr (r) 0
其他值
用式(4-11)求其变换函数,即其累积分布函数为
s T(r)
像素数之比p)r。(r对k ) 数 n字nk 图像,直k方图0,1可,2表,示, L为1
(4-8)
式中: n是一幅图像的像素总数; L是灰度级的总数目; rk表示第k个灰度级; nk为第k级灰度的像素数; pr(rk)表示 该灰度级出现的频率,是对其出现概率的估计。
第4章 图像增强
在直角坐标系中做出rk与pr(rk)的关系图形,称为该图像
设r为变换前的归一化灰度级,0≤r≤1,T(r)为变换函数, s=T(r)为变换后的归一化灰度级,0≤s≤1。变换函数T(r)应
满足下列条件:
(1) 在0≤r≤1区间内,T(r)单值单调递增; (2) 对于0≤r≤1,有0≤T(r)≤1。
第4章 图像增强
第一个条件保证了变换后图像的灰度级从黑到白的次序不 变。第二个条件保证了变换前后图像灰度范围一致。反变换
第4章 图像增强 灰度变换就是把原图像的像素灰度经过某个变换函数变换
成新的图像灰度。常见的灰度变换方法有直接灰度变换法和直 方图修正法。直接灰度变换法可以分为线性、分段线性以及非 线性变换。直方图修正法可以分为直方图均衡化和直方图规定 化。

数字图像处理第四章作业

数字图像处理第四章作业

第四章图像增强1.简述直方图均衡化处理的原理和目的。

拍摄一幅较暗的图像,用直方图均衡化方法处理,分析结果。

原理:直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

也就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。

把给定图像的直方图分布改变成“均匀”分布直方图分布目的:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

它通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

通过直方图均衡化,亮度可以更好地在直方图上分布。

这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

Matlab程序如下:clc;RGB=imread('wxf.jpg'); %输入彩色图像,得到三维数组R=RGB(:,:,1); %分别取三维数组的一维,得到红绿蓝三个分量G=RGB(:,:,2); %为R G B。

B=RGB(:,:,3);figure(1)imshow(RGB); %绘制各分量的图像及其直方图title('原始真彩色图像');figure(2)subplot(3,2,1),imshow(R);title('真彩色图像的红色分量');subplot(3,2,2), imhist(R);title('真彩色图像的红色分量直方图');subplot(3,2,3),imshow(G);title('真彩色图像的绿色分量');subplot(3,2,4), imhist(G);title(' 的绿色分量直方图');subplot(3,2,5),imshow(B);title('真彩色图像的蓝色分量');subplot(3,2,6), imhist(B);title('真彩色图像的蓝色分量直方图');r=histeq(R); %对个分量直方图均衡化,得到个分量均衡化图像g=histeq(G);b=histeq(B);figure(3),subplot(3,2,1),imshow(r);title('红色分量均衡化后图像');subplot(3,2,2), imhist(r);title('红色分量均衡化后图像直方图');subplot(3,2,3),imshow(g);title('绿色分量均衡化后图像');subplot(3,2,4), imhist(g);title('绿色分量均衡化后图像直方图');subplot(3,2,5), imshow(b);title('蓝色分量均衡化后图像');subplot(3,2,6), imhist(b);title('蓝色分量均衡化后图像直方图');figure(4), %通过均衡化后的图像还原输出原图像newimg = cat(3,r,g,b); %imshow(newimg,[]);title('均衡化后分量图像还原输出原图');程序运行结果:原始真彩色图像均衡化后分量图像还原输出原图图1.1 原始图像与均衡化后还原输出图像对比通过matlab仿真,由图1.1比较均衡化后的还原图像与输入原始真彩色图像,输出图像轮廓更清晰,亮度明显增强。

4.图像增强—直方图变换 - 数字图像处理实验报告

4.图像增强—直方图变换 - 数字图像处理实验报告

计算机与信息工程学院验证性实验报告一、实验目的1.掌握灰度直方图的概念及其计算方法;2.熟练掌握直力图均衡化和直方图规定化的计算过程;3.熟练掌握空域滤波中常用的平滑和锐化滤波器;4.掌握色彩直方图的概念和计算方法5.利用MATLAB程序进行图像增强。

二、实验原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。

其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。

图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。

本实验以直方图均衡化增强图像对比度的方法为主要内容,其他方法同学们可以在课后自行联系。

直方图是多种空间城处理技术的基础。

直方图操作能有效地用于图像增强。

除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。

直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为了实时图像处理的一个流行工具。

直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。

直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。

灰度直方图是图像预处理中涉及最广泛的基本概念之一。

图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。

直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。

直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。

下面给出直方图均衡化增强图像对比度的MATLAB程序:clc;clear allI=imread('Fig0308(a)(pollen).tif'); %读入原图像J=histeq(I); %对原图像进行直方图均衡化处理imshow(I); %显示原图像title('原图像'); %给原图像加标题名%对原图像进行屏幕控制;显示直方图均衡化后的图像figure;imshow(J);%给直方图均衡化后的图像加标题名title('直方图均衡化后的图像') ;%对直方图均衡化后图像进行屏幕控制;作一幅子图,并排两幅图的第1幅figure; subplot(1,2,1) ;imhist(I,64); %将原图像直方图显示为64级灰度title('原图像直方图') ; %给原图像直方图加标题名subplot(1,2,2); %作第2幅子图imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度title('均衡变换后的直方图') ; %给均衡化后图像直方图加标题名处理后的图像直方图分布更均匀了,图像在每个灰度级上都有像素点。

数字图像处理_胡学龙等_第04章_图像增强

数字图像处理_胡学龙等_第04章_图像增强

直方图均衡化
通过对原图像进行某种变换,使得图像的直 方图变为均匀分布的直方图 。
灰度级连续的灰度图像:当变换函数是原图 像直方图累积分布函数时,能达到直方图均 衡化的目的。 对于离散的图像,用频率来代替概率 。 【例4.2】假定有一幅总像素为n=64×64的图 像,灰度级数为8,各灰度级分布列于表4.1 中。试对其进行直方图均衡化。
• 4.3.2増晰原理 • 同态増晰采用合适的滤波特性函数,可以即使图 像灰度动态范围压缩,又能让感兴趣的物体图像 灰度扩展,从而是图像清晰。 • 图像是物体对照明光的反射,自然景物图像是由 两个分量乘积组成的,即照明函数和反射函数的 乘积。 • 图像的灰度由照明分量和反射分量合成,反射分 量反映了图像的实际内容(细节,纹理,边缘 等),随图像细节不同在空间上做快速变化,其 频谱落在空间高频区域。 • 而照明分量在空间上均具有缓慢变化的性质,其 频谱落在空间低频区域。 • 因此可通过傅里叶变换将两者分开,进行同态滤 波。
a’=0,b’=255。
实现的程序:
• • • • • A=imread('pout.tif'); %读入图像 imshow(A); %显示图像 figure,imhist(A); %显示图像的直方图 J1=imadjust(A,[0.3 0.7],[]); %函数将图像在0.3*255~0.7*255灰度之间 的值通过线性变换映射到0~255之间 • figure,imshow(J1); %输出图像效果图 • figure,imhist(J1) %输出图像的直方图
• 基本思想:按照高通滤波器设计,压缩低 频分量,提升高频分量。 • 照明函数频率变化缓慢,幅度变化大,数 字化占用位数多,所以要压缩; • 反射函数频率变化快,灰度变化很小,层 次不清,细节不明,应该扩展。

数字图像处理第04章图像增强ppt课件

数字图像处理第04章图像增强ppt课件

归一化的直方图(histogram)定义为灰度级出 现的相对频率。即
Pr(k)nk /N
(4.13)
式中,N表示像素的总数;nk表示灰度级为k的
像素的数目。
Slide 25
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.线性变换
灰度g与灰度f之间的关系为
gaba[f a] ba
(1)变换使得图像灰度范围增 大,即对比度增大,图像会变得 清晰;
(2)变换使得图像灰度范围缩 图4.4 线性变换 小,即对比度减小。
Slide 16
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
图4.7 三段线性变换实例
(a)原始图像
(b)增强效果
Slide 21
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3.非线性灰度变换
当用某些非线性函数如对数、指数函数等作为 映射函数时,可实现灰度的非线性变换。
J = imadjust(I,[0.3 0.7],[]); %使用imadjust函数进行灰度的线性变换
figure,imshow(J); figure,imhist(J)
%显示变换后图像的直方图
Slide 17
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
【例4.1】采用线性变换进行图像增强。

第4章图像增强1灰度变换PPT课件

第4章图像增强1灰度变换PPT课件

pr(rk)n n k
k0,1,2, ,L1
式中: n是一幅图像的像素总数; L是灰度级的总数目; rk表示第k个灰度 级; nk为第k级灰度的像素数; pr(rk)表示该灰度级出现的频率,是对其出 现概率的估计。在直角坐标系中做出rk与pr(rk)的关系图形,称为该图像的
直方图。其横坐标表示灰度级,纵坐标表示该灰度级出现的次数或频率。对
连续图像,直方图的纵坐标表示灰度级出现的概率密度。
7
直方图
1 2 34 5 6 6 4 32 2 1 1 6 64 6 6 3 4 56 6 6 1 4 66 2 3 1 3 64 6 6
1 2 34 5 6 5 4 5 6 2 14
图像灰度直方图
8
直方图
直方图的性质: (1) 直方图是一幅图像中各灰度级出现频数的统计
作。
4
空域处理表示
如果用s 和t 分别代表 f 和 g 在(x,y)处的灰
度值,则空间域处理就表示为: t T(s)
下图是增强对比度的T操作:
5
空域点处理增强
灰度变换方法
直接灰度变换法 直方图修正法
线性变换 分段线性 非线性变换 直方图均衡化 直方图规定化
6
直方图
直方图
直方图是灰度级的函数,它反映了图像中每一灰度级出现的次数(该 灰度级的像素数)或频率(该灰度级像素数与图像总像素数之比)。对数字 图像,直方图可表示为
t3 6 n t3 98p t 5 ( s t3 ) 0 .24 t4 7 n t4 44p t 8 ( s t4 ) 0 .11
50
直方图规定化

(2)对规定直方图像操作:
v 0 0 .0 T 0 u ( u 0 ) v 1 0 .0 T 0 u ( u 1 ) 0

第四章 图像增强

第四章 图像增强

第四章 图像增强1. 图像增强的目的是什么?它包含哪些内容?图像增强的目的在于:1.采用一系列技术改善图像的视觉效果,提高图像的清晰度;2.将图像转换成一种更适合于人或机器进行分析处理的形式。

2. 直方图修正有哪两种方法?二者有何主要区别与联系?直方图修正方法通常有直方图均衡化及直方图规定化两类。

区别与联系:直方图均衡化是通过对原图像进行某种变换使原图像的灰度直方图修正为均匀的直方图的。

直方图规定化是使原图像灰度直方图变成规定形状的直方图而对直方图做出修正的增强方法。

在做直方图规定化时首先要将原始图像作均衡化处理。

直方图均衡化是直方图规定化的一个特例,而规定化是对均衡化的一种有效拓展。

3.在直方图修改技术中对变换函数的基本要求是什么?直方图均衡化处理采用何种变换空间域点运算 局部运算灰度变换直方图修正法局部统计法均衡化规定化图像平滑图像锐化频率域高通滤波低通滤波同态滤波增强彩色增强伪彩色增强彩色图像增强常规处理假彩色增强彩色平衡彩色变换增强代数运算图像增强函数?什么情况下采用直方图均衡法增强图像?T(r)为变换函数,应满足下列条件:(1)在0 ≤r ≤1内为单调递增函数;(2)在0≤r ≤1内,有0≤T(r)≤1。

s=T(r)=∫ p r (r)dr 原始图像灰度分布在较窄区间,引起图像细节不够清晰。

直方图均衡化减少图像灰度级,对比度扩大。

4. 何谓图像平滑?试述均值滤波的基本原理。

为抑制噪声、改善图像质量所进行的处理称为图像平滑或去噪。

均值滤波的基本原理:用均值代替原图像中的各个像素值,即对待处理的当前像素点(x ,y ),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x ,y ),作为处理后图像在该点上的灰度个g (x ,y ),即个g (x ,y )=1/m ∑f (x ,y ) m 为该模板中包含当前像素在内的像素总个数。

5. 何谓中值滤波?有何特点?中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心像素的灰度值的滤波方法,是一种非线性的平滑法。

第4章-图像增强PPT课件

第4章-图像增强PPT课件

将[2,7]转换到[0,9] g(i,j)=9/5*f(i,j)-18/5
09 060
02 999
00 292
27 074
79 005
0C=926.028975 0
线性动态范围调整效果
2021
25
二、非线性动态范围调整
• 提出非线性动态范围调整, 是因为线性动态范围调整 的分段线性影射不够光滑。
第4章
图像增强
问题的引入
• 看两个图例,分析画面效果不好的原因。
亮暗差别不是很大
2021
2
解决问题的思路
• 提高对比度,增加清晰度
2021
3
4.1 对比度
对比度的概念:
• 对比度:通俗地讲,就是亮暗的对 比程度。
• 对比度通常表现了图像画质的清晰
程度。
2021
4
对比度的计算
• 对比度的计算公式如下:
像处理的一种手段。
• 所谓灰度变换,就是通过一个灰度映射 函数:Gnew=F(Gold),将原灰度直方图改 造成你所希望的直方图。所以,灰度变
换的关键就是灰度映射函数F。
2021
9
•图像灰度变换主要包括: 1.线性对比度展宽 2.动态范围调整 3.直方图均衡化处理 4.伪彩色技术 5.图像反色
2021
( 1 2 3 2 3 2 ) ( 3 2 6 2 5 2 2 2 ) ( 6 2 6 2 3 2 2 2 ) ( 6 2 1 2 6 2 )
( 3 2 2 2 ) ( 2 2 6 2 2 2 ) ( 6 2 2 2 2 2 ) ( 2 2 6 2 ) ] / 4 8
– 直方图均衡化(平滑化)是一种最常用的直方图修正, 它是把给定图像的直方图分布改造成均匀直方图分布。 直方图均衡化导致图像的对比度增加。

第四章-3遥感图像处理图像增强

第四章-3遥感图像处理图像增强
11
3.遥感图像变换(Ⅲ)——HIS彩色空间变换
(2) HIS模式的定量表示:HSI模式可以用近似的颜色立体 来定量化。如左图为HIS六角锥彩色模型,即颜色立体曲 线锥形改成上下两个六面金字塔状。环绕垂直轴的圆周代 表色调(H),以红色为0˙,逆时针旋转,每隔60‘改变一种 颜色并且数值增加1,一周(360‘)刚好6种颜色,顺序为红、 黄、绿、青、蓝、品红。垂直轴代表明度(I),取黑色为0, 白色为1,中间为0.5。
应注意的是若将与正态分布相差较大的原图像的频率分布勉强变换为正态分布则因原图像的某一灰度的频率很高变换成正态分布使其对应的灰度值的频率降低造成对该部分的压缩而丢失重要的信息
第四章 遥感图像处理
图像增强
1
4.2.4遥感图像增强
Δ遥感图像增强的目的、实质和方法 ① 目的:ⅰ 改善图像显示的质量,以利于图像信 息的提取和识别。
线性变换是图像增强最常用的方法。指变换函数为线性 关系,如:
式中,a,b为待定的系数。
3
1.遥感图像增强(工)——对比度变化
线性变换
由于判读目标与背景的关系比较复杂,常将函数 考虑为将原图像的亮度值动态范围扩展至指定的 范围或最大动态范围。方法如下:
变换前图像的亮度范围xa为a1至a2,变换后图 像的亮度范围xb为b1至b2。变换方程可写为:
6
1.遥感图像增强(工)——对比度变化1
非线性变换
指数变换和对数变换 对数变换常用于扩展低亮度区(暗区),压缩高亮度区的对 比度,以突出隐伏暗区的目标,或使暗区层次显示清晰。 指数变换的效果正好与对数变换相反,突出亮区而压制暗 区。二者互为逆运算操作。
7
1.遥感图像增强(工)——对比度变化1
非线性变换

数字图像处理 第四章图像增强

数字图像处理 第四章图像增强

Pr(rk) 0.19 0.25 0.21 0.16 0.08 0.06
0.03
0.02
计算每个sk对应的像素数目 计算均衡化后的直方图
Tr
Sk并
sk
nsk Ps(sk)
0.19
1/7
0.44
3/7
S0=1/7 S1=3/7 S2=5/7
790 0.19 1023 0.25 850 0.21
0.65
✓ 校正后的原始图像 f (i, j) C g(i, j) gc(i, j)
9
灰度级校正注意问题:
对降质图像进行逐点灰度级校正所获得的图像, 其中某些像素的灰度级值有可能要超出记录器 件或显示器输入灰度级的动态范围,在输出时 还要采用其他方法来修正才能保证不失真地输 出。
降质图像在数字化时,各像素灰度级都被量化 在离散集合中的离散值上,但经校正后的图像 各像素灰度极值并不一定都在这些离散值上, 因此必须对校正后的图像进行量化。
),使得结果图像s的直方图Ps(s)为一个常数
Pr(r)
Ps(s)
直方图均衡化 T(r)
r
s
26
直方图均衡化理论基础
-1 由概率论可知,若Pr(r)和变换函数s=T(r)已知,r=T (s)是单 调增长函数,则变换后的概率密度函数Ps(s)可由Pr(r)得到:
分 布 函 数 Fs(s)sp( s s) ds=rp( r r) dr
✓ 计算均衡后的直方图
s k 计
T( rk)
k
=
i 0
P(r
r

i
k i 0
ni n
s k并
round( sk计 * (L L 1
1))
j
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mg Mf
d 第四[章f 图(x像,增y)强直b方]图变d换 b
0 f (x, y)a a f (x, y)b b f (x, y)Mf
(4-11)
灰度变换
分段线性变换
g (x, y) Mg d
c
O
ab
M f f (x , y)
图 分段线性变换
实例
第四章图像增强直方图变换
概述 分类
原始图像 变换函数
2.整个图像的直方图是部分 之和
第四章图像增强直方图变换
图像直方图
定义 性质 计算 应用
1.图像与直方图之间是多对一的关系
第四章图像增强直方图变换
图像直方图
定义
(a)
(b)
(c)
A直方图=B直方图+C直方图
第四章图像增强直方图变换
图像直方图
一.概念 二. 性质 三. 计算 四. 应用
灰度变换
线性变换2
概述 分类
图像中大部分像素的灰度级在[a, b]范围内,少 部分像素的灰度级分布在小于a和大于b的区间内。 此时可用下式作变换:
c g(x,y) b d ac[f(x,y)a]c
d
第四章图像增强直方图变换
0f(x,y)a af(x,y)b
bf(x,y)M1
(4-9)
灰度变换
第四章图像增强直方图变换
图像增强
一.应用 二. 分类
图像增强
空间域
频率域
1.直接灰度变换
1.高通滤波
2.直方图变换
三. 内容 3.平滑滤波
2.低通滤波 3.带通和带阻滤波
4.锐化滤波
4.同态滤波
第四章图像增强直方图变换
灰度变换
4.1 直接灰度变换
概述 分类
一.概述 二. 分类
1. 定义 2. 目的
1. 一般离散形式下的计算 2. 步骤 3.示例图
第四章图像增强直方图变换
图像直方图
定义 性质 计算 应用
1. 一般离散形式下的计算
用rk代表离散灰度级,用pr(rk)代表pr(r)且有下式成立:
pr
(rk
)
nk n
0rk1k0 ,1 ,2 , ,l 1(4-1)
式中:nk:图像中出现rk级灰度的像素数,
n:图像像素总数,nk/n:频数。
第四章图像增强直方图变换
图像直方图
定义 性质 计算 应用
2. 步骤
设若图像具有L级灰度(通常L=256,即8位灰度级),大小 为M×N的灰度图像f(x, y)的灰度直方图pBuffer[0…L-1]算 法:
(1) 初始化:pBuffer[k]=0 ; k=0, …, L-1。 (2) 统计:pBuffer[f(x, y)]++ ; x, y =0, …, M1, 0, …, N-1。 (3) 归一化:pBuffer[f(x, y)]/M*N。 其中,直方图的归一第化四章是图像一增强个直可方图选变换项。
线性变换3
概述 分类
为了保持f(x, y)灰度低端和高端值不变,可以采用
如式(4-10)所示的形式 :
g(x,y) b d a c[f(x,y)a]c af(x,y)b(4-10)
f(x,y)
其他
式中的a、 b、 c、 d这些分割点可根据用户的不同需要来确定。
第四章图像增强直方图变换
灰度变换
线性变换效果图
概述 分类
图 线性灰度变换 (a) 原始第图四章像图;像增强(b直)方图灰变度换 变换后的图像
灰度变换
分段线性变换
概述 分类
为了突出感兴趣的目标或灰度区间,相对抑制那些不 感兴趣的灰度区域,可采用分段线性变换。
常用的三段线性变换法如下页图所示,其数学表达式 如下:
c f (x, y)
a
g(x, y)ddac[f (x, y)a]c
以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度
级的关系图就是灰度直方图。
灰度级
1 2 34 5 6 6 4 32 2 1 1 6 64 6 6
1 2 34 5 6
5 4 5 6 2 14
频 率
像素数
3 4 56 6 6
1 4 66 2 3 1 3 6 4 6 6第四章图像增强直方图变换
图 图像灰度直方图
变换后图像
灰度变换
分段线性变换
概述 分类
通过细心调整折线拐点的位置及控制分段直线 的斜率,可对任一灰度区间进行扩展或压缩。 这种变换适用于在黑色或白色附近有噪声干扰 的情况。
第四章图像增强直方图变换
灰度变换
概述 分类
非线性变换
对应非线性映射函数,常用的有:幂函数、对数函数、截 取函数、阈值函数、多值量化等。
第四章 图像增强
第四章图像增强直方图变换
图像增强
一.应用 二. 分类 三. 内容
1.改善图像的视觉 效果。
2.突出图像的特征 便于计算机处理。
第四章图像增强直方图变换
图像增强
一.应用
二. 分类(按作用域)
三. 内容
1.空域处理:直接对图像 的像素进行处理。
2.频域处理:是在图像的 变换域上进行处理, 增 强感兴趣的频率分量, 然后通过逆变换获得图 像增强效果。
灰度级
图像直方图
定义 性质 计算 应用
1. 灰度直方图(Histogram)
第四章图图像增图强直像方灰图变度换直方图
图像直方图
定义 性质 计算 应用
2. 彩色图像的分波段直方图
R
G
B
第四章图像增强直方图变换
图像直方图
一.概念 二. 性质 三. 计算 四. 应用
1.图像与直方图之间是多对 一的关系
第四章图像增强直方图变换
灰度变换
概述
概述 分类
1、定义: 将一个灰度区间映射到另一个灰度区间的变换
称为灰度变换。 2、灰度变换的目的
灰度变换可使图像动态范围加大,图像对比度 扩展,图像清晰,特征明显,是图像增强的重要手 段。
第四章图像增强直方图变换
灰度变换
4.2 灰度变换
概述 分类
一.概述 二. 分类
1.线性变换 2.分段线性变换 3.非线性变换
第四章图像增强直方图变换
灰度变换
线性变换1
概述 分类
原始图像:f (x, y),灰度范围:[a, b],变换后图 像:g (x, y),灰度范围:[c, d],则线性变换可表示 为:
g(x,y)dc(f(x,y)a)c ba
(4-8)
第四章图像增强直方图变换
s
s
s
O
r
O
r
O
r
s
s
s
第四章图像增强直方图变换
O
r
O
r
O
r
4.2 图像直方图
一.概念 二. 性质 三. 计算 四. 应用
1. 灰度图像直方图 2. 彩色图像二维直方

第四章图像增强直方图变换
图像直方图
定义 性质 计算 应用
1. 灰度直方图(Density Histogram)
灰度直方图是灰度级的函数,表示某种灰度级的像素的个数, 反映的是一幅图像中各灰度级像素出现的频率。
相关文档
最新文档