高分子化学第四章自由基共聚合(1)
第四章:自由基聚合方法
→ 2SO4·
B. 水溶性氧化 —还原引发剂
例 过硫酸盐 - 亚硫酸盐
_ 2 S2O8
+ SO3
_ 2
→
_ 2 SO4
+
SO4· +
_ ·SO3
过氧化氢 - 亚铁盐 H2O2 +Fe2+ → OH + HO· + Fe3+
_
(3)乳化剂
乳化剂在乳液聚合中的作用:
a. 降低体系的表面张力使单体形成细小液滴; b. 形成胶束,增溶单体
产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维纶的原料
丙烯腈 氧-还体系 醋酸乙烯酯 丙烯酸酯类 丁二烯 AIBN BPO 配位催化剂 BuLi BF3
涂料、粘合剂
顺丁橡胶 低顺式聚丁二烯
异丁烯
异丁烷
阳离子聚合
粘合剂、密封剂
聚醋酸乙烯酯(PVAc)和聚乙烯醇(PVA)
醋酸乙烯酯,甲醇(乙醇)溶液,BPO;65‐70 ℃,溶剂回 流带走聚合热;利用向溶剂的链转移控制分子 量,单体浓度
9
体积收缩:100%聚合时的体积收缩 1 1 ΔVmax w 0 ( ) dm dp
60oC: dm=0.89g/mL; dp=1.18g/ml, ∆Vmax =27mL,V0 =w/dm =112mL
体积收缩百分数= 27/112 =24%
20oC: dm=0.94g/mL; dp=1.208g/mL,∆Vmax =25.7mL 体积收缩百分数=25.7/102=25.2%
不足 反应热难导出、易局部过热、自动加速严重。 措施 降低反应温度,分段聚合,强化传热
8
3、应用实例 有机玻璃:PMMA
第四章-共聚合
F1
r1
r1 f12 f1 f2 f12 2 f1 f2 r2
f
2 2
(ⅰ) r1=r2=1 理想恒比共聚
➢ r=1 均聚=共聚
➢
d M 1 构成方程:d M 2
M 1 M 2
F1= f1
➢ 曲线形状:为一对角线
➢ 特点: F1= f1 ,构成与 转化率无关,构成均一。
如:VDC-MMA 34
② 构成方程
d M d M
1 2
1
M1 X M1*
M1M2* M2
M2 X
M1M2M1* M1
F1 0.5
M1M2M1M2M1M2M1M2 M1M2
37
③ 构成曲线:水平线,与f1无关 F1
④ 特点: 共聚物构成1:1, 构成均一
38
d[M1] [M1] • r1[M1] [M 2 ] d[M 2 ] [M 2 ] r2[M 2 ] [M1]
聚苯乙烯-b-聚甲基丙烯酸甲酯
或苯乙烯-甲基丙烯酸甲酯嵌段共聚物
聚苯乙烯-g-聚甲基丙烯酸甲酯
或苯乙烯-甲基丙烯酸甲酯接枝共聚物
➢ 无规共聚物:前为主单体,后为第二单体; ➢ 嵌段共聚物:前后裔表单体聚合旳顺序; ➢ 接枝共聚物:前为主链,后为支链。
11
3. 研究共聚反应旳意义
在应用上 成为高分子材料改性旳主要手段之一 共聚是改善聚合物性能和用途旳主要途径
8
(4)接枝共聚物 (graft copolymer) 以其中一单体构成旳长链为主链, 另一单体构成旳链为侧链(支链) 与之相连。 AAAAAAAAAAAAAAAAAAAAAAA AAA
BBBBBB BBBBB BBBBBB
9
共聚物旳命名
高分子化学 chap4 课件
M1
[ [] [] ] p22
=
R22 R21 + R22
= r2
r2 M 2 M2 + M1
其中
p11 + p12 = 1,p21 + p22 = 1
( ) ( ) 形成xM1链段的概率为:
N1
=
x
p p (x−1)
11
12
−
M1单体的数均序列长度 n1 为:
− x=∞
∑ n1 = x ( N1 )x = (N1)1 + 2(N1)2 + 3(N1)3 +" x =1
×
[M1 [M2
] ]
+
1
×
[M2 [M1
] ]
+
1
=
r1 r2
× ×
[M1] [M2] [M2] [M1]
+1 +1
=
[M1 [M2
] ]
×
r1 r2
×[M1 ] + [M 2 ×[M 2 ] + [M1
] ]
⑧
令 f1等于某瞬间单体M1占单体混合物的摩尔分数,即:
f1
=1−
f2
=
[M1] [M1] + [M 2 ]
+ 2 f1
+ f2
f1 +
f2 r2
(
f2
)2
序号
1
2
3
4
5
6
7
8
9
r1
0.1
0.1
0.1
0.5
0.2
0.8
0.2
0.2
0.2
高分子化学--4-自由基共聚
交叉终止
d[M 1]k1k 12[1 M 1]2k1k 22[1 M 1]M [2] d[M 2] k2k 21[2 M 2]2k1k 22[1 M 1]M [2]
2022/3/23
高分子化学
10
d[M 1]k1k 12[1 M 1]2k1k 22[1 M 1]M [2] d[M 2] k2k 21[2 M 2]2k1k 22[1 M 1]M [2]
高分子化学
27
(r1r2 < 1、 r1<1, r2 < 1 )
2022/3/23
高分子化学
28
(r1r2 < 1、 r1<1, r2 < 1 )
1.0 F1 0.5
0.41/0.04 r1=r2=0.5
00
0.5
1.0
f1
r1r2都小于1的非理想共聚
体系的F1 -f1曲线
苯乙烯-丙烯腈、丁二 烯-丙烯腈、丙烯腈-丙烯 酸甲酯的共聚属于这种情 况。
混合物中两单体摩尔比的r1倍, 这类共聚反应称一般 理想共聚。
F1-f1曲线特征:F1-f1曲线随r1的不同而不同程度 地偏离对角线,并且曲线是对称的,若r1>1,F1-f1曲 线在对角线的上方;若r1<1,则在对角线的下方。
2022/3/23
高分子化学
17
1.
0
r1>1
r1 r2 = 1 恒比共聚
高分子化学与物理
河北科技师范学院 理化学院
2022/3/23
1
高分子化学
第4章 自由基共聚合
2022/3/23
2
4.1 引 言
共聚合:两种或两种以上单体共同参与的聚合反应。
《高分子化学》第4章 自由基共聚合作业答案
2.解:(1)k
=k11/r1 = 49/0.64=76.56 L/(mo l·s),
12
k21=k22/r2 =25.1/1.38=18.19L/(mo l·s)
(2)1/ r1为丁二烯单体的相对活性、1/r2为苯乙烯单体的相对活性。
1/
r1=1.56>1/
r2=0.725说明丁二烯单体活性较苯乙烯单体活性大,又因为k12>k22说明
丁二烯自由基活性较苯乙烯自由基活性小。
(3)两种单体共聚属无恒比点的非理想共聚,共聚物组成方程为F1=( r1f12+f1f2)/(r1f12+2f1f2+r2f22),代入r1和r2值,作图如下
(4)欲得组成均匀的共聚物,可按组成要求计算投料比,且在反应过程中不断补加丁二烯单体,以保证原配比基本保持恒定。
2. 假定一:链自由基的活性与链长无关。
假定二:链自由基的活性只取决于末端单体单元的结构,与前末端单元的结构无关。
假定三:聚合反应是不可逆的,无解聚反应;
假定四:共聚物的聚合度很大,单体主要消耗在链增长反应过程中,而消耗在链引发中的单体数可忽略不计,Rp >>Ri。
假定五:聚合过程为稳态反应,即体系中总自由基浓度及两种自由基浓度都保持不变。
3. 均聚和共聚链增长速率常数之比定义为竞聚率。
它表征两种单体的相对活性,
反映了单体自身增长(均聚)和交叉增长(共聚)的快慢。
r1= k11/k12,r2= k22/k21
当r1 r2=1时,可进行理想共聚;
当r1<1且r2<1时,可进行有恒比点的共聚;
当r1<<1,r2<<1,r1→0,r2→0或r1= r2=0时发生交替共聚。
潘祖仁《高分子化学》课后习题及详解(自由基共聚合)【圣才出品】
图 4-1 ;
图像特征:当 rl>l 时,组成曲线处于恒比对角线的上方,并与另一对角线呈对称状态。 当 rl<1 时,组成曲线处于恒比对角线的下方,并与另一对角线呈对称状态。
3.说明竞聚率 r1、r2 的定义,指明理想共聚、交替共聚、恒比共聚时竞聚率数值的特 征。
答:(1)竞聚率是指自增长速率常数与交叉增长速率常数的比值。r1=k11/k12,即链自 由基 M1•与单体 M1 的反应能力和它与单体 M2 的反应能力之比,或两单体 M1、M2 与链自 由基 M1•反应时的相对活性。r2=k22/k21,即链自由基 M2•与单体 M2 的反应能力和它与单 体 M1 的反应能力之比,或两单体 M1、M2 与链自由基 M2•反应时的相对活性。
以 M1、M2 代表 2 种单体,以~M1•、~M2•代表 2 种链自由基。二元共聚时有下列反 应。
链引发
链增长
链终止
由稳态假定:R12=R21,故 k12[M1•][M2]=k21[M2•][M1] 根据假定④
⑤和⑥两式相比,得
2 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台
7.甲基丙烯酸甲酯、丙烯酸甲酯、苯乙烯、马来酸酐、醋酸乙烯酯、丙烯腈等单体与 丁二烯共聚,交替倾向的次序如何?说明原因。(提示:如无竞聚率数据,可用 Q、e 值)
答:【方法一】查表得题中单体的 Q、e 值如表 4-3 所示。 表 4-3
8 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台
同理
其中
。
形成 xM1 链段的概率为:
《高分子化学》第4章 自由基共聚合
6
第四章 自由基共聚合
由一段M1链段与一段M2链段构成的嵌段共聚物, 称为AB型嵌段共聚物。如苯乙烯—丁二烯(SB)嵌 段共聚物。由两段M1链段与一段M2链段构成的嵌段 共聚物,称为ABA型嵌段共聚物。如苯乙烯—丁二 烯—苯乙烯(SBS)嵌段共聚物。由n段M1链段与n 段M2链段交替构成的嵌段共聚物,称为(AB)n型嵌 段共聚物。
1, 2-二苯乙烯也不能均聚,但能与马来酸酐共聚, 产物严格交替。
13
第四章 自由基共聚合
(3)理论研究 共聚合反应可用于研究单体、自由基、阴
离子和阳离子的活性,了解单体活性与聚合 物结构之间的关系。
14
第四章 自由基共聚合
4.2 二元共聚物的组成与序列分布
4.2.1 共聚组成的特点 两种单体进行共聚时,由于化学结构不同,反应
R iM1
k
21[M
. 2
][M
1
]
k12
[M1.
][M
2
]
R
t11
R t12
0
d[M
. 2
]
dt
R iM2
k
12
[M
. 1
][M
2
]
k
21[M
. 2
][M
1
]
R
t22
R t12
0
(4—4) (4—5)
因为自由基总浓度不变,即
R iM1 R t11 R t12 0 R iM2 R t22 R t12 0
W2
W1 r1KW1 W2
dW2
W2
r2 W2
W1
m2 m1
W2 r2W2 KW1
(4—15)
K m2
高分子化学——第4章 自由基共聚
. . d ]M1 ] R11 R21 k11[M 1] [M 1 ] k21[M 2] [M 1 ] . d [M 2 ] R12 R22 k12[M 1 ] [M 2 ] k22[M .2] [M 2 ]
k11[ M 1 ][ M 1 ] k12[ M 1 ][ M 2 ] 假定3 k [ M 12 1 ][ M 2 ] k12[ M 1 ][ M 2 ] k 22 [M 2 ] k 21[ M 1 ]
[ M 1 ] r1 [ M 1 ] [ M 2 ] d [ M 2] [ M 2 ] r 2 [ M 2 ] [ M 1 ] d [ M 1]
某瞬时共聚物组成摩尔比
某瞬时单体的摩尔比
[ M 1 ]的定量关系。 [M 2 ]
d[M1 ] 表达了某瞬间共聚物组成 d [ M ] 和该瞬间单体组成 2
1.0 0.8 0.6
② ①
0.4
0.2 0
0.2
0 ~ f1曲线
f1
非理想非恒比共聚 当 r 1 > 1 , r 2 < 1而 F1
1.0 0.8 0.6 0.4
r 1 . r 2 < 1 时,共聚物组成
曲线不与对角线相交,而 处于对角线上方①,但不 如理想共聚那样对称。 当r1 < 1,r2 > 1而
接枝共聚物 大分子主链由单元 M1组成,支链由单元 M2组成。如高抗
冲聚苯乙烯 (主链:丁二烯单体单元,支链:苯乙烯单体单元)
M2 M2 M2 ~~~ M2
~~~M1 M1 M1 M1 M1 M1 M1 M1 M1 M1~~~
M2 M2 M2 M2 ~~~ 命名 聚丁二烯接苯乙烯枝 (×接×枝) 丁二烯-苯乙烯接枝共聚物 丁二烯-g-苯乙烯 graft (前为主链,后为支链)
高分子化学名词解释
高分子化学名词解释work Information Technology Company.2020YEAR高分子化学(潘祖仁主编)名词解释第一章绪论逐步聚合,是指聚合过程中低分子转变成高分子是缓慢逐步进行的,每步的反应速率和活化能大致相同。
聚合早期,单体很快聚合成低分子量的齐聚物,短期内单体转化率很高,反应程度却很低。
连锁聚合,是指从自由基、阴阳离子等活性种开始,经历链引发、链增长、链终止等基元反应的,各基元反应的速率和活化能差别很大的一类聚合反应。
数均分子量,是指按聚合物中含有的分子数目统计平均的分子量,等于高分子样品中所以分子的总质量除以总的摩尔分数;质均分子量,是指按聚合物中含有的分子质量统计平均的分子量;黏均分子量,是指用粘度法测得的高分子的平均分子量。
热塑性弹性体:通常的弹性体如橡胶是通过化学反应使聚合物分子链发生交联才具有弹性,而热塑弹性体的弹性来自于聚合物分子链间的物理交联,如氢键等分子间相互作用。
普通橡胶不能二次加工,而热塑弹性既具有橡胶的弹性,又具有塑料的可塑性,可以多次进行成型加工。
热塑性聚合物:线形或支链形大分子以物理力聚集成聚合物,可溶于适当溶剂中,加热时可熔融塑化,冷却时固化成型,此类聚合物称作热塑性聚合物。
热固性聚合物:酚醛树脂,醇酸树脂等在树脂合成阶段,需控制原料配比和反应条件,使其停留在线形或少量支链的低分子预聚物阶段。
成型时,经加热,再使其中潜在的官能团继续反应成交联结构而固化。
此类聚合物称作热固性聚合物。
第二章缩聚和逐步聚合均聚是指系统中只由一种单体构成的聚合反应,如氯乙烯的缩聚;共聚是指聚合物是由两种或多种单体共同聚合而成的聚合反应,如尼龙-66的聚合;混缩聚是指类如aAb的单体进行的聚合反应。
反应程度的定义为参与反应的基团数占起始基团数的分数,将大分子的结构单元数(不是重复单元数)定义为聚合度。
官能团等活性理论提出,不同的链长的端基官能团,具有相同的反应能力和参加反应的机会,即官能团的活性与分子的大小无关。
高分子化学(第四版)第四章 自由基共聚合
组成可由均聚、 组成可由均聚、 共聚速率常数 [M]、[M•]确定 、
应用稳态假定R 消去[M 应用稳态假定 i=Rt , R12=R21 消去 •]
10
“稳态假定”:R12=R21: 稳态假定”
R11 = k 11 M 1• [M 1 ]
[ ]
R12 = k12 M 1• [M 2 ]
• d[M1 ] k11 M1 [M1 ] + k21 M• [M1 ] 2 = • d[M2 ] k22 M• [M2 ] + k12 M1 [M2 ] 2
假定: 假定:
1、等活性假设:自由基的活性与链长无关。 、等活性假设:自由基的活性与链长无关。 2、无前末端效应:链自由基的活性只取决于末端单体单元的结构, 、无前末端效应:链自由基的活性只取决于末端单体单元的结构, 与前末端单元的结构无关。 与前末端单元的结构无关。 活性一样) ( M 1M 1* 和⋯M2M1* 活性一样) ⋯ 3、聚合度很大:单体主要消耗在链增长反应过程中,而消耗在链引发 、聚合度很大:单体主要消耗在链增长反应过程中, 中的单体数可忽略不计, >>R 中的单体数可忽略不计,Rp >> i 。 4、无解聚反应:聚合反应是不可逆的,无解聚反应 、无解聚反应:聚合反应是不可逆的, 5、稳态假定:体系中自由基浓度不变。 要求 i=Rt ,R12=R21 、稳态假定:体系中自由基浓度不变。 要求R
• 12 ⋯ M 1• + M 2 ⋯ M 1M 2 ⋯ →
• 2
• 2
kt22
• 2 2
kt
• Rt12 = 2kt12 M1• M 2
[ ][ ]
交叉终止
kt11, Rt11,分别表示终止速率常数和终止速率 分别表示终止速率常数和终止速率。
高分子化学第四章 自由基共聚合
在共聚反应中,主要 研究共聚物的组成问题。
11
12
• 两单体M1与M2共聚,由于其化学结构不 同,聚合活性往往有差异。在共聚物 中,M1与M2的比例常与投料时单体M1、 M2的比例不同。
•聚合反应的结果?
13
一、共聚物组成微分方程
烯类单体自由基共聚合,也 是连锁聚合反应,其基元反应也 包括链引发、链增长、链终止等。
5-0.8;6-0.57
1.0
单体总转化率 r1=0.30 , r2=0.07 类同P118图4—6
0.2 0.4 0.6 0.8
35
3.控制共聚物组成的方法
• (1)在恒比点投料 • (2)控制转化率的一次投料 • (3)不断补加活泼单体法
36
37
• ~M2-M1M1M1M1M1-M2-M1M1M1M1-M2M2-M1~
注意:取代基的共轭效应对自由基活性 的影响要大一些
52
下列反应速率常数的次序为:
Rs• + M < Rs• + Ms< R• + M < R• + Ms
(1)均聚时,无共轭效应的单体进行聚
合比有共轭效应单体聚合更容易
(2)共聚时,均有共轭或均无共轭效应
单体之间易共聚;否则,不易共聚。
53
2.极性效应
1
0 f 1 -(1-C) f1
(4---21)
C
其中
C=1-( 1-f 1
0 1-f 1
)
2.53
(4---23)
34
2.共聚物组成—转化率曲线
含共 量聚 物 中 /% M1 摩 尔
1.0
0.8
5
f01分别为:
0.6
高分子化学4.2 二元共聚物组成微分方程4.2.1 课件
下标中的第一个数 字表示某自由基; 第二个数字表示某 单体。
高分子化学 第四章 自由基共聚合
3)链终止(termination):
3个终止反应
M1 M1
M
2
M 2
M1 M 2
kt11
M1M1
kt 22
M2M2
kt12
M1M 2
Rt11 2kt11 M1 2
R22
k22
[
M
2
][
M
2
]
高分子化学 第四章 自由基共聚合
8
高分子化学 第四章 自由基共聚合
共聚物瞬时组成方程(Mayo-lewis方程):
4-1
竞聚率r1、r2:均聚速率常数和共聚速率常数之 比,表征了单体均聚与共聚能力之比。
某瞬时共聚物组成摩尔比 某瞬时单体的摩尔比
高分子化学 第四章 自由基共聚合
2
用摩尔分率表示,则共聚物瞬时组成方程为:
F1
r1
r1 f12 f1 f2 f12 2 f1 f2 r2
f
2 2
4-2
高分子化学 第四章 自由基共聚合
k21
~~
M
1
~~
M
2
M2
k22
~~
M
2
R11
k11[M
1
][M
1]
R12 k12[M1 ][M 2 ]
R21
k21[
M
2
][
M
1
]
R22
k22[M
2
][M
2
]
高分子化学 第四章__自由基共聚合
4.1 概 述-2、意义
例如马来酸酐是1,2取代单体,不能均聚。 但与苯乙烯或醋酸乙烯能很好共聚,是优良的 织物处理剂和悬浮聚合分散剂。 /p-21194446.html 1,2-二苯乙烯也不能均聚,但能与马来酸酐共 聚。产物严格交替。 理论研究:通过共聚反应研究可了解不同单体 和链活性种的聚合活性大小、有关单体结构与 聚合活性之间的关系、聚合反应机理多方面的 信息等,完善高分子化学理论体系。
Poly(A-co-B):A-B共聚物 Poly(A-alt-B):A-B交替共聚物
A-b-B copolymer:A-B嵌段共聚物
Poly(A)-g-poly(B):聚A接枝聚B
4.2 二元共聚物的组成
共聚物性能
密切相关
共聚物组成
不相等 但相关
单体组成
共同决定
单体单元含量与 连接方式
单体相对活性
r1表征了单体M1和M2分别与末端为M1*的增长链 反应的相对活性,它是影响共聚物组成与原料单体混 合物组成之间定量关系的重要因素。
4.2 二元共聚物的组成-1、组成方程
r1 = k11/k12, r2 = k22/k21
r1 = 0,表示M1的均聚反应速率常数为0,不能 进行自聚反应,M1*只能与M2反应; r1 > 1,表示M1*优先与M1反应发生链增长; r1 < 1,表示M1*优先与M2反应发生链增长; r1 = 1,表示当两单体浓度相等时,M1*与M1和 M2反应发生链增长的几率相等; r1 = ∞,表明M1*只会与M1发生均聚反应,不会 发生共聚反应。
该类例子很多,如丁二烯—苯乙烯体系( r1=1.35, r2=0.58,50℃);氯乙 烯—醋酸乙烯酯体系( r1=1.68, r2=0.23 );甲基丙烯酸甲酯—丙烯酸甲酯体 系( r1=1.91, r2=0.5 )。 苯乙烯—醋酸乙烯酯体系也属此类( r1 = 55, r2 = 0.01 ),但因r1>> 1, r2 << 1,故实际上聚合前期得到的聚合物中主要是苯乙烯单元,而后期的聚合 物中主要是醋酸乙烯酯单元,产物几乎是两种均聚物的混合物。
第四章自由基共聚
3.研究共聚反应的意义
苯乙烯(Styrene,St)
H
H
CC
H
HH
CC n H
PS用途广泛的通用塑料, 2004年世界聚苯乙烯年产量超过 1045万吨,大部分是共聚物,不 仅用做塑料,还作为合成橡胶
普通PS(均聚物)性脆、 抗冲击强度低。实用意义 不大
3.研究共聚反应的意义
1. 共聚方程与竞聚率
共聚单体化学结构不同,活性不同
进入共聚物链中的单体比例(即共聚物组成)不同,并导 致单体配比发生变化。
共聚物组成随转化率(C)而变,存在组成分布。 共聚方程描述二元共聚产物的组成(单体单元的含量)与 单体组成及单体相对活性(竞聚率)之间的关系。 共聚物组成:瞬时组成、平均组成、组成分布、链段序列 分布(更加微观)等。
nCH2 CH Cl
CH2CH n Cl
均聚物(Homo-polymer):均聚合所形成的产物, 含一种结构单元。
1 共聚合反应的一般概念
共聚合(Copolymerization):
是指两种或多种单体共同参加的聚合反应
nCH2 CH Cl
mCH2 CH OCOCH3
CH2CH x Cl
CH2CH y OCOCH3
单体单元 M1
~~M1M2M2M1M2M2M2M1M1~~
M1、M2各自连续连接的数目较少,且按概率随机排列。
多数自由基共聚物一般属于无规共聚物,如PVC-PVAc)
2. 共聚物的类型与命名
交替共聚物(Alternating copolymerization) 大分子链中结构单元M1、M2有规则地交替排列:
1. 共聚方程与竞聚率 M1· M1
自由基共聚合好例题
10/4/2024
14
10/4/2024
15
10/4/2024
16
无规和交替共聚物为均相体系,可由一般共聚反应制 得;嵌段和接枝共聚物往往呈非均相,由特殊反应制得
10/4/2024
17
2.二元共聚物旳命名
a.《高分子化学命名原则》:
聚- 两单体名称以短线相连,前面加“聚”字
如聚丁二烯-苯乙烯
-共聚物 两单体名称以短线相连,背面加“共聚物”
如乙烯-丙烯共聚物、氯乙烯-醋酸乙烯共聚物
10/4/2024
18
b.IUPAC命名中,在两单体间插入符号表白
共聚物旳类型
co copolymer 无规
alt alternating 交替
b block
嵌段
g graft
接枝
10/4/2024
19
注意:
St与Bd,自由基乳液共聚:无规共聚物——丁苯橡胶(StyreneButadiene Rubber, SBR) ,丁苯橡胶抗张强度接近天然橡胶,耐候 性能优于天然橡胶,广泛用于制造轮胎、地板、鞋底、衣料织物 和电绝缘体 扩大了单体旳原料起源
如 顺丁烯二酸酐难以均聚,却易与苯乙烯共聚
10/4/2024
23
二、二元共聚物构成 (Copolymer Composition)
10/4/2024
24
(一) 共聚物构成方程
1.几点假定
共聚物构成方程是描述共聚物构成与单体混合物 (原料)构成间旳定量关系,可由共聚动力学或由链增 长旳几率推导出来,在推导过程中,需作几点假定。
10/4/2024
25
假定一:体系中无解聚反应(不可逆)
27
假定三:无前末端效应
高分子化学第四章
Free Radical Copolymerization
要求:
掌握共聚组成规律,控制方法 理解瞬时组成、平均组成 理解竞聚率概念
§3.1 概述
1. 基本概念
(1)连锁聚合: ①根据参加反应的单体种类分为均聚合、共聚合 a. 均聚合:一种单体参加的反应。形成均聚物
(Homopolymerization)
b. 使不能聚合的单体实现聚合
c. 改善聚合物性能,制备性能各异的聚合物。
结构 性能
§3. 2 二元共聚物的组成
包括不同单体单元的含量,序列分布
例子:
M2
M1 50% (mol)
∞
50% (mol)
分析:
共聚物分子链的生成
I 2R
链引发
R M 1 RM1 R M 2 RM 2
R M 2 RM 2
~~~~M1M1M1M2M2M1·
~~~~M1M1M1M2M2·
~~~~ M1M1M1M2M2M2·
链增长:
~~~~ M 1 M 1 k11 ~~~~ M 1M 1 ~~~~ M 1 M 2 k12 ~~~~ M 1M 2 ~~~~ M 2 M 1 k21 ~~~~ M 2 M 1
竞聚率 r
是单体均聚和共聚链增长速率常数之比,表 征两单体的相对活性。
共聚组成方程:
d [ M 1 ] [ M 1 ] r1[ M 1 ] [ M 2 ] d [ M 2 ] [ M 2 ] r2 [ M 2 ] [ M 1 ]
(3-4)
以单体的mol比或mol浓度比表示的共聚反应 某一瞬间(t时刻)所形成的共聚物组成与该 瞬间体系中单体组成的定量关系。