【真卷】2017-2018年河南省洛阳市八年级上学期数学期末试卷及答案

合集下载

[试卷合集3套]洛阳市2018年八年级上学期期末经典数学试题

[试卷合集3套]洛阳市2018年八年级上学期期末经典数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各数是无理数的是( )A .3.14B .-πC .0.21D .210 【答案】B【分析】根据无理数的定义判断.【详解】A 、3.14是有限小数,是有理数,故不符合题意;B 、-π是无限不循环小数,是无理数,故符合题意;C 、0.21是无限循环小数,是有理数,故不符合题意;D 、210=10,是有理数,故不符合题意;故选B .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.2.若三角形的两边分别是4cm 和5cm ,则第三边长可能是( )A .1cmB .4cmC .9cmD .10cm【答案】B【分析】根据三角形的三边关系,求出第三边的取值范围,然后得到可能的值.【详解】解:∵三角形的两边分别是4cm 和5cm ,设第三边为x ,则有 5454x -<<+,∴19x <<,∴第三边可能为:4cm ;故选:B .【点睛】本题考查了三角形的三边关系,解题的关键是掌握三角形的三边关系进行解题.3.正比例函数(0)y kx k =≠的函数值y 随x 的增大而减小,则一次函数的y x k =-图象大致是( ) A . B . C .D .【答案】A【分析】根据(0)y kx k =≠的函数值y 随x 的增大而减小,得到k <0,由此判定y x k =-所经过的象限为一、二、三象限.【详解】∵(0)y kx k =≠的函数值y 随x 的增大而减小,∴k <0,∴y x k =-经过一、二、三象限,A 选项符合.故选:A.【点睛】此题考查一次函数的性质,y=kx+b 中,k >0时图象过一三象限,k <0时图象过二四象限;b >0时图象交y 轴于正半轴,b <0时图象交y 轴于负半轴,掌握特点即可正确解答.4.下列标志中,可以看作是轴对称图形的是( )A .B .C .D .【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、不是轴对称图形,是中心对称图形,不符合题意;C 、不是轴对称图形,是中心对称图形,不符合题意;D 、是轴对称图形,符合题意.故选D .【点睛】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.5.若实数m 、n 满足|m ﹣3|+(n ﹣6)2=0,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .15C .12或15D .9【答案】B 【分析】由已知等式,结合非负数的性质求m 、n 的值,再根据m 、n 分别作为等腰三角形的腰,分类求解.【详解】解:|m ﹣3|+(n ﹣6)2=0,∴m ﹣3=0,n ﹣6=0,解得m =3,n =6,当m =3作腰时,三边为3,3,6,336+=,不符合三边关系定理;当n =6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=1.故选:B .【点睛】本题考查了等腰三角形,灵活根据等腰三角形的性质进行分类讨论是解题的关键.6.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于4,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .4PQ >B .4PQ ≥C .4PQ <D . 4PQ ≤ 【答案】B【分析】根据角平分线的性质可知点P 到OB 边的距离等于4,再根据点到直线的距离垂线段最短即可得出结论.【详解】解:∵点P 在∠AOB 的平分线上,∴点P 到OA 边的距离等于点P 到OB 边的距离等于4,∵点Q 是OB 边上的任意一点,∴4PQ ≥(点到直线的距离,垂线段最短).故选:B .【点睛】本题考查角平分线的性质,点到直线的距离.理解角平分线上的点到角两边距离相等是解题关键. 7.如图,//AB CD ,以点A 为圆心,小于AC 长为半径作弧,分别交AB 、AC 于E 、F 两点,再分别以,E F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ,作射线AG ,交CD 于点H ,若ACD ∠120=︒,则AHD ∠的度数为( )A .150︒B .115︒C .120︒D .160︒【分析】先由平行线的性质得出,180CHA HAB ACD CAB ∠=∠∠+∠=︒,进而可求出CAB ∠的度数,再根据角平分线的定义求出HAB ∠的度数,则CHA ∠的度数可知,最后利用180AHD CHA ∠=︒-∠求解即可.【详解】∵//AB CD∴,180CHA HAB ACD CAB ∠=∠∠+∠=︒120ACD ∠=︒180********CAB ACD ∴∠=︒-∠=︒-︒=︒∵AH 平分CAB ∠1302HAB CAB ∴∠=∠=︒ 30CHA ∴∠=︒180150AHD CHA ∴∠=︒-∠=︒故选:A .【点睛】本题主要考查平行线的性质和角平分线的画法及定义,掌握平行线的性质和角平分线的画法及定义是解题的关键.8.若m n >,则下列不等式正确的是( )A .22m n -<-B .33m n >C .44m n <D .55m n ->- 【答案】B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵m >n ,∴m-2>n-2,∴选项A 不符合题意;∵m >n ,∴33m n >,∴选项B 符合题意; ∵m >n ,∴4m >4n ,∴选项C 不符合题意;∵m >n ,∴-5m <-5n ,∴选项D 不符合题意;故选:B【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.9.若x <2+|3-x|的正确结果是( ) A .-1 B .1C .2x -5D .5-2x【解析】分析:本题利用绝对值的化简和二次根式()2a a = 的化简得出即可. 解析:∵x <2,∴()22x -+|3﹣x|=2352x x x -+-=- .故选D.10.如图,在ABC ∆中,AC BC =,D 是BA 延长线上一点,E 是CB 延长线上一点,F 是AC 延长线上一点,131DAC ∠=︒,则ECF ∠的度数为( )A .49︒B .88︒C .98︒D .131︒【答案】C 【分析】根据等腰三角形的两个底角相等和三角形的内角和解答即可.【详解】解:∵∠DAC=131°,∠DAC+∠CAB=180°,∴∠CAB=49°,∵AC=BC ,∴∠CBA=49°,∠ACB=180°-49°-49°=82°,∴∠ECF=180°-∠ACB=180°-82°=98°,故选:C .【点睛】此题考查等腰三角形的性质和三角形内角和,关键是根据等腰三角形的性质和三角形的内角和解答.二、填空题11.已知m+n=2,mn=-2,则(1-m )(1-n )=___________.【答案】﹣3【解析】因为m+n=2,mn=﹣2,所以(1﹣m )(1﹣n )=1-(m+n)+mn=1-2+(-2)=-3,故答案为-3.12.在“童心向党,阳光下成长”的合唱比赛中,30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,则第5组的频率为________.【答案】0.1.【解析】直接利用频数÷总数=频率,进而得出答案.【详解】解:∵30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,∴第5组的频率为:(30-2-10-7-8))÷30=0.1.故答案为:0.1.【点睛】本题考查频数与频率,正确掌握频率求法是解题关键.13.在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是__________。

《试卷3份集锦》洛阳市2017-2018年八年级上学期期末调研数学试题

《试卷3份集锦》洛阳市2017-2018年八年级上学期期末调研数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.对于两个不相等的实数a 、b ,我们规定符号Min{a ,b}表示a 、b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min{1x ,2x }=3x -1的解为( ) A .1B .2C .1或2D .1或-2 【答案】B 【分析】分类讨论1x 与2x的大小,列出分式方程,解方程即可. 【详解】解:当12x x >时,x <0,方程变形为231x x =-, 去分母得:2=3-x ,解得:x=1(不符合题意,舍去); 当12x x<,,x >0,方程变形得:131x x =-, 去分母得:1=3-x ,解得:x=2,经检验x=2是分式方程的解,故选:B .【点睛】此题考查了解分式方程,分类讨论是解本题的关键.2.甲、乙、丙、丁四人参加射击训练,经过三组练习,他们的平均成绩都是9.5环,方差分别是2=0.45S 甲,2=0.55S 乙,2=0.4S 丙,2=0.35S 丁,你认为谁的成绩更稳定( ) A .甲B .乙C .丙D .丁【答案】D 【分析】根据方差反映了一组数据的波动大小,方差越大,波动性越大可得答案.【详解】解:∵0.35<0.4<0.45<0.55,∴S 丁2<S 丙2<S 甲2<S 乙2,丁的成绩稳定,故选:D .【点睛】此题主要考查了方差,关键是掌握方差的意义,方差越小成绩越稳定.3,﹣0.101001,713,π,其中无理数有( ) A .1 个 B .2 个 C .3 个 D .4 个【答案】A【解析】根据无理数、有理数的定义,即可得到答案. 【详解】4=2是整数,属于有理数,﹣0.101001是有限小数,属于有理数,713是分数,属于有理数, π是无理数,故选:A .【点睛】 本题主要考查无理数、有理数的定义,掌握它们的定义是解题的关键.4.如图,四边形OABC 为长方形,点A 在x 轴上,点C 在y 轴上,B 点坐标为(8,6),将OAB ∆沿OB 翻折,A 的对应点为E ,OE 交BC 于点D ,则D 点的坐标为( )A .(38,6)B .(34,6)C .(76,6)D .(74,6) 【答案】D【分析】根据翻折的性质及勾股定理进行计算即可得解.【详解】∵四边形OABC 为长方形,点A 在x 轴上,点C 在y 轴上,B 点坐标为(8,6)∴OC=AB=6,BC=OA=8,,90OCB ∠=︒,BC//OA∴AOB OBC ∠=∠∵将OAB ∆沿OB 翻折,A 的对应点为E∴EOB AOB =∠∠∴OBC EOB ∠=∠∴OD=BD设CD=x,则82OD DB BC CD ==-=-在Rt OCD ∆中,222OC CD OD +=∴()22268x x +=-解得:74x =∴点D 的坐标为7(,64),故选:D.【点睛】本题主要考查了翻折的性质,熟练掌握翻折及勾股定理的计算是解决本题的关键.5.若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y > 【答案】B【分析】根据不等式的基本性质逐一判断即可.【详解】A .将不等式的两边同时减去3,可得33x y ->-,故本选项正确;B .将不等式的两边同时乘(-1),可得x y -<-,再将不等式的两边同时加3,可得33x y -<-,故本选项错误;C . 将不等式的两边同时加2,可得22x y +>+,所以32x y +>+,故本选项正确;D . 将不等式的两边同时除以3,可得33x y >,故本选项正确. 故选B .【点睛】此题考查的是不等式的变形,掌握不等式的基本性质是解决此题的关键.6.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒【答案】C 【分析】先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.【详解】如图,∵∠BEF 是△AEF 的外角,∠1=20︒,∠F=30︒,∴∠BEF=∠1+∠F=50︒,∵AB ∥CD ,∴∠2=∠BEF=50︒,故选:C .【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.7.下列各式中正确的是( )A 2=±B 3=-C 2=D = 【答案】D【分析】分别根据算术平方根、立方根的性质化简即可判断.【详解】解:A 2=,故选项A 不合题意;3=,故选项B 不合题意; 232=,故选项C 不合题意;-==D 符合题意. 故选D .【点睛】本题主要考查了算术平方根和立方根的定义,熟练掌握算术平方根和立方根的性质是解答本题的关键. 8.下列各点位于平面直角坐标系内第二象限的是( )A .(3,1)-B .(3,0)-C .(3,1)-D .(0,1)【答案】A【分析】根据所给点的横纵坐标的符号可得所在象限.第二象限点特点(-,+)【详解】解:A 、(3,1)-,在第二象限,故此选项正确; B 、(3,0)-,在x 轴上,故此选项错误;C 、(3,1)-,在第四象限,故此选项错误;D 、(0,1),在y 轴上,故此选项错误;故选A .【点睛】本题主要考查象限内点的符号特点,掌握每个象限点特点是解决此题的关键.9.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( ) A . B . C .D .【答案】B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选B .【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.10.下列各式,能写成两数和的平方的是( )A .221x x +-B .21x +C .21x x ++D .244x x ++【答案】D【分析】直接利用完全平方公式判断得出答案.【详解】∵x 2+1x+1=(x+2)2,∴能写成两数和的平方的是x 2+1x+1.故选D .【点睛】本题考查了完全平方公式,掌握完全平方公式是解答本题的关键.二、填空题11.如图,点P 的坐标为()2,0,点B 在直线4y x =+上运动,当线段PB 最短时,点B 的坐标为__________.【答案】()1,3-【分析】当PB 垂直于直线4y x =+时,线段最短,此时会构造一个等腰三角形,利用等腰三角形的性质即可求解.【详解】解:如图,当PB 垂直于直线4y x =+时线段最短,设直线4y x =+与x 轴交于点A ,则A (-4,0),当PB AP ⊥时,PAB △为等腰直角三角形,作PC x ⊥轴于C ,则易得C(-1,0),将1x =-代入即可求得3y =,()1,3P ∴-;故答案为:()1,3-.【点睛】本题考查的是垂线段最短以及等腰直角三角形的性质,这里根据题意正确添加辅助线即可轻松解题. 12.如图,170∠=,将直线m 向右平移到直线n 处,则23∠-∠=__________°.【答案】1【分析】直接利用平移的性质结合三角形外角的性质得出答案.【详解】由题意可得:m ∥n ,则∠CAD +∠1=180°,可得:∠3=∠4,故∠4+∠CAD =∠2,则∠2−∠3=∠CAD +∠3−∠3=∠CAD =180°−∠1=180°−70°=1°.故答案为:1.【点睛】此题主要考查了平移的性质以及平行线的性质,正确转化角的关系是解题关键.13.在ABC ∆中,AB AC =,90A ∠=︒,点D 在斜边BC 所在的直线上,123DC BC ==,线段AD 关于AC 对称的线段为AE ,连接BE 、DE ,则BDE ∆的面积为_______.【答案】4或8 【分析】分类讨论①当点D 在线段BC 上,②当点D 在线段BC 上时,根据对称的性质结合等腰直角三角形的性质分别求得AC 、DF=EF=CF 的长,从而可求得答案.【详解】①当点D 在线段BC 上时,如图:∵线段AD 和线段AE 关于AC 对称,∴AD=AE ,∠DAC=∠EAC ,∴DF=EF ,∠DFC=∠DFA=90︒, ∵123DC BC ==, ∴6BC =,∵AB=AC ,∠BAC =90︒,∴2,AB=AC=32∴AF=AC-CF=32222=DE=EF+DF=22∴112222422BDE S DE AF ==⨯=; ②当点D 在线段BC 上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAF=∠EAF,∴DF=EF,∠DFC=90︒,∵123DC BC==,∴6BC=,∵AB=AC,∠BAC =90︒,∴2,AB=AC=32∴AF=AC+CF=32242=DE=EF+DF=22∴112242822BDES DE AF==⨯=;故答案为:4或8.【点睛】本题考查了对称的性质,等腰直角三角形的性质,利用等腰直角三角形的性质求得腰长是解题的关键.注意分类讨论.144x-x的取值范围是_____________.【答案】x≤4【分析】根据被开方数大于等于0列式计算即可.【详解】解:由题意,得4-x≥0解得x≤4.故答案为x≤4.【点睛】本题考查了二次根式有意义的条件.二次根式的被开方数是非负数.151x-x的取值范围是____.【答案】1x≥【分析】根据二次根式由意义的条件是:被开方数大于或等于0,即可求解.【详解】由题意得:10x-≥,解得:1x ≥,故答案为:1x ≥.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.16.如图,△ABC ≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.【答案】120【分析】根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.【详解】∵ABC A B C '''≌,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案为:120.【点睛】此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.17.如图,若12220︒∠+∠=,则A ∠=_____度.【答案】40【分析】根据平角的定义可得∠AMN=180°-∠1,∠ANM=180°-∠2,从而求出∠AMN +∠ANM ,然后根据三角形的内角和定理即可求出∠A .【详解】解:∵∠AMN=180°-∠1,∠ANM=180°-∠2,12220∠+∠=︒∴∠AMN +∠ANM=180°-∠1+180°-∠2=360°-(12∠+∠)=11°∴∠A=180°-(∠AMN +∠ANM )=1°故答案为:1.【点睛】此题考查的是平角的定义和三角形的内角和定理,掌握平角的定义和三角形的内角和定理是解决此题的关键.三、解答题18.甲、乙两名同学参加少年科技创新选拔赛,六次比赛的成绩如下:甲:87 93 88 93 89 90乙:85 90 90 96 89 a(1)甲同学成绩的中位数是__________;(2)若甲、乙的平均成绩相同,则a=__________;(3)已知乙的方差是313,如果要选派一名发挥稳定的同学参加比赛,应该选谁?说明理由.【答案】(1)89.5;(2)90;(3)甲,理由见解析.【分析】(1)将甲的成绩按照从大到小重新排列,中间两个数的平均数即是中位数;(2)求出甲的成绩总和得到乙的成绩总和,减去其他成绩即可得到a;(3)求出甲的平均数,计算出方差,根据甲、乙的方差大小即可做出选择.【详解】(1)将成绩从大到小重新排列为:93、93、90、89、88、87,∴中位数为:908989.52+=,故答案为:89.5;(2)∵甲、乙的平均成绩相同,∴甲、乙的总成绩相同,∴a=(87+93+88+93+89+90)-(85+90+90+96+89)=90;故答案为:90;(3)先甲,理由如下:甲的平均数x=8793889389906+++++=90,甲的方差S2=222222(8790)(9390)(8890)(9390)(8990)(9090)6-+-+-+-+-+-=321663=,∵313>163,∴甲发挥稳定,应该选甲.【点睛】此题考查中位数的定义,根据平均数求一组数据中的未知数据,求数据的方差并依据方差做决定. 19.结论:直角三角形中,30的锐角所对的直角边等于斜边的一半.如图①,我们用几何语言表示如下:∵在ABC ∆中,90C ∠=︒,30A ∠=︒, ∴12BC AB =. 你可以利用以上这一结论解决以下问题:如图②,在ABC ∆中,60BAC ∠=︒,8AC =,5AB =,7BC =,(1)求ABC ∆的面积;(2)如图③,射线AM 平分BAC ∠,点P 从点A 出发,以每秒1个单位的速度沿着射线AM 的方向运动,过点P 分别作PE AC ⊥于E ,PF AB ⊥于F ,PG BC ⊥于G .设点P 的运动时间为t 秒,当PE PF PG ==时,求t 的值.【答案】(1)∆103ABC S =(2)3t =2033t =【分析】(1)过点C 作CH ⊥AB 于点H ,则∠CAH=90°,即可求出∠ACH=30°,求出AH ,根据勾股定理即可求解;(2)分两种情况讨论①当点P 在△ABC 内部时②当点P 在△ABC 外部时,连结PB 、PC ,利用面积法进行求解即可.【详解】(1)过点C 作CH ⊥AB 于点H ,则∠CAH=90°,如图②∵60BAC ∠=︒∴∠ACH=30° ∴142AH AC == ∴22228443CH AC AH =-=-= ∴1154103232ABC S AB CH ∆=⋅=⨯⨯= (2)分两种情况讨论①当点P 在△ABC 内部时,如图③所示,连结PB 、PC.设PE=PF=PG=x∵111222ABC S AC PE BC PG AB PF ∆=⋅+⋅+⋅ ∴111875103222x x x ⨯+⨯+⨯=∴3x =∵AM 平分∠BAC ,∴1302PAE BAC ∠=∠=︒, ∴12PE PA =, ∴223PA PE ==∴23123t ==②当点P 在△ABC 外部时,如图④所示,连结PB 、PC.设PE=PF=PG=x , ∵111222ABC S AC PE AB PF BC PG ∆=⋅+⋅-⋅ ∴111857103222x x x ⨯+⨯-⨯= 解得x =1033由①知,30PAE ∠=︒,又90PEA ∠=︒, ∴12PE PA =, ∴2PA PE ==2033∴20313t =÷=2033∴当PE=PF=PG 时,23t =2033t =【点睛】 本题考查的是含30°角的直角三角形的性质,掌握勾股定理及三角形的面积法是关键.20.阅读下列解方程组的部分过程,回答下列问题解方程组25323x y x y -=⎧⎨-=⎩①②现有两位同学的解法如下:解法一;由①,得x =2y+5,③把③代入②,得1(2y+5)﹣2y =1.……解法二:①﹣②,得﹣2x =2.……(1)解法一使用的具体方法是________,解法二使用的具体方法是______,以上两种方法的共同点是________.(2)请你任选一种解法,把完整的解题过程写出来【答案】 (1)代入消元法;加减消元法;基本思路都是消元;(2)13x y =-⎧⎨=-⎩.【分析】(1)分析两种解法的具体方法,找出两种方法的共同点即可;(2)将两种方法补充完整即可.【详解】解:(1)解法一使用的具体方法是代入消元法,解法二使用的具体方法是加减消元法,以上两种方法的共同点是基本思路都是消元(或都设法消去了一个未知数,使二元问题转化为了一元问题);故答案为代入消元法,加减消元法,基本思路都是消元(或都设法消去了一个未知数,使二元问题转化为了一元问题);(2)方法一:由①得:x=2y+5③,把③代入②得:1(2y+5)﹣2y=1,整理得:4y=﹣12,解得:y=﹣1,把y=﹣1代入③,得x=﹣1,则方程组的解为13 xy=-⎧⎨=-⎩;方法二:①﹣②,得﹣2x=2,解得:x=﹣1,把x=﹣1代入①,得﹣1﹣2y=5,解得:y=﹣1,则方程组的解为13 xy=-⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.(1)点A的实际意义是什么?(2)求甲、乙两人的速度;(3)求OC和BD的函数关系式;(4)求学校和博物馆之间的距离.【答案】(1)点A 的意义是甲用0.75小时追上了乙,此时到学校的距离为60千米;(2)甲、乙的速度分别是80千米/小时,40千米/小时; (3)OC 的关系式为80y x =,BD 的函数关系式为4030y x =+;(4)学校和博物馆之间的距离是140千米.【分析】(1)观察函数图象,利用x 轴和y 轴的意义即可得出结论;(2)甲行走了60km 用了0.75小时,乙行走了60km 用了()0.750.75+小时,根据路程与时间的关系即可求解;(3)用待定系数法,根据B 点和A 点坐标即可求出BD 的解析式,根据A 点坐标即可求出直线OC 的解析式;(4)设甲用时x 小时,则乙为(x+1.75)小时,根据路程相等列方程解答即可.【详解】(1)点A 的意义是甲用0.75小时追上了乙,此时到学校的距离为60千米;(2)甲的速度为:60800.75=(千米/时) 乙的速度为:60400.750.75=+(千米/时) 答:甲、乙的速度分别是:80千米/小时,40千米/小时;(3)根据题意得:A 点坐标()0.75,60,当乙运动了45分钟后,距离学校:45403060⨯=(千米) ∴B 点坐标()0,30设直线OC 的关系式:1y k x =,代入A ()0.75,60得到1600.75k =,解得180k =故直线OC 的解析式为80y x =设BD 的关系式为:2y k x b =+把A ()0.75,60和B ()0,30代入上式得:20.756030k b b +=⎧⎨=⎩,解得:24030k b =⎧⎨=⎩ ∴直线BD 的解析式为4030y x =+;(4)设甲的时间x 小时,则乙所用的时间为:0.751 1.75x x ++=+(小时),所以:80x=40(x+1.75),解得:x=74 ∴ 80×74=140 答:学校和博物馆之间的距离是140千米.【点睛】本题考查的知识点是一次函数的实际应用,从一次函数图象中找出相关数据是解此题的关键.22.已知ABC 是等边三角形,点D 是直线BD 上一点,以AD 为一边在AD 的右侧作等边ADE .(1)如图①,点D 在线段BC 上移动时,直接写出BAD ∠和CAE ∠的大小关系;(2)如图②,点D 在线段BC 的延长线上移动时,猜想DCE ∠的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.【答案】(1)BAD CAE ∠=∠,理由见解析;(2)60DCE ∠=︒,不发生变化;理由见解析【解析】(1)由等边三角形的性质得出∠BAC=∠DAE ,容易得出结论;(2)由△ABC 和△ADE 是等边三角形可以得出AB=BC=AC ,AD=AE ,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠ABD=120°,再证明△ABD ≌△ACE ,得出∠ABD=∠ACE=120°,即可得出结论.【详解】解:(1)BAD CAE ∠=∠;理由如下:∵ABC 和△ADE 是等边三角形,∴60BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠;(2)60DCE ∠=︒,不发生变化;理由如下:∵ABC 是等边三角形,ADE 是等边三角形,∴60DAE BAC ABC ACB ∠=∠=∠=∠=︒,AB AC =,AD AE =,∴120ABD ∠=︒,BAC BAE DAE BAE ∠-∠=∠-∠,∴DAB CAE ∠=∠,在ABD △和ACE △中AB AE DAB CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴ABD ACE SAS △≌△(), ∴120ACE ABD ∠=∠=︒.∴1206060DCE ACE ACB ∠=∠-∠=︒-︒=︒.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.23.某校为了了解学生对语文、数学、英语、物理四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图: 科目频数 频率 语文a 0.5 数学12 b 英语6 c 物理 d0.2(1)求出这次调查的总人数;(2)求出表中a b c d ,,,的值; (3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.【答案】(1)60人;(2)a =30,b =0.2,c =0.1,d =12;(3)喜爱英语的人数为100人,看法见解析.【分析】(1)用喜爱英语科目的人数除以其所占比例;(2)根据频数=频率×总人数求解可得;(3)用八年级总人数乘以样本中喜爱英语科目人数所占比例,计算即可.【详解】解:(1)这次调查的总人数为:6÷(36°÷360°)=60(人);(2)a =60×0.5=30(人);b =12÷60=0.2;c =6÷60=0.1;d =0.2×60=12(人);(3)喜爱英语的人数为1000×0.1=100(人),看法:由扇形统计图知喜爱语文的人数占总人数的一半,是四个学科中喜爱人数最多的科目.【点睛】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计图或统计表中得到必要的信息是解决问题的关键.用到的知识点为:频数=频率×总人数.24.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多10元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;【答案】甲种商品的进价为每件50元,乙种商品的进价为每件60元.【分析】设甲种商品的进价为每件x 元,乙种商品的进价为每件(10)x +元,,由题意列出方程求解即可.【详解】解:设甲种商品的进价为每件x 元,乙种商品的进价为每件(10)x +元,则2000240010x x =+ 2000(10)2400,x x ∴+=50,x ∴=经检验:50x =是原方程的根,方程的根为:50.x =1060.x ∴+=答:甲种商品的进价为每件50元,乙种商品的进价为每件60元.【点睛】本题考查的是列分式方程解应用题,掌握找相等关系列方程是解题关键.25.计算:(1))(2【答案】(1);(2)【分析】(1)根据平方差公式计算乘法,同时化简二次根式,再将结果化简即可;(2)先分别化简每个二次根式,再合并同类二次根式即可.【详解】(1)原式=2-3+;(2)原式==.【点睛】此题考查二次根式的混合计算,正确化简二次根式,掌握平方差公式的计算方法是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A =90°,BD =4,CF =6,设正方形ADOF 的边长为x ,则210x x +=( )A .12B .16C .20D .24【答案】D 【分析】设正方形ADOF 的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,整理方程即可.【详解】解:设正方形ADOF 的边长为x ,由题意得:BE =BD =4,CE =CF =6,∴BC =BE +CE =BD +CF =10,在Rt △ABC 中,AC 2+AB 2=BC 2,即(6+x )2+(x +4)2=102,整理得,x 2+10x ﹣24=0,∴x 2+10x =24,故选:D .【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.2.如图,已知A ,D,B,E 在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC ≌△DEF 的是( )A .BC = EFB .AC//DFC .∠C = ∠FD .∠BAC = ∠EDF【答案】C 【分析】根据全等三角形的判定方法逐项判断即可.【详解】∵BE =CF ,∴BE +EC =EC +CF ,即BC =EF ,且AC = DF ,∴当BC = EF 时,满足SSS ,可以判定△ABC ≌△DEF ;当AC//DF 时,∠A=∠EDF ,满足SAS ,可以判定△ABC ≌△DEF ;当∠C = ∠F 时,为SSA ,不能判定△ABC ≌△DEF ;当∠BAC = ∠EDF 时,满足SAS ,可以判定△ABC ≌△DEF ,故选C.【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .3.以下列各组数据为边长作三角形,其中能组成直角三角形的是( ).A .3,5,3B .4,6,8C .7,24,25D .6,12,13 【答案】C【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要满足勾股定理的逆定理即可.A 、222335+≠;B 、222468+≠;C 、22272425+=;D 、22261213+≠.根据勾股定理7,24,25能组成直角三角形.故选C .考点:勾股定理的逆定理.4.如果把分式2x y x +中的x 和y 都扩大5倍,那么分式的值( ) A .不变B .缩小5倍C .扩大2倍D .扩大5倍 【答案】A【分析】根据分式的分子分母都乘以或除以同一个数(或整式),结果不变,可得答案.【详解】解:把分式2x y x +中的x 和y 都扩大5倍则()525x y x+=原式 故选A.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个数(或整式),结果不变.5.如图:ACD ∠是ABC ∆的外角,CE 平分ACD ∠,若60A ∠=︒,40B ∠=︒,则ECD ∠等于( )A .30B .40︒C .45︒D .50︒【答案】D 【分析】根据三角形外角性质求出ACD ∠,根据角平分线定义求出即可.【详解】∵6040A B ∠∠=︒=︒,,∴100ACD A B ∠=∠+∠=︒,∵CE 平分ACD ∠, ∴111005022ECD ACD ∠=∠=⨯︒=︒, 故选:D .【点睛】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键. 6.下图中为轴对称图形的是( ).A .B .C .D . 【答案】D【分析】根据轴对称图形的定义可得.【详解】根据轴对称图形定义可得ABC 选项均不是轴对称图形,D 选项为轴对称图形.【点睛】轴对称图形沿对称轴折叠,左右两边能够完全重合.7.在223.14,0,2,,2.010********π--(每两个1之间的0依次增加1个)中,无理数有( ) A .2个B .3个C .4个D .5个 【答案】B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14、0、227-属于有理数; 无理数有:5π-2,2.010010001…(每两个1之间的0依次增加1个)共3个.故选:B .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.如图,已知线段20AB =米.MA AB ⊥于点A ,6MA =米,射线BD AB ⊥于B ,P 点从B 点向A 运动,每秒走1米.Q 点从B 点向D 运动,每秒走3米.P 、Q 同时从B 出发,则出发x 秒后,在线段MA上有一点C,使CAP与PBQ△全等,则x的值为()A.10B.5或10C.5D.6或10【答案】C【分析】分两种情况考虑:当△APC≌△BQP时与当△APC≌△BPQ时,根据全等三角形的性质即可确定出时间.【详解】当△APC≌△BQP时,AP=BQ,即20-x=3x,解得:x=5;当△APC≌△BPQ时,AP=BP=12AB=10米,此时所用时间x为10秒,AC=BQ=30米,不合题意,舍去;综上,出发5秒后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:C.【点睛】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.9.以二元一次方程组71x yy x+=⎧⎨-=⎩的解为坐标的点(,)x y在平面直角坐标系的()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】求出方程组的解,即可作出判断.【详解】71x yy x+=⎧⎨-=⎩①②①+②得:2y=8,解得:y=4,把y=4代入②得:x=3,则(3,4)在第一象限,故选:A.【点睛】此题考查了二元一次方程组的解,以及点的坐标,熟练掌握运算法则是解本题的关键.10.下面的图案中,不是轴对称图形的是( )A .B .C .D .【答案】B【分析】根据轴对称图形的概念求解.【详解】解:A 、是轴对称图形,故错误;B 、不是轴对称图形,故正确;C 、是轴对称图形,故错误;D 、是轴对称图形,故错误.故选B .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题11.若直角三角形斜边上的高和中线长分别是5cm ,8cm ,则它的面积是_____cm 1.【答案】40【分析】三角形面积=12⨯斜边⨯高.【详解】直角三角形斜边上的中线等于斜边的一半,三角形面积=12⨯斜边⨯高=58⨯=40.【点睛】掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.12.如图,ABC ∆中,90ACB ∠=︒,以它的各边为边向外作三个正方形,面积分别为1S 、2S 、3S ,已知16=S ,28S =,则3S =______.【答案】1【分析】由ABC ∆中,90ACB ∠=︒,得222AC BC AB +=,结合正方形的面积公式,得1S +2S =3S ,进而即可得到答案.【详解】∵ABC ∆中,90ACB ∠=︒,∴222AC BC AB +=,∵1S =2AC ,2S =2BC ,3S =2AB ,∴1S +2S =3S ,∵16=S ,28S =,∴3S =6+8=1,故答案是:1.【点睛】本题主要考查勾股定理与正方形的面积,掌握勾股定理,是解题的关键.13.已知等腰三角形一个外角的度数为108,则顶角度数为____________.【答案】72︒或36︒【分析】等腰三角形的一个外角等于108,则等腰三角形的一个内角为72°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【详解】∵一个外角为108,∴三角形的一个内角为72°,当72°为顶角时,其他两角都为54︒、54︒,当72°为底角时,其他两角为72°、36°,所以等腰三角形的顶角为72︒或36︒.故答案为:72︒或36︒【点睛】本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.14.如图,ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE AB ⊥交AB 的延长线于E ,DF AC ⊥于F ,现有下列结论:①=DE DF ;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=.其中正确的有________.(填写序号)【答案】①②④【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.故①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12 AD.同理:DF=12 AD.∴DE+DF=AD.故②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠ADF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC 是否等于90°不知道,∴不能判定MD 平分∠EDF .故③错误.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.故答案为①②④【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.15.如图,在ABC ∆中,90C ∠=︒,13AB =,AD 是ABC ∆的一条角平分线,E 为AB 的中点,连接DE ,若103CD =,则AED ∆的面积为_________.【答案】656【分析】作DF AB ⊥于点F ,利用角平分线的性质可得DF 长,由中点性质可得AE 长,利用三角形面积公式求解.【详解】解:如图,作DF AB ⊥于点F90C ∠=︒DC AC ∴⊥AD 是BAC ∠的角平分线103DF CD ∴== E 为AB 的中点11322AE AB ∴== 1113106522236AED S AE DF ∴=⋅=⨯⨯= 所以AED ∆的面积为656. 故答案为:656. 【点睛】本题考查了角平分线的性质,灵活利用角平分线上的点到角两边的距离相等是解题的关键.16.如图,在Rt ABC ∆中,90ACB ∠=︒,,D E 是边AB 上两点,且CE 所在的直线垂直平分线段AD ,CD 平分BCE ∠,10AC =,则BD 的长为________.【答案】1【分析】根据CE 垂直平分AD ,得AC=CD ,再根据等腰三角形的三线合一,得∠ACE=∠ECD ,结合角平分线定义和∠ACB=90°,得∠ACE=∠ECD=∠DCB=30°,则∠A=60°,进而求得∠B=30°,则BD=CD=AC ,由此即可求得答案.【详解】∵CE 垂直平分AD ,∴AC=CD=1,∴∠ACE=∠ECD ,∵CD 平分∠ECB ,∴∠ECD=∠DCB ,∵∠ACB=90°,∴∠ACE=∠ECD=∠DCB=30°,∴∠A=90°-∠ACE=60°,∴∠B=90°-∠A=30°,∴∠DCB=∠B ,。

【名师推荐】河南省洛阳市八年级上期末数学试卷(有答案)

【名师推荐】河南省洛阳市八年级上期末数学试卷(有答案)

2017-2018学年河南省洛阳市八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2÷8=﹣4 B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的的取值范围是()A.>﹣2 B.<2 C.≠2 D.≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2y+6+3=2(y+3)+3 B.(+6)(﹣6)=2﹣36C.﹣22﹣2y=﹣2(+y)D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C.D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80° B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(﹣6)(+4)+(3+2)(2﹣3)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC 两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B 作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.2017-2018学年河南省洛阳市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.2÷8=﹣4 B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的的取值范围是()A.>﹣2 B.<2 C.≠2 D.≠﹣2【解答】解:∵分式有意义,∴+2≠0,即≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2y+6+3=2(y+3)+3 B.(+6)(﹣6)=2﹣36C.﹣22﹣2y=﹣2(+y)D.3a2﹣3b2=3(a2﹣b2)A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C.D.【解答】解:原式==+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80° B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=,∠B=+30°,分情况讨论:当∠A=∠C为底角时,2+(+30°)=180°,解得=50°,顶角∠B=80°;当∠B=∠C为底角时,2(+30)+=180°,解得=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(﹣6)(+4)+(3+2)(2﹣3)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(﹣6)(+4)+(3+2)(2﹣3)=2﹣2﹣24+4﹣92=﹣82﹣2﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC 两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为元/m3,则2016年1月起居民用水价格为(1+)元/m3.…(1分)依题意得:﹣=5.解得=1.8.检验:当=1.8时,(1+)≠0.所以,原分式方程的解为=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B 作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

【名师推荐】2017-2018学年河南省洛阳市八年级上期末数学试卷(有答案)

【名师推荐】2017-2018学年河南省洛阳市八年级上期末数学试卷(有答案)

2017-2018学年河南省洛阳市八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2÷8=﹣4 B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的的取值范围是()A.>﹣2 B.<2 C.≠2 D.≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2y+6+3=2(y+3)+3 B.(+6)(﹣6)=2﹣36C.﹣22﹣2y=﹣2(+y)D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C.D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80° B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(﹣6)(+4)+(3+2)(2﹣3)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC 两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B 作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.2017-2018学年河南省洛阳市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.2÷8=﹣4 B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的的取值范围是()A.>﹣2 B.<2 C.≠2 D.≠﹣2【解答】解:∵分式有意义,∴+2≠0,即≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2y+6+3=2(y+3)+3 B.(+6)(﹣6)=2﹣36C.﹣22﹣2y=﹣2(+y)D.3a2﹣3b2=3(a2﹣b2)A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C.D.【解答】解:原式==+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80° B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=,∠B=+30°,分情况讨论:当∠A=∠C为底角时,2+(+30°)=180°,解得=50°,顶角∠B=80°;当∠B=∠C为底角时,2(+30)+=180°,解得=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(﹣6)(+4)+(3+2)(2﹣3)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(﹣6)(+4)+(3+2)(2﹣3)=2﹣2﹣24+4﹣92=﹣82﹣2﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC 两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为元/m3,则2016年1月起居民用水价格为(1+)元/m3.…(1分)依题意得:﹣=5.解得=1.8.检验:当=1.8时,(1+)≠0.所以,原分式方程的解为=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B 作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。

(汇总3份试卷)2018年洛阳市八年级上学期期末教学质量检测数学试题

(汇总3份试卷)2018年洛阳市八年级上学期期末教学质量检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,AC ∥BD ,AD 与BC 相交于O ,∠A =45°,∠B =30°,那么∠AOB 等于( )A .75°B .60°C .45°D .30°【答案】A 【详解】解:三角形的外角等于与它不相邻的两个内角和,由题,∵AC ∥BD ,∴∠C=∠B=30°, ∵∠AOB 是△AOC 的一个外角,∴∠AOB=∠C+∠A= 45°+30°=75°,选A .【点睛】本题考查平行线的性质和三角形的外角.2.若22123a a +=,则12a a +-的值为( ) A .5B .0C .3或-7D .4【答案】C【分析】根据完全平方公式的变形即可求解. 【详解】∵22211225a a a a ⎛⎫+=++= ⎪⎝⎭ ∴1a a+=±5, ∴12a a +-的值为3或-7 故选C.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的变形应用.3. “某市为处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××.设原计划每天铺设管道x 米,则可得方程400040002010x x -=+.”根据此情境,题中用“×××××”表示得缺失的条件,应补为( )A .每天比原计划多铺设10米,结果延期20天才完成任务B .每天比原计划少铺设10米,结果延期20天才完成任务C .每天比原计划多铺设10米,结果提前20天完成任务D .每天比原计划少铺设10米,结果提前20天完成任务【分析】由题意根据工作时间=工作总量÷工作效率,那么4000÷x 表示原来的工作时间,那么4000÷(x+10)就表示现在的工作时间,20就代表原计划比现在多的时间进行分析即可.【详解】解:原计划每天铺设管道x 米,那么x+10就应该是实际每天比原计划多铺了10米, 而用400040002010x x -=+则表示用原计划的时间﹣实际用的时间=20天, 那么就说明每天比原计划多铺设10米,结果提前20天完成任务. 故选:C . 【点睛】 本题考查分式方程的应用,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.4.下列计算错误的是( )A .45535-=B .()()23231-+=C .236⨯=D .2733÷= 【答案】B【分析】根据二次根式的加减法对A 进行判断;根据平方差公式对B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】A 、45535-=,计算正确,不符合题意;B 、()()23231-+=-,计算错误,符合题意;C 、236⨯=,计算正确,不符合题意; D 、2733÷=,计算正确,不符合题意;故选:B .【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.5.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,则BC 的长是( )A .32B .2C .22D 10【分析】根据条件可以得出∠E =∠ADC =90°,进而得出△CEB ≌△ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值.【详解】解:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADCEBC DCA BC AC∠=∠⎧⎪∠=∠⎨⎪=⎩ , ∴△CEB ≌△ADC (AAS ),∴CE =AD =3,在Rt △BEC中,故选D .【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.6.已知ABC ∆中,B 是A ∠的2倍,C ∠比A ∠大20,则A ∠等于( )A .30B .40C .60D .80【答案】B【分析】设A x ∠=,则,B C ∠∠可表示出来,然后利用三角形内角和定理即可求出A ∠的度数.【详解】设A x ∠=,则2,20B x C x ∠=∠=+︒根据三角形内角和定理得,220180x x x +++︒=︒解得40x =︒故选:B .【点睛】本题主要考查三角形内角和定理,掌握三角形内角和定理是解题的关键.7.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是() A .含30°角的直角三角形 B .顶角是30的等腰三角形C .等边三角形D .等腰直角三角形【答案】C【解析】试题分析:∵P 为∠AOB 内部一点,点P 关于OA 、OB 的对称点分别为P 1、P 2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选C.考点:轴对称的性质8.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx ﹣2的解集是().A.514x<<B.413x<<C.513x<<D.1<x<2【答案】C【分析】先把A点代入y+kx+b得b=3,再把P(1,m)代入y=kx+3得k=m−3,接着解(m−3)x+3>mx−2得x<53,然后利用函数图象可得不等式组mx>kx+b>mx−2的解集.【详解】把P(1,m)代入y=kx+3得k+3=m,解得k=m−3,解(m−3)x+3>mx−2得x<53,所以不等式组mx>kx+b>mx−2的解集是1<x<53.故选:C.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9.下列长度的三条线段可以组成三角形的是()A.3,4,2 B.12,5,6C.1,5,9 D.5,2,7【答案】A【解析】根据三角形三边关系即可解题.【详解】解:根据三角形三边关系,A. 3,4,2,正确B. 12,5,6,错误,5+6<12,C. 1,5,9, 错误,1+5<9,D. 5,2,7, 错误,5+2=7,故选A.【点睛】本题考查了三角形三边关系,属于简单题,熟悉概念是解题关键.10.下列图案属于轴对称图形的是( )A .B .C .D .【答案】C【解析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的概念知A 、B 、D 都不是轴对称图形,只有C 是轴对称图形.故选C .【点睛】轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么就是轴对称图形.二、填空题11.已知实数m ,n 满足5,3,m n mn +==则m n -=_____. 【答案】13【分析】根据完全平方公式进行变形,得到()()224m n m n mn -=+-可得到结果,再开方即可得到最终结果.【详解】()()222222224+4m n m mn n m mn n mn m n mn -=-+=++-=-,代入可得()2253413m n -=-⨯=,所以13m n -=故答案为:13【点睛】考查利用完全平方公式求代数式的值,学生熟练掌握完全平方公式是本题解题的关键,并利用开平方求得最后的结果.12.若关于,x y 的方程组275x y k x y k+=+⎧⎨-=⎩ 的解互为相反数,则k =_____. 【答案】6-【分析】由方程组的解互为相反数,得到y x =-,代入方程组计算即可求出k 的值.【详解】由题意得:y x =-,代入方程组得275x x k x x k -=+⎧⎨+=⎩①②, 由①得:7x k =--③,③代入②得:426k k --=,解得:6k =-,故答案为:6-.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 13.如图,ABC 中,6AB AC ==,12ABC S =△,BD CD =,E 、F 分别是AC 、AD 上的动点,则CF EF +的最小值为______.【答案】4【分析】作BE ⊥AC 垂足为E ,交AD 于F ,此时CF+EF 最小,利用面积法即可求得答案.【详解】作BE ⊥AC 垂足为E ,交AD 于F ,∵AB=AC ,BD=DC ,∴AD ⊥BC ,∴FB=FC ,∴CF+EF=BF+EF ,∵线段BE 是垂线段,根据垂线段最短,∴点E 、点F 就是所找的点; ∵12ABC S AC BE =, ∴221246ABC S BE AC ⨯===, ∴CF+EF 的最小值4BE ==.故答案为:4.【点睛】本题考查了等腰三角形的性质、垂直平分线的性质、垂线段最短等知识,掌握应用面积法求高是解决这个问题的关键.14.无论m 取什么实数,点(123)A m m --,都在直线l 上,若点()B a b ,是直线l 上的点,那么2(23)a b -+=__________.【答案】16【分析】由点A 坐标可求出直线l 的解析式,从而可找到a 和b 之间的关系,代入即可求得23a b -+的值.【详解】解:设点(123)A m m --,所在直线l 的解析式为y kx b =+, 依题意得:23(1)m k m b -=-+∴()23k m k b -=-++,∵无论m 取什么实数,()23k m k b -=-++恒成立,∴2030k k b -=⎧⎨-++=⎩, ∴21k b =⎧⎨=-⎩ ∴直线l 的解析式为21y x =-,点(,)B a b 是直线l 上的动点,21b a ∴=-,21a b ∴-=,22(23)(13)16a b ∴-+=+=,故答案为:16.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此函数的解析式. 15.若多项式2x ax b ++分解因式的结果为()()12x x -+,则+a b 的值为__________.【答案】-1【分析】根据多项式的乘法法则计算()()12x x -+,与2x ax b ++比较求出a 和b 的值,然后代入a+b 计算.【详解】∵()()12x x -+=x 2+x-2,∴2x ax b ++=x 2+x-2,∴a=1,b=-2,∴a+b=-1.故答案为:-1.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.16.计算:()22(2)5xy x y -___________. 【答案】-2043y x【分析】先计算乘方,再计算乘法,即可得到答案.【详解】()22(2)5xy x y -=2224(5)x y x y ⋅-=-2043y x ,故答案为:-2043y x .【点睛】此题考查整式的混合运算,首先计算乘方,再计算乘法,最后计算加减法.17.若1m n -=-,则()2m n m n --+的值为______.【答案】1【分析】根据题意把(m-n )看作一个整体并直接代入代数式进行计算即可得解.【详解】解:∵1m n -=-,∴()2m n m n --+,=()2()m n m n ---=(-1)1-(-1),=1+1,=1.故答案为:1.【点睛】本题考查代数式求值,熟练掌握整体思想的利用是解题的关键.三、解答题18.已知,等腰三角形的周长为24cm ,设腰长为y (cm ),底边长为x (cm ).(1)求y 关于x 的函数表达式(2)求x 的取值范围.【答案】(1)1122y x =-+; (2)012x << 【分析】(1)利用等腰三角形的性质列出函数表达式即可;(2)根据等腰三角形的性质可直接得出底边的取值范围.【详解】解:(1)∵等腰三角形的周长为24cm ,腰长为y (cm ),底边长为x (cm ),∴y 关于x 函数解析式为:2411222x y x -==-+; (2)∵x 是等腰三角形的底边长,∴自变量x 的取值范围为:012x <<.【点睛】此题主要考查了等腰三角形的性质以及根据实际问题列一次函数关系式,熟练应用等腰三角形的性质是解题关键.19.如图,ABC ∆中,点D ,E 分别是边AB ,AC 的中点,过点C 作//CF AB 交DE 的延长线于点F ,连结BE .(1)求证:四边形BCFD 是平行四边形.(2)当AB BC =时,若2BD =,3BE =,求AC 的长.【答案】(1)详见解析;(2)27【分析】(1)根据三角形的中位线的性质得出DE ∥BC ,再根据已知CF ∥AB 即可得到结论;(2)根据等腰三角形的性质三线合一得出90AEB =︒∠,然后利用勾股定理即可得到结论.【详解】(1)证明:∵点D ,E 分别是边AB ,AC 的中点,∴DE ∥BC .∵CF ∥AB ,∴四边形BCFD 是平行四边形;(2)解:∵AB=BC ,E 为AC 的中点,∴BE ⊥AC .∴90AEB =︒∠∵AB=2DB=4,BE=3,22437∴-AE227∴==AC AE 【点睛】本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.计算:(1)计算:201823(1)64(2)-+---(2)因式分解x 2(x-2)+(2-x)【答案】(1)-5;(2)(x-2)(x+1)(x-1)【分析】(1)根据乘方的意义、立方根的定义和算术平方根的定义计算即可;(2)先提取公因数,然后利用平方差公式因式分解即可.【详解】解:(1)解:原式=1-4-2=-5(2)解:原式=(x-2)(x 2-1)=(x-2)(x+1)(x-1)【点睛】此题考查的是实数的混合运算和因式分解,掌握乘方的意义、立方根的定义、算术平方根的定义、利用提公因式法和公式法因式分解是解决此题的关键.21.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m 2+5mn +2n 2可以因式分解为________;(2)若每块小长方形的面积为10 cm 2,四个正方形的面积和为58 cm 2,试求图中所有裁剪线(虚线部分)长之和.【答案】 (1)(m +2n)(2m +n)(2)42cm【解析】(1)根据图象由长方形面积公式将代数式2m 2+5mn+2n 2因式分解即可;(2)求出m+n 的值,然后根据图象由正方形的性质和长方形的性质即可得出结论;【详解】(1)2m 2+5mn+2n 2可以因式分解为(m+2n )(2m+n );故答案为(m+2n )(2m+n );(2)依题意得:2m 2+2n 2=58,mn=10,∴m 2+n 2=1.∴(m+n )2=m 2+n 2+2mn=49,∴m+n =7,∴图中所有裁剪线(虚线部分)长度之和为6m+6n=6(m+n)=6×7=42cm.【点睛】本题主要考查了因式分解的应用、列代数式以及完全平方公式的应用,根据已知图形得出是解题的关键.22.解答下列各题(1)如图1,方格纸中的每个小方格都是边长为1个单位长的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(4,﹣1).①作出△ABC关于x轴对称的△A1B1C1;②如果P点的纵坐标为3,且P点到直线AA₁的距离为5,请直接写出点P的坐标.(2)我国是世界上严重缺水的国家之一为了倡导“节约用水,从我做起”,小丽同学在她家所在小区的200住户中,随机调查了10个家庭在2019年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图2①求这10个样本数据的平均数;②以上面的样本平均数为依据,自来水公司按2019年该小区户月均用水量下达了2020年的用水计划(超计划要执行阶梯式标准收费)请计算该小区2020年的计划用水量.【答案】(1)①详见解析;②点P的坐标为(﹣4,3)或(6,3);(2)①6.8t;②该小区2020年的计划用水量应为16320t.【分析】(1)①由轴对称的性质先确定点A1,B1,C1的坐标,再描点,连线即可;②由P点到直线AA₁的距离为5,可知点P的横坐标为﹣4或6,由其纵坐标为3,即可写出点P坐标;(2)①根据加权平均数的计算方法求解即可;②可将①中所求10个样本数据的平均数乘以12个月,再乘以200户即可.【详解】解:(1)①如图1,△A1B1C1即为所求;②如图1,点P的坐标为(﹣4,3)或(6,3);(2)①(6×2+6.5×4+7×1+7.5×2+8×1)÷10=6.8t ,∴这10个样本数据的平均数为6.8t ;②6.8×12×200=16320t ,∴该小区2020年的计划用水量应为16320t .【点睛】本题考查了轴对称的性质,加权平均数的计算,样本估计总体等,解题关键是会认条形统计图以及在计算小区全年计划用水量时注意要乘以12个月.23.(1)计算:()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦; (2)先化简,再求值:524223x x x x-⎛⎫++⋅ ⎪--⎝⎭,其中5x =. 【答案】(1)13-;(2)62x --;16-【分析】(1)根据单项式乘单项式法则、合并同类项法则和单项式除以单项式法则计算即可; (2)根据分式的各个运算法则化简,然后代入求值即可.【详解】解:(1)()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦ =()()666589a a a ⎡⎤+-÷⎣⎦ =()()6639aa -÷ =13- (2)524223x x x x -⎛⎫++⋅ ⎪--⎝⎭ =24524223x x x x x ⎛⎫--+⋅ ⎪---⎝⎭=()222923x x x x--⋅-- =()()()332223x x x x x+--⋅-- =()23x -+=62x --将5x =代入,得原式=62516--⨯=-【点睛】此题考查的是整式的混合运算和分式的混合运算,掌握整式的各个运算法则和分式的各个运算法则是解决此题的关键.24.如图,在ABC ∆中,90,5,3C AB cm BC cm ︒∠===,若点P 从点A 出发,以每秒1cm 的速度沿折线A C B A →→→运动,设运动时间为t 秒(0t >).(1)用尺规作线段AB 的垂直平分线(不写作法,保留作图痕迹);(2)若点P 恰好运动到AB 的垂直平分线上时,求t 的值.【答案】(1)见解析;(2)t 的值为258s 或192s 【分析】(1)分别以AB 为圆心,大于12AB 为半径作弧,连接两户的交点即为线段AB 的垂直平分线, (2)勾股定理求出AC 的长, 当P 在AC 上时,利用勾股定理解题,当P 在AB 上时,利用22P A P B =解题.【详解】解:(1)分别以AB 为圆心,大于12AB 为半径作弧,连接两户的交点即为线段AB 的垂直平分线,有作图痕迹;(2)如图,在Rt ACB ∆中,由勾股定理得2222534AC AB BC =-=-=,①当P 在AC 上时,1AP t =,∴14PC t =-,11P A PB =,1PB t =, 在1Rt PCB ∆中,由勾股定理得: 22211+=PC BC PB 即:()()22243t t -+= 解得:258t s =; ②当P 在AB 上时,227P A P B t ==-, 即:572t -=, ∴192t s = ∴t 的值为258s 或192s . 【点睛】本题考查了尺规作图--垂直平分线,勾股定理的实际应用,会根据P 的运动进行分类讨论,建立等量关系是解题关键.25.已知1a b -=,223a b +=,求下列代数式的值:(1)ab ;(2)228a b --.【答案】(1)1;(258或58.【分析】(1)把1a b -=两边平方,展开,即可求出ab 的值;(2)先求出2()a b +的值,再开方求得a b +的值,再对原式分解因式,再整体代入求出即可.【详解】(1)∵1a b -=,223a b +=,∴2()1a b -=,∴2221a ab b -+=,∴2132ab -=-=-,∴1ab =;(2)∵1a b -=,1ab =,∴a b +====228a b --()()8a b a b =+--8=8或8.【点睛】本题考查了完全平方公式和平方差的应用,能灵活运用公式进行变形是解此题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知点A(−1,m)和B(3,n)是一次函数y =-2x +1图象上的两点,则( )A .m=nB .m>nC .m<nD .不确定 【答案】B【分析】根据一次函数表达式得到k 的符号,再根据一次函数的增减性即可得出结论.【详解】解:∵A ,B 两点在一次函数y =-2x +1的图像上,-2<0,∴一次函数y =-2x +1中y 随x 的增大而减小,∵A(−1,m),B(3,n),-1<3,∴点A 在图像上位于点B 左侧,∴m >n ,故选B.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的增减性的判定是解决问题的关键.2.在直角坐标系中,点A (–2,2)与点B 关于轴对称,则点B 的坐标为( )A .(–2,2)B .(–2,–2)C .(2,–2)D .(2,2) 【答案】B【解析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵点A (-2,2)与点B 关于x 轴对称,∴点B 的坐标为(-2,-2).故选:B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律: (1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.3.由方程组43x m y m +=-⎧⎨-=⎩可得出x 与y 之间的关系是( ) A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-【答案】B【分析】根据题意由方程组消去m 即可得到y 与x 的关系式,进行判断即可.【详解】解43x my m⎧⎨⎩+--=①=②,把②代入①得:x+y-3=-4,则x+y=-1.故选:B.【点睛】本题考查解二元一次方程组,注意掌握利用消元的思想,消元的方法有:代入消元法与加减消元法.4.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.020 0.019 0.021 0.022A.甲B.乙C.丙D.丁【答案】B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵s2丁>s2丙>s2甲>s2乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故选:B.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.5.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E,那么∠AED等于( )A.80°B.60°C.40°D.30°【答案】C【解析】根据折叠的性质可得BD=DE,AB=AE,然后根据AC=AE+EC,AB+BD=AC,证得DE=EC,根据等边对等角以及三角形的外角的性质求解.【详解】根据折叠的性质可得:BD=DE,AB=AE.∵AC =AE+EC ,AB+BD =AC ,∴DE =EC ,∴∠EDC =∠C =20°,∴∠AED =∠EDC+∠C =40°.故选C .【点睛】本题考查了折叠的性质以及等腰三角形的性质、三角形的外角的性质,证明DE =EC 是解答本题的关键. 6.要使分式2x x -有意义,则x 的取值应满足( ) A .2x ≠B .2x ≠-C .2x =D .2x =- 【答案】A【分析】根据分式的分母不为0可得关于x 的不等式,解不等式即得答案. 【详解】解:要使分式2x x -有意义,则20x -≠,所以2x ≠. 故选:A .【点睛】本题考查了分式有意义的条件,属于应知应会题型,熟知分式的分母不为0是解题的关键.7.点P (﹣2,3)关于y 轴对称点的坐标在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】∵点P (-2,3)在第二象限,∴点P 关于y 轴的对称点在第一象限.故选A.8.已知关于x 的分式方程6111m x x +=--的解是非负数,则m 的取值范圈是( ) A .5m >B .5m ≥C .5m ≥且6m ≠D .5m >或6m ≠ 【答案】C【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得 61m x -=-所以5x m =-因为方程的解是非负数所以50m -≥,且51m -≠所以5m ≥且6m ≠故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键.9.若分式33x x -+的值为0,则x 的值为( ) A .3 B .3- C .3或3- D .0【答案】A【分析】根据分式的值为零的条件可以求出x 的值.【详解】由分式的值为零的条件得x-1=2,且x+1≠2,解得x=1.故选A .【点睛】本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可. 10.如图,已知OAC ≌OBD ,若13OC =,7OB =,则AD 的长为( ).A .5B .6C .7D .8【答案】B 【分析】根据全等三角形的性质即可得到结论.【详解】解:∵OAC ≌OBD ,∴OC OD =,OB OA =,∵13OC =,7OB =,∴1376AD OD OA OC OB =-=-=-=.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.二、填空题11.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有______种.【答案】1【解析】试题分析:设10人桌x 张,8人桌y 张,根据题意得:10x+8y=80∵x 、y 均为整数,∴x=0,y=10或x=4,y=5或x=8,y=0共1种方案.故答案是1.考点:二元一次方程的应用.12.若x+y =5,xy =6,则x 2+y 2+2006的值是_____.【答案】1【分析】根据x+y =5,xy =6,利用完全平方公式将题目中的式子变形即可求得所求式子的值. 【详解】解:∵x+y =5,xy =6, ∴x 2+y 2+2006 =(x+y )2−2xy+2006 =52−2×6+2006 =25−12+2006 =1,故答案为:1. 【点睛】本题考查了完全平方公式,利用完全平方公式将题目中的式子变形是解题的关键.13.在一个不透明的盒子中装有n 个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n 的值大约是_____. 【答案】1.【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【详解】由题意可得,3n=0.03, 解得,n=1, 故估计n 大约是1, 故答案为1. 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.14.若数据的2, 3, 5, 8a ,方差是0.7,则数据12,13,15,10,18a 的方差是__________. 【答案】0.7【分析】根据方差的意义与求法将第一组数据中的a 的值求出来,再代入第二组数据求方差即可.但仔细观察可以发现,第二组数据每一个数都是在第一组数据的基础上加10,其波动情况并没有发生变化,故方差没有变化,也是0.7.【详解】解:根据方差的意义,第二组数据每一个数都是在第一组数据基础上加了10,波动情况没有发生变化,故其方差也为0.7. 故答案为:0.7. 【点睛】本题主要考查了方差的意义,深刻理解其意义是解答关键.15.直线y 1=k 1x +b 1(k 1>0)与y 2=k 2x +b 2(k 2<0)相交于点(-2,0),且两直线与y 轴围成的三角形面积为4,那么b 1-b 2等于________. 【答案】1【解析】试题分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.试题解析:如图,直线y=k 1x+b 1(k 1>0)与y 轴交于B 点,则OB=b 1,直线y=k 2x+b 2(k 2<0)与y 轴交于C ,则OC=﹣b 2, ∵△ABC 的面积为1, ∴OA×OB+12OA×OC=1, ∴121122()422b b ⨯⨯+⨯⨯-=, 解得:b 1﹣b 2=1.考点:两条直线相交或平行问题.16.已知在ABC 中,90ACB ∠=︒,AC BC =,点D 为直线AC 上一点,连接BD ,若15CBD ∠=︒,则ABD ∠=_______________. 【答案】60°或30°【分析】分点D 在线段AC 上和点D 在射线AC 上两种情况,画出图形,利用等腰直角三角形的性质和角的和差计算即可.【详解】解:当点D 在线段AC 上时,如图1,∵90ACB ∠=︒,AC BC =,∴45ABC BAC ∠=∠=︒, ∵15CBD ∠=︒,∴451530ABD ∠=︒-︒=︒;当点D 在射线AC 上时,如图2,∵90ACB ∠=︒,AC BC =,∴45ABC BAC ∠=∠=︒,∵15CBD ∠=︒,∴451560ABD ∠=︒+︒=︒. 故答案为:60°或30°.【点睛】本题主要考查了等腰直角三角形的性质,属于基础题型,正确分类画出图形、熟练掌握等腰直角三角形的性质是解题关键.173825-=______. 【答案】3【分析】根据立方根和平方根的定义进行化简计算即可. 3825-=-2+5=3 故答案为:3 【点睛】本题考查的是实数的运算,掌握平方根及立方根是关键. 三、解答题18.(101318(3)()212π--++;(215023)2【答案】(1)22+;(2)-5.【分析】(1)首先根据立方根、零次幂、负指数幂和绝对值的性质化简,然后计算即可; (2)将二次根式化简,然后应用乘法分配律,进行计算即可. 【详解】解:(1)原式2122122=-+=; (2)原式3252(2101552==-=-. 【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.19.如图,点B ,C ,D 在同一条直线上,ABC ,ADE 是等边三角形,若CE 5=,CD 2=,()1求ECD ∠的度数; ()2求AC 长.【答案】 (1)60°;(2)3.【解析】()1由等边三角形的性质可得AD AE =,AB AC =,60BAC DAE ACB ∠∠∠===,可证BAD ≌CAE ,可得60B ACE ∠∠==,可得ECD ∠的度数;()2由全等三角形的性质和等边三角形的性质可求AC 的长.【详解】解:()1ABC ,ADE 是等边三角形AD AE ∴=,AB AC =,BAC DAE ACB 60∠∠∠===,BAD CAE ∠∠∴=,且AD AE =,AB AC =, BAD ∴≌()CAE SASB ACE 60∠∠∴==DCE 180ACB ACE 60∠∠∠∴=--=()2BAD ≌CAEBD CE 5∴==,BC BD CD 523∴=-=-= , AC BC 3∴==【点睛】考查了全等三角形判定和性质,等边三角形的性质,熟练运用全等三角形的判定和性质解决问题是本题的关键.20.已知关于x 的一元二次方程x 2+(k ﹣1)x+k ﹣2=0 (1)求证:方程总有两个实数根;(2)若方程有一根为正数,求实数k 的取值范围. 【答案】(1)见解析;(1)k <1.【分析】(1)先求出△的值,再根据△的意义即可得到结论;(1)利用求根公式求得2(1)(3)k k x --±-=,然后根据方程有一根为正数列出关于k 的不等式并解答.【详解】(1)△=(k ﹣1)1﹣4(k ﹣1)=k 1﹣1k+1﹣4k+8=(k ﹣3)1 ∵(k ﹣3)1≥0, ∴方程总有两个实数根.(1)∵2(1)(3)k k x --±-=,∴x 1=﹣1,x 1=1﹣k . ∵方程有一个根为正数, ∴1﹣k >0, k <1. 【点睛】考查了根的判别式.体现了数学转化思想,属于中档题目.21.如图:在平面直角坐标系中,已知ABC ∆的三个顶点的坐标分别为()2,1A -,()1,2B -,()3,3C -.(1)将ABC ∆向上平移4个单位长度,再向左平移1个单位长度,得到111A B C ∆,请画出111A B C ∆(点A ,B ,C 的对应点分别为1A ,1B ,1C )(2)请画出与ABC ∆关于y 轴对称的222A B C ∆(点A ,B ,C 的对应点分别为2A ,2B ,2C ) (3)请写出1A ,2A 的坐标【答案】(1)作图见解析;(2)作图见解析;(3)()11,3A ;()22,1A --. 【分析】(1)利用点平移的坐标变换特征得出1A 、1B 、1C 的位置,然后描点连线即可; (2)利用关于y 轴对称点的性质得出2A 、2B 、2C 的位置,然后描点连线即可;(3)利用点平移的坐标变换特征和关于y 轴对称点的性质即可写出1A ,2A 的坐标. 【详解】(1)如图,111ABC ∆为所作; (2)如图,222A B C ∆为所作;(3)点()21A -, 向上平移4个单位长度,再向左平移1个单位长度,得到()113A ,; 点()21A -,关于y 轴对称点()221A --,; 故答案为:()113A ,;()221A --,; 【点睛】本题考查了作图-平移变换和轴对称变换,熟练掌握网格结构并准确找出对应点的位置是解题的关键. 22.在平面直角坐标系中,横、纵坐标均为整数的点叫做整数点,设坐标轴的单位长度为1cm ,整数点P 从原点O 出发,速度为1cm /s ,且点P 只能向上或向右运动,请回答下列问题:(1)填表:点P 从O 点出发的时间可以到达的整坐标可以到达整数点的个数1秒(0,1),(1,0)2(2)当点P从点O出发10秒,可到达的整数点的个数是____________个;(3)当点P从O点出发____________秒时,可得到整数点(10,5).【答案】(1)填表见解析;(2)11个;(3)1【分析】(1)设到达的整坐标为(x,y),其中x>0,y>0,由题意可知,动点P由原点O运动到(x,y)的方式为:先向右走xcm(所需时间为x÷1=x秒),再向上走ycm(所需时间为y÷1=y秒),从而得出点P从O点出发的时间=x+y,从而求出结论;(2)根据(1)中的结论列举出所有可能即可求出结论;(3)根据(1)中的结论即可求出结论.【详解】解:(1)设到达的整坐标为(x,y),其中x>0,y>0,由题意可知,动点P由原点O运动到(x,y)的方式为:先向右走xcm(所需时间为x÷1=x秒),再向上走ycm(所需时间为y÷1=y秒),∴点P从O点出发的时间=x+y∵3=3+0=2+1=1+2=0+3∴点P从O点出发的时间为3秒时,到达的整坐标为(3,0) 或(2,1) 或(1,2) 或(0,3) ,可以到达整数点的个数为4填表如下:(2)∵10=10+0=9+1=8+2=7+3=6+4=5+5=4+6=3+7=2+8=1+9=0+10∴当点P从点O出发10秒,可到达的整数点的坐标为(10,0)、(9,1)、(8,2)、(7,3)、(6,4)、(5,5)、(4,6)、(3,7)、(2,8)、(1,9)、(0,10)可以到达整数点的个数为11个,故答案为:11;(3)∵10+5=1∴当点P从O点出发1秒时,可得到整数点(10,5).故答案为:1.【点睛】。

河南省洛阳市八年级上学期数学期末考试试卷

河南省洛阳市八年级上学期数学期末考试试卷

河南省洛阳市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017八下·永春期中) 在函数中,自变量的取值范围是()A . x≤1B . x≥1C . -1D . 12. (2分)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A . (4,﹣3)B . (﹣4,3)C . (0,﹣3)D . (0,3)3. (2分)有四条线段,它们的长分别为1cm, 2cm, 3cm, 4cm, 从中选三条构成三角形,其中正确的选法有()A . 1种B . 2种C . 3种D . 4种4. (2分)(-xy3)2的计算结果是()A . xy5B . x2y6C . -x2y6D . x2y55. (2分)如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有()个.A . 7个B . 8个C . 9个D . 10个6. (2分) (2020八下·韶关期末) 下列运算正确的是()A .B .C .D .7. (2分) (2017八上·丛台期末) 如图,△ABC沿AB向下翻折得到△ABD,若∠ABC=30°,∠ADB=100°,则∠BAC的度数是()A . 100°B . 30°C . 50°D . 80°8. (2分)作已知角的平分线是根据三角形的全等判定()作的.A . AASB . ASAC . SASD . SSS二、填空题 (共8题;共8分)9. (1分) (2019七下·宜兴期中) 某种物体的长度为0.000000023m,用科学记数法表示为________m.10. (1分) (2018八上·泸西期中) 如图,AB∥CD,∠A=40°,∠D=45°,则∠1=________° .11. (1分)(2020·金华·丽水) 如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是________°.12. (1分) (2019七下·舞钢期中) 计算: ________.13. (1分)(2018·阿城模拟) 如图,Rt△ABC中,AB=AC,∠BAC=90°,BE⊥CE,垂足是E,BE交AC于点D,F是BE上一点,AF⊥AE,且C是线段AF的垂直平分线上的点,AF=2 ,则DF=________.14. (1分)如图,在△ABC中,点D在边BC上,若∠BAD=∠CAD,AB=6,AC=3,S△ABD=3,则S△ACD=________15. (1分)如图所示,BA∥DC,∠A=90°,AB=CE,BC=ED,则△CED≌△________ ,AC= ________ ,∠B=∠________.16. (1分) (2019七上·长寿月考) 对于任意非零有理数a、b,定义运算如下:a∗b=(a−2b)÷(2a−b),则5∗(−3)的值为________.三、解答题 (共8题;共67分)17. (10分) (2019八上·凉州月考) 分解因式:(1) 3x﹣12x3(2)(3)(x﹣1)(x﹣3)+1(4)(a2+1)2﹣4a218. (10分) (2019九上·重庆开学考)(1)计算:;(2)解方程:19. (5分) (2019七下·兰州月考) 对于任何实数,我们规定符号的意义是:=ad-bc.(1)按照这个规定计算的值;(2)按照这个规定计算:当x2-3x+1=0时,的值.20. (7分) (2019七下·镇平期末) 如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.21. (10分) (2017八下·厦门期中) 在中,为中点,、与射线分别相交于点、(射线不经过点).(1)如图①,当BE∥CF时,连接ED并延长交CF于点H. 求证:四边形BECH是平行四形;(2)如图②,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND. 求证:AM=AN(3)如图②,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND. 求证:∠EMD=∠FND.22. (5分)如图,在△ABC中,AB=AC,BD⊥AC,∠ABC=72°,求∠ABD的度数.23. (10分)(2017·兰山模拟) “世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.某车行经营的A型车2016年4月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年4月份与去年4月份卖出的A型车数量相同,则今年4月份A型车销售总额将比去年4月份销售总额增加25%.(A、B两种型号车今年的进货和销售价格如下表所示)A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400(1)求今年4月份A型车每辆销售价多少元(用列方程进行解答);(2)该车行计划5月份新进一批A型车和B型车共50辆,设购进的A型车为x辆,获得的总利润为y元,请写出y与x之间的函数关系式;(3)在(2)的条件下,若B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最大?最大利润是多少?24. (10分) (2020八下·泗辖月考) 如图,△ABC中,∠CAB的平分线与BC的垂直平分线DG相交于D,过点D作DE⊥AB,DF⊥AC,求证:BE=CF.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共67分)17-1、17-2、17-3、17-4、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、第11 页共11 页。

∥3套精选试卷∥2018年洛阳市八年级上学期期末考试数学试题

∥3套精选试卷∥2018年洛阳市八年级上学期期末考试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A .1B .0C .-2D .-1【答案】D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解. 详解:2423m n m n -=⎧⎨-=⎩①② ②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n 这个整体式子的值.2.某手机公司接到生产300万部手机的订单,为尽快交货.…,求每月实际生产手机多少万部?在这道题目中,若设每月实际生产手机x 万部,可得方程300 1.53005x x⨯-=,则题目中“…”处省略的条件应是( )A .实际每月生产能力比原计划提高了50%,结果延期5个月完成B .实际每月生产能力比原计划提高了50%,结果提前5个月完成C .实际每月生产能力比原计划降低了50%,结果延期5个月完成D .实际每月生产能力比原计划降低了50%,结果提前5个月完成【答案】B 【分析】由x 代表的含义找出1.5x 代表的含义,再分析所列方程选用的等量关系,即可找出结论. 【详解】设每月实际生产手机x 万部,则1.5x 即150%x +表示:实际每月生产能力比原计划提高了50%, ∵方程300 1.53005x x ⨯-=,即3003005150%x x -=+, 其中300150%x +表示原计划生产所需时间,300x 表示实际生产所需时间, ∴原方程所选用的等量关系为:实际生产比原计划提前5个月完成,即实际每月生产能力比原计划提高了50%,结果提前5个月完成.故选:B .【点睛】本题考查了分式方程的应用,根据所列分式方程,找出选用的等量关系是解题的关键.3.下列各式中,能用完全平方公式进行因式分解的是() . A .2x 4x 4-+B .2x 1+C .2x 2x 2--D .2x 4x 1++【答案】A【分析】根据完全平方式的特征进行因式分解,判断即可.【详解】A. 22x 4x 4=(x-2)-+,能用完全平方公式进行因式分解,故选项A 正确;B. 2x 1+,不能用完全平方公式进行因式分解,故选项B 错误;C. 2x 2x 2--,不能用完全平方公式进行因式分解,故选项C 错误;D. 2x 4x 1++,不能用完全平方公式进行因式分解,故选项D 错误.故选:A【点睛】本题考查的是多项式的因式分解,掌握用完全平方公式进行因式分解的方法是解题的关键.4.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米.将0.000 000 000 22用科学记数法表示为( ) A .0.22×10﹣9B .2.2×10﹣10C .22×10﹣11D .0.22×10﹣8 【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为-n a 10⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 000 000 22=-102.210⨯,故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.表示时关键要正确确定a 的值以及n 的值.5.如图所示,有一条线段是ABC ∆(AB AC >)的中线,该线段是( ).A .线段GHB .线段ADC .线段AED .线段AF【答案】B 【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD 是△ABC 的中线.故选B .本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.6.如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB【答案】A【分析】由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.【详解】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB是CD的垂直平分线.即AB垂直平分CD.故选A.【点睛】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.7.已知a、b、c是△ABC三边的长,则2--+|a+b-c|的值为()(a b c)A.2a B.2b C.2c D.2(a一c)【答案】B【解析】试题解析:∵三角形两边之和大于第三边,两边之差小于第三边,∴a-b-c<0,a+b-c>0∴()2--+|a+b-c|=b+c-a+a+b-c=2b.a b c故选B.8.下列国旗中,不是轴对称图形的是()A.B.C.D.【分析】一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此进行判断即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意.故选:A.【点睛】本题考查轴对称图形,解题的关键是掌握轴对称图形的判断方法:把一个图形沿一条直线对折,如果图形的两部分能够重合,那么这个是轴对称图形.9.某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位B.它精确到0.01C.它精确到千分位D.它精确到千位【答案】D【分析】根据近似数的精确度求解.【详解】解:1.36×105精确到千位.故选:D.【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.10.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.130【答案】C【解析】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC ≌△DEA ,∴∠B=∠E=115°,∠ACB=∠EAD ,∠BAC=∠ADE ,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选C .点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC 与△AED 全等.二、填空题11.分解因式:39a b ab -= .【答案】ab (a+3)(a ﹣3).【解析】试题分析:39a b ab -=2(9)b a -=ab (a+3)(a ﹣3).故答案为ab (a+3)(a ﹣3).考点:提公因式法与公式法的综合运用.12.如图,已知△ABC 是等边三角形,分别在AC 、BC 上取点E 、F ,且AE=CF ,BE 、AF 交于点D ,则∠BDF =______.【答案】60°.【解析】试题分析:∵△ABC 是等边三角形,∴∠BAC=∠ABC=∠C=60°,AB=AC ,又∵AE=CF ,∴△ABE ≌△ACF (SAS ),∴∠ABE=∠CAF ,∴∠BDF=∠BAD+∠ABE=∠BAD+∠CAF=∠BAC=60°.考点:1.等边三角形的性质;2.全等三角形的性质和判定;3.三角形的外角的性质.13.计算124183-⨯= . 【答案】6.【解析】化简第一个二次根式,计算后边的两个二次根式的积,然后合并同类二次根式即可求解: 12418=266=63-⨯-. 14.使分式的值为0,这时x=_____.【答案】1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法15.计算9910012-2⎛⎫⨯ ⎪⎝⎭的结果是_____________. 【答案】2-【分析】根据积的乘方的逆运算,把原式变形为指数相同的,然后利用有理数的乘方和乘法法则进行计算即可. 【详解】原式9912(2)2=⨯-⨯ 2(1)=⨯-2=-,故答案为:2-.【点睛】本题考查了积的乘方公式,逆用公式是解题的关键,注意负数的奇次方是负数.16.成人每天的维生素D 的摄入量约为0.0000046克,数据0.0000046用科学记数法可表示为_________________【答案】4.6×106-【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.0000046用科学记数法表示为4.6×106-故答案为4.6×106-【点睛】此题考查科学记数法,解题关键在于使用负指数幂进行表达17.若一个正比例函数的图象经过(4,8)A 、(m,8)B )两点,则m 的值为__________.【答案】4【分析】设正比例函数为y=kx ,将点A 代入求出解析式,再将点B 代入即可求出m.【详解】设正比例函数为y=kx ,将点(4,8)A 代入得:4k=8,解得:k=2,∴y=2x,将点(m,8)B代入得:2m=8,解得m=4,故答案为:4.【点睛】此题考查正比例函数的解析式,利用待定系数法求函数解析式,由此求得图象上其他点的坐标.三、解答题18.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?【答案】(1)每千米用电费用是0.3元,甲、乙两地的距离是100千米;(2)至少需要用电行驶60千米.【分析】(1)根据从甲地行驶到乙地的路程相等列出分式方程解答即可;(2)根据所需费用不超过50元列出不等式解答即可.【详解】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:8030x0.5x=+,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;至少需要用电行驶60千米.(2)汽车行驶中每千米用油费用为0.3+0.5=0.8元,设汽车用电行驶ykm,可得:0.3y+0.8(100-y)≤50,解得:y≥60,所以至少需要用电行驶60千米.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.19.如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若CD=1,求AF 的长.【答案】(1)详见解析;(2)2.【分析】(1)根据题意易得AD=BD ,∠BFD=∠ACD ,进而得到△BDF ≌△ACD ,问题得证;(2)连接CF ,由(1)易得DF=DC ,然后利用垂直平分线的性质定理可求解.【详解】解:(1)AD ⊥BD ,∠BAD=45°,∴AD=BD ,∵∠BFD=∠AFE ,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD ,在△BDF 和△ACD 中,BFD ACD BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ACD (AAS ),∴BF=AC ;(2)连接CF ,∵△BDF ≌△ADC ,∴DF=DC ,∴△DFC 是等腰直角三角形∵CD=1,∴2∵AB=BC ,BE ⊥AC ,∴AE=EC ,BE 是AC 的垂直平分线.∴AF=CF ,∴2.【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形及线段的垂直平分线的性质定理,关键是根据题意得到三角形全等,然后得到线段的等量关系.20.如图,已知∠A =∠D ,AB =DB ,点E 在AC 边上,∠AED =∠CBE ,AB 和DE 相交于点F . (1)求证:△ABC ≌△DBE .(2)若∠CBE =50°,求∠BED 的度数.【答案】(1)见解析;(2)∠BEC=65°【分析】(1)根据三角形的内角和得到∠ABD =∠AED ,求得∠ABC =∠DBE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到BE =BC ,求得∠BEC =∠C ,根据三角形的内角和即可得到结论.【详解】(1)证明:∵∠A =∠D ,∠AFE =∠BFD ,∴∠ABD =∠AED ,又∵∠AED =∠CBE ,ABD CBE ∴∠=∠∴∠ABD+∠ABE =∠CBE+∠ABE ,即∠ABC =∠DBE ,在△ABC 和△DBE 中,A D AB DBABC DBE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DBE (ASA );(2)解:∵△ABC ≌△DBE ,∴BE =BC ,∴∠BEC =∠C ,∵∠CBE =50°,∴∠BEC =∠C =65°.【点睛】本题考查了全等三角形的判定和性质,灵活的根据题中已知条件选择合适的判定方法是解题的关键. 21.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图),如:将式子232x x ++和223x x +-分解因式,如图:()()23212x x x x ++=++;()()223123x x x x +-=-+.请你仿照以上方法,探索解决下列问题:(1)分解因式:2712y y ;(2)分解因式:2321x x --.【答案】(1)(x ﹣3)(x ﹣4);(2)(x ﹣1)(3x+1).【分析】(1)将1分成1乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案; (2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.【详解】(1)y 2﹣7y+12=(x ﹣3)(x ﹣4);(2)3x 2﹣2x ﹣1=(x ﹣1)(3x+1).【点睛】此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.22.解答下列各题:(12810. (2)解方程:22322x x x-=+++. 【答案】(1)425-(2)3x =-【分析】(1)利用二次根式的乘法法则运算;(2)先去分母得到23(2)2x x =++-,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式28210=⨯⨯425=-(2)23(2)2x x =++-,解得3x =-,经检验,原方程的解为3x =-.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解分式方程.23.已知,ABC ∆在平面直角坐标系中的位置如图所示.(1)把ABC ∆向下平移2个单位长度得到111A B C ∆,请画出111A B C ∆;(2)请画出111A B C ∆关于y 轴对称的222A B C ∆,并写出2A 的坐标;(3)求ABC ∆的面积.【答案】(1)见解析;(2)(4,-1);(3)6.1.【分析】(1)首先确定A 、B 、C 三点向下平移2个单位长度后的对应点位置,然后再连接即可; (2)首先确定A 1、B 1、C 1关于y 轴对称的对称点,然后再连接即可;(3)把△ABC 放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.【详解】解:(1)如图所示:(2)如图所示:A 2的坐标(4,-1);(3)△ABC 的面积:3×1-12×2×3-12×1×1-12×2×3=11-3-2.1-3=6.1. 【点睛】本题主要考查了作图--轴对称变换和平移变换,关键是找出组成图形的关键点平移后的对应点位置. 24.解方程:(132421626(2)计算:1275(52)(52)3+(3)解方程组:1323811x y x y ⎧+=⎪⎨⎪-=⎩【答案】(1);(2)3+(3)512x y =⎧⎪⎨=⎪⎩. 【分析】(1)利用二次根式的性质和二次根式的乘除法化简,将所得的结果相加减即可;(2)利用平方差公式和和二次根式的乘除法化简,将所得的结果相加减即可;(3)利用加减消元法即可求解.【详解】解:(1)原式=2=2=2-= (2)原式=22-=52-+=3+(3)1323811x y x y ⎧+=⎪⎨⎪-=⎩①②①×6得:3618x y +=③,③-②得147y =,解得12y =, 将12y =代入②得3411x -=,解得5x =, 即该方程组的解为:512x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查二次根式的混合运算和解方程组.(1)(2)中掌握二次根式的性质和二次根式的乘除法则是解题关键;(3)中掌握消元思想是解题关键.25. “双十一”活动期间,某淘宝店欲将一批水果从A 市运往B 市,有火车和汽车两种运输方式,火车和汽车途中的平均速度分别为100千米/时和80米/时.其它主要参考数据如下:(1)①若A 市与B 市之间的距离为800千米,则火车运输的总费用是______元;汽车运输的总费用是______元;②若A 市与B 市之间的距离为x 千米,请直接写出火车运输的总费用1y (元)、汽车运输的总费用2y (元)分别与x (千米)之间的函数表达式.(总费用=途中损耗总费用+途中综合总费用+装卸费用)(2)如果选择火车运输方式合算,那么x 的取值范围是多少?【答案】(1)①15600,18900;②1172000y x =+,222.5900y x =+; (2) 200x >时,选择火车运输方式合算.【分析】(1)①根据题意和表格中的数据可以分别计算出火车运输的总费用和汽车运输的总费用; ②根据题意和表格中的数据可以分别写出火车运输的总费用y 1(元)、汽车运输的总费用y 2(元)分别与x (千米)之间的函数表达式;(2)根据题意和②中的函数关系式,令y 1<y 2,即可求得x 的取值范围.【详解】(1)①由题意可得,火车运输的总费用是:1×(800÷100)+800×15+10=15600(元),汽车运输的总费用是:1×(800÷80)+800×20+900=18900(元),故答案为:15600,18900;②由题意可得,火车运输的总费用y 1(元)与x (千米)之间的函数表达式是:y 1=1(x÷100)+15x+10=17x+10,汽车运输的总费用y 2(元)与x (千米)之间的函数表达式是:y 2=1(x÷80)+20x+900=22.5x+900;(2)令17x+10<22.5x+900,解得,x >1.答:如果选择火车运输方式合算,那么x 的取值范围是x >1.【点睛】本题考查了一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用一次函数的性质解答.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.将平面直角坐标系内某个图形上各点的横坐标都乘以-1,纵坐标不变,所得图形与原图形的关系是 A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .两图形重合【答案】B【解析】在坐标系中,点的坐标关于y 轴对称则纵坐标不变,横坐标变为原坐标的相反数,题中纵坐标不变,横坐标都乘以-1,变为原来的数的相反数,所以关于y 坐标轴对称,故B 正确.2.如图,在ABC ∆中,10AB AC ==,AB 的垂直平分线DE 交AC 于点D ,连接BD ,若BCD 的周长为17,则BC 的长为( )A .6B .7C .8D .9【答案】B 【分析】根据线段垂直平分线的性质可得AD=BD ,AB=2AE ,把△BCD 的周长转化为AC 、BC 的和,然后代入数据进行计算即可得解.【详解】∵DE 是AB 的垂直平分线,∴AD=BD ,AB=2AE=10,∵△BCD 的周长=BD+CD+BC=AD+CD+BC=AC+BC=11,∵AB=AC=10,∴BC=11-10=1.故选:B .【点睛】此题考查线段垂直平分线的性质.此题比较简单,解题的关键是掌握垂直平分线上任意一点,到线段两端点的距离相等定理的应用.3.已知:C D 、是线段AB 外的两点, ,AC BC AD BD ==,点P 在直线CD 上,若5AP =,则BP 的长为( )A .2.5B .5C .10D .25【答案】B【分析】根据已知条件确定CD 是AB 的垂直平分线即可得出结论.【详解】解:∵AC=BC,∴点C在AB的垂直平分线上,∵AD=BD,∴点D在AB的垂直平分线上,∴CD垂直平分AB,∵点P在直线CD上,∴AP=BP,AP ,∵5∴BP=5,故选B.【点睛】本题主要考查了线段的垂直平分线,关键是熟练掌握线段的垂直平分线的性质.4.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±20【答案】B【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x和1的乘积的2倍.5.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是()A.m<﹣1 B.m>﹣1 C.m>0 D.m<0【答案】A【解析】本题是关于x的不等式,不等式两边同时除以(m+1)即可求出不等式的解集,不等号发生改变,说明m+1<0,即可求出m的取值范围.【详解】∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,∴m<−1,故选:A.【点睛】考查解一元一次不等式,熟练掌握不等式的3个基本性质是解题的关键.6.分式 21x --可变形为( ) A .21x -- B .21x + C .21x -+ D .21x - 【答案】D【分析】根据分式的性质,可化简变形.【详解】2221(1)1x x x -==----. 故答案为D【点睛】考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.7.已知72x =,432816x x x ++的值为( ) A .117B 73 C .3 D .9 【答案】D【分析】先将432816x x x ++因式分解,再将72x =代入,借助积的乘方公式(()n n n a b ab ⋅=,本题中为逆运用)和平方差公式(22()()a b a b a b +-=-)求解即可.【详解】解:4322222816(816)(4)x x x x x x x x ++=++=+, 将72x =代入,原式=2272)724)+22(72)72)=2772)]=2(74)=-9=.故选:D .【点睛】本题考查因式分解的应用,积的乘方公式,平方差公式,二次根式的化简求值.解决此题的关键是①综合利用提公因式法和公式法对原代数式进行因式分解;②利用积的乘方公式和平方差公式对代值后的式子进行适当变形.8.已知,m n x a x b ==那么23m n x +的值等于 ( )A .32a b +B .23a bC .32a bD .23a b +【答案】B【分析】由同底数幂的乘法的逆运算与幂的乘方的逆运算把23m n x +变形后代入可得答案.【详解】解:,m n x a x b ==,232323()()m n m n m n x x x x x +∴=•=•23.a b =故选B .【点睛】本题考查的是同底数幂的逆运算与幂的乘方的逆运算,掌握逆运算的法则是解题的关键.9.下列以a 、b 、c 为边的三角形中,是直角三角形的是( )A .a =4,b =5,c =6B .a =5,b =6,c =8C .a =12,b =13,c =5D .a =1,b =1,c【答案】C【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可.【详解】解:A 、因为42+52=41≠62,所以以a 、b 、c 为边的三角形不是直角三角形;B 、因为52+62≠82,所以以a 、b 、c 为边的三角形不是直角三角形;C 、因为122+52=132,所以以a 、b 、c 为边的三角形是直角三角形;D 、因为12+12≠2,所以以a 、b 、c 为边的三角形不是直角三角形;故选:C .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.10.禽流感病毒的半径大约是0.00000045米,它的直径用科学记数法表示为( )A .70.910-⨯米B .7910-⨯米C .6910-⨯米D .7910⨯米 【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】70.000000452910-⨯=⨯.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题11.一组数据3,4,6,7,x 的平均数为6,则这组数据的方差为_____.【答案】1【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【详解】解:数据3,4,1,7,x 的平均数为1, ∴346765x ++++=, 解得:10x =,2222221[(36)(46)(66)(76)(106)]65s ∴=-+-+-+-+-=; 故答案为:1.【点睛】本题考查方差的定义:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.用不等式表示x 的3倍与5的和不大于10是____________________;【答案】3x+5≤1【分析】直接利用x 的3倍,即3x ,与5的和,则3x+5,进而小于等于1得出答案.【详解】解:由题意可得:3x+5≤1.故答案为:3x+5≤1.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.13.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).【答案】①③【分析】①由已知条件证明DAB ≌EAC 即可;②由①可得∠ABD=∠ACE<45°,∠DCB>45°;③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③;④由BE 1=BC 1-EC 1=1AB 1-(CD 1﹣DE 1)=1AB 1-CD 1+1AD 1=1(AD 1+AB 1)-CD 1可判断④.【详解】解:∵∠DAE =∠BAC =90°,∴∠DAB =∠EAC ,∵AD =AE ,AB =AC ,∴∠AED=∠ADE=∠ABC=∠ACB=45°, ∵在DAB 和EAC 中,AD AE DAB EAC AB AC ⎧⎪⎨⎪⎩===, ∴DAB ≌EAC ,∴BD =CE ,∠ABD =∠ECA ,故①正确;由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°,∴∠CEB =90°,即CE ⊥BD ,故③正确;∴BE 1=BC 1-EC 1=1AB 1-(CD 1﹣DE 1)=1AB 1-CD 1+1AD 1=1(AD 1+AB 1)-CD 1.∴BE 1=1(AD 1+AB 1)-CD 1,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.14.如图所示,已知∠1=22°,∠2=28°,∠A=56°,则∠BOC 的度数是___________.【答案】106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【详解】如图,连接AO ,延长AO 交BC 于点D .根据三角形中一个外角等于与它不相邻的两个内角和,可得:∠BOD=∠1+∠BAO ,∠DOC=∠2+∠OAC ,∵∠BAO+∠CAO=∠BAC=56°,∠BOD+∠COD=∠BOC ,∴∠BOC=∠1+∠2+∠BAC=22°+28°+56°=106°.故答案为:106°.【点睛】本题考查了三角形的内角和定理,三角形的外角的性质,关键是利用了三角形中一个外角等于与它不相邻的两个内角和求解.15. 如图,已知AB BC =,要使ABD CBD ∆≅∆,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)【答案】可添∠ABD=∠CBD 或AD=CD .【分析】由AB=BC 结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS 证明全等,也可以添加一对夹角相等,利用SAS 证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD 或AD=CD ,①∠ABD=∠CBD ,在△ABD 和△CBD 中,∵AB BC ABD CBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBD (SAS );②AD=CD ,在△ABD 和△CBD 中,∵AB BC AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),故答案为∠ABD=∠CBD 或AD=CD .【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS ,SAS ,ASA ,AAS . 16.计算:)31646132- 【答案】43+【分析】将第一项分母有理化,第二项求出立方根,第三项用乘法分配律计算后,再作加减法即可.【详解】解:原式=()2646332⨯---⨯+ =324323+-+=43+.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的性质和运算法则.17.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为__.【答案】 (-12,-12) 【解析】试题解析:先过点A 作AB′⊥OB ,垂足为点B′,由垂线段最短可知,当B′与点B 重合时AB 最短,∵点B 在直线y=x 上运动,∴△AOB′是等腰直角三角形,过B′作B′C ⊥x 轴,垂足为C ,∴△B′CO 为等腰直角三角形,∵点A 的坐标为(﹣1,0),∴OC=CB′=12OA=12×1=12, ∴B′坐标为(﹣12,﹣12), 即当线段AB 最短时,点B 的坐标为(﹣12,﹣12). 考点:一次函数综合题.三、解答题18.某商店销售篮球和足球共60个.篮球和足球的进价分别为每个40元和50元,篮球和足球的卖价分别为每个50元和65元.设商店共有x 个足球,商店卖完这批球(篮球和足球)的利润为y .(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)商店现将篮球每个涨价a 元销售,足球售价不变,发现这批球卖完后的利润和x 的取值无关.求卖完这批球的利润和a 的值.【答案】(1)y =5x +600(0≤x ≤60);(2)a =5,900元【分析】(1)设商店共有x 个足球,则篮球的个数为(60-x ),根据利润=售价-进价,列出等量关系即可;(2)将(1)中的(50-40)换成(50+a -40)进行整理,分析即可.【详解】解:(1)设商店共有x 个足球,依题意得:y =(65-50)x +(50-40)(60-x )即:y =5x +600(0≤x ≤60);(2)根据题意,有y =(65-50)x +(50+a -40)(60-x )=(5-a )x +60(10+a )∵y 的值与x 无关,∴a =5,∴y=60×(10+5)=900,∴卖完这批球的利润为900元.【点睛】本题考查一次函数的应用,熟练掌握利润与售价、进价之间的关系是关键.19.如图,在平面直角坐标系xOy 中,点()0,6A 、点()4,6B ,点P 同时满足下面两个条件:①点P 到A 、B 两点的距离相等;②点P 到xOy ∠的两边距离相等.(1)用直尺和圆规作出符合要求的点P (不写作法,保留作图痕迹);(2)写出(1)中所作出的点P 的坐标 .【答案】(1)见解析;(2)(2,2).【分析】(1)先作线段AB 的垂直平分线l ,再作∠xOy 的平分线OC ,它们的交点即为所要求作的点P ; (2)由于P 在线段AB 的垂轴平分线上,则P 点的横只能为2,再利用P 点在第一象限的角平分线上,则P 点的横纵坐标相等,从而得到点P 的坐标.【详解】(1)如图,点P 为所作;。

[试卷合集3套]洛阳市2018年八年级上学期期末调研数学试题

[试卷合集3套]洛阳市2018年八年级上学期期末调研数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,三角形纸片ABC ,AB =10cm ,BC =7cm ,AC =6cm ,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为( )A .9cmB .13cmC .16cmD .10cm【答案】A 【解析】试题分析:由折叠的性质知,CD=DE ,BC=BE .易求AE 及△AED 的周长.解:由折叠的性质知,CD=DE ,BC=BE=7cm .∵AB=10cm ,BC=7cm ,∴AE=AB ﹣BE=3cm .△AED 的周长=AD+DE+AE=AC+AE=6+3=9(cm ).故选A .点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.若分式2ab a b+中的,a b 的值同时扩大到原来的10倍, 则分式的值( ) A .变为原来的20倍 B .变为原来的10倍C .变为原来的110D .不变 【答案】B 【分析】,a b 的值同时扩大到原来的10倍可得210ab a b ⎛⎫⨯⎪+⎝⎭,再与2ab a b +进行比较即可. 【详解】将分式2ab a b+中的,a b 的值同时扩大到原来的10倍,可得 210101010a b a b⨯⨯+ 210ab a b⨯=+ 210ab a b ⎛⎫=⨯ ⎪+⎝⎭则分式的值变为原来的10倍本题考查了分式的变化问题,掌握分式的性质是解题的关键.3.若(x-3)(x+5)是x2+px+q的因式,则q为( )A.-15 B.-2 C.8 D.2【答案】A【分析】直接利用多项式乘法或十字相乘法得出q的值.【详解】解:∵(x−3)(x+5)是x2+px+q的因式,∴q=−3×5=−1.故选A.【点睛】此题主要考查了十字相乘法分解因式,正确得出q与因式之间关系是解题关键.4.下列图案不是轴对称图形的是( )A.B.C.D.【答案】C【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选C.【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.5.学习了一元一次不等式的解法后,四位同学解不等式21126x x≥1时第一步“去分母”的解答过程都不同,其中正确的是()A.2(2x-1)-6(1+x)≥1B.3(2x-1)-1+x≥6 C.2(2x-1)-1-x≥1D.3(2x-1)-1-x≥6【答案】D【分析】根据不等式的解法判断即可.【详解】解:21126x x≥1不等式两边同时乘以分母的最小公倍数6可得:32116x x,【点睛】本题考查了解一元一次不等式,能正确根据不等式的基本性质进行去分母是解此题的关键.6.如果一条直线l 经过不同的三点(,)A a b ,(,)B b a ,(,)C a b b a --,那么直线l 经过( ) A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限【答案】A【分析】一条直线l 经过不同的三点,先设直线l 表达式为:y kx m =+,,把三点代入表达式,用a,b 表示k 、m ,再判断即可.【详解】设直线l 表达式为:y kx m =+,将(,)A a b ,(,)B b a ,(,)C a b b a --代入表达式中,得如下式子: (1)(2)()(3)b ka m a kb mb a k a b m =+⎧⎪=+⎨⎪-=-+⎩, 由(1)-(2)得:()b a ka m kb m k a b -=+--=-,得1k =-,()b a k a b -=-与(3)相减,得0m =,直线l 为:y x =-.故选:A .【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.7.下列各式计算正确的是( ).A .a 2•a 3=a 6B .(﹣a 3)2=a 6C .(2ab )4=8a 4b 4D .2a 2﹣3a 2=1【答案】B【详解】解:A 选项是同底数幂相乘,底数不变,指数相加,a 2•a 3=a 5,故错误;B 选项是利用积的乘方和幂的乘方法则把-1和a 的三次方分别平方,(﹣a 3)2=a 6,正确;C 选项利用积的乘方法则,把积里每一个因式分别乘方,(2ab )4=16a 4b 4,故错误;D 选项把同类项进行合并时系数合并,字母及字母指数不变,2a 2﹣3a 2=﹣a 2,错误;故选B .8.平面直角坐标系中,点P (﹣2,3)关于x 轴对称的点的坐标为( ).A .(﹣2,﹣3)B .(2,﹣3)C .(﹣3,﹣2)D .(3,﹣2)【答案】A【分析】根据关于x 轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【详解】解:点P (﹣2,3)关于x 轴对称的点的坐标为(﹣2,﹣3)故选A .【点睛】此题考查的是求一个点关于x 轴对称点的坐标,掌握关于x 轴对称的两点坐标关系是解决此题的关键. 9.如图,Rt △ABC 中,CD 是斜边AB 上的高,∠A=30°,BD=2cm ,则AB 的长度是( )A .2cmB .4cmC .8cmD .16cm【答案】C 【分析】根据题意易得:∠BCD=30°,然后根据30°角的直角三角形的性质先在直角△BCD 中求出BC ,再在直角△ABC 中即可求出AB .【详解】解:Rt △ABC 中,∵∠A=30°,∠ACB=90°,∴∠B=60°,∵CD 是斜边AB 上的高,∴∠BCD=30°,∵BD=2cm ,∴BC=2BD=4cm ,∵∠ACB=90°,∠A=30°,∴AB=2BC=8cm .【点睛】本题考查的是直角三角形的性质,属于基本题型,熟练掌握30°角所对的直角边等于斜边的一半是解题关键.10.下列图形中,不一定是轴对称图形的是( )A .正方形B .等腰三角形C .直角三角形D .圆【答案】C【解析】正方形、等腰三角形、圆一定是轴对称图形,等腰直角三角形是轴对称图形,故选C二、填空题11.如图,ABC 是等边三角形,AE CD =,AD 、BE 相交于点P ,BQ DA ⊥于Q ,3PQ =,1EP =,则DA 的长是______.【答案】1【分析】由已知条件,先证明△ABE ≌△CAD 得∠BPQ=60°,可得BP=2PQ=6,AD=BE .即可求解.【详解】∵△ABC 为等边三角形,∴AB=CA ,∠BAE=∠ACD=60°;又∵AE=CD ,在△ABE 和△CAD 中,AB CA BAE ACD AE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAD ;∴BE=AD ,∠CAD=∠ABE ;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ ⊥AD ,∴∠AQB=90°,则∠PBQ=90°-60°=30°;∵PQ=3,∴在Rt △BPQ 中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=1.故答案为:1.【点睛】本题主要考查了全等三角形的判定与性质及等边三角形的性质及含30°的角的直角三角形的性质;巧妙借助三角形全等和直角三角形中30°的性质求解是正确解答本题的关键.12.如图,ABM ∆与CDM ∆是两个全等的等边三角形,MA MD ⊥.有下列四个结论:①025MBC ∠=;②0180ADC ABC ∠+∠=;③直线MB 垂直平分线段CD ;④四边形ABCD 是轴对称图形.其中正确的【答案】②③④【分析】①通过全等和等边三角形的性质解出答案即可判断;②根据题意推出即可判断;③延长BM交CD于N,利用外角定理推出即可判断;④只需证明四边形ABCD是等腰梯形即可判断.【详解】①∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,又∵MA⊥MD,∴∠AMD=90°,∴∠BMC=360°﹣60°﹣60°﹣90°=150°,又∵BM=CM,∴∠MBC=∠MCB=15°;②∵AM⊥DM,∴∠AMD=90°,又∵AM=DM,∴∠MDA=∠MAD=45°,∴∠ADC=45°+60°=105°,∠ABC=60°+15°=75°,∴∠ADC+∠ABC=180°;③延长BM交CD于N,∵∠NMC是△MBC的外角,∴∠NMC=15°+15°=30°,∴BM所在的直线是△CDM的角平分线,又∵CM=DM,∴BM所在的直线垂直平分CD;④根据②同理可求∠DAB=105°,∠BCD=75°,∴∠DAB+∠ABC=180°,∴四边形ABCD 是等腰梯形,∴四边形ABCD 是轴对称图形.故答案为:②③④.【点睛】本题考查等边三角形的性质、三角形内角和定理、三角形外角性质、平行线的判定,关键在于熟练掌握相关基础知识.13.如图,在OAB ∆中,3OA OB ==,45AOB ∠=︒,C 是AB 中点,则点O 关于点C 的对称点的坐标是______.【答案】 (3323222+,).【分析】过点A 作AD ⊥OB 于D ,然后求出AD 、OD 的长,从而得到点A 的坐标,再根据中点坐标公式,求出点C 的坐标,然后利用中点坐标公式求出点O 关于点C 的对称点坐标,即可.【详解】如图,过点A 作AD ⊥OB 于D ,∵OA=OB=3,∠AOB=45°,∴AD=OD=3÷2=322, ∴点A(322,322),B(3,0), ∵C 是AB 中点,∴点C 的坐标为(332322222+,), ∴点O 关于点C 的对称点的坐标是:(3323222+,) 故答案为:(3323222+,).14.计算:25-38-=________.【答案】1【解析】根据算术平方根和立方根定义,分别求出各项的值,再相加即可.【详解】解:因为3255,82=-=-,所以3258527--=+=.故答案为1.【点睛】本题考核知识点:算术平方根和立方根. 解题关键点:熟记算术平方根和立方根定义,仔细求出算术平方根和立方根.15.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解.详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.16.如图,矩形纸片ABCD ,8AB =,6BC =,点P 在BC 边上,将CDP ∆沿DP 折叠,点C 落在E 处,PE DE 、分别交AB 于点O F 、,且OP OF =,则AF 长为__________【答案】165【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由∠EOF=∠BOP 、∠B=∠E 、OP=OF 可得出△OEF ≌△OBP ,根据全等三角形的性质可得出OE=OB 、EF=BP ,设BF=EP=CP=x ,则AF=8-x ,BP=6-x=EF ,DF=DE-EF=8-(6-x )=x+2,依据Rt △ADF 中,AF 2+AD 2=DF 2,求出x 的值,即可得出AF 的长.【详解】根据折叠可知:△DCP ≌△DEP ,∴DC=DE=8,CP=EP在△OEF 和△OBP 中,∵∠EOF=∠BOP ,∠B=∠E=90°,OP=OF ,∴OE+OP=OF+OB∴BF=EP=CP,设BF=EP=CP=x,则AF=8−x,BP=6−x=EF,DF=DE−EF=8−(6−x)=x+2,∵∠A=90°,∴Rt△ADF中,AF2+AD2=DF2,即(8−x)2+62=(x+2)2,解得:x=24 5,∴AF=8−x=8−245=165,故答案为:165.【点睛】本题考查了矩形中的折叠问题,熟练掌握全等三角形的判定与性质,利用勾股定理建立方程是解题的关键.17.如图,在△ABC中,BF⊥AC 于点F,AD⊥BC 于点D ,BF 与AD 相交于点E.若AD=BD,BC=8cm,DC=3cm.则AE= _______________cm .【答案】1.【分析】易证∠CAD=∠CBF,即可求证△ACD≌△BED,可得DE=CD,即可求得AE的长,即可解题.【详解】解:∵BF⊥AC于F,AD⊥BC于D,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF,∵在△ACD和△BED中,90CAD CBFAD BDADC BDE︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△ACD≌△BED,(ASA)∴DE=CD,∴AE=AD-DE=BD-CD=BC-CD-CD=1;故答案为1.【点睛】【答案】10︒【分析】设∠B=∠C=x,∠EDC=y,构建方程即可解决问题;【详解】设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180 ︒−2(x+y)=180 ︒−20 ︒−2x,∴2y=20 ︒,∴y=10 ︒,∴∠CDE=10 ︒.【点睛】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.19.已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=28°,求∠DAE的度数.【答案】12°【解析】先根据角平分线的定义求得∠EAC的度数,再由三角形外角的性质得出∠AED的度数,最后由直角三角形的性质可得结论.【详解】解:∵AE平分∠BAC,∴∠EAC=1BAC2∠=11002⨯︒=50°,∵∠C=28°,∴∠AED=∠C+∠EAC=28°+50°=78°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣78°=12°.本题考查三角形内角和定理,角平分线的定义,关键是掌握三角形内角和为180°,直角三角形两锐角互余. 20.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用为5500元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙合做来完成,则该工程施工费用是多少?【答案】(1)这项工程的规定时间是30天;(2)该工程的施工费用为153000元【分析】(1)设这项工程的规定时间是x 天,根据工程问题的等量关系列分式方程求解;(2)通过第一问求出的甲、乙单独完成的时间,算出合作需要的时间,乘以每天的费用得到总费用.【详解】解:(1)设这项工程的规定时间是x 天,根据题意得:115()1511.5x x x+⨯+=, 解得30x =,经检验30x =是方程的解,答:这项工程的规定时间是30天;(2)该工程由甲、乙合做完成,所需时间为;111()1830 1.530÷+=⨯ (天), 则该工程的施工费用是:18×(5500+3000)=153000(元),答:该工程的施工费用为153000元.【点睛】本题考查分式方程的应用,解题的关键是掌握工程问题中的列式方法.21. (1)分解因式: ()()()()a b x y b a x y ----+.(2)分解因式: 225(2)5m x y mn --;(3)解方程: 2221111x x x x -=+--. 【答案】(1)2()x a b -;(2)()()522m x y n x y n -+--;(3)无解【分析】(1)利用提公因式法因式分解即可;(2)先提取公因式,然后利用平方差公式因式分解即可;(3)根据解分式方程的一般步骤解分式方程即可.【详解】解:(1) ()()()()a b x y b a x y ----+=()()()()a b x y a b x y --+-+=[]()()()a b x y x y --++=[]()a b x y x y --++=2()x a b -(2) 225(2)5m x y mn --=225(2)m x y n --⎡⎤⎣⎦=()()522m x y n x y n -+-- (3) 2221111x x x x -=+-- 化为整式方程,得()2121x x x -+=+去括号,得2221x x x -+=+移项、合并同类项,得33x =解得:1x =经检验:1x =是原方程的增根,原方程无解.【点睛】此题考查的是因式分解和解分式方程,掌握用提公因式法和平方差公式因式分解和解分式方程的一般步骤是解决此题的关键,需要注意的是,分式方程要验根.22.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?【答案】(1)该公司至少购进甲型显示器1台;(2)购买方案有:①甲型显示器1台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器2台,乙型显示器2台.【分析】(1)设该公司购进甲型显示器x 台,则购进乙型显示器(50-x )台,根据两种显示器的总价不超过77000元建立不等式,求出其解即可;(2)由甲型显示器的台数不超过乙型显示器的台数可以建立不等式x≤50-x 与(1)的结论构成不等式组,求出其解即可.【详解】解:(1)设该公司购进甲型显示器x 台,则购进乙型显示器(50-x )台,由题意,得:1000x+2000(50-x )≤77000解得:x≥1.∴该公司至少购进甲型显示器1台.(2)依题意可列不等式:x≤50-x ,解得:x≤2.∴1≤x≤2.∵x 为整数,∴x=1,24,2.∴购买方案有:①甲型显示器1台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器2台,乙型显示器2台.【点睛】本题考查了列一元一次不等式解实际问题的运用,一元一次不等式的解法的运用,方案设计的运用,解答时根据条件的不相等关系建立不等式是关键.23.先化简,再求值:[(x ﹣2y )2﹣(x +y )(x ﹣y )+5xy ]÷y ,其中x =﹣2,y =1.【答案】5y +x ,2.【分析】原式中括号中利用完全平方公式,平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式=2222445x y xy x y xy y +++⎡⎤-⎣⎦÷-=()25y xy y +÷=5y x +, 当21x y =-,=时, 原式=523-=【点睛】本题考查整式的混合运算-化简求值,解题的关键是利用完全平方公式,平方差公式正确化简原式. 24.计算:(1)233(3)a a a -⋅÷(2)先化简,再求值: [(2m+n)(2m-n)+(m+n)2-2(2m 2-mn)]÷(-4m),其中m=1,n=12. 【答案】(1)-27a 10;(2)4m n --,34- 【解析】(1)根据积的乘方、单项式乘单项式以及整式除法法则计算即可;(2)根据整式的混合运算法则把原式化简,代入计算即可.【详解】(1)原式 =()2927a aa -⋅÷=-27a 11÷a=-27a 10;(2)原式=[4m 2-n 2 + (m 2+2mn+n 2)-(4m 2-2mn )]÷(-4m)=(4m 2-n 2 +m 2+2mn+n 2-4m 2+2mn )÷(-4m)=(m 2+4mn )÷(-4m) = 4m n -- 当m=1,n=12时,原式=1142--=34-. 【点睛】本题考查了整式的混合运算,掌握平方差公式、完全平方公式、合并同类项法则是解题的关键 25.如图,D ,E 分别是AB ,AC 中点,CD AB ⊥,垂足为D ,BE AC ⊥,垂足为E ,CD 与BE 交于点F .(1)求证:AC AB =;(2)猜想CF 与DF 的数量关系,并证明.【答案】(1)证明见解析(2)猜想:2CF DF =【解析】(1)连接BC,再利用垂直平分线的性质直接得到相应线段的相等关系;(2)由(1)得出三角形ABC 是等边三角形,再推出FBC FCB ∠=∠,即可得出答案.【详解】(1)连接BC∵点D 是AB 中点且CD AB ⊥于点D∴CD 是线段AB 的垂直平分线∴CA CB =同理BA BC =∴AC AB =(2)猜想:2CF DF =证明:由(1)得AC AB BC ==∴ABC 是等边三角形∴60A ∠=︒在Rt ABE 中9030ABE A ∠=︒-∠=︒在Rt BDF 中2BF DF =∵在Rt ADC 中9030ACD A ∠=︒-∠=︒又∵60ABC ACB ∠=∠=︒ ∴FBC FCB ∠=∠∴CF BF =∴2CF DF =【点睛】本题考查的知识点是线段垂直平分线的性质,解题的关键是熟练的掌握线段垂直平分线的性质八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥- 【答案】A【分析】令点P 的横坐标小于0,列不等式求解即可.【详解】解:∵点P P (1+m ,3)在第二象限,∴1+m <0,解得: m <-1.故选:A .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P (﹣3,1)关于y 轴对称点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】直接利用关于y 轴对称点的性质进而得出答案.【详解】解:点P (﹣3,1)关于y 轴对称点坐标为:(3,1),则(3,1)在第一象限.故选:A .【点睛】本题考查了坐标平面内的轴对称变换,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数;关于y 轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数. 3.在分式39xz xy ,22ab a b -,22x y x y --,a b a b +-中,最简分式有( ) A .1个B .2个C .3个D .4个 【答案】B【分析】利用最简分式的定义判断即可得到结果. 【详解】39xz xy =3z y ,221x y x y x y-=-+,则最简分式有2个, 故选:B .【点睛】此题考查了最简分式,熟练掌握最简分式的定义是解本题的关键.4.已知△ABC 为直角坐标系中任意位置的一个三角形,现将△ABC 的各顶点横坐标乘以-1,得到△A 1B 1C 1,则它与△ABC 的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y=x 对称 【答案】B【分析】已知平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),从而求解.【详解】根据轴对称的性质,∵横坐标都乘以−1,∴横坐标变成相反数,根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴△ABC 与△A ′B ′C ′关于y 轴对称,故选:B .【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,比较简单.5.下列各式中,是最简二次根式的是( )A .6B .12C .18D .27 【答案】A【分析】根据最简二次根式的定义判断即可.需要符合以下两个条件: 1.被开方数中不含能开得尽方的因数或因式;2.被开方数的因数是整数,因式是整式.【详解】解:A.6不能继续化简,故正确; B.12=23,故错误; C.18=32,故错误; D. 27=33故错误.故选:A.【点睛】本题考查最简二次根式的定义,理解掌握定义是解答关键.6.如图,在Rt ABC △中,90C ∠=︒,30B ∠=︒,点D 、E 分别在边AC 、AB 上,14AD =,点P 是边BC 上一动点,当PD PE +的值最小时,15AE =,则BE 为( )A .30B .29C .28D .27【答案】B 【分析】延长AC 至点M ,使CM CD =,过点M 作ME AB ⊥于点E ,交BC 于点P ,则此时PD PE +的值最小.最后根据直角三角形的边角关系求解即可.【详解】如图,延长AC 至点M ,使CM CD =,过点M 作ME AB ⊥于点E ,交BC 于点P ,则此时PD PE +的值最小.在Rt ABC △中,30B ∠=︒,60A ∴∠=︒.ME AB ⊥,90AEM ∴∠=︒,90A M ∴∠+∠=︒,90M ∴∠=︒.15AE =,230AM AE ∴==.AM AD DM =+,14AD =,16DM ∴=.CM CD =,8CD CM ∴==,22AC AD CD ∴=+=.在Rt ABC △中,30B ∠=︒,244AB AC ∴==.AB AE BE =+,15AE =,29BE ∴=.故选B.【点睛】本题考查了最短路径问题,涉及到最短路径问题,一般要考虑线段的性质定理,结合轴对称变换来解决,因此利用轴对称找到对称点是解题的关键.7.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠CB .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 【答案】D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011 °,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误; C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确.故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.8.直线y=-2x+m 与直线y=2x -1的交点在第四象限,则m 的取值范围是( )A .m >-1B .m <1C .-1<m <1D .-1≤m≤1【答案】C 【解析】试题分析:联立,解得,∵交点在第四象限,∴,解不等式①得,m >﹣1,解不等式②得,m <1,所以,m 的取值范围是﹣1<m <1.故选C .考点:两条直线相交或平行问题.9.如图,ABC 是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE 、EF 、FG ……添加的这些钢管的长度都与BD 的长度相等.如果10ABC ∠=︒,那么添加这样的钢管的根数最多是( )A .7根B .8根C .9根D .10根【答案】B 【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【详解】∵添加的钢管长度都与BD 相等, 10ABC ∠=︒,∴∠FDE=∠DFE=20︒,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10︒,第二个是20︒,第三个是30︒,四个是40︒,五个是50︒,六个是60︒,七个是70︒,八个是80︒,九个是90︒就不存在了,所以一共有8个,故添加这样的钢管的根数最多8根故选B.【点睛】此题主要考查等腰三角形的性质,解题的关键是根据等边对等角求出角度,发现规律进行求解. 10.如图,直线y=x+b 与直线y=kx+6交于点P (1,3),则关于x 的不等式x+b>kx+6的解集是( )A .1x <B .1x >C .3x >D .3x <【答案】B 【分析】观察函数图象得到x>1时,函数y=x+b 的图象都在y=kx+6上方,所以关于x 的不等式x+b>kx+6的解集为x>1.【详解】当x>1时,x+b>kx+6,即不等式x+b>kx+6的解集为x>1,故答案为x>1.故选B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题11.已知23a =-,23b -=-,()03c =-,比较a ,b ,c 的大小关系,用“<”号连接为______.【答案】a b c <<【分析】分别根据有理数乘方的意义、负整数指数幂的运算法则和0指数幂的意义计算a 、b 、c ,进一步即可比较大小.【详解】解:2=93a =--,2193b -==--,()031c =-=, ∵1909-<-<, ∴a b c <<.故答案为:a b c <<.【点睛】本题主要考查了负整数指数幂的运算法则和0指数幂的意义,属于基本题型,熟练掌握基本知识是解题的关键.12.若3m a =,5n a =,则m n a +=______.【答案】15【分析】根据同底数幂乘法法则来求即可.【详解】解: m n m n a a a +==3×5=15【点睛】本题考查的是同底数幂的乘法法则,同底数幂相乘,底数不变指数相加.13.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC :S △ABC =1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【分析】①连接NP ,MP ,根据SSS 定理可得△ANP ≌△AMP ,故可得出结论;②先根据三角形内角和定理求出∠CAB 的度数,再由AD 是∠BAC 的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B 可知AD=BD ,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD ,再由三角形的面积公式即可得出结论. 【详解】①连接NP ,MP .在△ANP 与△AMP 中,∵AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩,∴△ANP ≌△AMP ,则∠CAD=∠BAD ,故AD 是∠BAC 的平分线,故此选项正确;②∵在△ABC 中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确; ③∵∠1=∠B=30°,∴AD=BD ,∴点D 在AB 的中垂线上,故此选项正确; ④∵在Rt △ACD 中,∠2=30°,∴CD=12AD ,∴BC=BD +CD=AD +12AD=32AD ,S △DAC =12AC•CD=14AC•AD ,∴S △ABC =12AC•BC=12AC•32AD=34AC•AD ,∴S △DAC :S △ABC =1:3,故此选项正确. 故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.14.正比例函数5y x =-的图像经过第______________________象限.【答案】二、四【分析】根据正比例函数的图象与性质解答即可.【详解】解:∵﹣5<0,∴正比例函数5y x =-的图像经过第二、四象限.故答案为:二、四.【点睛】本题考查了正比例函数的图象与性质,属于应知应会题型,熟练掌握基本知识是解题的关键. 15.若13x -+在实数范围内有意义,则x 的取值范围是 ____________. 【答案】x<-3【解析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】解:依题意得:()30x -+>,解得3x <-.故选答案为3x <-.【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0,在本题中,()3x -+是分式的分母,不能等于零.16.在△ABC 中,AB =AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,连接BD ,若∠ADE =40°,则∠DBC =_____.【答案】15°.【解析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE=∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD,∠BDE=∠ADE,∵∠ADE=40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB=AC,∴∠ABC=118050652︒-︒=︒,∴∠DBC=∠ABC-∠ABD=15︒.故答案为:15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.17.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为_______ 米. 【答案】3.4×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000034=3.4×10-1,故答案为:3.4×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题18.如图①,△ABC是等边三角形,点P是BC上一动点(点P与点B、C不重合),过点P作PM∥AC交AB于M,PN∥AB交AC于N,连接BN、CM.(1)求证:PM+PN=BC;(2)在点P的位置变化过程中,BN=CM是否成立?试证明你的结论;(3)如图②,作ND∥BC交AB于D,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).【答案】(1)见解析;(2)结论成立,理由见解析;(3)见解析【分析】(1)先证明△BMP,△CNP是等边三角形,再证明△BPN≌△MPC,从而PM=PB,PN=PC,可得PM+PN=BC;(2)BN=CM总成立,由(1)知△BPN≌△MPC,根据全等三角形的性质可得结论;(3)作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF即可.【详解】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∵PM∥AC,PN∥AB,∴∠BPM=∠ACB=60°,∠CPN=∠ABC=60°,∴△BMP,△CNP是等边三角形,∴∠BPM=∠CPN=60°,PN=PC,PN=PC,∴∠BPN=∠MPC,∴△BPN≌△MPC,∴PM=PB,PN=PC,∵BP+PC=BC,∴PM+PN=BC;(2)BN=CM总成立,理由:由(1)知△BPN≌△MPC,∴BN=CM;(3)解:如图③即为所求.作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF,作直线AH⊥BC交BC于H,同(1)可证△AND,△AME,△BPM,△CEF都是等边三角形,∴D与N,M与E,B与C关于AH对称.∴BM=CE,∴BM=CF,∴P与F关于AH对称,∴所做图形是轴对称图形.【点睛】本题属于三角形综合题,考查了等边三角形的性质与判定,全等三角形的判定和性质,轴对称图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.计算(1)4(a ﹣b )2﹣(2a+b )(2a ﹣b ).(2)先化简,再求值(a+2﹣342a a --)÷2692a a a -+-,其中a =1 【答案】(1)﹣8ab+5b 2;(2)3a a -,﹣12. 【分析】(1)先计算完全平方式和平方差公式,再去括号、合并即可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】(1)原式=4(a 2﹣2ab+b 2)﹣(4a 2﹣b 2)=4a 2﹣8ab+4b 2﹣4a 2+b 2=﹣8ab+5b 2;(2)原式=(243422a a a a -----)÷2(3)2a a -- =232a a a --•22(3)a a -- =(3)2a a a --•22(3)a a -- =3a a -, 当a =1时, 原式=113-=﹣12. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.先化简再求值:求2244132++--++x x x x x x 的值,其中12x =-. 【答案】221x -,83- 【分析】先把分式的分子分母分解因式,然后约分化简,注意运算的结果要化成最简分式或整式,再把给定的值代入求值. 【详解】2244132++--++x x x x x x ()()()22112+=--++x x x x x 211+=--+x x x x。

〖汇总3套试卷〗洛阳市2018年八年级上学期期末统考数学试题

〖汇总3套试卷〗洛阳市2018年八年级上学期期末统考数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若四边形ABCD 中,∠A :∠B :∠C :∠D =1:4:2:5,则∠C+∠D 等于( )A .90°B .180°C .210°D .270° 【答案】C【分析】利用四边形内角和为360︒解决问题即可.【详解】解:∵∠A :∠B :∠C :∠D =1:4:2:5,∴∠C+∠D =360︒×251425++++=210︒, 故选:C .【点睛】本题考查四边形内角和定理,解题的关键是熟练掌握基本知识,属于中考常考题型.2.若一个多边形的各内角都等于140°,则该多边形是 ( )A .五边形B .六边形C .八边形D .九边形 【答案】D【分析】先求得每个外角的度数,然后利用360度除以外角的底数即可求解.【详解】每个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=1.故选:D .【点睛】考查了多边形的内角与外角.解题关键利用了任意多边形的外角和都是360度.3.一组数据3、-2、0、1、4的中位数是( )A .0B .1C .-2D .4 【答案】B【分析】将这组数据从小到大重新排列后为-2、 0、1、3、4;最中间的那个数1即中位数.【详解】解:将这组数据从小到大重新排列后为-2、 0、1、3、4;最中间的那个数1即中位数. 故选:B【点睛】本题考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.4.若a m =8,a n =16,则a m+n 的值为( )A .32B .64C .128D .256 【答案】C【分析】逆用同底数幂的乘法公式可得,再整体代入求值即可.【详解】当a m =8,a n =16时,816128m n m n a a a +=⋅=⨯=,故选C.【点睛】计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.5.如图,AD 是ABC ∆的中线,E ,F 分别是AD 和AD 延长线上的点,连接BF ,CE ,且CE AD ⊥.BF AD ⊥.有下列说法:①CE BF =;②ABD ∆和ACD ∆的面积相等;③BAD CAD ∠=∠;④BDF CDE ∆∆≌.其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】先利用AAS 证明△BDF ≌△CDE ,则即可判断①④正确;由于AD 是△ABC 的中线,由于等底同高,那么两个三角形的面积相等,可判断②正确;不能判断BAD CAD ∠=∠,则③错误;即可得到答案.【详解】解:∵CE AD ⊥,BF AD ⊥,∴∠F=∠CED=90°,∵AD 是ABC ∆的中线,∴BD=CD ,∵∠BDF=∠CDE ,∴△BDF ≌△CDE (AAS ),故④正确;∴BF=CE ,故①正确;∵BD=CD ,∴ABD ∆和ACD ∆的面积相等;故②正确;不能证明BAD CAD ∠=∠,故③错误;∴正确的结论有3个,故选:C.【点睛】本题考查了全等三角形判定和性质,以及三角形中线的性质,解题的关键是证明△BDF ≌△CDE . 6.如图,在ABC ∆中,40A ∠=︒,点D 是ABC ∠和ACB ∠角平分线的交点,则BDC ∠等于( )A .80B .100C .110D .120【答案】C 【分析】根据三角形的内角和定理和角平分线的定义,得到70DBC DCB ∠+∠=︒,然后得到答案.【详解】解:∵在ABC ∆中,40A ∠=︒,∴18040140ABC ACB ∠+∠=︒-︒=︒,∵BD 平分∠ABC ,DC 平分∠ACB , ∴11=,22DBC ABC DCB ACB ∠∠∠=∠, ∴1()702DBC DCB ABC ACB ∠+∠=⨯∠+∠=︒, ∴18070110BDC =︒-︒=︒∠;故选:C.【点睛】本题考查了三角形的内角和定理和角平分线的定义,解题的关键是熟练掌握所学的定理和定义进行解题,正确得到70DBC DCB ∠+∠=︒.7.在△ABC 中,若∠A =80°,∠B =30°,则∠C 的度数是( )A .70°B .60°C .80°D .50°【答案】A【分析】根据三角形的内角和定理,即可求出答案.【详解】解:∵∠A =80°,∠B =30°,∴180803070C ∠=︒-︒-︒=︒,故选:A .【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于180°. 8.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 【答案】A 【分析】x 的18即18x ,不超过1是小于或等于1的数,由此列出式子即可. 【详解】“x 的18与x 的和不超过1”用不等式表示为18x+x ≤1.故选A .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.9.某小组长统计组内1人一天在课堂上的发言次数分别为3,3,0,4,1.关于这组数据,下列说法错误的是( )A .众数是3B .中位数是0C .平均数3D .方差是2.8 【答案】B【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A. 3,3,0,4,1众数是3,此选项正确;B. 0,3,3,4,1中位数是3,此选项错误;C. 平均数=(3+3+4+1)÷1=3,此选项正确;D. 方差S 2=15[(3−3)2+(3−3)2+(3−0)2+(3−4)2+(3−1)2]=2.8,此选项正确; 故选B【点睛】本题考查了方差, 加权平均数, 中位数, 众数,熟练掌握他们的概念是解决问题的关键10.微信已成为人们的重要交流平台,以下微信表情中,不是轴对称图形的是( )A .B .C .D . 【答案】C【解析】根据轴对称的概念作答:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不符合题意.故选:C .【点睛】本题主要考查了轴对称的概念,解题关键是掌握轴对称的概念并能找到对称轴.二、填空题11.如图,//a b ,若1100∠=︒,则2∠的度数是__________.【答案】80︒【分析】根据平行线的性质得出13∠=∠,然后利用2,3∠∠互补即可求出2∠的度数. 【详解】∵//a b13100∴∠=∠=︒2180318010080∴∠=︒-∠=︒-︒=︒故答案为:80︒ .【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.12.如图,扶梯AB 的坡比为4:3,滑梯CD 的坡比为1:2,若30AE BC ==米,一男孩经扶梯AB 走到滑梯的顶部BC ,然后从滑梯CD 滑下,共经过了_____米.【答案】(80405)+【分析】根据两个坡度比求出BE 和DF ,再利用勾股定理求出AB 和CD ,最后加上BC 就是经过的路程长.【详解】解:∵AB 的坡度是4:3, ∴43BE AE =, ∵30AE =,则4303BE =, ∴40BE =, ∵CD 的坡度是1:2, ∴12CF DF =, ∵40CF BE ==,则4012DF =, ∴80DF =, 根据勾股定理,2222304050AB AE BE +=+=,CD ===503080AB BC CD ++=++=+故答案是:80+【点睛】本题考查解直角三角形的实际应用,解题的关键是抓住坡度的比,利用这个关系去解直角三角形. 13.因式分解:3222472x x x -+=__________.【答案】2x (x -6)2【分析】先提公因式2x ,再利用完全平方公式分解即可.【详解】3222472x x x -+=22(1236)x x x -+=22(6)x x -,故答案为:22(6)x x -. 【点睛】此题考查整式的因式分解,正确掌握因式分解的方法:先提公因式,再按照公式法分解,根据每个整式的特点选择恰当的因式分解的方法是解题的关键 .14.化简:226()4a b b a⋅=__________. 【答案】9b .【分析】先计算商的乘方,然后根据分式的约分的方法可以化简本题. 【详解】226()4a b b a ⋅=2223694a b b b a=. 故答案为:9b .【点睛】本题考查了约分,解题的关键是明确分式约分的方法.15_____.【答案】16.分式32x x --与32x-的差为1,则x 的值为____. 【答案】1【分析】先列方程,观察可得最简公分母是(x−2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后再进行检验.【详解】解:根据题意得,31 322xx x--=--,方程两边同乘(x−2),得3−x+3=x−2,解得x=1,检验:把x=1代入x−2=2≠0,∴原方程的解为:x=1,即x的值为1,故答案为:1.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.17.在平行四边形ABCD 中,BC边上的高为4 ,AB=5 ,25AC=,则平行四边形ABCD 的周长等于______________ .【答案】12或1【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD中,BC边上的高为4,AB=5,AC=25,在Rt△ACE中,由勾股定理可知:2222(25)42CE AC AE,在Rt△ABE中,由勾股定理可知:2222BE AB AE543=-=-=,∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=1;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25在Rt△ACE中,由勾股定理可知:2222(25)42CE AC AE,在Rt△ABE中,由勾股定理可知:2222BE AB AE543=--=,∴BC=BE-CE=3-2=1,∴平行四边形ABCD 的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD 的周长等于12或1.故答案为:12或1.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.三、解答题18.在等边ABC 中,点E 是AB 上的动点,点E 与点A 、B 不重合,点D 在CB 的延长线上,且EC ED =. ()1如图1,若点E 是AB 的中点,求证:BD AE =;()2如图2,若点E 不是AB 的中点时,()1中的结论“BD AE =”能否成立?若不成立,请直接写出BD 与AE 数量关系,若成立,请给予证明.【答案】(1)证明见解析;(2)AE DB =,理由见解析.【分析】()1由等边三角形的性质得出AE BE =,BCE 30∠=,再根据,得出D BCE 30∠∠==,再证出D DEB ∠∠=,得出DB BE =,从而证出AE DB =;()2作辅助线得出等边三角形AEF ,得出AE EF =,再证明三角形全等,得出DB EF =,证出AE DB =.【详解】()1证明:ABC 是等边三角形,ABC ACB 60∠∠∴==,点E 是AB 的中点,CE ∴平分ACB ∠,AE BE =,BCE 30∠∴=,ED EC =,D BCE 30∠∠∴==.ABC D BED ∠∠∠=+,BED 30∠∴=,D BED ∠∠∴=,BD BE ∴=.AE DB ∴=.()2解:AE DB =;理由:过点E 作EF //BC 交AC 于点F.如图2所示:AEF ABC ∠∠∴=,AFE ACB ∠∠=. ABC 是等边三角形,ABC ACB A 60∠∠∠∴===,AB AC BC ==,AEF ABC 60∠∠∴==,AFE ACB 60∠∠==,即AEF AFE A 60∠∠∠===,AEF ∴是等边三角形.DBE EFC 120∠∠∴==,D BED FCE ECD 60∠∠∠∠+=+=,DE EC =,D ECD ∠∠∴=,BED ECF ∠∠∴=.在DEB 和ECF 中,DEB ECF DBE EFC DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,DEB ∴≌()ECF AAS ,DB EF ∴=,AE BD ∴=.【点睛】本题考查了等边三角形的性质与判定、三角形的外角以及全等三角形的判定与性质;证明三角形全等是解题的关键.19.如图,在Rt ABC ∆中,090C ∠=.(1)作ABC ∠的角平分线BD 交AC 于点D ;(要求:尺规作图,保留作图痕迹,不写作法)(2)若3,5CD AD ==,过点D 作DE AB ⊥于E ,求AE 的长.【答案】 (1)见解析;(2)AE=1.【分析】(1)直接利用角平分线的作法作出BD 即可;(2) 利用角平分线的性质及勾股定理即可求得答案.【详解】解:(1)∠ABC 的角平分线BD 如图所示;(2)如图,∵BD 平分∠ABC , DE ⊥AB ,∠C=90°,∴3CD DE ==,∵5AD =, ∴2222534AE AD DE =-=-=.【点睛】本题主要考查了角平分线的作法以及角平分线的性质、勾股定理等知识,正确掌握角平分线的作法是解题关键. 20.先化简,再求值:22144111x x x x -+⎛⎫-÷ ⎪--⎝⎭,并从1-,0,1,2这四个数中取一个合适的数作为x 的值代入求值.【答案】12x x +-;当0x =时,值为12-. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用分式有意义的条件得出符合分式的x 的值,代入计算可得.【详解】解:原式211(2)11(1)(1)x x x x x x --⎛⎫=-÷ ⎪--+-⎝⎭ 22(1)(1)1(2)x x x x x -+-=⋅-- 12x x +=- 为使分式有意义,则有10x +≠,10x -≠,20x -≠,1x ≠,1x ≠-,2x ≠,此时,取0x =当0x =时,原式1122x x +==-- 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及因式分解的应用,注意取合适的值时,要使分式有意义.21.如图,在平面直角坐标系中,ABC ∆三个顶点坐标分别为()1,6A -,()5,3B -,()3,1C -.(1)ABC ∆关于y 轴对称的图形111A B C ∆(其中1A ,1B ,1C 分别是A ,B ,C 的对称点),请写出点1A ,1B ,1C 的坐标;(2)若直线l 过点()1,0,且直线//l y 轴,请在图中画出ABC ∆关于直线l 对称的图形222A B C ∆(其中2A ,2B ,2C 分别是A ,B ,C 的对称点,不写画法),并写出点2A ,2B ,2C 的坐标;【答案】(1)()11,6A ,()15,3B,()13,1C ;(2)图详见解析,()23,6A ,()27,3B ,()25,1C 【分析】(1)由题意利用作轴对称图形的方法技巧作图并写出点1A ,1B ,1C 的坐标即可;(2)根据题意作出直线l ,并利用作轴对称图形的方法技巧画出ABC ∆关于直线l 对称的图形222A B C ∆以及写出点2A ,2B ,2C 的坐标即可.【详解】解,(1)作图如下:由图可知()11,6A ,()15,3B,()13,1C ; (2)如图所示:由图可知222A B C ∆为所求:()23,6A ,()27,3B ,()25,1C .【点睛】本题考查轴对称变换,熟练掌握并利用关于y 轴对称的点的坐标特点是解答此题的关键.22.(1)计算:(32126; (2)解方程组:125x y x y +=⎧⎨-=⎩①②. 【答案】(1)3(2)21x y =⎧⎨=-⎩. 【分析】(1)利用完全平方公式,根据二次根式得运算法则计算即可得答案;(2)利用加减消元法解方程组即可得答案.【详解】(1)原式=3+3162⨯=4+23﹣3=4+3.(2)125 x yx y+=⎧⎨-=⎩①②①+②得3x=6,解得:x=2,把x=2代入①得2+y=1,解得:y=﹣1,∴方程组的解为21 xy=⎧⎨=-⎩.【点睛】本题考查了二次根式的运算和解二元一次方程组,熟练掌握二次根式得运算法则及加减法解二元一次方程组是解题关键.23.如图(1),一架云梯AB斜靠在一竖直的墙上,云梯的顶端A距地面15米,梯子的长度比梯子底端B 离墙的距离大5米.(1)这个云梯的底端B离墙多远?(2)如图(2),如果梯子的顶端下滑了8m(AC的长),那么梯子的底部在水平方向右滑动了多少米?【答案】(1)这个云梯的底端B离墙20米;(2)梯子的底部在水平方向右滑动了4米.【解析】(1)由题意得OA=15米,AB-OB=5米,根据勾股定理OA2+OB2=AB2,可求出梯子底端离墙有多远;(2)由题意得此时CO=7米,CD=AB=25米,由勾股定理可得出此时的OD,继而能和(1)的OB进行比较.【详解】解:(1)设梯子的长度为米,则云梯底端B离墙为米。

{3套试卷汇总}2018年洛阳市八年级上学期期末经典数学试题

{3套试卷汇总}2018年洛阳市八年级上学期期末经典数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,AD 是ABC 的角平分线,将ABD △沿AD 所在直线翻折,点B 落在边AC 上的点E 处.若,20AB BD AC C +=∠=︒,则∠B 的大小为( )A .80°B .60°C .40°D .30°【答案】C 【分析】根据翻折的性质可得AE=AB ,DE=BD ,∠AED=∠B ,根据AB+BD=AC 可得DE=CE ,根据等腰三角形的性质及外角性质可得∠AED 的度数,即可得答案.【详解】∵将ABD △沿AD 所在直线翻折,点B 落在边AC 上的点E 处.∴AE=AB ,DE=BD ,∠AED=∠B ,∵AB+BD=AC ,AC=AE+CE ,∴DE=CE ,∴∠C=∠CDE ,∵∠C=20°,∠ADE=∠C+∠CDE ,∴∠ADE=2∠C=40°,∴∠B=40°,故选:C .【点睛】本题考查翻折的性质、等腰三角形的性质及三角形外角的性质,翻折前后两个图形全等,对应边相等,对应角相等;三角形的一个外角等于和它不相邻的两个内角的和;等腰三角形的两个底角相等;熟练掌握相关性质是解题关键.2.下列命题:①如果0a b +=,那么0a b ;②有公共顶点的两个角是对顶角;③两直线平行,同旁内角互补;④平行于同一条直线的两条直线平行.其中是真命题的个数有( )A .1B .2C .3D .4【答案】B【分析】利用等式的性质、对顶角的定义、平形线的判定及性质分别判断后即可确定正确的选项.【详解】如果0a b +=,那么a b 、互为相反数或0a b ==,①是假命题;有公共顶点的两个角不一定是对顶角,②是假命题;两直线平行,同旁内角互补,由平行公理的推论知,③是真命题;平行于同一条直线的两条直线平行,由平行线的性质知,④是真命题.综上,真命题有2个,故选:B .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m ﹣n 的值是( ) A .1B .2C .3D .4 【答案】D【分析】根据已知将12x y =-⎧⎨=⎩代入二元一次方程组321x y m nx y +=⎧⎨-=⎩得到m ,n 的值,即可求得m-n 的值. 【详解】∵12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩∴3421m n -+=⎧⎨--=⎩ ∴m=1,n=-3m-n=4故选:D【点睛】本题考查了二元一次方程组解的定义,已知二元一次方程组的解,可求得方程组中的参数.4.已知3x y +=,且2x y -=,则代数式22x y -的值等于( )A .2B .3C .6D .12【答案】C【分析】先将22x y -因式分解,再将3x y +=与2x y -=代入计算即可. 【详解】解:22()()326x y x y x y -=+-=⨯=,故答案为:C .【点睛】本题考查了代数式求值问题,涉及了利用平方差公式进行因式分解,解题的关键是熟记平方差公式. 5.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A .80°B .50°C .30°D .20°【答案】D 【详解】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D .考点:平行线的性质;三角形的外角的性质.6.若分式2(1)(2)x x x -+有意义,x 的值可以是( ) A .1B .0C .2D .-2【答案】C【分析】分式有意义的条件是:分母不等于0,据此解答.【详解】由题意知:()()-120x x x +≠,解得:0x ≠,1x ≠,-2x ≠,故选:C .【点睛】本题考查分式有意义的条件,熟悉知识点分母不等于0是分式有意义的条件即可.7.如图,在△ABC 中,AD 为BC 边上的中线,DE 为△ABD 中AB 边上的中线,△ABC 的面积为6,则△ADE 的面积是( )A.1 B.32C.2 D.52【答案】B【分析】根据三角形的中线的性质,得△ADE的面积是△ABD的面积的一半,△ABD的面积是△ABC的面积的一半,由此即可解决问题.【详解】∵AD是△ABC的中线,∴S△ABD=12S△ABC=1.∵DE为△ABD中AB边上的中线,∴S△ADE=12S△ABD=32.故选:B.【点睛】此题考查三角形的面积,三角形的中线的性质,解题的关键是掌握三角形的中线把三角形的面积分成了相等的两部分.8.因式分解(x+y)2﹣2(x2﹣y2)+(x﹣y)2的结果为()A.4(x﹣y)2B.4x2C.4(x+y)2D.4y2【答案】D【分析】利用完全平方公式进行分解即可.【详解】解:原式=[(x+y)﹣(x﹣y)]1,=(x+y﹣x+y)1,=4y1,故选:D.【点睛】此题主要考查了公式法分解因式,关键是掌握完全平方公式a1±1ab+b1=(a±b)1.9.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”.上面两位同学的话能反映出的统计量分别是( )A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【答案】D【分析】根据众数和中位数的概念可得出结论.【详解】一组数据中出现次数最多的数值是众数;将数据从小到大排列,当项数为奇数时中间的数为中位数,当项数为偶数时中间两个数的平均数为中位数;由题可知,小明所说的是多数人的分数,是众数,小英所说的为排在中间人的分数,是中位数.故选为D.【点睛】本题考查众数和中位数的定义,熟记定义是解题的关键.10.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5B.中位数是5C.平均数是6D.方差是3.6【答案】D【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.二、填空题11.若分式31xx+-的值为0,则x的值为___________.【答案】-3【分析】由分式的值为0,则分子为0,分母不为0,可得答案.【详解】因为:分式31xx+-的值为0所以:3010 xx+=⎧⎨-≠⎩解得:3x=-故答案为 3.-【点睛】本题考查的是分式的值为0的条件,即分子为0,分母不为0,熟知条件是关键.12.已知a m=3,a n=2,则a2m﹣n的值为_____.【答案】4.1【解析】分析:首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m-n的值为多少即可.详解:∵a m=3,∴a2m=32=9,∴a 2m-n =292m n a a ==4.1. 故答案为4.1.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.13.如图,在ABC ∆中,ABC ∠,ACB ∠的角平分线交于点O ,连接AO 并延长交BC 于D ,OH BC ⊥于H ,若60BAC ∠︒=,5OH =,则OA =____________.【答案】10【分析】作OE AB ⊥交AB 于E ,由OB 平分ABC ∠,OH BC ⊥,得到5OE OH ==,根据角平分线的定义得到30BAO ∠=︒,根据直角三角形的性质即可得到结论. 【详解】解:作OE AB ⊥交AB 于E ,∵OB 平分ABC ∠,OH BC ⊥,∴5OE OH ==,∵,ABC ACB ∠∠的角平分线交于点O ,∴AO 平分BAC ∠,∵60BAC ∠=︒,∴30BAO ∠=︒,∴210AO OE ==故答案为10【点睛】本题考查了角平分线的性质以及直角三角形中,30角所对边为斜边的一半,灵活运用性质定理是解题的关键.14.计算13-的结果是 ______. 【答案】0 【分析】先计算绝对值、算术平方根,再计算减法即可得. 【详解】解:原式=1133-=0, 【点睛】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序与运算法则及算术平方根、绝对值性质. 15.如果方程组352233x y a x y a+=+⎧⎨+=⎩的解满足3x y +=,则21a +的值为___________.【答案】2-【分析】先利用方程组求出a 的值,再代入求解即可得.【详解】352233x y a x y a +=+⎧⎨+=⎩①② ②2⨯-①得:6(2)x y a a +=-+,即52x y a +=-由题意得:523a -=解得1a =将1a =代入得:2211112a -+=+=故答案为:2-【点睛】本题考查了二元一次方程组的解定义、代数式的化简求值等知识点,掌握理解二元一次方程组的解定义是解题关键.16的平方根是 .【答案】±1.±1.故答案为±1.17.要使分式3 x 2-有意义,则 x 的取值范围是___________. 【答案】x ≠1【分析】根据分式有意义得到分母不为2,即可求出x 的范围. 【详解】解:要使分式3 x 2-有意义,须有x-1≠2,即x≠1,故填:x≠1.【点睛】此题考查了分式有意义的条件,分式有意义的条件为:分母不为2.三、解答题18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式____________________________________(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++=_________.【答案】(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)见解析;(3)1【分析】(1)图2的面积一方面可以看作是边长为(a +b +c )的正方形的面积,另一方面还可以看成是3个边长分别为a 、b 、c 的正方形的面积+2个边长分别为a 、b 的长方形的面积+2个边长分别为a 、c 的长方形的面积+2个边长分别为b 、c 的长方形的面积,据此解答即可;(2)根据多项式乘以多项式的法则计算验证即可;(3)将所求的式子化为:()()22222a a b c b c ab ac bc +++-++=+,然后整体代入计算即得结果.【详解】解:(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)(a +b +c )2=(a +b +c )(a +b +c )=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2=a 2+b 2+c 2+2ab +2ac +2bc ;所以(1)中的等式成立;(3)()()2222221023530a b c a b c ab ac bc ++=++-++=-⨯=.故答案为:1.【点睛】本题是完全平方公式的拓展应用,主要考查了对三数和的完全平方的理解与应用,正确理解题意、熟练掌握完全平方公式是解题的关键.19.已知:如图,在ABC 中,D 为BC 的中点,DE BC ⊥交BAC ∠的平分线于点E ,过点E 作EF AB ⊥于交AB 于,F EC AC ⊥交AC 的延长线于G .求证:BF CG =.【答案】见解析【分析】连接EB 、EC ,利用已知条件证明Rt △BEF ≌Rt △CEG ,即可得到BF =CG .【详解】证明:连接BE 、EC ,∵ED ⊥BC ,D 为BC 中点,∴BE =EC ,∵EF ⊥AB EG ⊥AG ,且AE 平分∠FAG ,∴FE =EG ,在Rt △BFE 和Rt △CGE 中BE CE EF EG ⎧⎨⎩==, ∴Rt △BFE ≌Rt △CGE (HL ),∴BF =CG【点睛】本题考查了角平分线的性质及垂直平分线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20.金堂赵镇某旅馆的客房有三人间和两人间两种,三人间每人每天40元,两人间每人每天50元.国庆节期间,一个48人的外地旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费2160元.求两种客房各租住了多少间?【答案】三人间租住了8间,两人间租住了12间【分析】根据:住在三人间人数+住在二人间人数=总人数,三人间的总费用+二人间总费用=总费用,列出方程组,解方程组即可.【详解】解:设三人间租住了x 间,两人间租住了y 间,根据题意得:32484035022160x y x y +=⎧⎨⨯+⨯=⎩, 解得812x y =⎧⎨=⎩, 答:三人间租住了8间,两人间租住了12间.【点睛】本题考查二元一次方程组的实际应用,准确找出题中的等量关系是解题关键.21.如图,点D 是△ABC 的BC 边上的一点,且∠1=∠2,∠3=∠4,∠BAC=66°, 求∠DAC 的度数.【答案】28°【解析】根据三角形的外角和内角和性质计算即可得出答案.【详解】解:由图和题意可知:∠BAC=180°-∠2-∠3又∠3=∠4=∠1+∠2,∴66°=180°-∠2-(∠1+∠2)∵∠1=∠2∴66°=180°-3∠1,即∠1=38°∴∠DAC=∠BAC-∠1=66°-38°=28°【点睛】本题考查的是三角形,外角定理是三角形中求角度的常用定理,需要熟练掌握.22.如图,在一条东西走向的河的一侧有一村庄C ,该村为了方便村民取水,决定在河边建一个取水点H ,在河边的沿线上取一点B ,使得CH HB ⊥,测得3CB =千米, 1.8HB =千米求村庄C 到河边的距离CH 的长.【答案】村庄C 到河的距离CH 的长为2.4千米【分析】结合图形,直接可利用勾股定理求出答案. 【详解】解:在CHB 中90CHB ∠=︒,3CB =千米, 1.8HB =千米 ∴22CH CB HB =-223 1.8=-=2.4(千米)∴村庄C 到河的距离CH 的长为2.4千米.【点睛】本题考查的是勾股定理的使用,根据题意直接代值计算即可.23.如图,“丰收1号”小麦的试验田是边长为a 米(2)a >的正方形去掉一个边长为2米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(2)a -米的正方形,两块试验田的小麦都收获了500kg .(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?【答案】(1) 丰收2号;(2)22a a +-. 【分析】(1)根据题意可以求得两块试验田的面积,从而可以求得哪种小麦的单位面积产量高; (2)根据“高的单位面积产量除以低的单位面积产量”进行计算求解即可.【详解】(1)“丰收1号”小麦的试验田面积是22(4)a m -,单位面积产量是22500/4kg m a - “丰收2号”小麦的试验田面积是22(2)a m -,单位面积产量是22500/(2)kg m a - 2a >,22(2)0,40a a ∴->->∴224(2)480a a a =---->∴224(2)a a --> ∴25004a <-2500(2)a - 所以“丰收2号”小麦的单位面积产量高.(2)2500(2)a ÷-25004a -=225004(2)500a a -⋅-2(2)(2)(2)a a a -+=-22a a +=- 所以,“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的22a a +-倍. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.24.已知()2219m -=,()3127n +=.(1)若点P 的坐标为(),m n ,请你画一个平面直角坐标系,标出点P 的位置;(2)求出3m n +的算术平方根.【答案】 (1)P(2,2)或P(-1,2);【分析】(1)依据平方根的定义、立方根的定义可求得m 和n 的值,得到点P 的坐标,最后画出点P 的坐标;(2)分别代入计算即可.【详解】(1)2(21)9m -=,∴213m -=±,即213m -=或213m -=-,∴1221m m ==-,,∵()3127n +=, 13n +=,2n =,∴1(12P -,),2(22P ,); 所求作的P 点如图所示:(2)当22m n ==,时,33228m n +=⨯+=,8的算术平方根是22,当1m =-,2n =时,()33121m n +=⨯-+=-,1-没有算术平方根.所以3m+n 的算术平方根为:22.【点睛】本题考查了立方根与平方根的定义、坐标的确定,此题难度不大,注意掌握方程思想的应用,不要遗漏. 25.已知,如图,//AB CD ,E 是AB 的中点,CE DE =,求证:AC BD =.【答案】见解析【分析】由CE=DE 易得∠ECD=∠EDC ,结合AB ∥CD 易得∠AEC=∠BED ,由此再结合AE=BE ,CE=DE 即可证得△AEC ≌△BED ,由此即可得到AC=BD.【详解】∵CE DE =,∴ECD EDC ∠=∠, ∵//AB CD ,∴AEC ECD ∠=∠,BED EDC ∠=∠,∴AEC BED ∠=∠,又∵E 是AB 的中点,∴AE BE =,在AEC 和BED 中,AE BE AEC BED CE DE =⎧⎪∠=∠⎨⎪=⎩,∴AEC ≌BED .∴AC BD =.【点睛】熟悉“等腰三角形的性质、平行线的性质和全等三角形的判定方法”是解答本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各式中,是分式的有( ) 3x y -,21a x -,1x π+,﹣3a b ,12x y +,12x y +,2x x -. A .5个B .4个C .3个D .2个 【答案】B 【解析】3x y -是多项式,是整式;21a x -是分式;1x π+是整式;3a b 是分式;12x y +是分式;12x y +,是整式;2x x -是分式,所以分式共有4个, 故选B.2.如图,ABC 为等边三角形,D 为BC 延长线上一点,CE=BD ,CE 平分ACD ∠,下列结论:(1)BAC DAE ∠=∠;(2) AE AD =;(3)ADE 是等边三角形,其中正确的个数为( )A .0个B .1个C .2个D .3个【答案】D 【分析】根据等边三角形的性质得出AB AC =,60BAC B ACB ∠=∠=∠=︒,求出ACE B ∠=∠,根据SAS 可证明ABD ACE ≅即可证明BAC DAE ∠=∠与 AE AD =;根据全等三角形的性质得出AD AE =,CAE BAD ∠=∠,求出60DAE BAC ︒∠=∠=,即可判断出ADE 是等边三角形.【详解】ABC 是等边三角形,AB AC ∴=,60BAC B ACB ∠=∠=∠=︒,120ACD ∴∠=︒,CE 平分ACD ∠,1602ACE ACD ∴∠=∠=︒, ACE B ∴∠=∠,在ABD △和ACE △中AB AC B ACE BD CE =⎧⎪∠=∠⎨⎪=⎩()ABD ACE SAS ∴≅,AD AE ∴=,故(2)正确;∴CAE BAD ∠=∠∴=60DAE BAC ∠=∠︒,故(1)正确;∴ADE 是等边三角形,故(3)正确.∴正确有结论有3个.故选:D .【点睛】本题主要考查了全等三角形的判定与性质以及等边三角形的性质,要灵活运用等边三角形的三边相等、三个角相等的性质.3.下列命题是真命题的是( )A .在一个三角形中,至多有两个内角是钝角B .三角形的两边之和小于第三边C .在一个三角形中,至多有两个内角是锐角D .在同一平面内,垂直于同一直线的两直线平行【答案】D【分析】正确的命题是真命题,根据定义依次判断即可.【详解】在一个三角形中,至多有一个内角是钝角,故A 不是真命题;三角形的两边之和大于第三边,故B 不是真命题;在一个三角形中,至多有三个内角是锐角,故C 不是真命题;在同一平面内,垂直于同一直线的两直线平行,故D 是真命题,故选:D.【点睛】此题考查真命题的定义,正确理解真命题的定义及会判断事情的正确与否是解题的关键.4.把式子()()()()()2482562121212121++++⋅⋅⋅+化筒的结果为( )A .102421-B .102421+C .51221-D .51221+ 【答案】C 【分析】添一项2-1后,与第一个括号里的数组成平方差公式,依次这样计算可得结果.【详解】解:(2+1)(22+1)(24+1)(28+1)…(2256+1),=(2-1)(2+1)(22+1)(24+1)(28+1)…(2256+1),=(22-1)(22+1)(24+1)(28+1)…(2256+1),=(24-1)(24+1)(28+1)…(2256+1),=(28-1)(28+1)…(2256+1),=(216-1)(216+1)…(2256+1),…=2512-1.故选:C【点睛】本题考查了利用平方差公式进行计算,熟练掌握平方差公式是解题的关键.5.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:读书时间(小7 8 9 10 11时)学生人数 6 10 9 8 7则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,8【答案】A【分析】根据表格中的数据可知该班有学生40人,根据中位数定义可求得中位数,再根据读书时间最多的人数根据众数的概念即可求得众数.【详解】由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选A.【点睛】本题考查了众数、中位数,明确题意,熟练掌握中位数、众数的概念以及求解方法是解题的关键. 6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【答案】A【分析】根据全等三角形的性质求出∠D和∠E,再根据三角形内角和定理即可求出∠EAD的度数.【详解】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B =∠D =40°,∠E =∠C =75°,∴∠EAD =180°﹣∠D ﹣∠E =65°,故选:A .【点睛】本题主要考查了全等三角形的性质及三角形内角和,掌握全等三角形的性质是解题的关键.7.如图,“士”所在位置的坐标为()12--,,“相”所在位置的坐标为()22-,,那么“炮”所在位置的坐标为( )A .()21-,B .()31-,C .()21-,D .()31-,【答案】B 【分析】由士和相的坐标推得坐标原点所在的位置,即可得出“炮“所在的位置坐标.【详解】解:根据“士”所在位置的坐标为(−1,−2),“相”所在位置的坐标为(2,−2)可建立如图所示坐标系,∴“炮”所在位置为(−3,1),故选:B .【点睛】本题考查了坐标确定位置的知识,解答本题的关键是要建立合适的坐标系.8.如图,平行四边形ABCD 中,AB = 6cm ,AD=10 cm ,点P 在AD 边上以每秒1 cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4 cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止 (同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有( )A .1 次B .2次C .3次D .4次【答案】C【分析】易得两点运动的时间为12s,PD=BQ,那么以P、D、Q、B四点组成平行四边形平行四边形,列式可求得一次组成平行四边形,算出Q在BC上往返运动的次数可得平行的次数.【详解】解:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次:12﹣t=12﹣4t,∴t=0,此时两点没有运动,∴点Q以后在BC上的每次运动都会有PD=QB,∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选C.【点睛】本题考查列了矩形的性质和平行线的性质. 解决本题的关键是理解以P、D、Q、B四点组成平出四边形的次数就是Q 在BC上往返运动的次数.9.如图为八个全等的正六边形(六条边相等,六个角相等)紧密排列在同一平面上的情形.根据图中标示的各点位置,下列三角形中与△ACD全等的是()A.△ACF B.△AED C.△ABC D.△BCF【答案】B【解析】试题分析:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,在△ACD和△AED中,{AD AD AE AC DE DC===,∴△ACD≌△AED(SSS),故选B.考点:全等三角形的判定.10.点P(3,﹣2)关于x 轴的对称点P′的坐标是( )A .(﹣3,2)B .(3,﹣2)C .(﹣3,﹣2)D .(3,2) 【答案】D【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点P(3,﹣2)关于x 轴的对称点P′的坐标是(3,2).故选D .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题11.已知关于x 的方程1122ax x x -=--无解,则a =__________. 【答案】0或1【分析】根据分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,分类讨论当a=0时与a ≠0时求出答案. 【详解】解:1122ax x x -=-- 去分母得:11ax -= ,即:2ax = ,分情况讨论:①当整式方程无解时,0a = ,此时分式方程无解;②当分式方程无解时,即x=2,此时0a ≠,则22x a == , 解得:1a = ,故当0a =或者1a =时分式方程无解;故答案为:0或1【点睛】本题主要考查了分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,正确掌握解分式方程的步骤是解题的关键.12.如图,直线y=kx+b 与直线y=2x+6关于y 轴对称且交于点A ,直线y=2x+6交x 轴于点B ,直线y=kx+b 交x 轴于点C ,正方形DEFG 一边DG 在线段BC 上,点E 在线段AB 上,点F 在线段AC 上,则点G 的坐标是____.【答案】(32,0).【分析】根据轴对称求得直线AC的解析式,再根据正方形的性质以及轴对称的性质设G(m,0),则F(m,2m),代入直线AC的解析式,得到关于m的方程,解得即可.【详解】解:由直线y=2x+6可知A(0,6),B(﹣3,0).∵直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,∴直线AC为y=﹣2x+6,设G(m,0),∵正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,∴F(m,2m),代入y=﹣2x+6得:2m=﹣2m+6,解得:m32 =,∴G的坐标为(32,0).故答案为:(32,0).【点睛】本题考查了一次函数图象与几何变换,正方形的性质,对称轴的性质,表示出F点的坐标是解题的关键.13.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=____.【答案】67°【解析】根据全等三角形的性质,两三角形全等,对应角相等,因为角α与67°的角是对应角,因此α67=︒,故答案为67°.14.如图,∠BAC=30°,AB=4,点P是射线AC上的一动点,则线段BP的最小值是_____.【答案】1【分析】先根据垂线段最短得出,当BP AC ⊥时,线段BP 的值最小,再根据直角三角形的性质(直角三角形中,30所对直角边等于斜边的一半)即可得出答案.【详解】由垂线段最短得:当BP AC ⊥时,线段BP 的值最小30,4BAC AB ∠=︒= 122BP AB ∴== 故答案为:1.【点睛】本题考查了垂直定理:垂线段最短、直角三角形的性质,根据垂线段最短得出线段BP 最小时BP 的位置是解题关键.15.因式分解:()224a b b --=______.【答案】()()3a b a b -+【分析】利用平方差公式进行因式分解.【详解】解:()()()()()224223a b b a b b a b b a b a b --=-+--=+-.故答案是:()()3a b a b -+.【点睛】本题考查因式分解,解题的关键是掌握因式分解的方法.16.如图在Rt ABC ∆中,90ACB ∠=︒,10AB cm =,6AC cm =,分别以AB AC BC 、、为直径作半圆,如图阴影部分面积记为1S 、2S ,则12S S +=__________.【答案】242cm【分析】先根据勾股定理得出以BC 为直径的半圆面积+以AC 为直径的半圆面积=以AB 为直径的半圆面积,再根据12S S +=以BC 为直径的半圆面积+以AC 为直径的半圆面积+ABC S ∆-以AB 为直径的半圆面积,进而推出12S S +=ABC S ∆即得.【详解】∵在Rt ABC ∆中90ACB ∠=︒,10AB cm =,6AC cm =∴8BC cm == ∴11682422ABC S AC BC ∆=••=⨯⨯=2cm ∴以AB 为直径的半圆面积为:2211012522222AB πππ⎛⎫⎛⎫••=⨯⨯= ⎪ ⎪⎝⎭⎝⎭2cm 以BC 为直径的半圆面积为:2218182222BC πππ⎛⎫⎛⎫••=⨯⨯= ⎪ ⎪⎝⎭⎝⎭2cm 以AC 为直径的半圆面积为:22161922222AC πππ⎛⎫⎛⎫••=⨯⨯= ⎪ ⎪⎝⎭⎝⎭2cm ∴以BC 为直径的半圆面积+以AC 为直径的半圆面积=以AB 为直径的半圆面积∵12S S +=以BC 为直径的半圆面积+以AC 为直径的半圆面积+ABC S ∆-以AB 为直径的半圆面积 ∴12S S +=ABC S ∆∴1224S S +=2cm故答案为:224cm .【点睛】本题考查了勾股定理的应用,熟练掌握结论“直角三角形以两直角边为边的相似几何图形面积之和等于斜边上同形状图形面积”是快速解决选择填空题的有效方法.17.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为________. 【答案】k >﹣2且k≠﹣1【分析】先解分式方程,然后根据分式方程解的情况列出不等式即可求出结论. 【详解】解:211x k x x-=-- ()21--=-x x k解得:x=2+k∵关于x 的分式方程211x k x x-=--的解为正数, ∴010x x >⎧⎨-≠⎩∴20210k k +>⎧⎨+-≠⎩解得:k >﹣2且k≠﹣1故答案为:k >﹣2且k≠﹣1.【点睛】此题考查的是根据分式方程根的情况求参数的取值范围,掌握分式方程的解法和增根的定义是解决此题的关键.三、解答题18.计算:-14+32--(π-3.14) 0+6÷2 【答案】0【分析】首先计算乘方,然后计算除法,最后从左向右依次计算,求出算式的值是多少即可.【详解】原式 =-1+2-3-1 +3= 0【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.如图,ABC ∆是等边三角形,D 、E 、F 分别是AB 、BC 、AC 上一点,且60DEF ∠=︒. (1)若150∠=︒,求2∠;(2)如图2,连接DF ,若//DF BC ,求证:13∠=∠.【答案】(1)250∠=;(2)见解析【分析】(1)根据等边三角形的性质角度运算即可得出12DEB DEB ∠+∠=∠+∠,从而得到21∠=∠即可;(2)由平行可知FDE DEB =∠∠,再由三角形的内角和运算即可得.【详解】解:(1)∵ABC ∆是等边三角形.∴60B A C ∠=∠=∠=,∵1180B DEB ∠+∠+∠=︒,2180DEB DEF ∠+∠+∠=︒,60DEF ∠=︒∴12DEB DEB ∠+∠=∠+∠,∴2150∠=∠=.(2)∵//DF BC ,∴FDE DEB =∠∠,∵1180B DEB ∠+∠+∠=︒,3180FDE DEF ∠+∠+∠=︒ ,60B ∠=︒,60DEF ∠=︒ ,∴13∠=∠.【点睛】本题考查了等边三角形的性质及三角形内角和,解题的关键是掌握相应的性质,并对角度进行运算. 20.(1)仔细观察如图图形,利用面积关系写出一个等式:a 2+b 2= . (2)根据(1)中的等式关系解决问题:已知m+n =4,mn =﹣2,求m 2+n 2的值.(3)小明根据(1)中的关系式还解决了以下问题:“已知m+1m =3,求m 2+21m 和m 3+31m的值” 小明解法:222211m m 2327m m ⎛⎫+=+-=-= ⎪⎝⎭23231111m m m m m m m m ⎛⎫⎛⎫++=+++ ⎪⎪⎝⎭⎝⎭32321111m m m m 37318m m m m ⎛⎫⎛⎫⎛⎫∴+=++-+=⨯-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 请你仔细理解小明的解法,继续完成:求m 5+m ﹣5的值【答案】(1)(a+b )2﹣2ab ;(2)20;(3)1【分析】(1)观察原式为阴影部分的面积,再用大矩形的面积减去两个空白矩形的面积也可表示阴影部分面积,进而得出答案;(2)运用(1)中的结论进行计算便可把原式转化为(m+n)2﹣2mn 进行计算;(3)把原式转化为(m 2+m ﹣2)(m 3+m ﹣3)﹣(m+m ﹣1)进行计算.【详解】解:(1)根据图形可知,阴影部分面积为a 2+b 2,阴影部分面积可能表示为(a+b)2﹣2ab ,∴a 2+b 2=(a+b)2﹣2ab ,故答案为:(a+b)2﹣2ab ;(2)m 2+n 2=(m+n)2﹣2mn =42﹣2×(﹣2)=20;(3)m 5+m ﹣5=(m 2+m ﹣2)(m 3+m ﹣3)﹣(m+m ﹣1)=7×18﹣3=1.【点睛】本题主要考查了转化的思想,乘法公式的应用,模仿样例,灵活进行整式的恒等变形是解决本题的关键. 21.已知在平面直角坐标系中有三点A (﹣2,1)、B (3,1)、C (2,3).请回答如下问题:(1)在坐标系内描出点A 、B 、C 的位置,并求△ABC 的面积;。

最新洛阳市嵩县八年级上期末数学试卷(有答案)-优质版

最新洛阳市嵩县八年级上期末数学试卷(有答案)-优质版

2017-2018学年河南省洛阳市嵩县八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.若一个数的平方根是±8,则这个数的立方根是()A.±2B.±4C.2D.42.下列运算,正确的是()A.a2•a3=a6B.(a2)3=a6C.a10÷a2=a5D.a+a3=a43.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm4.等边三角形的边长为2,则该三角形的面积为()A.B.C.D.35.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()A.12米B.13米C.14米D.15米6.如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为()A.65°B.60°C.55°D.45°7.如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为()A.150cm2B.200cm2C.225cm2D.无法计算8.武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A.九(1)班的学生人数为40B.m的值为10C.n的值为20D.表示“足球”的扇形的圆心角是70°9.如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为()A.10B.6C.4D.不确定10.如图,在△ABC中,∠A=36°,AB=AC,CD、BE分别是∠ACB,∠ABC的平分线,CD、BE 相交于F点,连接DE,则图中全等的三角形有多少组()A.3B.4C.5D.6二、填空题(每小题3分,共15分)11.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为.12.当a+b=3,x﹣y=1时,代数式a2+2ab+b2﹣x+y的值等于.13.若3x=10,3y=5,则32x﹣y= .14.写出命题:“直角都相等”的逆命题:.15.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管根.三、解答题(本题共八个小题,满分75分)16.(8分)计算(1)(2)化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6 17.(9分)在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,写出一个用上述方法产生的密码,并说明理由.18.(9分)如图,一块大的三角板ABC,D是AB上一点,现要求过点D割出一块小的三角板ADE,使∠ADE=∠ABC,(1)尺规作出∠ADE.(不写作法,保留作图痕迹,要写结论)(2)判断BC与DE是否平行,如果是,请证明.19.(9分)已知:如图,OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB于E,AD=EB.求证:AC=CB.20.(9分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.22.(10分)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.23.(11分)如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.2017-2018学年河南省洛阳市嵩县八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若一个数的平方根是±8,则这个数的立方根是()A.±2B.±4C.2D.4【分析】首先利用平方根的定义求出这个数,然后根据立方根的定义即可求解.【解答】解:∵一个数的平方根是±8,∴这个数为(±8)2=64,故64的立方根是4.故选:D.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.下列运算,正确的是()A.a2•a3=a6B.(a2)3=a6C.a10÷a2=a5D.a+a3=a4【分析】依据同底数幂的乘法法则,幂的乘方法则,同底数幂的除法法则以及合并同类项法则进行判断,即可得到正确结果.【解答】解:A.a2•a3=a5,故本选项错误;B.(a2)3=a6,故本选项正确;C.a10÷a2=a8,故本选项错误;D.a×a3=a4,故本选项错误;故选:B.【点评】本题主要考查了同底数幂的乘法法则,幂的乘方法则,同底数幂的除法法则,解题时注意:幂的乘方,底数不变,指数相乘.3.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【分析】分为两种情况:2cm是等腰三角形的腰或2cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选:A.【点评】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.4.等边三角形的边长为2,则该三角形的面积为()A.B.C.D.3【分析】如图,作CD⊥AB,则CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC中,利用勾股定理,可求出CD的长,代入面积计算公式,解答出即可;【解答】解:作CD⊥AB,∵△ABC是等边三角形,AB=BC=AC=2,∴AD=1,∴在直角△ADC中,CD===,=×2×=;∴S△ABC故选:C.【点评】本题主要考查了等边三角形的性质及勾股定理的应用,根据题意,画出图形可利于解答,体现了数形结合思想.5.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()A.12米B.13米C.14米D.15米【分析】由题意可知消防车的云梯长、地面、建筑物高构成一直角三角形,斜边为消防车的云梯长,根据勾股定理就可求出高度.【解答】解:如图所示,AB=13米,BC=5米,由勾股定理可得,AC===12米.故选:A.【点评】此题考查学生善于利用题目信息构成直角三角形,从而运用勾股定理解题.6.如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为()A.65°B.60°C.55°D.45°【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【解答】解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故选:A.【点评】本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB平分线是解答此题的关键.7.如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为()A.150cm2B.200cm2C.225cm2D.无法计算【分析】小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC2+BC2,对于Rt△ABC,由勾股定理得AB2=AC2+BC2.AB长度已知,故可以求出两正方形面积的和.【解答】解:正方形ADEC的面积为:AC2,正方形BCFG的面积为:BC2;在Rt△ABC中,AB2=AC2+BC2,AB=15,则AC2+BC2=225cm2.故选:C.【点评】本题考查了勾股定理.勾股定理应用的前提条件是在直角三角形中.8.武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A.九(1)班的学生人数为40B.m的值为10C.n的值为20D.表示“足球”的扇形的圆心角是70°【分析】由条形统计图和扇形统计图得到喜欢篮球的人数而后所占的百分比,求出人数,根据人数求出m、n,根据表示“足球”的百分比求出扇形的圆心角.【解答】解:由图①和图②可知,喜欢篮球的人数是12人,占30%,12×30%=40,则九(1)班的学生人数为40,A正确;4÷40=10%,则m的值为10,B正确;1﹣40%﹣30%﹣10%=20%,n的值为20,C正确;360°×20%=72°,D错误,故选:D.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.9.如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为()A.10B.6C.4D.不确定【分析】利用平行线的性质及角平分线的定义可得出∠AMN=2∠MBE,结合三角形外角的性质即可得出∠MBE=∠MEB,即MB=ME,同理可得出NC=NE,再利用三角形的周长公式即可求出△AMN的周长.【解答】解:∵MN∥BC,∴∠AMN=∠ABC.∵BE平分∠ABC,∴∠ABC=2∠MBE,∴∠AMN=2∠MBE.∵∠AMN=∠MBE+∠MEB,∴∠MBE=∠MEB,∴MB=ME.同理,NC=NE,=AM+ME+EN+AN=AB+AC=10.∴C△AMN故选:A.【点评】本题考查了等腰三角形的判定与性质、平行线的性质、三角形的外角性质以及三角形的周长,利用等腰三角形的性质找出MB=ME、NC=NE是解题的关键.10.如图,在△ABC中,∠A=36°,AB=AC,CD、BE分别是∠ACB,∠ABC的平分线,CD、BE 相交于F点,连接DE,则图中全等的三角形有多少组()A.3B.4C.5D.6【分析】首先根据已知条件,看能得出哪些边和角相等,然后再根据全等三角形的判定方法来判断有多少对全等三角形.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°;∵CD、BE分别平分∠ABC、∠ACB,∴∠ABE=∠ACD=∠EBC=∠DCB=36°;又∵AB=AC,∠A=∠A;∴△ABE≌△ACD;(ASA)①∴BE=CD;又∵BC=BC,∠DCB=∠EBC=36°,∴△DBC≌△ECB;(SAS)②∵DE∥BC,∴∠EDF=∠DEF=36°,又∵∠DBE=∠ECD=36°,DE=DE,∴△DEB≌△EDC;(AAS)③由②得:DB=EC,∠BDC=∠CEB;又∵∠DFB=∠EFC,∴△BFD≌△CFE.(AAS)④∵△ABC中,∠A=36°,AB=AC,∴∠ABC=∠ACB==72°,∵BE是∠ABC的平分线,CD是∠ACB的平分线,∴∠EBC=∠DBE=36°,∵∠ACB=72°,∴BE=BC,∵BC∥DE,∴∠DEB=∠EBC=36°,∴△BCF≌△BED,同理可得,△BCF≌△DCE.所以本题的全等三角形共6组;故选:D.【点评】此题主要考查的是全等三角形的判定方法.做题时根据已知条件,结合全等的判定方法逐一验证,由易到难,不重不漏.二、填空题(每小题3分,共15分)11.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为﹣1 .【分析】把式子展开,找到所有x项的所有系数,令其和为0,可求出m的值.【解答】解:(x+1)(x+m)=x2+(1+m)x+m,∵结果不含x的一次项,∴1+m=0,解得:m=﹣1.故答案为:﹣1.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.12.当a+b=3,x﹣y=1时,代数式a2+2ab+b2﹣x+y的值等于8 .【分析】本题可先将原代数式化简得出关于a+b和x﹣y的式子,再把已知代入即可.【解答】解:∵a+b=3,x﹣y=1,∴a2+2ab+b2﹣x+y,=(a+b)2﹣(x﹣y),=9﹣1,=8.故本题答案为:8.【点评】本题考查了完全平方公式法分解因式,整理出已知条件的形式是解题的关键,注意整体代换的思想.13.若3x=10,3y=5,则32x﹣y= 20 .【分析】根据幂的乘方底数不变指数相乘,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解;(3x)2=32x=102=100,32x﹣y=32x÷3y=100÷5=20,故答案为:20.【点评】本题考查了同底数幂的除法,利用了幂的乘方,同底数幂的除法.14.写出命题:“直角都相等”的逆命题:相等的角为直角.【分析】把原命题的题设和结论交换即可.【解答】解:“直角都相等”的逆命题为相等的角为直角.故答案为相等的角为直角.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.15.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管8 根.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.【点评】此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.三、解答题(本题共八个小题,满分75分)16.(8分)计算(1)(2)化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6【分析】(1)原式利用平方根,立方根定义计算即可求出值;(2)原式中括号中利用完全平方公式,平方差公式化简,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=﹣3+3+1=1;(2)原式=(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(2x2﹣2xy)÷2x=x﹣y,当x=5,y=﹣6时,原式=5+6=11.【点评】此题考查了整式的混合运算﹣化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.17.(9分)在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,写出一个用上述方法产生的密码,并说明理由.【分析】将多项式4x3﹣xy2,提取x后再利用平方差公式分解因式,将x与y的值分别代入每一个因式中计算得到各自的结果,根据阅读材料中取密码的方法,即可得出所求的密码.【解答】解:∵4x3﹣xy2=x(4x2﹣y2)=x(2x+y)(2x﹣y),∴当取x=10,y=10时,各个因式的值是:x=10,2x+y=30,2x﹣y=10,∴用上述方法产生的密码是:101030.(5分)【点评】此题考查了因式分解的应用,涉及分解因式的方法有:提公因式法,以及平方差公式法,属于阅读型的新定义题,其中根据阅读材料得出取密码的方法是解本题的关键.18.(9分)如图,一块大的三角板ABC,D是AB上一点,现要求过点D割出一块小的三角板ADE,使∠ADE=∠ABC,(1)尺规作出∠ADE.(不写作法,保留作图痕迹,要写结论)(2)判断BC与DE是否平行,如果是,请证明.【分析】(1)利用基本作图作∠ADE=∠ABC,交AC于点E;(2)根据平行线的判断方法进行判断.【解答】解:(1)如图,∠ADE为所作;(2)BC∥DE.理由如下:∵∠ADE=∠ABC,∴BC∥DE.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).19.(9分)已知:如图,OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB于E,AD=EB.求证:AC=CB.【分析】先由角平分线的性质得出CD=CE,再由SAS证明△ADC≌△BEC,得出对应边相等即可.【解答】证明:∵OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB于E,∴CD=CE,∠ADC=∠BEC=90°,在△ACD和△BCE中,,∴△ADC≌△BEC(SAS),∴AC=CB.【点评】本题考查了全等三角形的判定与性质、角平分线的性质;证明三角形全等得出对应边相等是解决问题的关键.20.(9分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.【解答】解:(1)连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ADB=60°,DB=4,∵42+82=(4)2,∴DB2+CD2=BC2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;(2)过B作BE⊥AD,∵∠A=60°,AB=4,∴BE=AB•sin60°=4×=2,∴四边形ABCD的面积为: AD•EB+DB•CD=×4×+×4×8=4+16.【点评】此题主要考查了勾股定理逆定理,以及等边三角形的判定和性质,关键是掌握有一个角是60°的等腰三角形是等边三角形,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.21.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有50 名学生参加;(2)直接写出表中a= 16 ,b= 0.28 ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48% .【分析】(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.【点评】本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.22.(10分)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8﹣t,列式求得t即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=12,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【解答】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm ),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质,注意分类讨论思想的应用.23.(11分)如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.【分析】(1)由于AB=AC,AD=AE,所以只需证∠BAD=∠CAE即可得结论;(2)证明∠ACE和∠ECF都等于60°即可;(3)将四边形ADCE的周长用AD表示,AD最小时就是四边形ADCE的周长最小,根据垂线段最短原理,当AD⊥BC时,AD最小,此时BD就是BC的一半.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠DAE=60°,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE.(2)证明:∵△ABC是等边三角形,∴∠B=∠BCA=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∴∠ECF=180﹣∠ACE﹣∠BCA=60°,∴∠ACE=∠ECF,∴CE平分∠ACF.(3)解:∵△ABD≌△ACE,∴CE=BD,∵△ABC是等边三角形,∴AB=BC=AC=2,∴四边形ADCE的周长=CE+DC+AD+AE=BD+DC+2AD=2+2AD,根据垂线段最短,当AD⊥BC时,AD值最小,四边形ADCE的周长取最小值,∵AB=AC,∴BD===1.【点评】此题主要考查了全等三角形的判定和性质定理以及垂线段最短原理,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.。

河南省洛阳市八年级上学期数学期末考试试卷

河南省洛阳市八年级上学期数学期末考试试卷

河南省洛阳市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·潮安模拟) 下面实数比较大小正确的是()A . 3>|﹣7|B . >3C . 0<﹣2D . ()2<3﹣12. (2分)下列正多边形中,外角和等于内角和的是()A . 正三角形B . 正四边形C . 正六边形D . 正八边形3. (2分)当分式有意义时,字母x应满足()A . x≠-1B . x=0C . x≠1D . x≠04. (2分)如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A . 80°B . 90°C . 100°D . 105°5. (2分)如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,则∠ECA 的度数为()A . 30°B . 35°C . 40°D . 45°6. (2分)下列计算正确的是()A . 3x-5x=-2xB . 3x2+x=4x3C . 7a+4b=11abD . -3ab2-a2b=-4a7. (2分)(2012·深圳) 已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A . a<﹣1B . ﹣1<a<C . ﹣<a<1D . a>8. (2分)把代数式a2b﹣b3分解因式,结果正确的是()A . 2b(a+b)B . b(a﹣b)C . b(a2﹣b2)D . b(a+b)(a﹣b)9. (2分)如图,L1、L2、L3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()A . 一处B . 二处C . 三处D . 四处10. (2分)(2020·下城模拟) 用三个不等式a>b,ab>0,中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A . 0B . 1C . 2D . 311. (2分)若关于x的方程 = ﹣的解为整数,且不等式组无解,则这样的非负整数a有()A . 2个B . 3个C . 4个D . 5个12. (2分) (2018九上·信阳月考) 如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)(2018·惠山模拟) 因式分解:a3-4a=________.14. (1分) (2018七上·湖州月考) 某颗粒物的直径是 0.000 002 5,把 0.000 002 5 用科学计数法表示为________.15. (1分) (2015七下·泗阳期中) 若x=3,则2x﹣2的值为________.16. (1分) (2017八上·永定期末) 如图,AC⊥BC,AD⊥BD,垂足分别是C、D,若要用“HL”得到Rt△ABC≌Rt△BAD,则你添加的条件是________.(写一种即可)17. (1分) (2019七下·九江期中) 若,则xy=________18. (1分)(2019·顺义模拟) 如图,等边三角形ABC内接于⊙O,点D在⊙O上,∠ABD=25°,则∠BAD=________°.三、解答题 (共7题;共47分)19. (12分) (2019八上·辽阳期中) 如图,根据要求回答下列问题:(1)点A关于y轴对称点A′的坐标是________;点B关于y轴对称点B′的坐标是________(2)作出△AB C关于y轴对称的图形△A′B′C′(不要求写作法)(3)求△ABC的面积.20. (5分)(2020·黄冈模拟) 先化简,再求值:,其中 .21. (5分) (2015七下·卢龙期中) 先化简,再求值:(x2)3÷x4﹣(x+2)(x﹣2)+(x+1)2 ,其中x=﹣.22. (5分) (2017九上·五华月考) 如图,小亮在操场上距离旗杆AB的C处,用测角仪测得旗杆顶端A的仰角为30°,已知BC=9m,测角仪高CD为1m,求旗杆AB的高(结果保留根号).23. (5分) (2016八下·周口期中) 如图,△ACB与△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,求证:AE2+AD2=2AC2 .(提示:连接BD)24. (10分) (2019七下·岳池期中) 为全力推进农村公路快速发展,解决农村“出行难”问题,现将A、B、C三村连通的公路进行硬化改造(如图所示),铺设成水泥路面.已知B村在A村的北偏东65°方向上,∠ABC=100°.(1) C村在B村的的什么方向上?(2)甲、乙两个施工队分别从A村、C村向B村施工,两队的施工进度相同,A村到B村的距离比C到B村的距离多600米,甲队用了9天完成铺设任务,乙队用了6天完成铺设任务,求两段公路的总长.25. (5分)如图,在Rt△ABC中,∠B=30°,BD=AD,BD=12,求BC的长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共47分)19-1、19-2、19-3、答案:略20-1、答案:略21-1、答案:略22-1、答案:略23-1、24-1、24-2、25-1、。

【精选】2017-2018学年洛阳市嵩县八年级上期末数学试卷(有答案)

【精选】2017-2018学年洛阳市嵩县八年级上期末数学试卷(有答案)

2017-2018学年河南省洛阳市嵩县八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.若一个数的平方根是±8,则这个数的立方根是()A.±2B.±4C.2D.42.下列运算,正确的是()A.a2•a3=a6B.(a2)3=a6C.a10÷a2=a5D.a+a3=a43.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm4.等边三角形的边长为2,则该三角形的面积为()A.B.C.D.35.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()A.12米B.13米C.14米D.15米6.如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为()A.65°B.60°C.55°D.45°7.如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为()A.150cm2B.200cm2C.225cm2D.无法计算8.武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A.九(1)班的学生人数为40B.m的值为10C.n的值为20D.表示“足球”的扇形的圆心角是70°9.如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 分别交AB、AC于M、N,则△AMN的周长为()A.10B.6C.4D.不确定10.如图,在△ABC中,∠A=36°,AB=AC,CD、BE分别是∠ACB,∠ABC的平分线,CD、BE 相交于F点,连接DE,则图中全等的三角形有多少组()A.3B.4C.5D.6二、填空题(每小题3分,共15分)11.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为.12.当a+b=3,x﹣y=1时,代数式a2+2ab+b2﹣x+y的值等于.13.若3x=10,3y=5,则32x﹣y=.14.写出命题:“直角都相等”的逆命题:.15.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管根.三、解答题(本题共八个小题,满分75分)16.(8分)计算(1)(2)化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6 17.(9分)在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,写出一个用上述方法产生的密码,并说明理由.18.(9分)如图,一块大的三角板ABC,D是AB上一点,现要求过点D割出一块小的三角板ADE,使∠ADE=∠ABC,(1)尺规作出∠ADE.(不写作法,保留作图痕迹,要写结论)(2)判断BC与DE是否平行,如果是,请证明.19.(9分)已知:如图,OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB 于E,AD=EB.求证:AC=CB.20.(9分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:(1)本次决赛共有名学生参加;(2)直接写出表中a=,b=;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.22.(10分)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.23.(11分)如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.2017-2018学年河南省洛阳市嵩县八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若一个数的平方根是±8,则这个数的立方根是()A.±2B.±4C.2D.4【分析】首先利用平方根的定义求出这个数,然后根据立方根的定义即可求解.【解答】解:∵一个数的平方根是±8,∴这个数为(±8)2=64,故64的立方根是4.故选:D.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.下列运算,正确的是()A.a2•a3=a6B.(a2)3=a6C.a10÷a2=a5D.a+a3=a4【分析】依据同底数幂的乘法法则,幂的乘方法则,同底数幂的除法法则以及合并同类项法则进行判断,即可得到正确结果.【解答】解:A.a2•a3=a5,故本选项错误;B.(a2)3=a6,故本选项正确;C.a10÷a2=a8,故本选项错误;D.a×a3=a4,故本选项错误;故选:B.【点评】本题主要考查了同底数幂的乘法法则,幂的乘方法则,同底数幂的除法法则,解题时注意:幂的乘方,底数不变,指数相乘.3.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【分析】分为两种情况:2cm是等腰三角形的腰或2cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选:A.【点评】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.4.等边三角形的边长为2,则该三角形的面积为()A.B.C.D.3【分析】如图,作CD⊥AB,则CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC中,利用勾股定理,可求出CD的长,代入面积计算公式,解答出即可;【解答】解:作CD⊥AB,∵△ABC是等边三角形,AB=BC=AC=2,∴AD=1,∴在直角△ADC中,CD===,=×2×=;∴S△ABC故选:C.【点评】本题主要考查了等边三角形的性质及勾股定理的应用,根据题意,画出图形可利于解答,体现了数形结合思想.5.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()A.12米B.13米C.14米D.15米【分析】由题意可知消防车的云梯长、地面、建筑物高构成一直角三角形,斜边为消防车的云梯长,根据勾股定理就可求出高度.【解答】解:如图所示,AB=13米,BC=5米,由勾股定理可得,AC===12米.故选:A.【点评】此题考查学生善于利用题目信息构成直角三角形,从而运用勾股定理解题.6.如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为()A.65°B.60°C.55°D.45°【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【解答】解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故选:A.【点评】本题综合考查了作图﹣﹣复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB平分线是解答此题的关键.7.如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为()A.150cm2B.200cm2C.225cm2D.无法计算【分析】小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC2+BC2,对于Rt△ABC,由勾股定理得AB2=AC2+BC2.AB长度已知,故可以求出两正方形面积的和.【解答】解:正方形ADEC的面积为:AC2,正方形BCFG的面积为:BC2;在Rt△ABC中,AB2=AC2+BC2,AB=15,则AC2+BC2=225cm2.故选:C.【点评】本题考查了勾股定理.勾股定理应用的前提条件是在直角三角形中.8.武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A.九(1)班的学生人数为40B.m的值为10C.n的值为20D.表示“足球”的扇形的圆心角是70°【分析】由条形统计图和扇形统计图得到喜欢篮球的人数而后所占的百分比,求出人数,根据人数求出m、n,根据表示“足球”的百分比求出扇形的圆心角.【解答】解:由图①和图②可知,喜欢篮球的人数是12人,占30%,12×30%=40,则九(1)班的学生人数为40,A正确;4÷40=10%,则m的值为10,B正确;1﹣40%﹣30%﹣10%=20%,n的值为20,C正确;360°×20%=72°,D错误,故选:D.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.9.如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 分别交AB、AC于M、N,则△AMN的周长为()A.10B.6C.4D.不确定【分析】利用平行线的性质及角平分线的定义可得出∠AMN=2∠MBE,结合三角形外角的性质即可得出∠MBE=∠MEB,即MB=ME,同理可得出NC=NE,再利用三角形的周长公式即可求出△AMN的周长.【解答】解:∵MN∥BC,∴∠AMN=∠ABC.∵BE平分∠ABC,∴∠ABC=2∠MBE,∴∠AMN=2∠MBE.∵∠AMN=∠MBE+∠MEB,∴∠MBE=∠MEB,∴MB=ME.同理,NC=NE,=AM+ME+EN+AN=AB+AC=10.∴C△AMN故选:A.【点评】本题考查了等腰三角形的判定与性质、平行线的性质、三角形的外角性质以及三角形的周长,利用等腰三角形的性质找出MB=ME、NC=NE是解题的关键.10.如图,在△ABC中,∠A=36°,AB=AC,CD、BE分别是∠ACB,∠ABC的平分线,CD、BE 相交于F点,连接DE,则图中全等的三角形有多少组()A.3B.4C.5D.6【分析】首先根据已知条件,看能得出哪些边和角相等,然后再根据全等三角形的判定方法来判断有多少对全等三角形.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°;∵CD、BE分别平分∠ABC、∠ACB,∴∠ABE=∠ACD=∠EBC=∠DCB=36°;又∵AB=AC,∠A=∠A;∴△ABE≌△ACD;(ASA)①∴BE=CD;又∵BC=BC,∠DCB=∠EBC=36°,∴△DBC≌△ECB;(SAS)②∵DE∥BC,∴∠EDF=∠DEF=36°,又∵∠DBE=∠ECD=36°,DE=DE,∴△DEB≌△EDC;(AAS)③由②得:DB=EC,∠BDC=∠CEB;又∵∠DFB=∠EFC,∴△BFD≌△CFE.(AAS)④∵△ABC中,∠A=36°,AB=AC,∴∠ABC=∠ACB==72°,∵BE是∠ABC的平分线,CD是∠ACB的平分线,∴∠EBC=∠DBE=36°,∵∠ACB=72°,∴BE=BC,∵BC∥DE,∴∠DEB=∠EBC=36°,∴△BCF≌△BED,同理可得,△BCF≌△DCE.所以本题的全等三角形共6组;故选:D.【点评】此题主要考查的是全等三角形的判定方法.做题时根据已知条件,结合全等的判定方法逐一验证,由易到难,不重不漏.二、填空题(每小题3分,共15分)11.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为﹣1.【分析】把式子展开,找到所有x项的所有系数,令其和为0,可求出m的值.【解答】解:(x+1)(x+m)=x2+(1+m)x+m,∵结果不含x的一次项,∴1+m=0,解得:m=﹣1.故答案为:﹣1.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.12.当a+b=3,x﹣y=1时,代数式a2+2ab+b2﹣x+y的值等于8.【分析】本题可先将原代数式化简得出关于a+b和x﹣y的式子,再把已知代入即可.【解答】解:∵a+b=3,x﹣y=1,∴a2+2ab+b2﹣x+y,=(a+b)2﹣(x﹣y),=9﹣1,=8.故本题答案为:8.【点评】本题考查了完全平方公式法分解因式,整理出已知条件的形式是解题的关键,注意整体代换的思想.13.若3x=10,3y=5,则32x﹣y=20.【分析】根据幂的乘方底数不变指数相乘,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解;(3x)2=32x=102=100,32x﹣y=32x÷3y=100÷5=20,故答案为:20.【点评】本题考查了同底数幂的除法,利用了幂的乘方,同底数幂的除法.14.写出命题:“直角都相等”的逆命题:相等的角为直角.【分析】把原命题的题设和结论交换即可.【解答】解:“直角都相等”的逆命题为相等的角为直角.故答案为相等的角为直角.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.15.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管8根.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.【点评】此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.三、解答题(本题共八个小题,满分75分)16.(8分)计算(1)(2)化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6【分析】(1)原式利用平方根,立方根定义计算即可求出值;(2)原式中括号中利用完全平方公式,平方差公式化简,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=﹣3+3+1=1;(2)原式=(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(2x2﹣2xy)÷2x=x﹣y,当x=5,y=﹣6时,原式=5+6=11.【点评】此题考查了整式的混合运算﹣化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.17.(9分)在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,写出一个用上述方法产生的密码,并说明理由.【分析】将多项式4x3﹣xy2,提取x后再利用平方差公式分解因式,将x与y的值分别代入每一个因式中计算得到各自的结果,根据阅读材料中取密码的方法,即可得出所求的密码.【解答】解:∵4x3﹣xy2=x(4x2﹣y2)=x(2x+y)(2x﹣y),∴当取x=10,y=10时,各个因式的值是:x=10,2x+y=30,2x﹣y=10,∴用上述方法产生的密码是:101030.(5分)【点评】此题考查了因式分解的应用,涉及分解因式的方法有:提公因式法,以及平方差公式法,属于阅读型的新定义题,其中根据阅读材料得出取密码的方法是解本题的关键.18.(9分)如图,一块大的三角板ABC,D是AB上一点,现要求过点D割出一块小的三角板ADE,使∠ADE=∠ABC,(1)尺规作出∠ADE.(不写作法,保留作图痕迹,要写结论)(2)判断BC与DE是否平行,如果是,请证明.【分析】(1)利用基本作图作∠ADE=∠ABC,交AC于点E;(2)根据平行线的判断方法进行判断.【解答】解:(1)如图,∠ADE为所作;(2)BC∥DE.理由如下:∵∠ADE=∠ABC,∴BC∥DE.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).19.(9分)已知:如图,OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB 于E,AD=EB.求证:AC=CB.【分析】先由角平分线的性质得出CD=CE,再由SAS证明△ADC≌△BEC,得出对应边相等即可.【解答】证明:∵OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB于E,∴CD=CE,∠ADC=∠BEC=90°,在△ACD和△BCE中,,∴△ADC≌△BEC(SAS),∴AC=CB.【点评】本题考查了全等三角形的判定与性质、角平分线的性质;证明三角形全等得出对应边相等是解决问题的关键.20.(9分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.【解答】解:(1)连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ADB=60°,DB=4,∵42+82=(4)2,∴DB2+CD2=BC2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;(2)过B作BE⊥AD,∵∠A=60°,AB=4,∴BE=AB•sin60°=4×=2,∴四边形ABCD的面积为:AD•EB+DB•CD=×4×+×4×8=4+16.【点评】此题主要考查了勾股定理逆定理,以及等边三角形的判定和性质,关键是掌握有一个角是60°的等腰三角形是等边三角形,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.21.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:(1)本次决赛共有50名学生参加;(2)直接写出表中a=16,b=0.28;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48%.【分析】(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.【点评】本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.22.(10分)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8﹣t,列式求得t即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=12,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【解答】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm ),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质,注意分类讨论思想的应用.23.(11分)如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.【分析】(1)由于AB=AC,AD=AE,所以只需证∠BAD=∠CAE即可得结论;(2)证明∠ACE和∠ECF都等于60°即可;(3)将四边形ADCE的周长用AD表示,AD最小时就是四边形ADCE的周长最小,根据垂线段最短原理,当AD⊥BC时,AD最小,此时BD就是BC的一半.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠DAE=60°,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE.(2)证明:∵△ABC是等边三角形,∴∠B=∠BCA=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∴∠ECF=180﹣∠ACE﹣∠BCA=60°,∴∠ACE=∠ECF,∴CE平分∠ACF.(3)解:∵△ABD≌△ACE,∴CE=BD,∵△ABC是等边三角形,∴AB=BC=AC=2,∴四边形ADCE的周长=CE+DC+AD+AE=BD+DC+2AD=2+2AD,根据垂线段最短,当AD⊥BC时,AD值最小,四边形ADCE的周长取最小值,∵AB=AC,∴BD===1.【点评】此题主要考查了全等三角形的判定和性质定理以及垂线段最短原理,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.。

【名师精选】2017-2018学年河南省洛阳市八年级上期末数学试卷(有答案)

【名师精选】2017-2018学年河南省洛阳市八年级上期末数学试卷(有答案)

2017-2018学年河南省洛阳市八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2÷8=﹣4 B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的的取值范围是()A.>﹣2 B.<2 C.≠2 D.≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2y+6+3=2(y+3)+3 B.(+6)(﹣6)=2﹣36C.﹣22﹣2y=﹣2(+y)D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C.D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(﹣6)(+4)+(3+2)(2﹣3)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC 两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE 交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.2017-2018学年河南省洛阳市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.2÷8=﹣4 B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的的取值范围是()A.>﹣2 B.<2 C.≠2 D.≠﹣2【解答】解:∵分式有意义,∴+2≠0,即≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2y+6+3=2(y+3)+3 B.(+6)(﹣6)=2﹣36C.﹣22﹣2y=﹣2(+y)D.3a2﹣3b2=3(a2﹣b2)A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C.D.【解答】解:原式==+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=,∠B=+30°,分情况讨论:当∠A=∠C为底角时,2+(+30°)=180°,解得=50°,顶角∠B=80°;当∠B=∠C为底角时,2(+30)+=180°,解得=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(﹣6)(+4)+(3+2)(2﹣3)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(﹣6)(+4)+(3+2)(2﹣3)=2﹣2﹣24+4﹣92=﹣82﹣2﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC 两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为元/m3,则2016年1月起居民用水价格为(1+)元/m3.…(1分)依题意得:﹣=5.解得=1.8.检验:当=1.8时,(1+)≠0.所以,原分式方程的解为=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE 交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。

┃精选3套试卷┃2018届洛阳市八年级上学期期末教学质量检测数学试题

┃精选3套试卷┃2018届洛阳市八年级上学期期末教学质量检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.关于等腰三角形,以下说法正确的是()A.有一个角为40°的等腰三角形一定是锐角三角形B.等腰三角形两边上的中线一定相等C.两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D.等腰三角形两底角的平分线的交点到三边距离相等【答案】D【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.2.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【答案】A【详解】作DE ⊥AB 于E ,∵AB=10,S △ABD =15,∴DE=3,∵AD 平分∠BAC,∠C=90°,DE ⊥AB ,∴DE=CD=3,故选A.3.下列从左到右的变形,属于分解因式的是( )A .2(3)(3)9a a a +-=-B .25(1)5x x x x +-=--C .2 (1)a a a a =++D .32x y x x y =⋅⋅ 【答案】C【解析】试题解析:A. 右边不是整式积是形式,故本选项错误;B. 不是因式分解,故本选项错误;C. 是因式分解,故本选项正确;D. 不是因式分解,故本选项错误.故选C.4.如图是根据某校学生的血型绘制的扇形统计图,该校血型为A 型的有200人,那么该校血型为AB 型的人数为( )A .100B .50C .20D .8【答案】B 【分析】根据A 型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB 型血所对应的百分比即可求解.【详解】∵该校血型为A 型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB 型血人数占总人数的比例为1-(40%+30%+20%)=10%,∴该校血型为AB 型的人数为500×10%=50(人),故选:B .【点睛】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.5.满足不等式2x >的正整数是( )A .2.5B C .-2 D .5 【答案】D【解析】在取值范围内找到满足条件的正整数解即可.【详解】不等式2x >的正整数解有无数个,四个选项中满足条件的只有5故选:D.【点睛】考查不等式的解,使不等式成立的未知数的值就是不等式的解.6.已知x 是整数,当x -x 的值是( )A .5B .6C .7D .8 【答案】A<<56<<,5,∴当x 取最小值时,x 的值是5,故选A .【点睛】本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.直线y kx =过点(,)A m n ,(34)B m n -+,,则k 的值是( )A .43B .43-C .34D .34- 【答案】B【分析】分别将点()A m n ,,(34)B m n -+,代入即可计算解答.【详解】解:分别将点()A m n ,,(34)B m n -+,代入y kx =,得:(3)4mk n m k n =⎧⎨-=+⎩,解得43k =-, 故答案为:B .【点睛】本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.8.计算22222a b a b a b a b a b ab⎛⎫+---⨯ ⎪-+⎝⎭的结果是 ( ) A .1a b - B .1a b + C .a -b D .a +b【答案】B【分析】先算小括号里的,再算乘法,约分化简即可.【详解】解: 2222a b a b a b a b a b ab ⎛⎫+---⨯ ⎪-+⎝⎭=()()()2222a b a b a b a b a b ab +---⨯+-=1a b + 故选B .【点睛】本题考查分式的混合运算.9.小亮对一组数据16,18,20,20,3■,34进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,但小亮依然还能准确获得这组数据的( )A .众数B .方差C .中位数D .平均数 【答案】C【分析】利用平均数、中位数、方差和众数的定义对各选项进行判断.【详解】解:这组数据的众数、方差和平均数都与第5个数有关,而这组数据的中位数为20与20的平均数,与第5个数无关.故选:C .【点睛】本题考查了方差:它描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念. 10.已知(m -n)2=38,(m +n)2=4000,则m 2+n 2的值为( )A .2017B .2018C .2019D .4038 【答案】C【分析】根据完全平方公式的变形,即可解答.【详解】(m−n )2=38,m 2−2mn +n 2=38 ①,(m +n )2=4000,m 2+2mn +n 2=4000 ②,①+②得:2m 2+2n 2=4038,m 2+n 2=1.故选:C .【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.二、填空题11.一个多边形所有内角都是135°,则这个多边形的边数为_________【答案】6【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【详解】解:∵所有内角都是135°,∴每一个外角的度数是180°-135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形考点:多边形的内角和外角点评:本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.12.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC ,分别交AB 、AC 于点E 、F .若5AB =,4AC =,那么AEF ∆的周长为_______.【答案】9【分析】根据角平分线的性质,可得∠EBO 与∠OBC 的关系,∠FCO 与∠OCB 的关系,根据平行线的性质,可得∠DOB 与∠BOC 的关系,∠FOC 与∠OCB 的关系,根据等腰三角形的判定,可得OE 与BE 的关系,OE 与CE 的关系,根据三角形的周长公式,可得答案.【详解】∵∠ABC 与∠ACB 的平分线相交于点O ,∴∠EBO=∠OBC ,∠FCO=∠OCB .∵EF ∥BC ,∴∠EOB=∠OBC ,∠FOC=∠OCB ,∴∠EOB=∠EBO ,∠FOC=∠FCO ,∴EO=BE ,OF=FC .C △AEF =AE+EF+AF=AE+BE+AF+CF=AB+AC=1.故答案为:1.【点睛】本题考查了等腰三角形的判定与性质,利用等腰三角形的判定与性质是解题关键,又利用了角平分线的性质,平行线的性质.13.实数81的平方根是_____.【答案】±1【分析】根据平方根的定义即可得出结论.【详解】解:实数81的平方根是:±1.故答案为:±1【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.14.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为__________.【答案】5.6×10-2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.056用科学记数法表示为5.6×10-2,故答案为:5.6×10-2【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.我们用[m ]表示不大于m 的最大整数,如:[2]=2,[4.1]=4,[1.99]=1.(1)=_____;(2)若[16=,则x 的取值范围是_____.【答案】1 916x ≤<【分析】(1) 1.414,及题中所给信息,可得答案;(2)先解出3+的取值范围后得出x 的取值范围.【详解】解:(1) ≈1.414,由题中所给信息,可得=1;(2)由题意得:6≤37,可得:1<4,可得:9≤x<16.【点睛】本题主要考查新定义及不等式的性质,找出规律是解题的关键16.25的平方根是______,16的算术平方根是______,-8的立方根是_____.【答案】5±4-1【分析】首先利用平方根的定义求解;接着利用算术平方根的定义求解;最后利用立方根的定义求解.【详解】解:15的平方根是±5,16的算术平方根是4,-8的立方根是-1.故答案为:±5,4,-1.【点睛】此题分别考查了算术平方根、平方根及立方根的定义,解题的关键是熟练掌握这些相关定义才能很好解决问题.17.若a﹣b+6的算术平方根是2,2a+b﹣1的平方根是±4,则a﹣5b+3的立方根是_____.【答案】-1【分析】运用立方根和平方根和算术平方根的定义求解【详解】解:∵a﹣b+6的算术平方根是2,2a+b﹣1的平方根是±4,∴a﹣b+6=4,2a+b﹣1=16,解得a=5,b=7,∴a﹣5b+1=5﹣15+1=﹣27,∴a﹣5b+1的立方根﹣1.故答案为:﹣1【点睛】本题考查了立方根和平方根和算术平方根,解题的关键是按照定义进行计算.三、解答题18.解方程组24 326x yx y-=⎧⎨+=⎩①②【答案】2=0 xy=⎧⎨⎩【解析】把①×2+②,消去y,求出x的值,然后把求得的x的值代入①求出y的值即可.【详解】解:24326x yx y-=⎧⎨+=⎩①②,①×2+②得:7x=14,即x=2,把x=2代入①得:y=0,则方程组的解为20x y =⎧⎨=⎩. 【点睛】 本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.19.如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)试说明△ACD ≌△BCE ;(2)若∠D=50°,求∠B 的度数.【答案】(1)见解析;(2)70°.【分析】(1)由C 是线段AB 的中点,得到AC=BC ,根据角平分线的定义得到∠ACD=∠BCE .则可证三角形全等;(2)根据平角的定义得到∠ACD=∠DCE=∠BCE=60°,根据全等三角形的性质得到∠E=∠D=50°,根据三角形的内角和即可得到结论.【详解】(1)证明:∵C 是线段AB 的中点∴AC=BC∵CD 平分∠ACE ,CE 平分∠BCD ,∴∠ACD=∠ECD ,∠BCE=∠ECD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ).(2)解:∵△ACD ≌△BCE ,∴∠D=∠E=50°,∵∠ACD+∠DCE+∠BCE =180°,∠ACD=∠DCE=∠BCE ,∴∠ACD=∠DCE=∠BCE =60°,∴∠B=180°-∠BCE-∠E=70°.【点睛】本题考查全等三角形的判定和性质、三角形内角和定理等知识,解题的关键是正确寻找全等三角形全等的条件.20.快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米,图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系,请解答下列问题:(1)甲、乙两地相距千米,快车休息前的速度是千米/时、慢车的速度是千米/时;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.【答案】(1)300,75,60;(2)y1=100x﹣150(3≤x≤4.5);(3)点F的坐标为(3.75,225),点F代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等【分析】(1)根据图象可直接得出甲、乙两地的距离;根据图象可得A、B两点坐标,然后利用速度=路程÷时间求解即可;(2)根据快车休息1小时可得点E坐标,根据快车比慢车提前0.5小时到达目的地可得点C坐标,然后利用待定系数法求解即可;(3)易得y2与x之间的函数关系式,然后只要求直线EC与直线OD的交点即得点F坐标,为此只要解由直线EC与直线OD的的解析式组成的方程组即可,进而可得点F的实际意义.【详解】解:(1)甲、乙两地相距300千米,快车休息前的的速度为:150÷2=75千米/小时,慢车的速度为:150÷2.5=60千米/小时.故答案为:300,75,60;(2)由题意可得,点E的横坐标为:2+1=3,则点E的坐标为(3,150),快车从点E到点C用的时间为:300÷60﹣0.5=4.5(小时),则点C的坐标为(4.5,300),设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,把E、C两点代入,得:4.5300 3150k bk b+=⎧⎨+=⎩,解得:100150 kb=⎧⎨=-⎩,即线段EC 所表示的y 1与x 之间的函数表达式是y 1=100x ﹣150(3≤x≤4.5);(3)y 2与x 之间的函数关系式为:260y x =,设点F 的横坐标为a ,则60a =100a ﹣150,解得:a =3.75,则60a =225,即点F 的坐标为(3.75,225),点F 代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等.【点睛】本题是一次函数的应用问题,主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征和两个函数的交点等知识,属于常考题型,正确读懂图象信息、熟练掌握一次函数的相关知识是解题的关键.21.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17= ,12×14﹣6×20= ,不难发现,结果都是 .(1)请将上面三个空补充完整;(2)请你利用整式的运算对以上规律进行证明.【答案】(1)1,1,1;(2)证明见解析.【分析】(1)直接利用已知数据计算求出即可;(2)设四个数围起来的中间的数为x ,则四个数依次为x ﹣7,x ﹣1,x+1,x+7,列式计算即可得出结论.【详解】(1)9×11﹣3×17=1,12×14﹣6×20=1,不难发现,结果都是:1.故答案为:1,1,1.(2)设四个数围起来的中间的数为x ,则四个数依次为x ﹣7,x ﹣1,x+1,x+7则(x ﹣1)·(x+1)﹣(x ﹣7)·(x+7) =22(1)(49)x x ---=22149x x --+=1.【点睛】本题考查了整式的混合运算,正确发现数字之间的变化规律是解答本题的关键.22.如图,已知点E ,C 在线段BF 上,BE =CF ,∠ABC=∠DEF ,AB=DE ,(1)求证:△ABC ≌△DEF .(2)求证:AC ∥DF【答案】(1)详见解析;(2)详见解析【分析】(1)先得出BC=EF ,然后利用SAS 可证全等;(2)根据全等,可得出∠ACB=∠DFE ,从而证平行.【详解】(1)证明:∵BE=CF∴BE+EC=CF+EC∴BC=EF在△ABC 与△DEF 中BC=EF ABC=DEF AB=DE ⎧⎪∠∠⎨⎪⎩∴△ABC ≌△DEF(SAS)(2)∵△ABC ≌△DEF∴∠ACB=∠DFE∴AC ∥DF .【点睛】本题考查三角形全等的证明,此题比较基础,注意证全等的书写格式.23.如图,平面直角坐标系中,直线AB :y =﹣x+b 交y 轴于点A (0,4),交x 轴于点B .(1)求直线AB 的表达式和点B 的坐标;(2)直线l 垂直平分OB 交AB 于点D ,交x 轴于点E ,点P 是直线l 上一动点,且在点D 的上方,设点P 的纵坐标为n .①用含n 的代数式表示△ABP 的面积;②当S △ABP =8时,求点P 的坐标;③在②的条件下,以PB 为斜边在第一象限作等腰直角△PBC ,求点C 的坐标.【答案】(1)y =﹣x+1,点B 的坐标为(1,0);(2)①2n ﹣1;②(2,3);③3,1).【分析】(1)把点A 的坐标代入直线解析式可求得b =1,则直线的解析式为y =﹣x+1,令y =0可求得x=1,故此可求得点B的坐标;(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P 的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n﹣1;②由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;③如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.【详解】(1)∵把A(0,1)代入y=﹣x+b得b=1∴直线AB的函数表达式为:y=﹣x+1.令y=0得:﹣x+1=0,解得:x=1∴点B的坐标为(1,0).(2)①∵l垂直平分OB,∴OE=BE=2.∵将x=2代入y=﹣x+1得:y=﹣2+1=2.∴点D的坐标为(2,2).∵点P的坐标为(2,n),∴PD=n﹣2.∵S△APB=S△APD+S△BPD,∴S△ABP=12PD•OE+12PD•BE=12(n﹣2)×2+12(n﹣2)×2=2n﹣1.②∵S△ABP=8,∴2n﹣1=8,解得:n=3.∴点P的坐标为(2,3).③如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC =∠NCB .在△PCM 和△CBN 中,90PMC BNC MPC NCBPC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△PCM ≌△CBN .∴CM =BN ,PM =CN .∴462p q q p -=-⎧⎨=-⎩,解得64p q =⎧⎨=⎩. ∴点C 的坐标为(3,1).如图2所示:过点C 作CM ⊥l ,垂足为M ,再过点B 作BN ⊥CM 于点N .设点C (p ,q ).∵△PBC 为等腰直角三角形,PB 为斜边,∴PC =CB ,∠PCM+∠MCB =90°.∵CM ⊥l ,BN ⊥CM ,∴∠PMC =∠BNC =90°,∠MPC+∠PCM =90°.∴∠MPC =∠NCB .在△PCM 和△CBN 中,90PMC BNC MPC NCBPC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△PCM ≌△CBN .∴CM =BN ,PM =CN .∴462p q q p -=-⎧⎨=-⎩,解得02p q =⎧⎨=⎩. ∴点C 的坐标为(0,2)舍去.综上所述点C 的坐标为(3,1).【点睛】本题考查了一次函数的几何问题,掌握解一次函数的方法以及全等三角形的性质以及判定定理是解题的关键.24.在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合作完成这项工程所需的天数.【答案】(1)60 (2)24【分析】本题主要考查分式方程的应用. 等量关系为:工作时间=工作总量÷工作效率,根据题意可得出:甲队的总工作量+乙队的总工作量=1,由此可列出方程求解.【详解】解:(1)设乙工程队单独完成这项工程需要x天,根据题意得:1011()20140x x++⨯=解之得:x=60,经检验:x=60是原方程的解.所以乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y天,根据题意得:(114060+)y=1,解之得:y=24,所以两队合做完成这项工程所需的天数为24天.25.(1)-(2)4(3)【答案】(1;(2)2;(3)6【分析】(1)将每个二次根式化简后合并同类二次根式即可;(2)根据二次根式的性质按运算顺序计算即可;(3)根据平方差公式计算即可.【详解】(1)-==;(2)4=42=;2(3)22=-126=-=.6【点睛】本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列图形是轴对称图形的为()A.B.C.D.【答案】D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.小明手中有2根木棒长度分别为4cm和9cm,请你帮他选择第三根木棒,使其能围成一个三角形,则选择的木棒可以是()A.4cm B.5cm C.6cm D.无法确定【答案】C【分析】据三角形三边关系定理,设第三边长为xcm,则9-4<x<9+4,即5<x<13,由此选择符合条件的线段.【详解】解:设第三边长为xcm,由三角形三边关系定理可知,9-4<x<9+4,即,5<x<13,∴x=6cm符合题意.故选:C.【点睛】本题考查了三角形三边关系的运用.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.3.若分式325xx--的值为0,则x的值为()A.-3 B.-52C.52D.3【答案】D【分析】根据分式值为0的条件进行列式,再解方程和不等式即可得解.【详解】解:∵分式325x x --的值为0 ∴30250x x -=⎧⎨-≠⎩∴3x =.故选:D【点睛】本题考查了分式值为0的条件:分子等于零而分母不等于零,熟练掌握分式值为零的条件是解题的关键. 4. “121的平方根是±11”的数学表达式是( )A 11B =±11C =11D 【答案】D【分析】根据平方根定义,一个a 数平方之后等于这个数,那么a 就是这个数的平方根.D.【点睛】本题考查了平方根的的定义,熟练掌握平方根的定义是解题的关键.5.下列各式:①②17=1;;;其中错误的有( ). A .3个B .2个C .1个D .0个 【答案】A【解析】错误,无法计算;②17 ,错误;不能计算;,正确. 故选A.6.下列命题是真命题的是( )A .三角形的一个外角大于任何一个内角B .如果两个角相等,那么它们是内错角C .如果两个直角三角形的面积相等,那么它们的斜边相等D .直角三角形的两锐角互余【答案】D【分析】根据三角形的外角性质,平行线的判定和直角三角形的性质对各选项分析判断后利用排除法求解.【详解】A 、因为三角形的外角大于任何一个与它不相邻的内角,故本选项错误;B. 如果两个角相等,那么它们不一定是内错角,故选项B 错误;C. 如果两个直角三角形的面积相等,那么它们的斜边不一定相等,故选项C 错误;D. 直角三角形的两锐角互余.正确.故选:D.【点睛】本题考查点较多,熟练掌握概念,定理和性质是解题的关键.7.下列代数式,3x ,3x ,1a a -,35y -+,2x x y -,2n π-,32x +,x y x +中,分式有( )个. A .5B .4C .3D .2 【答案】A【分析】根据分式的定义逐个判断即可.形如(A 、B 是整式,B 中含有字母)的式子叫做分式.【详解】解:分式有:3x ,1a a -,﹣35y +,2x x y -,x y x+,共5个, 故选:A .【点睛】本题考查的知识点是分式的定义,熟记定义是解此题的关键.8.如图,把ABC ∆纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则A ∠与12∠+∠之间有一种数量关系始终保持不变,试着找一找这个规律你发现的规律是( )A .122A ∠+∠=∠B .12A ∠+∠=∠C .2(12)A ∠=∠+∠D .1122A ∠+∠=∠ 【答案】A 【分析】画出折叠之前的部分,连接AA ',由折叠的性质可知DAE DA E '∠=∠,根据三角形外角的性质可得∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠,然后将两式相加即可得出结论.【详解】解:画出折叠之前的部分,如下图所示,连接AA '由折叠的性质可知DAE DA E '∠=∠∵∠1是DAA '的外角,∠2是AA E '的外角∴∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠∴∠1+∠2=DAA DA A ''∠+∠+EAA EA A ''∠+∠=()()DAA EAA DA A EA A ''''∠+∠+∠+∠=DAE DA E '∠+∠=2DAE ∠故选A .【点睛】此题考查的是三角形与折叠问题,掌握折叠的性质和三角形外角的性质是解决此题的关键.9.如图所示,在△MNP 中,∠P =60°,MN =NP ,MQ ⊥PN ,垂足为Q ,延长MN 至点G ,取NG =NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 周长是 ( )A .8+2aB .8aC .6+aD .6+2a【答案】D 【分析】在△MNP 中,∠P=60°,MN=NP ,证明△MNP 是等边三角形,再利用MQ ⊥PN ,求得PM 、NQ 长,再根据等腰三角形的性质求解即可.【详解】解:∵△MNP 中,∠P=60°,MN=NP∴△MNP 是等边三角形.又∵MQ ⊥PN ,垂足为Q ,∴PM=PN=MN=4,NQ=NG=2,MQ=a ,∠QMN=30°,∠PNM=60°,∵NG=NQ ,∴∠G=∠QMN ,∴QG=MQ=a ,∵△MNP 的周长为12,∴MN=4,NG=2,∴△MGQ 周长是6+2a .故选:D .【点睛】本题考查了等边三角形的判定与性质,难度一般,认识到△MNP 是等边三角形是解决本题的关键. 10.如图,在ABC 中,90ACB ∠=,D 是AB 上的点,过点D 作 DE AB ⊥ 交BC 于点F ,交AC 的延长线于点E ,连接CD ,DCA DAC ∠=∠,则下列结论正确的有( )①∠DCB=∠B;②CD=12AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④【答案】B【解析】由在△ABC中,∠ACB=90°,DE⊥AB,根据等角的余角相等,可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=12AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【详解】在△ABC中,∵∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°.∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD.∵AD=BD,∴CD=12AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=30°.∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选B.【点睛】本题考查了等腰三角形的性质与判定、等边三角形的性质与判定以及直角三角形的性质.注意证得D是AB的中点是解答此题的关键.二、填空题11.若分式221xx-+的值为零,则x的值等于_____.【答案】1【解析】根据题意得:x﹣1=0,解得:x=1.此时1x+1=5,符合题意,故答案为1.12.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;【答案】50【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.13.已知A 地在B 地的正南方3km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A地的距离S (km )与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为______km.【答案】1.5【详解】因为甲过点(0,0),(2,4),所以S 甲=2t .因为乙过点(2,4),(0,3),所以S 乙=12t+3,当t=3时,S 甲-S 乙=6-92=3214.如图,在等腰Rt ABC ∆中,90C =∠,AC BC =,AD 平分BAC ∠交BC 于D ,DE AB ⊥于E ,若10AB =,则BDE ∆的周长等于_______;【答案】1【解析】试题解析:∵AD 平分∠CAB ,AC ⊥BC 于点C ,DE ⊥AB 于E ,∴CD=DE .又∵AD=AD ,∴Rt △ACD ≌Rt △AED ,∴AC=AE .又∵AC=BC ,∴BC=AE ,∴△DBE 的周长为DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.15.如果多边形的每个内角都等于150︒,则它的边数为______.【答案】1【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.故答案为1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.16.定义运算“※”:a ※b =()()a a b a b b a b b a ⎧⎪⎪-⎨⎪⎪-⎩><,若5※x =2,则x 的值为___. 【答案】2.5或1.【详解】解:当5>x 时,5※x=2可化为525x =-,解得x=2.5,经检验x=2.5是原分式方程的解; 当5<x ,5※x=2可化为25x x =-,解得x=1,经检验x=1是原分式方程的解. 故答案为:2.5或1.【点睛】本题考查了新定义运算,弄清题中的新定义是解本题的关键,解题时注意分类讨论思想.17.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为_______.【答案】9710-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.故答案为:9710-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题18.计算下列各题:(1)2101(3)()2020|5|2--⨯-++-;(2)2[()()()]2x y x y x y y -+--÷ .【答案】(1)-20;(2)x -y【分析】(1)根据乘方的意义、负指数幂的性质、零指数幂的性质、算术平方根的定义和绝对值的定义计算即可;(2)根据平方差公式、完全平方公式和多项式除以单项式法则计算即可.【详解】解:(1)2101(3)()2020|5|2--⨯-++-=9(2)125⨯-++-=18125-++-=20-(2)2[()()()]2x y x y x y y -+--÷=2222[(2)]2x y x xy y y ---+÷=2222[2]2x y x xy y y --+-÷=2[22]2xy y y -÷= x -y【点睛】此题考查的是实数的混合运算和整式的混合运算,掌握乘方的意义、负指数幂的性质、零指数幂的性质、算术平方根的定义、绝对值的定义、平方差公式、完全平方公式和多项式除以单项式法则是解决此题的关键.19.解方程:(1)14122x x +=--; (2)224124x x x +-=--; (3)2131x x x =++-. 【答案】(1)1x =-;(2)1x =-;(3)35x =-.【分析】(1)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解; (3)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)14122x x+=-- 14122x x -=-- 142x -=-,解得1x =-,经检验1x =-是原方程的解,(2)224124x x x +-=-- ()22244x x +-=-224444x x x -=+-+44x =-,解得:1x =-经检验1x=-是分式方程的解.(3)2131 xx x=++-()()()() 13123 x x x x x-=+-++ 223326x x x x x x-=-+-++5x=-3解得35 x=-检验:当35x=-时,()()310x x+-≠∴35x=-是原方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.如图,在平面直角坐标系中,直线AB交x轴于点B(6,0),交y轴于点C(0,6),直线AB与直线OA:y=12x相交于点A,动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的14?若存在求出此时点M的坐标;若不存在,说明理由.【答案】(1)y=﹣x+6;(2)12;(3)存在满足条件的点M,其坐标为(1,12)或(1,5)或(﹣1,7)【分析】(1)由B、C坐标,根据待定系数法可求得直线AB的解析式;(2)联立直线AB和直线OA解析式可求得A点坐标,则可求得△OAC的面积;(3)当△OMC的面积是△OAC的面积的14时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【详解】解:(1)设直线AB的解析式是y=kx+b,根据题意得606k bb+=⎧⎨=⎩,解得-16kb=⎧⎨=⎩,。

2017-2018学年河南省洛阳市八年级第一学期期末数学试卷带答案

2017-2018学年河南省洛阳市八年级第一学期期末数学试卷带答案

2017-2018学年河南省洛阳市初二(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3 3.(3分)使分式有意义的x的取值范围是()A.x>﹣2B.x<2C.x≠2D.x≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y)D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C.D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC 8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5B.4C.3D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1B.2C.3D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n 的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.2017-2018学年河南省洛阳市初二(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的x的取值范围是()A.x>﹣2B.x<2C.x≠2D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,即x≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y)D.3a2﹣3b2=3(a2﹣b2)【解答】解:A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C.D.【解答】解:原式==x+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5B.4C.3D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1B.2C.3D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,顶角∠B=80°;当∠B=∠C为底角时,2(x+30)+x=180°,解得x=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)=x2﹣2x﹣24+4﹣9x2=﹣8x2﹣2x﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为x元/m3,则2016年1月起居民用水价格为(1+)x元/m3.…(1分)依题意得:﹣=5.解得x=1.8.检验:当x=1.8时,(1+)x≠0.所以,原分式方程的解为x=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n 的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。

河南省洛阳市洛宁县2017-2018学年八年级上学期数学期末考试试卷及参考答案

河南省洛阳市洛宁县2017-2018学年八年级上学期数学期末考试试卷及参考答案
A . 24cm2 B . 36cm2 C . 48cm2 D . 60cm2
二、填空题
11. △ABC中,∠C=90°,a=6,c=10,则b=________.
12. 已知
+|y﹣4|+(z﹣3)2=0,则以x,y,z为三边的三角形为________三角形.
13. 已知数据 ,﹣7,﹣7.5,π,﹣2017,其中出现负数的频率是________.
到红色球的频率稳定在
左右,则口袋中红色球可能有 ( )
A. 个B. 个C. 个D. 个
9. 如图是两户居民家庭全年各项支出的统计图.根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中
,正确的是( )
A . 甲户比乙户大 B . 乙户比甲户大 C . 甲、乙两户一样大 D . 无法确定哪一户大 10. 已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( )
(1) 在扇形统计图中,计算出“步行”部分所对应的圆心角的度数; (2) 求该班共有多少名学生; (3) 在图1中,将表示“乘车”的部分补充完整. 21. 若△ABC的三边长a、b、c满足6a+8b+10c﹣50=a2+b2+c2 , 试判断△ABC的形状. 22. 如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.
14. 如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长是12cm,AC=5cm,则AB+BD+D C=________cm;△ABC的周长是________cm.
15. 如图所示,折叠长方形的一边AD,使点D落在边BC上的点F处,已知AB=5cm,BC=13cm,则EC的长为_______ _cm.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年河南省洛阳市八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3 3.(3分)使分式有意义的x的取值范围是()A.x>﹣2B.x<2C.x≠2D.x≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y)D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C.D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC 8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5B.4C.3D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1B.2C.3D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n 的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.2017-2018学年河南省洛阳市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的x的取值范围是()A.x>﹣2B.x<2C.x≠2D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,即x≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y)D.3a2﹣3b2=3(a2﹣b2)【解答】解:A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C.D.【解答】解:原式==x+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5B.4C.3D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1B.2C.3D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,顶角∠B=80°;当∠B=∠C为底角时,2(x+30)+x=180°,解得x=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)=x2﹣2x﹣24+4﹣9x2=﹣8x2﹣2x﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为x元/m3,则2016年1月起居民用水价格为(1+)x元/m3.…(1分)依题意得:﹣=5.解得x=1.8.检验:当x=1.8时,(1+)x≠0.所以,原分式方程的解为x=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n 的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.附赠:初中数学易错题填空专题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。

相关文档
最新文档