(完整版)实数讲义
《实数》 讲义
《实数》讲义一、实数的概念实数,这个在数学世界中极为基础且重要的概念,是我们理解数量关系和解决数学问题的关键。
简单来说,实数就是包括有理数和无理数的数集。
有理数,我们都很熟悉,像整数(正整数、零、负整数)和分数(正分数、负分数)都属于有理数。
而无理数呢,则是那些无限不循环小数,比如大家熟知的圆周率π,还有根号 2 等等。
实数可以直观地理解为在数轴上能找到对应点的数。
也就是说,数轴上的每一个点都代表着一个实数,反之,每一个实数也都能在数轴上找到对应的点。
二、有理数有理数是实数的重要组成部分。
整数,像-3、0、5 这样的数,它们没有小数部分,清晰明了。
分数呢,比如 1/2、3/4 ,可以表示为两个整数的比值。
有理数具有一些很重要的性质。
比如,两个有理数相加、相减、相乘或相除(除数不为 0),结果仍然是有理数。
而且,有理数是可以用有限小数或无限循环小数来表示的。
我们在日常生活中,很多常见的数量关系都可以用有理数来描述。
比如购物时的价格、物品的数量等等。
三、无理数无理数虽然不像有理数那样“规矩”,但在数学中同样不可或缺。
像根号 2 ,它的值约为 141421356……,这个小数无限且不循环。
圆周率π,约为31415926……,也是一个无限不循环小数。
无理数的发现,让人们对数学的认识更加深入和丰富。
虽然它们的数值看起来没有规律,但通过数学方法和计算,我们可以对它们进行近似和研究。
四、实数的运算实数的运算包括加法、减法、乘法、除法和乘方等。
加法和减法:实数的加法和减法遵循相同的规则,即将对应位上的数字相加或相减,并考虑进位和借位。
乘法:两个实数相乘,先将它们按照整数乘法的规则相乘,然后确定积的符号(同号得正,异号得负),最后根据小数位数确定积的小数点位置。
除法:将除数变为倒数,然后与被除数相乘。
乘方:一个实数的 n 次幂,就是将这个实数乘以自身 n 次。
在进行实数运算时,要特别注意运算顺序,先算乘方、开方,再算乘除,最后算加减。
实数完整版课件
实数完整版课件一、教学内容1. 实数的定义与分类:有理数和无理数。
2. 实数的性质:实数的加法、减法、乘法、除法运算规则。
3. 实数的运算律:交换律、结合律、分配律。
4. 实数与数的比较:实数的大小比较、实数的绝对值。
二、教学目标1. 让学生掌握实数的定义与分类,理解实数的概念。
2. 让学生掌握实数的性质和运算律,能够熟练进行实数的运算。
3. 培养学生运用实数解决实际问题的能力。
三、教学难点与重点1. 教学难点:实数的分类,特别是无理数的概念。
2. 教学重点:实数的性质,实数的运算律。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:教材、笔记本、文具。
五、教学过程1. 实践情景引入:通过生活实例,如购物时找零钱,引入实数的概念。
2. 知识讲解:讲解实数的定义与分类,重点讲解无理数的概念。
3. 例题讲解:举例子说明实数的性质和运算律的应用。
4. 随堂练习:让学生现场进行实数的运算,巩固所学知识。
5. 板书设计:列出实数的性质和运算律,方便学生记忆。
6. 作业设计:布置有关实数的运算题目,巩固所学知识。
六、作业设计(1)2 + 3 × (4) ÷ 2(2)( 3 )^2 × 3 ÷ ( 6 )(3)√9 √162. 答案:(1)2 + 3 × (4) ÷ 2 = 8(2)( 3 )^2 × 3 ÷ ( 6 ) = 3(3)√9 √16 = 3 4 = 1七、板书设计实数的性质与运算律:性质:1. 加法交换律2. 加法结合律3. 乘法交换律4. 乘法结合律5. 分配律运算律:1. 交换律2. 结合律3. 分配律八、课后反思及拓展延伸本节课通过生活实例引入实数的概念,让学生能够理解实数的重要性。
通过讲解实数的性质和运算律,让学生能够熟练进行实数的运算。
在作业设计中,布置了有关实数的运算题目,让学生能够巩固所学知识。
实数概念分类性质讲义(含答案)
实数知识点一:无理数1 无理数的概念:无限不循环小数叫做无理数. 注意:(1)所有开方开不尽的方根都是无理数,不是所有带根号的数都是无理数. (2)圆周率π及一些含π的数是无理数. (3)不循环的无限小数是无理数.(4)有理数可化为分数,而无理数则不能化为分数. 2 无理数的性质:设a 为有理数,b 为无理数,则a+b ,a-b 是无理数;3、判断方法:①定义是判断一个数是不是无理数的重要依据;②有理数都可以写成分数的形式,而无理数则不能写成分数的形式(两个整数的商).4等;②含有π一类数,如5π,3+π等;③以无限不循环小数的形式出现的特定结构的数,如0.2020020002…(相邻两个2之间0的个数逐渐加1).二、知识点+例题+练习一、无理数的判断1.判断一个数是不是无理数,必须看它是否同时满足两个条件:无限小数和不循环小数这两者缺一不可.2.带根号的数并不都是无理数,而开方开不尽的数才是无理数. 【例1】0;3227;1.1010010001…,无理数的个数是 A .5B .4C .3D .2【答案】C【解析】因为02273π;1.1010010001…是无限不循环小数,所以无理数有3个,故选C .【变式训练1-1】在,–2018,π这四个数中,无理数是A .B .–2018CD .Π【答案】D1、实数的概念:有理数和无理数统称为实数.2、实数的分类: (1)实数按定义分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数( 2 )按正负分类:227227例题精讲二、实数的概念和分类1.实数的分类有不同的方法,但要按同一标准,做到不重不漏.2.对实数进行分类时,应先对某些数进行计算或化简,然后根据最后结果进行分类.【例1】在5π131401232,,,.,,----中,其中__________是整数,__________是无理数,__________是有理数.【答案】01-;π5131401322,,;,,.,---- 【例2】将这些数按要求填入下列集合中:0.01001001…,4,122-,3.2,0,-1,-(-5),-|-5|负数集合{ …};分数集合{…};非负整数集合{…};无理数集合{…}.【解析】负数集合{122-,-1,-|-5| 分数集合{122-,3.2…}; 非负整数集合{4,0,-(-5)…};无理数集合{0.01001001…,【变式训练2-1】判断正误.(1)实数是由正实数和负实数组成.( ) (2)0属于正实数.( )(3)数轴上的点和实数是一一对应的.( )(4)如果一个数的立方等于它本身,那么这个数是±1.( )(5)若x =x =( )【答案】(1)×;(2)×;(3)√;(4)×;(5)√.【变式训练2-2】下列说法错误的是( )A .实数都可以表示在数轴上B .数轴上的点不全是有理数C .坐标系中的点的坐标都是实数对 D【答案】D【变式训练2-3】下列说法正确的是( )A .无理数都是无限不循环小数B .无限小数都是无理数C .有理数都是有限小数D .带根号的数都是无理数【答案】A【变式训练2-4】 把下列各数填入相应的集合:-1、π、 3.14-、12、7.0、0(1)有理数集合{ }; (2)无理数集合{ }; (3)整数集合{ }; (4)正实数集合{ }; (5)负实数集合{ }.【答案】(1)-1 3.14-、12、7.0、0(2-、(3)-10;(4、π、127.0 ;(5)-1、 3.14-、(1)任何实数a ,都有一个相反数-a .(2)任何非0实数a ,都有倒数1a.(3)正实数的绝对值是它本身,负实数的绝对值是它的相反数,0的绝对值是0.(4)正实数大于0,负实数小于0;两个正实数,绝对值大的数大,两个负实数,绝对值大的反而小.一、相反数与绝对值求一个有理数的相反数和绝对值与求一个实数的相反数和绝对值的意义是一样的,实数a 的相反数是-a ,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.【例1的相反数是A .BC .D 【答案】A【解析】根据相反数的定义可知:2的相反数是2-,故选A . 【例2】3-π的绝对值是 A .3-π B .π-3 C .3 D .π【答案】B【解析】∵3−π<0,∴|3−π|=π−3,故选B .【例3】 A .相反数 B .倒数 C .绝对值 D .算术平方根【答案】A【解析】A .【变式训练3-1的相反数是________;的倒数是________;35-的绝对值是________.【答案】【变式训练3-2】3.141π-=______;=-|2332|______.【答案】-3.141π;【变式训练3-3】若||x =x =______;若||1x ,则x =______.【答案】1或11 实数与数轴上的点一一对应:即数轴上的每一个点都可以用一个实数来表示,反过来,每个实数都可以在数轴上找到表示它的点. 2、两个实数比较大小:1.数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大;2.正实数大于0,负实数小于0,正实数大于一切负实数,两个负实数比较,绝对值大的反而小.【例1】如图,数轴上点P 表示的数可能是AB .C .–3.2D .【答案】B≈2.65 3.16,设点P 表示的实数为x ,由数轴可知,–3<x <–2,∴符合题意的数为.故选B .【例2】和数轴上的点成一一对应关系的数是A .自然数B .有理数C .无理数D .实数【答案】D【解析】数轴上的点不仅表示有理数,还表示所有的无理数,即实数与数轴上得点是一一对应的,故选D .【例3】已知实数m 、n 在数轴上对应点的位置如图所示,则下列判断错误的是A .m <0B .n >0C .n >mD .n <m【答案】D【解析】由数轴上的点,得m <0<n ,所以m <0,n >0,n >m 都正确,即选项A ,B ,C 判断正确,选项D 判断错误.故选D .【变式训练4-1】已知数轴上A 、B 两点表示的数分别为–3A 、B 间的距离为__________. 【解析】A 、B 两点表示的数分别为–3和A 、B 间的距离为3),故答案为:.【变式训练4-2】如图,点A 、B 、C 在数轴上,O 为原点,且BO :OC :CA =2:1:5. (1)如果点C 表示的数是x ,请直接写出点A 、B 表示的数; (2)如果点A 表示的数比点C 表示的数两倍还大4,求线段AB 的长.【解析】(1)∵BO :OC :CA =2:1:5,点C 表示的数是x , ∴点A 、B 表示的数分别为:6x ,–2x ;(2)设点C 表示的数是y ,则点A 表示的数为6y , 由题意得,6y =2y +4, 解得:y =1,∴点C 表示的数是1,点A 表示的数是6,点B 表示的数是–2, ∴AB =8. 二、比较大小【例4】 ) A .7~8之间 B .8.0~8.5之间 C .8.5~9.0之间D .9~10之间【答案】C【例5】 实数2.6 ( )A .2.6<<B .2.6C 2.6<D 2.6<【答案】B【变式训练4-3】一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( ) A .4~5cm 之间 B .5~6cm 之间 C .6~7cm 之间 D .7~8cm 之间【答案】A【变式训练4-4】把下列各数按照由大到小的顺序,用不等号连接起来.4,4-,153-,1.414,π,0.6, ,34-,【答案】314 1.4140.64543π>>>>>>->-.1.在进行实数的运算时,有理数的运算法则、运算性质、运算顺序、运算律等同样适用.2.在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算. 【例1】计算下列各式:(1)221.【解析】(1=-.(2)原式21=1=.【变式训练5-1】计算题(1)32716949+- (2) 233)32(1000216-++【解析】(1)32716949+-71333=-+=-; (2)233)32(1000216-++226101633=++=. 【答案】(1)3-;(2)2163.1.在下列实数中,属于无理数的是 A .0BC .3D .2.在每两个1之间依次多一个中,无理数的个数是 A .1个 B .2个C .3个D .4个3的值在 A .0和1之间B .1和2之间C .2和3之间D .3和4之间4.下列四个数中,最小的一个数是 A .5的绝对值是A .3B .6.下列说法中,正确的个数有 ①不带根号的数都是有理数; ②无限小数都是无理数;③任何实数都可以进行开立方运算;1313.140.231.131331333133331(3π-,,,,……3)B 3-.C -.D π-.3-1C 3.1D 3-.④不是分数. A .0个B .1个C .2个D .3个7.下列各组数中互为相反数的一组是 A .-|-2|B .-4与C .与D .8.如图,数轴上点P 表示的数可能是AB.C . 3.4-D.92-的相反数是__________,绝对值是__________. 10.计算:+-=__________.11__________. 12=__________(=__________. 13.把下列各数填入相应的集合内:4230.15,-7.5,-π,0,23.. ①有理数集合:{ …}; ②无理数集合:{ …}; ③正实数集合:{ …}; ④负实数集合:{…}.14.已知:x 是|-3|的相反数,y 是-2的绝对值,求2x 2-y 2的值.515.已知ab的小数部分,|c,求a -b +c 的值.16.已知5的小数部分分别是a 、b,则(a +b )(a–b )=__________.17.6的整数部分是a ,小数部分是b .(1)a =__________,b=__________.(2)求3a –b 的值.18.如图,点A ,一只蚂蚁从点A沿数轴向右直爬2个单位后到达点B,设点B 所表示的数为n .(1)求n的值;(2)求|n +1|+(n –2)的值.答案:1.【答案】B【解析】0、3、是无理数.故选B . 2.【答案】C【解析】,π,1.131331333133331……(每两个1之间依次多一个3)是无理数,故选C . 3.【答案】B【解析】∵<2的值在:1和2之间.故选B .4.【答案】D【解析】∵7<8<9<π2,3<π,∴>–π,∴最小的一个数是–π.故选D . 13<<3--5.【答案】A.–3的绝对值是3.故选A.6.【答案】C【解析】①不带根号的数不一定是有理数,如π,错误;②无限不循环小数是无理数,错误;③任何实数都可以进行开立方运算,正确;不是分数,正确;故选C.8.【答案】B【解析】由图可知,P点表示的数在之间,故选B.9.【答案】22;--2-的相反数是2-,绝对值是2-,故答案为:22;--10.【答案】【解析】(35+-=+-,故答案为.11.【答案】【解析】它们互为相反数,分别是故答案为:121)3(1-13-1.3=-13.【解析】有理数集合:{4,230.15,-7.5,0,23.…};,π-…};4,230.15,23.…}; ④负实数集合:{-7.5,π-…}.14.【解析】∵x 是|−3|的相反数,∴x 是3的相反数−3,即x =−3.∵y 是−2的绝对值,∴y =2.∴22229414x y -=⨯-=.15.【解析】∵<3,∴a =2,b-2,∵|c,∴c当ca -b +c =4;当c =a -b +c =4-.16.【答案】5【解析】∵与5a 、b ,∴a =(–2,b=(5)–2=3,∴(a+b )(a –b )=–2+32–5.故答案为:5.17.【解析】(1)∵,∴<3.∴–23.∴6–2>66–3,∴4>63.∴a =3,b =3(2)3a –b =3×3–(3=9–1. 下列命题中,错误的命题个数是( )(1)2a -没有平方根; (2)100的算术平方根是10,记作10100=± (3)数轴上的点不是表示有理数,就是表示无理数; (4)2是最小的无理数.A .1个B .2个C .3个D .4个【答案】C2. 若22b a =,则下列等式成立的是( )A .33b a =B .b a =C .b a =D . ||||b a =【答案】D3. 已知坐标平面内一点A(2-,3),将点A A ′的坐标为 .【答案】(2--四、课后作业4.已知10<<x ,则21x x x x 、、、的大小关系是__________________________(用“>”连接). 【解析】可以采用特殊值法解题,如14x =.【答案】21x x x>>5.计算:(1(2)2(2)-【解析】(111213333-=- ;(2)2(2)-11433231423=⨯+-⨯=+-=. 【答案】(1) 13- ; (2)4.6.已知一个长方体封闭水箱的容积是1620立方分米,它的长、宽、高的比试5:4:3,则水箱的长、宽、高 各是多少分米?做这个水箱要用多少平方分米的板材?【解析】在列方程解应用题时,要注意见比设k 的应用.【答案】长、宽、高各是15分米,12分米,9分米;846平方分米.7.已知实数a ,满足0a =,求11a a -++的值.【解析】0a ,0a a a ∴++=,20a a +=,0a ∴=,112a a -++=【答案】28.先阅读理解,再回答下列问题:,且12<<的整数部分为1;23<2;=34<的整数部分为3;n 为正整数)的整数部分为______,请说明理由.【解析】n2(1)n n n n +=+,又22(1)(1)n n n n <+<+,1n n ∴<+(n 为正整数),∴整数部分为n .【答案】n9. 计算下列各组算式,观察各组之间有什么关系,请你把这个规律总结出来,然后完成后面的填空.(1(2(3(4(5= ;(6= (0,0)a b ≥≥.【解析】(5(6【答案】(5;(610.若a 为217-的整数部分,1-b 是9的平方根,且a b b a -=-||,求b a +的算术平方根.【解析】161725,45,223,2a <<∴<∴<<∴=,14b b -==或2b =-.又a b b a -=-,b a ∴≥,2,4a b ∴==,.。
实数完整版课件
实数完整版课件一、教学内容本节课我们将学习教材第十章“实数”部分,详细内容如下:1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系;4. 实数在数学中的应用。
二、教学目标1. 理解实数的定义,掌握实数的分类;2. 学会实数的性质和运算规则,并能熟练运用;3. 理解实数与数轴的关系,能将实数在数轴上表示出来。
三、教学难点与重点1. 教学难点:实数的性质及运算规则;2. 教学重点:实数的定义、分类及与数轴的关系。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:练习本、铅笔、直尺。
五、教学过程1. 导入:通过实际情景引入实数概念,如温度、长度等;2. 新课导入:讲解实数的定义、分类及性质;3. 例题讲解:讲解实数运算规则,如加减乘除、乘方等;4. 随堂练习:让学生进行实数运算的练习,巩固所学知识;5. 知识拓展:介绍实数与数轴的关系,引导学生将实数在数轴上表示出来;7. 课堂作业:布置实数相关的作业,巩固所学知识。
六、板书设计1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系。
七、作业设计1. 作业题目:(1)判断下列数哪些是实数,哪些不是:2、3/2、√2、π;(2)计算:2/3 + 5/6 1/2;答案:(1)实数:2、3/2、√2、π;(2)2/3 + 5/6 1/2 = 3/2;(3)见附图。
八、课后反思及拓展延伸1. 了解无理数的概念,探究无理数与有理数的关系;2. 探索实数在生活中的应用,如测量、计算等。
重点和难点解析1. 实数的定义及分类;2. 实数的性质及运算规则;3. 实数与数轴的关系;4. 作业设计中实数在数轴上的表示;5. 课后拓展延伸的无理数概念及实数在生活中的应用。
一、实数的定义及分类实数是数学中一个重要的概念,包括有理数和无理数。
有理数是可以表示为两个整数之比的数,如分数、整数等;无理数则不能表示为两个整数之比,如π、√2等。
《实数》实数PPT教学课件
课堂小结
1.在实数范围内,相反数、倒数和绝对值的 意义和有理数范围内的相反数、倒数和绝对 值的意义完全一样. 2.实数和有理数一样,可以进行加、减、乘、 除、乘方运算,而且有理数的运算法则和运算 律对实数仍然适用.
课堂小结
3.每一个实数都可以用数轴上的一个点来表 示;反过来,数轴上的每一个点都表示一个 实数,即实数与数轴上的点是一一对应的.
解:(1) 3 - 27 =-3,3 - 27 的相反数是3,
倒数是 1 ,绝对值是3.
3
巩固练习
2.求下列各数的相反数、倒数和绝对值.
(2) 25 =5, 25 的相反数是-5,倒数
是 1 ,绝对值是5. 5
(3) 11 的相反数是 -
11 ,倒数是
1
11 ,
绝对值是 11 .
巩固练习
(4 ) 2 - 2 的相反数是 -( 2 - 2 )= 2 - 2 , 1
,
5,
新知探究
有理数和无理数统称为实数 即实数可以分为有理数和无理数
有理数 实数
无理数
新知探究
2.你能把下面各数填入下面相应的集合内吗?
3
2,
1, 4
4 , 0,
9
7,
,
5 2
,
2,
20 3
,
0.3737737773
5, 3 8,
3 2,
1, 4
7, ,
2,
20 , 4 , 0.3737737773
什么? 它介于哪两个整数之间?
B
1和2之间
1
-2
-1
O
1A 2
(2)你能在坐标轴上找到 5 对应的点吗?
第1课 实数
为 整数 ,这种记数法叫做科学记数法.
4.实数的大小比较
(1)利用数轴:
①在数轴上表示两个数的点,右边点表示的数总比左边点表示的数 大 ; ②正数 > 0,负数 < 0;两个负数比较大小,绝对值大的数反而 小 .
(负半轴上距原点越远的数越小)
(2)作差法: 设a、b是任意实数,若a-b>0,则 a>b ;若a-b=0,则a=b ;若a-b<0,则 a<b .
(2)相反数:
①代数意义:如果两个数只有 符号 不同,那么我们称其中一 个数是另一个数的相反数.即:实数a的相反数为 -a .
②几何意义:在数轴上,互为相反数的两个数所对应的点 位于 原点 的两旁且到 原点 的距离相等.
(3)绝对值:
实数a的绝对值记作 a
,
a (a≥0 有 | a | Fra bibliotek a(a≤0A
01
例6.(2010山东潍坊)如图,数轴上A、B两点对应的实数分别是1和 3 ,若点 A关于点B的对称点为C点,则点C所对应的实数为( )
A. 2 3 1
B.1 3
C. 2 3
D. 2 3 1
拓展提高
1. 将1、2 、3 、6 按右侧方式排列.若规定(m,n)表示第m排从左向右第n个
数,则(5,4)与(15,7)表示的两数之积是
.
1 23 61 2 361 2 3 61 2 3
第1排 第2排 第3排 第4排 第5排
2.如图,A,B,C,D四张卡片上分别写有2,3,5,π 四个实数,从中任取两
7
张卡片.
(1)请列举出所有可能的结果(用字母A,B,C,D表示);
(2)求取到的两个数都是无理数的概率.
A
B
(完整版)实数讲义
当 时, ,例如
5、立方根的概念及性质(例8)
(1)立方根的定义:一般地,如果一个数 的立方等于 ,即 ,那么这个数 就叫做 的立方根,也叫做 的三次方根.如 ,2叫做8的三次方根.
(2)立方根的性质:一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0.
(3)立方根的表示:数 的立方根用符号“ ”来表示,读作“三次根号 ”。其中, 称为被开方数,3称为根指数。
12、近似数(例15)
接近实际的数或在计算中按要求所取的与某个准确数接近的数,我们把它叫做近似数.
注意:近似数产生的原因主要有两种:(1)有些需要度量的数,由于受到测量工具精度的限制,得到完全准确的数值几乎是不可能的,这就需要用和准确数尽可能接近的数来表示;(2)有时没有必要完全准确,用近似数表示就可以了.
6、开立方(例9)
求一个数的立方根的运算,叫做开立方.
(1)开立方是一种运算,是与加、减、乘、除、乘方一样的运算,是求立方根的过程,立方和开立方互为逆运算.
(2)由立方根的性质可知开立方的结果是唯一的.
7、无理数(例10)
(1)无理数:无限不循环小数叫做无理数.
(2)无理数的常见类型主要有以下3种:
(3)对于带有“文字单位”的近似数,在确定其精确到哪一位时,分为两种情况:文字单位前面是整数,如18亿,则它精确到文字单位这一位(亿位);文字单位前面是小数,如2.61万,则先将它还原为普通数26100,此时1所在的数位(百位)就是它精确到的数位.
三、例题讲解
1、下列各数中,没有平方根的是()
A.1 B.0 C. D.
所有带根号且被开方数是开方开不尽的数;
圆周率 及一些含有 的数;
无理数与有理数的和、差,无理数乘或除以一个不为0的有理数所得的结果.
12.6 实数的运算 讲义
第十二章 第6讲 实数的运算学习目标理解实数的运算法则、性质和顺序并能根据相关知识进行实数运算;会利用平方根意义化简根式;掌握实数的加、减、乘、除、开方、乘方的运算;能辨别精确数与近似数,并能确定近似数的精确度,能求出近似数的有效数字。
知识精要1.实数的运算法则:在实数范围内,可以进行加、减、乘、除、乘方及开方运算,有理数的运算法则和运算性质在实数范围内仍然适用。
2.实数的运算顺序:实数混合运算的运算顺序与有理数运算顺序基本相同,先乘方、开方,再乘除,最后算加减。
同级运算按照从左到右的顺序进行,有括号的要先算括号里面的。
3.实数的运算结果:对于涉及无限小数的运算,可以根据保留几位小数的要求,取无限小数的近似值(有限小数)进行运算,将实数的运算转化为有限小数的运算,逐步接近原来的运算结果;对于涉及无理数的运算,如果没有指明运算结果保留几位小数,那么通常是利用实数的运算法则和运算性质对算式进行化简,其结果可能是化简了的一个算式。
4.实数的运算性质: (1)⎪⎩⎪⎨⎧<-=>==)0(,)0(,0)0(,2a a a a a a a (2))0()(2≥=a a a (3))0,0(≥≥⋅=b a b a ab (4))0,0(>≥=b a ba b a 5.实数的精确度:一般来说,完全符合实际地表示一个量多少的数叫做准确数;与准确数达到一定接近程度的数叫做近似数(或近似值)。
近似数与准确数的接近程度即近似程度,对近似程度的要求叫做精确度。
近似数的精确度通常有以下两种表示方式:(1)精确到哪一数位,例如:精确到百分位,或精确到0.01;(2)保留几个有效数字。
有效数字:对于一个近似数,从左边第一个不为零的数字起,往右到末位数字为止的所有数字,叫做这个近似数的有效数字。
经典题型精讲(一)实数的基本运算例1.不用计算器,计算: (1)520⨯ (2)33913÷ (3))32132(33-- (4)1523458⨯- (5)51107÷⨯ (6)42625)2(+- (7)0)14.3()23)(23(-+-+π (8)22)572()572(-+举一反三:计算下列各题: (1))32332(23-- (2)⎥⎦⎤⎢⎣⎡-+--)7721(737274 (3)2)2(16+ (4)2332⨯÷÷ (5)332332÷⨯ (6)332332÷⨯ (7)32053÷⨯ (8)[]2232)7(- (9)22)23()23(--+例2.化简:(1)347+ (2)2)549549(--+ (3)722341012--+举一反三:化简:(1)2)23(- (2)2)10(-π (3))7(962=+-x x x例3.已知:0981642=+-+-a a b a ,求实数b a 、的值。
《实数》ppt课件
指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。
实数基本概念的讲义
实数的基本概念一 •平方根平方根:如果一僚的平方等于“,那么这个数叫做“的平方根• 也就是说,若A-2=t/ ,贝!k 就叫做"的平方根. —个非负数"的平方根可用符号表示为"土后 .—个正数有两个平方根,它们互为相反数;0的平方根是0 ;负数没有平方根.例题::L —个正数的两个平方根分别是2a ・1与・a+2 ,则a 的值为—2 •下列说法正确的是() A.正数的平方根是它本身C.-10是100的一个平方根 练习:1•已知|b -4|+ (a-l )2=0f 贝片的平方根是( )bA. +丄 B •丄 -2 2 2・一个正数的平方根分别是x+1和x • 5 ,则x= ________________3・若一正数的两个平方根分别是a ・3和3a ・「则这个正数是.-:算术平方根算术平方根:f 正数乂有两个互为相反数的平方根,其中正的平方根叫做“的算术平方根,可用符号表示 为"后; 0有一个平方根,就是0 , 0的算术平方根也是0 ,负数没有平方根,当然也没有算术平方根・例题:B.100的平方根是10 D. - 1的平方根是-11.顶的算术平方根为—练习:1. (5+m )2的平方根是_____________ ,算术平方根是_____________________ .2.自由落体的公式为s=*gt2 (g为重力加速度,g=9.8m/s2).若物体下落的高度s为78.4m ,则下落的时间t是 __________________ s .3 .血)算术平方根是_________________________ •三:立方根立方根:如果一个数的立方等于“,那么这个数叫做"的立方根,也就是说,若丘=“,则X就叫做“的立方根. —个数“的立方根可用符号表示"長",其中"3"叫做根指数,不能省略.前面学习的"后其实省略了根扌旨数"2",即:亦也可以表示为需•任^_个数都有立方根,且只有一个立方根”正数的立方根为正数,负数的立方根为负数,0的立方根为0.例题:1.计算际的结果是()2如果m2=36 , n3= - 64 ,辰=5 ,则m+n - x的值有—个.练习1 •已知2a - 7的平方根是±3 , 2a+b- 1的算术平方根是4 ,求a+b的立方根.2 •已知x ・2的平方根是±2 f 2x+y+7的立方根是3 ,求炒+护的平方根.3•已知2x - y 的平方根为±4 , - 2是y 的立方根,求-2xy 的平方根・四:实数1无理数的概念:无限不循坏小数叫做无理数・注意:(1)所有开方开不尽的方根都是无理数,但不是所有带根号的数都是无理数.(2) 圆周率只及一些含兀的数是无理数•(3) 不循环的无限小数是无理数•(4) 有理数可化为分数,而无理数则不能化为分数•2无理数的性质:设刁为有理数,b 为无理数,则a+b , a"是无理数;3实数的概念:有理数和无理数统称为实数・实数的分类:'正无理数 负无理数实数与数轴上的点一一对应:即数轴上的每一个点都可以用_个实数来表示,反过来,每个实数都可以在数轴战到表示它的点・例题:1•下列各数中:学,—访,, -TI , - 0.1010010001,无理数有—个2 •把下列各数填入相应的集合:-1、负只、-3.14.筋、-晶五逬、0、0.131331333.-顼(1)有理数集合{ };(2 )无理数集合{ ___________________ } 实数 有理数 分数? '正整数’0 .负整数'正分数负分数「有限小数或无限循环小数无限不循环小数(3 )整数集合{ ___________________ }(4 )负实数集合{ ___________________ }3.计算:练习:1.计算:话|-2|+(寺)-1= ______________________________ •2.计算(-1)2018-(73-2) °= _______________________________ •3.走义:如果一个数的平方等于-「记为i2= -1,这个数i叫做虚数单位,把形如a+bi ( a , b为实数) 的数叫做复数,具中a叫这个复数的实部,b叫做这个复数的虚部,它的加.减,乘法运算与整式的加, 减,乘法运算类似•例如计算:(2+i) + ( 3 - 5i) = ( 2+3 ) + ( 1 - 5 ) i=5 - 4i ;(1+i) x (2-i) =1x2 - i+2xi - P=2+ ( -1+2) i+l=3+i;根据以上信息,下列各式:① |3= - 1 ;②i4 = l ;③(1 + 1 ) X ( 3 - 41 ) = - 1 - I ;④i + i2+i3 + j4+……+ j2019= -1 .其中正确的是___________________ (填上所有正确答案的序号)•4.计算:罔-薔+ ( -3) o+2-i= _______________________________综合练习:1 •昙的平方根是2.( -4)2的算术平方根是3•计算:紅0.064 二 _____4•已知一个正数的两个平方根分别为2m・6和3+m ,则(・m )型8的值为5•已知2a - 1的平方根是±3 , 3a+b・1的平方根为±4 ,则a+2b的平方根是-V0~9,番中,无理数的有—个•6•在晋,2n , 一2寺,0 , 0.454454445...,7 •设n为正整数■且n<A/65<n+i r则n的值为8 •比衍大且比MI®J\的整数是—・9将下列各数填入相应的集合内• - 3.14,器,-V2, -V4,0, 1010010001...•L乙①有理数集合{ ___________ ...}②无理数集合{ ______________ ...}③负实数集合{ ______________ …}・10•计算:3/g-2V3+IV3-2I ・12.—个数值转换器,如图所示:(1)当输入的x为16时.输出的y值是_ ;(2)若输入有效的x值后,始终输不出y值,请写岀所有满足要求的x的值,并说明你的理由;(3 )若输出的y是丁5 •请写出两个满足要求的x值:。
《实数》 讲义
《实数》讲义一、实数的定义实数,是数学中最基本的概念之一。
简单来说,实数就是有理数和无理数的统称。
有理数,包括整数和分数。
整数如-3、0、5 等,分数如 1/2、-3/4 等。
这些数都可以表示为两个整数的比值。
而无理数,则是无限不循环小数,比如圆周率π约等于 31415926,以及根号 2 约等于 14142135实数的概念让我们能够描述和处理各种数量关系,无论是在日常生活中的测量、计算,还是在科学研究中的复杂运算,实数都扮演着至关重要的角色。
二、实数的性质1、有序性实数具有有序性,即任意两个实数 a 和 b,要么 a < b,要么 a = b,要么 a > b。
例如,3 < 5,-25 >-3 等。
这种有序性让我们能够比较数的大小,从而进行排序和选择。
2、稠密性实数是稠密的,这意味着在任意两个不相等的实数之间,总是存在着无穷多个其他实数。
比如在 1 和 2 之间,有 11、12、125 等等无数个实数。
3、四则运算封闭性实数对四则运算(加、减、乘、除,除数不为 0)是封闭的。
也就是说,两个实数进行四则运算的结果仍然是实数。
例如,3 + 5 = 8,6 25 = 35,4 × 2 = 8,8 ÷ 2 = 4 等。
三、实数的表示方法1、小数表示实数可以用小数来表示。
有限小数,如 025、314 等,能准确地表示为有理数。
无限循环小数,如 0333(1/3),也是有理数。
无限不循环小数,如π、根号 2 等,则是无理数。
2、数轴表示我们可以用数轴来直观地表示实数。
数轴上的每一个点都对应着一个唯一的实数,反之,每一个实数也都能在数轴上找到对应的点。
例如,0 对应的点在数轴的正中间,正数在 0 的右边,负数在 0 的左边。
四、实数的运算1、加法实数的加法遵循交换律和结合律。
交换律:a + b = b + a例如,2 + 3 = 3 + 2 = 5结合律:(a + b) + c = a +(b + c)例如,(1 + 2) + 3 = 1 +(2 + 3) = 62、减法减法是加法的逆运算。
数学分析讲义全
数学分析讲义全第一章:实数本章主要介绍实数的定义及其性质。
1.1 实数的定义实数包括有理数和无理数两部分。
有理数是可以表示为两个整数之间的比,无理数则不能用有理数表示。
1.2 实数的性质实数满足一些基本性质,如实数的加法、乘法满足交换律、结合律和分配律等。
第二章:极限与连续本章主要介绍数列极限、函数极限和连续函数的定义及其相关概念。
2.1 数列极限数列极限是数列逐渐逼近某个确定值的概念。
包括数列迫敛、数列发散等。
2.2 函数极限函数极限是函数在某点逐渐接近某个确定值的概念。
包括左极限、右极限等。
2.3 连续函数连续函数是函数在某点处无间断、无跳跃的性质。
第三章:导数与微分本章主要介绍导数、微分的定义及其相关性质。
3.1 导数的定义导数描述了函数在某一点的变化率。
包括函数的导数定义、导数的性质等。
3.2 微分的定义微分是函数在某点处的线性近似。
包括函数的微分定义、微分的性质等。
第四章:积分与定积分本章主要介绍积分、定积分的定义及其应用。
4.1 积分的定义积分是函数的反导数。
包括不定积分、定积分等。
4.2 定积分的性质定积分具有线性性质、加法性质、区间可加性等。
第五章:级数本章主要介绍级数的概念及其计算方法。
5.1 级数的定义级数是无穷数列之和的概念。
包括级数收敛、级数发散等。
5.2 级数的计算方法级数的计算方法具有求和、判定级数收敛性等。
这份讲义全面介绍了数学分析的基础知识,希望能帮助到您。
(word完整版)七年级第三章实数复习讲义
教育学科教师辅导讲义根据定义,巧用正数的两平方根是互为相反数求值.我们知道,当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例题 1: 已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.巩固: 若32+a 和12-a 是数m 的平方根,求m 的值.巧解方程例2: 解方程(1)(x+1)2=36 (2)27(x+1)3=64 (3)27)3(83=--x巧用算术平方根的最小值求值.我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例1 、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.巩固①已知233(2)0x y z -+-++=,求xyz 的值。
②已知互为相反数,求a ,b 的值§3 .2 实数一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
关于数系扩张后与有理数的知识链接1 关于有理数的运算法则:运算规律和运算性质,在进行实数运算时仍适用.在实数范围内,不仅可以进行加.减.乘.除.乘方运算,而且正数和零总可以进行开平方运算,任何一个数都可以开立方运算.2.实数和数轴上的点的对应关系:实数和数轴上的点一一对应,即每一个实数都可以用数轴上的一个点表示.反过来,数轴上的每一个点都可以表示一个实数.我们可以用几何作图方法,在数轴上表示某些无理数,如 、等.3.实数的大小比较 在数轴上表示的两个实数,右边的数总比左边的数大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9、求下列各数的立方根:
(1)—125;(2)—0.064;(3) (4)
10、下列各数中,是无理数的为()
A.100 B. C. D.
11、实数 , , , 中,分数的个数为()
A.1 B.2 C.3 D.4
12、 的倒数为__________.
13、点M在数轴上与原点相距 个单位,则点M表示的实数是_________.
6、开立方(例9)
求一个数的立方根的运算,叫做开立方.
(1)开立方是一种运算,是与加、减、乘、除、乘方一样的运算,是求立方根的过程,立方和开立方互为逆运算.
(2)由立方根的性质可知开立方的结果是唯一的.
7、无理数(例10)
(1)无理数:无限不循环小数叫做无理数.
(2)无理数的常见类型主要有以下3种:
3、算术平方根(例4、5)
(1)我们把一个正数 的正的平方根 叫做 的算术平方根,如正数 的算术平方根记作 .特别强调:算术平方根是指一个正数的平方根中的正的平方根.
(2)算术平方根的性质:
被开方数 是非负数,即 ;
算术平方根 是非负数,即
4、 的化简(例6、7)
表示 的算术平方根,要根据 的符号对其化简:
13、近似数的精确度(例16)
近似数与准确数的接近程度,通常用精确度表示.一般地,一个近似数四舍五入到哪一位,就说这个数精确到哪一位.
注意:确定一个近似数精确到哪一位可分为以下几种类型:
(1)对于小数或整数形式的近似数,其最后一位所在的数位就是其精确到的数位;
(2)对于用科学记数法表示的近似数,如 ,可将它还原成普通数1320,此时1.32最右边的数字2所在的数位(十位)就是它精确到的数位;
(1)实数大小的比较方法与有理数大小的比较方法相同,即正数大于0,0大于负数,正数大于负数.两个正数,绝对值大的数大.两个负数,绝对值大的反而小.数轴上右边的数总比左边的数大.
(2)一般地,已知两个正数 和 ,如果 ,那么 ;反过来,如果 ,那么 .
注意:对于某些带根号的无理数,可通过平方或其他变形进行比较.
7、下列说法和式子正确的是()
A. 的平方根是 B. 1的立方根是
C. D.
8、一个正方体的表面积是486,求这个正方体的棱长.
9、求下列各式的值:
(1) (2) (3)
10、9的算术平方根是
11、A.-3 B.3 C.±3 D.81
12、化简 的结果是
13、A. B. C. D.
14、下列各数中,无理数的是
14、比较下列各组数中两个数的大小:
(1) 与 (2)2.2与 (3) 和
15、下列四个数据,是精确数的是()
A.小莉班上有45人
B.某此地震中,伤亡10万人
C.小明测得数学书的长度为21.0厘米
D.吐鲁番盆地低于海平面大约155米
16、近似数0.40精确到()
A.个位B.十位C.十分位D.百分位
四、中考链接
(1)平方根:一般地,如果一个数 的平方等于 ,即 ,那么这个数 就叫做 的平方根,也叫做 的二次方根。
(2)平方根的性质:一个正数有两个平方根,它们互为相反数;0只有一个平方根,是0本身;负数没有平方根.
(3)平方根的表示方法:正数 的正的平方根用符号“ ”表示,读作“根号 ”;正数 的负的平方根用符号“ ”表示,读作“负根号 ”。正数 的两个平方根记为 。其中, 称为被开方数。如4的平方根为 ,被开方数是4;0.01的平方根为 ,被开方数是0.01.
2、求下列各式的值:
(1) ;(2) ;(3) ;(4)
3、若 为实数,且 ,则 的值为________.
4、求下列各数的立方根
(1)729(2) ;(3) (4)
5、若 与 互为相反数,则 ______;若 ,则 _______.
6、近似数3.250是精确到()
A.千分位B.千位C.百分位D.十位
教学情况记录表
课程类别
□同步 □串讲 □其他 (请注明类别:_____________________)
本次课授课目标
掌握平方根、算术平方根、立方根、实数、近似数的概念,科学记数法
教学重点
平方根、算术平方根、立方根、实数
教学难点
实数的概念综合应用
教学步骤及内容
1、 错题回顾
2、知识总结
1、平方根的概念及性质(例1、2)
注意:(1)只有非负数才有平方根.
(2)正数有两个平方根,一正一负互为相反数,在计算时不要漏掉负的平方根.
2、开平方(例3)
求一个数的平方根的运算,叫做开平方.因为负数没有平方根,所以被开方数一定大于或等于0,即为非负数.开平方是一种运算,是与加、减、乘、除、乘方一样的运算,是求平方根的过程,平方和开平方互为逆运算.
1、(新疆中考)若 为实数,且 ,则 的值是()
A.0 B.1 C. D.
2、(贵州中考) 的平方根是_________.
3、(河北中考)下列运算中,正确的是()
A. B. C. D.
4、(贵州中考)计算 __________
5、(内蒙古中考)大于 且小于 的整数_________.
6、(云南中考)把近似数4500000用科学记数法表示为___________.
A. B. C. D.
15、估算 的值( )
A.在4和5之间B.在5和6之间
C.在6和7之间D.在7和8之间
16、已知 , ,求 的值
2、4的平方根是()
A.16 B.2 C. D.
3、求下列各数的平方根:
(1)36(2)0.04(3) (4)
4、9的算术平方根是()
A. B.3 C. D.以上都不正确
5、求下列各数的算术平方根:
(1)1.44(2)121(3) (4)
6、 等于()
A.16 B.4 C. D.
7、 __________.
注意:(1)每个有理数都可以用数轴上的点来表示,但是,数轴上的点并不都表示有理数;同样,每个无理数都可以用数轴上的点来表示,但是,数轴上的点并不都表示无理数.由此可以知道:实数和数轴上的点是一一对应的.
(2)除“0”外,互为相反数的两个数在数轴上所对应的点分别在原点的两侧,且与原点的距离相等.
11、实数大小的比较(例14)
12、近似数(例15)
接近实际的数或在计算中按要求所取的与某个准确数接近的数,我们把它叫做近似数.
注意:近似数产生的原因主要有两种:(1)有些需要度量的数,由于受到测量工具精度的限制,得到完全准确的数值几乎是不可能的,这就需要用和准确数尽可能接近的数来表示;(2)有时没有必要完全准确,用近似数表示就可以了.
当 时, ,例如 ;
当 时, ,例如
5、立方根的概念及性质(例8)
(1)立方根的定义:一般地,如果一个数 的立方等于 ,即 ,那么这个数 就叫做 的立方根,也叫做 的三次方根.如 ,2叫做8的三次方根.
(2)立方根的性质:一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0.
(3)立方根的表示:数 的立方根用符号“ ”来表示,读作“三次根号 ”。其中, 称为被开方数,3称为根指数。
7、 是 的()
A.相反数B.倒数C.绝对值D.算术平方根
8、求下列各数的平方根:
(1) (2)19600;(3) ;(4)
9、求下列各数的立方根
(1) (2) (3) (4)
10、下列等式成立的是
A. B.
C. D.
11、已知x、y为实数,且 ,则x-y的值为
A.3 B.-3 C.1 D.-1
12、7.下列关于 的说法中,错误的是
所有带根号且被开方数是开方开不尽的数;
圆周率 及一些含有 的数;
无理数与有理数的和、差,无理数乘或除以一个不为0的有理数所得的结果.
注意:判断一个数是否为无理数,不能只从形式上看.带根号的数不一定是无理数,如 是有理数;无理数也不一定带根号,如 .
8、实数及其分类(例11)
有理数和无理数统称为实数.即实数可以分为有理数和无理数.实数还可以分为正实数,0,负实数.
A. 是无理数B.3< <4
C. 是12的算术平方根D. 不能再化简
13、
14、已知 ,则 的值为()
A. B.
C. 3D.不能确定
15、如图,数轴上表示1, 的对应点分别为点A,点B.若点B关于点A的对称点为点C,则点C所表示的数是
A. B.
C. D.
五、巩固提高
1、 的平方根是()
A. B.36 C. D.
注意:(1)有理数与无理数的区别:有理数是有限小数或无限循环小数,而无理数是无限不循环小数.
(2)判断一个数是不是分数,不能只从形式上看,如 虽然具有分数的形式,但它是无理数,不是分数.
9、实数的绝对值、相反数和倒数(例12)
任意一个实数的绝对值、相反数、倒数(0没有倒数)的意义及性质与有理数的绝对值、相反数和倒数的意义及性质是相同的.
(3)对于带有“文字单位”的近似数,在确定其精确到哪一位时,分为两种情况:文字单位前面是整数,如18亿,则它精确到文字单位这一位(亿位);文字单位前面是小数,如2.61万,则先将它还原为普通数26100,此时1所在的数位(百位)就是它精确到的数位.
三、例题讲解
1、下列各数中,没有平方根的是()
A.1 B.0 C. D.
(1)相反数:任何实数 ,都有一个相反数 .
(2)倒数:任何非0实数 ,都有倒数 .
(3)绝对值:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.
注意:对于任意实数 ,有 .
10、实数与数轴上的点的对应关系(例13)
实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.