四边形的内角和 p

合集下载

四边形 多边形的内角和

四边形 多边形的内角和

四边形多边形的内角和知识要点:1.四边形的有关概念:内角、外角、对角线、凸四边形。

2.凸四边形:把四边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的四边形叫凸四边形。

如图(1)是凸四边形,下图(2)不是凸四边形。

图(1)图(2)我们只研究凸四边形和凸多边形。

3.多边形的对角线,四边形有两条对角线。

如图,四边形ABCD中,AC,BD是它的两条对角线。

类似地我们可以给出多边形对角线的概念,如图,五边形ABCDE中,AC,AD,BD,BE,CE是它的五条对角线。

即=5(条)。

同样,我们可以计算出六边形有=9(条)对角线(请同学们自己动手画图)……。

我们可以得出n边形的对角线有条(n为正整数)。

4.四边形内角和定理:四边形内角和等于360°,(一条对角线将四边形分成两个三角形,由此推出四边形内角和为2×180°=360°)。

类似地我们可以得出五边形内角和为3×180°=540°,n边形内角和等于(n-2)·180°(即多边形内角和定理)。

四边形外角和等于360°,任意多边形的外角和也是360°(多边形内角和定理的推论)。

5.多边形的有关问题多边形的内角和定理:n边形的内角和为180°(n-2)。

多边形的外角和定理:多边形的外角和为360°。

多边形的对角线:多边形共条对角线。

注意问题1、关于四边形的概念,可以仿照三角形,通过类比的分法来建立,但要注意的是,三角形的三个顶点确定一个平面,所以三顶点总是共面的,也就是说三角形一定是平面图形,但四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义加上“在同一平面内”这个条件。

2、三角形的三边确定后,三角形的形状就确定了,而四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变,四边形改变形状时,只改变某些角的大小,它的边长不变,周长不变,这正是四边形的不稳定性,但它仍是四边形,所以它的内角和不变。

与四边形有关的定理:

与四边形有关的定理:

与四边形有关的定理:48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d wc呁/S∕-?84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值与圆有关的定理101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

数学人教版八年级上册多边形内角和公式

数学人教版八年级上册多边形内角和公式

α B'
δ O β γ
D'
C'
多边形的外角和
如果广场的形状是六边形、八 边形,那么还有类似的结论吗? 多边形 内角的一边与另一边的反 向延长线所组成的角叫做这个多 边形的外角。 在每个顶点处取这个多边形的一 个外角,它们的和叫做这个多边 形的外角和。
多边形的外角和等于 360ْ
An
A8
A1
A2 A3 A4
如图1,在四边形内任取一点P, 连接PA、PB、PC、PD将四边 形变成有一个公共顶点的四个 三角形,四边形内角和等于 180°×4 - 360°= 360°
如图2,在四边形的一边上任取一点P, 连接PB、PC,将四边形变成有一个公 共顶点的三个三角形,四边形内角和 等于180° ×3- 180° = 360°
6.若一个凸多边形的内角和等于它的外角和, 则它 的边数是_________. 7.如果一个多边形的每一个外角都相等,并 且它的内角和为2880°,那么它的内角为 _________.
练习
1、 若多边形的外角和与内角和之比为2∶9, 求这个多边形的边数及内角和。
2 、一个多边形中的各内角相等,且每个内角 与外角之差的绝对值为60°,求此多边形的边 数。 3、 已知多边形的一个内角的外角与其它 各内角的度数总和为600°,求边数.
学习了本节课你有 哪些 收获?
三角形个数
内角和
5 6 7
. . .ຫໍສະໝຸດ 2 3 4. . .3 4 5
. . .
3×180°=540 ° 4×180°=720° 5×180°=900°
. . .
n
n-3
n-2
(n-2)×180°
综上所述,设多边形的边数为n,

四边形内角和是多少度?

四边形内角和是多少度?

【导语】四边形内⾓和是多少度?四边形内⾓和是360°。

四边形内⾓和=(4-2)×180°=360°;任意的四边形最多可分为2个三⾓形,因为三⾓形内⾓和是180°,所以四边形的内⾓和等于180°×2=360°。

以下是由整理的相关信息,希望对⼤家有所帮助!四边形的内⾓和计算 n边型的内⾓和为(n-2)×180° 所以四边形内⾓和为(4-2)×180°=2×180°=360° 扩展: 每增加⼀条边,即增加⼀个三⾓形,内⾓增加180度。

多边形内⾓和定理 定理:正多边形内⾓和定理n边形的内⾓的和等于:(n-2)×180°(n⼤于等于3且n为整数) 已知 已知正多边形内⾓度数则其边数为:360°÷(180°-内⾓度数) 推论 任意正多边形的外⾓和=360° 正多边形任意两条相邻边连线所构成的三⾓形是等腰三⾓形 多边形的内⾓和定义 〔n-2〕×180°(n为边数) 多边形内⾓和定理证明 证法⼀:在n边形内任取⼀点O,连结O与各个顶点,把n边形分成n个三⾓形. 因为这n个三⾓形的内⾓的和等于n·180°,以O为公共顶点的n个⾓的和是360° 所以n边形的内⾓和是n·180°-2×180°=(n-2)·180°.(n为边数) 即n边形的内⾓和等于(n-2)×180°.(n为边数) 证法⼆:连结多边形的任⼀顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三⾓形. 因为这(n-2)个三⾓形的内⾓和都等于(n-2)·180°(n为边数) 所以n边形的内⾓和是(n-2)×180°. 证法三:在n边形的任意⼀边上任取⼀点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三⾓形, 这(n-1)个三⾓形的内⾓和等于(n-1)·180°(n为边数) 以P为公共顶点的(n-1)个⾓的和是180° 所以n边形的内⾓和是(n-1)·180°-180°=(n-2)·180°.(n为边数) 重点:多边形内⾓和定理及推论的应⽤。

第十八章四边形章节复习辅导讲义

第十八章四边形章节复习辅导讲义

第十八章、四边形章节复习辅导讲义一、四边形知识框架: 1.四边形的知识结构 2.平行四边形的知识结构 二、四边形1. 定义:有不在同一直线上的四条首尾依次连接的线段构成的封闭图形。

2. 四边形的表示:四边形一般由依次的四个大写的字母表示,如四边形ABCD 等。

3. 四边形的分类:(1) 按照四边形的凹凸性将四边形分为凸四边形和凹四边形。

注意:中学阶段学习的四边形都是凸四边形。

(2) 按照四边形对边的平行性将四边形分为: ① 一般四边形:任何对边都不平行的四边形。

② 梯形:只有一组对边平行的四边形; A. 梯形分类: a .一般的梯形b .等腰梯形:一组对边平行,另一组对边相等的四边形。

c. 直角梯形:有一个内角为直角的梯形。

(3) 平行四边形:两组对边分别平行的四边形。

① 平行四边形的分类: A. 一般的平行四边形 B. 矩形(长方形):有一个较为直角的平行四边形。

C. 菱形:邻边相等的平行四边形。

D. 正方形:四条边都相等,四个内角也相等的四边形。

4. 四边形的内角和与外角和: (1) 四边形的内角和为360度 (2) 四边形的外角和为360度。

5. 四边形的性质:依次连接四边形各边中点所得的四边形称为中点四边形。

不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形【基础练习】1. 顺次连接一个任意四边形四边的中点,得到一个_______四边形. 2.顺次连接对角线相等的四边形的各边中点,所得四边形是_________.3. 如图1,已知:在ABCD 中,AB=4cm ,AD=7cm ,∠ABC 的平分线交AD•于点E ,交CD 的延长线于点F ,则DF=______cm .4. 如图,四边形ABCD 为正方形,△ADE 为等边三角形,AC 为正方形ABCD 的对角线,则∠EAC =___度.5. 四边形ABCD 的对角线AC BD ,的长分别为m n ,,可以证明当AC BD ⊥时(如图1),四边形ABCD 的面积12S mn =,那么当AC BD ,所夹的锐角为θ时(如图2),四边形ABCD 的面积S = .(用含m n θ,,的式子表示)1250°1 2A BC DB F C6.在如图所示的四边形中,若去掉一个50的角得到一个五边形,则12+=∠∠ 度.7.如图,已知AC 平分BAD ∠,12∠=∠,3AB DC ==, 则BC = . 8.已知四边形ABCD 中,90A B C ∠=∠=∠=︒,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________.三、平行四边形(一) 平行四边形:1. 定义:两组对边分别平行的四边形。

平行四边形的性质和运算

平行四边形的性质和运算

平行四边形的性质和运算平行四边形是一种特殊的四边形,在几何学中有着重要的性质和运算规则。

本文将介绍平行四边形的性质,并探讨平行四边形的运算规则。

一、平行四边形的性质1. 对边相等性质:在平行四边形中,对边是相等的。

换句话说,相对的两条边长度相等。

2. 对角线性质:平行四边形的对角线互相平分。

具体地说,平行四边形的任意一条对角线,将平行四边形分成两个全等的三角形,并且对角线互相平分。

3. 同位角性质:平行四边形的同位角相等。

同位角是指两个平行四边形对应顶点附近的角,它们的大小是相等的。

4. 内角和性质:平行四边形的内角和等于180度。

也就是说,平行四边形的四个内角的和为180度。

二、平行四边形的运算规则1. 周长计算:平行四边形的周长等于四条边的长度之和。

即P = a +b +c + d,其中a、b、c、d分别代表平行四边形的四条边的长度。

2. 面积计算:平行四边形的面积可以通过底边长度和高来计算。

即S = 底边长度 ×高。

其中,底边可以是任意一条边,高是从底边到对边的垂直距离。

3. 三角形的计算:平行四边形可以通过绘制对角线,将其分成两个全等的三角形进行计算。

根据三角形的性质,可以求解各个角度和边长。

三、实例应用1. 问题一:已知平行四边形的两条边长分别是5cm和8cm,对角线长为10cm,求其面积和周长。

解析:由于已知对角线的长度和一条边长,我们可以通过对角线性质和勾股定理求解另一条边的长度。

首先,根据对角线性质可知,平行四边形的对角线互相平分,因此两条对角线长度相等,即另一条边长也为10cm。

然后,利用勾股定理,可以求解出两个三角形的高,再根据面积计算公式求解出面积。

最后,根据周长计算公式,求解出周长。

2. 问题二:平行四边形ABCD中,已知AB=6cm,AD=8cm,BD=10cm,求平行四边形的面积和周长。

解析:首先,根据平行四边形的性质,知道对边相等,所以BC=6cm。

然后,可以根据BD=10cm,利用勾股定理求解出三角形ABD的高。

几何专讲-四边形

几何专讲-四边形

四边形一、基本定义1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°.2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°.3.平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4.平行四边形的判定: 是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫. 5.矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( 6. 矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. 7.菱形的性质: 因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(8.菱形的判定:A BCD 1234ABDABDOCA DB CA DBCOCDBAO⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 9.正方形的性质: 因为ABCD 是正方形⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( CDAB(1) A BCD O(2)(3)10.正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(4)∵ABCD 是矩形又∵AD=AB∴四边形ABCD 是正方形 11.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)( 12.等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒四边形ABCD 是等腰梯形 (4)∵ABCD 是梯形且AD ∥BC ∵AC=BD∴ABCD 四边形是等腰梯形14.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.E FD ABCE DCBAABCDOA B C D O二 定理:中心对称的有关定理1.关于中心对称的两个图形是全等形.2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式: 1.S 菱形 =ch ab =21(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. (a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =Lh h b a =+)(21.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:1.若n 是多边形的边数,则对角线条数公式是:2)3n (n -. 2.如图:平行四边形、矩形、菱形、正方形的从属关系. 3.梯形中常见的辅助线:一.多边形1.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看. 已知:在四边形ABCD 中,O 是对角线BD 上任意一点.(如图①) 求证:S △OBC •S △OAD =S △OAB •S △OCD ;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说平行四边形矩形菱形正方形明理由.考点:多边形;三角形的面积.专题:证明题;探究型.分析:(1)根据三角形的面积公式,则应分别分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F.然后根据三角形的面积公式分别计算要证明的等式的左边和右边即可;(2)根据(1)中的思路,显然可以归纳出:从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.证明思路类似.解答:证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=12BO•AE,S△COD=12DO•CF,S△AOD=12DO•AE,S△BOC=12BO•CF,∴S△AOB•S△COD=14BO•DO•AE•CF,S△AOD•S△BOC=14BO•DO•CF•AE,∴S△AOB•S△COD=S△AOD•S△BOC.(4分);(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD•S△BOC=S△AOB•S△DOC,(5分)已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD•S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD=12DO•AE,S△BOC=12BO•CF,S△OAB=12OB•AE,S△DOC=12OD•CF,∴S△AOD•S△BOC=14OB•OD•AE•CF,S△OAB•S△DOC=14BO•OD•AE•CF,∴S△AOD•S△BOC=S△OAB•S△DOC.点评:恰当地作出三角形的高,根据三角形的面积公式进行证明.2.如图,在五边形A1A2A3A4A5中,B1是A1对边A3A4的中点,连接A1B1,我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.考点:多边形.专题:证明题.分析:可以再做五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.解答:证明:取A1A5中点B3,连接A3B3、A1A3、A1A4、A3A5,∵A3B1=B1A4,∴S△A1A3B1=S△A1B1A4,又∵四边形A1A2A3B1与四边形A1B1A4A5的面积相等,∴S△A1A2A3=S△A1A4A5,同理S△A1A2A3=S△A3A4A5,∴S△A1A4A5=S△A3A4A5,∴△A3A4A5与△A1A4A5边A4A5上的高相等,∴A1A3∥A4A5,同理可证A1A2∥A3A5,A2A3∥A1A4,A3A4∥A2A5,A5A1∥A2A4.点评:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行二.平行四边形如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C 时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.考点:平行四边形的性质;一元二次方程的应用;直角梯形.专题:动点型.分析:(1)过点A作AM⊥CD于M,根据勾股定理,可以求出DM=6所以DC=16.(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图示,由题可得:BP=10-3t,DQ=2t,所以可以列出方程10-3t=2t,解得t=2,此时,BP=DQ=4,CQ=12,在△CBQ中,根据勾股定理,求出BQ即可.(3)此题要分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P在线段CD上,根据三种情况点的位置,可以确定t的值.解答:解:(1)过点A作AM⊥CD于M,根据勾股定理,AD=10,AM=BC=8,∴DM=102-82=6,∴CD=16;(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图,由题知:BP=10-3t,DQ=2t∴10-3t=2t,解得t=2此时,BP=DQ=4,CQ=12∴BQ=82+12213∴四边形PBQD的周长=2(BP+BQ)=8+8 13;(3)①当点P在线段AB上时,即0≤t≤103时,如图S△BPQ=12BP•BC=12(10-3t)×8=20∴t=53.②当点P在线段BC上时,即103<t≤6时,如图BP=3t-10,CQ=16-2t∴S△BPQ=12BP•CQ=12(3t-10)×(16-2t)=20化简得:3t2-34t+100=0,△=-44<0,所以方程无实数解.③当点P在线段CD上时,若点P在Q的右侧,即6≤t≤345,则有PQ=34-5tS△⊆BPQ=12×8=20,(34-5t)t=295<6,舍去若点P在Q的左侧,即345<t≤8,则有PQ=5t-34,S△BPQ=12(5t-34)×8=20,t=7.8.综合得,满足条件的t存在,其值分别为t1=53,t2=7.8.点评:本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.2. 已知:如图,AD∥BC,AC⊥BD于O,AD+BC=5,AC=3,AE⊥BC于E.则AE=125125.考点:平行四边形的判定与性质;勾股定理.分析:过点A作AF∥DB交CB延长线于F,通过辅助线,将已知条件与未知量联系起来,此时,AE是直角三角形斜边上的高,而已知斜边和一直角边,先由勾股定理求出另一直角边,再由面积法就可以求出斜边上的高AE了.解答:解:过点A作AF∥DB交CB的延长线于点F(1分)∵AD∥BC∴四边形AFBD是平行四边形∴FB=AD∵AD+BC=5∴FC=FB+BC=AD+BC=5(2分)∵AC⊥BD∴FA⊥AC(3分)在△FAC中,∠FAC=90°,AC=3,FC=5∴AF=4(4分)∵AE⊥BC于E∴AF •AC=FC •AE∴AE=125(5分)点评:当直接求解比较困难时,通常要作辅助线,将已知条件与未知量联系起来.三.菱形1.学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长103cm,其一个内角为60度.(1)若d=26,则该纹饰要231个菱形图案,则纹饰的长度L为6010cm;(2)当d=20时,若保持(1)中纹饰长度不变,则需要300个这样的菱形图案.考点:菱形的性质;解直角三角形.专题:规律型.分析:(1)首先根据菱形的性质和锐角三角函数的概念求得菱形的对角线的长,再结合图形发现L=菱形对角线的长+(231-1)d;(2)设需要x个这样的图案,仍然根据L=菱形对角线的长+(x-1)d进行计算.解答:解:(1)菱形图案水平方向对角线长为103×cos30 °×2=30cm按题意,L=30+26×(231-1)=6010cm(2)当d=20cm时,设需x个菱形图案,则有:30+20×(x-1)=6010解得x=300,即需300个这样的菱形图案.点评:此题主要考查根据图形找规律,同时也考查了解直角三角形有关知识.2. 已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.考点:菱形的判定;勾股定理;矩形的性质;相似三角形的判定与性质.专题:开放型;存在型.分析:(1)因为是对折所以AO=CO,利用三角形全等证明EO=FO,四边形便是菱形;(2)因为面积是24,也就是AB、BF的积可以求出,所以求周长只要求出AB、BF的和就可以,而结合勾股定理它们和的平方减去乘积二倍就是AF的平方;(3)因为12AC=AO所以可以从与△AOE相似的角度考虑,即过E作EP⊥AD.解答:(1)证明:连接EF交AC于O,当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°(1分)∵在矩形ABCD中,AD∥BC,∴∠EAO=∠FCO,∴△AOE≌△COF(ASA).∴OE=OF(2分)∴四边形AFCE是菱形.(3分)(2)解:四边形AFCE是菱形,∴AF=AE=10.设AB=x,BF=y,∵∠B=90,∴(x+y)2-2xy=100①又∵S△ABF=24,∴12xy=24,则xy=48.②(5分)由①、②得:(x+y)2=196(6分)∴x+y=14,x+y=-14(不合题意舍去)∴△ABF的周长为x+y+AF=14+10=24.(7分)(3)解:过E作EP⊥AD交AC于P,则P就是所求的点.(9分)证明:由作法,∠AEP=90°,由(1)得:∠AOE=90°,又∠EAO=∠EAP,∴△AOE∽△AEP(AA),∴AEAP=AOAE,则AE2=AO•AP(10分)∵四边形AFCE是菱形,∴AO=12AC,AE2=12AC•AP(11分)∴2AE2=AC•AP(12分)即P的位置是:过E作EP⊥AD交AC于P.点评:本题主要考查(1)菱形的判定方法“对角线互相垂直且平分的四边形”,(2)相似三角形的判定和性质.三.矩形正方形已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.∵S△PBC+S△PAD=12BC•PF+12AD•PE=12BC(PF+PE)=12BC•EF=12S矩形ABCD,又∵S△PAC+S△PCD+S△PAD=12S矩形ABCD,∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD,∴S△PBC=S△PAC+S△PCD.请你参考上述信息,当点P分别在图2,图3中的位置时,S△PBC、S△PAC、S△PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.考点:矩形的性质.专题:探究型.分析:分析图2,先过点P作EF垂直AD,分别交AD、BC于E、F两点,利用三角形的面积公式可知,经过化简,等量代换,可以得到S△PBC=S△PAD+12S矩形ABCD,而S△PAC+S△PCD=S△PAD+12S矩形ABCD,故有S△PBC=S△PAC+S△PCD.解答:解:猜想结果:图2结论S△PBC=S△PAC+S△PCD图3结论S△PBC=S△PAC-S△PCD(2分)证明:如图2,过点P作EF垂直AD,分别交AD、BC于E、F两点,∵S△PBC=12BC•PE+12BC•EF (1分)=12AD•PE+12BC•EF=S△PAD+12S矩形ABCD(2分)∵S△PAC+S△PCD=S△PAD+S△ADC=S△PAD+12S矩形ABCD(2分)∴S△PBC=S△PAC+S△PCD(1分)如果证明图3结论可参考上面评分标准给分.点评:本题利用了三角形的面积公式,以及图形面积的整合等知识.2. )图1是由五个边长都是1的正方形纸片拼接而成的,过点A1的直线分别与BC1、BE交于点M、N,且图1被直线MN分成面积相等的上、下两部分.(1)求1MB+1NB的值;(2)求MB、NB的长;(3)将图1沿虚线折成一个无盖的正方体纸盒(图2)后,求点M、N间的距离.考点:正方形的判定与性质;一元二次方程的应用;相似三角形的判定与性质.专题:代数几何综合题;压轴题;数形结合.分析:(1)本题可通过相似三角形A1B1M和NBM得出的关于NB,A1B1,MB,MB1的比例关系式来求,比例关系式中A1B1,BB1均为正方形的边长,长度都是1,因此可将它们的值代入比例关系式中,将所得的式子经过变形即可得出所求的值;(2)由于直线MN将图(1)的图形分成面积相等的两部分,因此△BMN的面积为52,由此可求出MB•NB的值,根据(1)已经得出的MB+NB=MB•NB可求出MB+NB的值,由此可根据韦达定理列出以MB,NB为根的一元二次方程,经过解方程即可求出MB、NB的值;(3)根据(2)的结果,不难得出B1M=EN,由于折叠后E与B点重合,因此B1M=BN,那么四边形B1MNB 是个矩形,因此MN的长为正方形的边长.解答:解:(1)∵△A1B1M∽△NBM且A1B1=BB1=1,∴NBA1B1=MBMB1,即NB1=MBMB-1整理,得MB+NB=MB•NB,两边同除以MB•NB得1MB+1NB=1;(2)由题意得12MB•NB=52,即MB•NB=5,又由(1)可知MB+NB=MB•NB=5,∴MB、NB分别是方程x2-5x+5=0的两个实数根.解方程,得x1=5+52,x2=5-52;∵MB<NB,∴MB=5-52,NB=5+52;(3)由(2)知B1M=5-52-1=3-52,EN=4-5+52=3-52,∵图(2)中的BN与图(1)中的EN相等,∴BN=B1M;∴四边形BB1MN是矩形,∴MN的长是1.点评:本题主要考查了相似三角形的判定和性质,正方形的性质,一元二次方程的应用等知识点,综合性比较强.四.梯形1. 如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y取最小值时,判断△PQC的形状,并说明理由.考点:等腰梯形的判定;二次函数的应用;勾股定理的逆定理;平行四边形的判定;相似三角形的判定与性质.专题:综合题;压轴题;动点型.分析:(1)需证△AMB≌△DMC,可得AB=DC,可得梯形ABCD是等腰梯形;(2)可证△BPM∽△CQP,PCBM=CQBP,PC=x,MQ=y,BP=4-x,QC=4-y,x4=4-y4-x,即可得出y=14x2-x+4;(3)应考虑四边形ABPM和四边形MBPD均为平行四边形,四边形MPCD和四边形APCM均为平行四边形时的情况;由(2)中的函数关系,可得当y取最小值时,x=PC=2,P是BC的中点,MP⊥BC,而∠MPQ=60°,∠CPQ=30°,∠PQC=90°.解答:(1)证明:∵△MBC是等边三角形,∴MB=MC,∠MBC=∠MCB=60°.(1分)∵M是AD中点,∴AM=MD.∵AD∥BC,∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.∴△AMB≌△DMC.(2分)∴AB=DC.∴梯形ABCD是等腰梯形.(3分)(2)解:在等边△MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°,∴∠BMP+∠BPM=∠BPM+∠QPC=120°.∴∠BMP=∠QPC.(4分)∴△BPM∽△CQP.∴PCBM=CQBP.(5分)∵PC=x,MQ=y,∴BP=4-x,QC=4-y.(6分)∴x4=4-y4-x.∴y=14x2-x+4.(7分)(3)解:①当BP=1时,则有BP ∥..AM,BP∥..MD,则四边形ABPM为平行四边形,∴MQ=y=14×32-3+4=134.(8分)当BP=3时,则有PC∥..AM,PC∥..MD,则四边形MPCD为平行四边形,∴MQ=y=14×12-1+4=134.(9分)∴当BP=1,MQ=134或BP=3,MQ=134时,以P、M和A、B、C、D中的两个点为顶点的四边形是平行四边形.此时平行四边形有2个.(10分)故符合条件的平行四边形的个数有4个.②△PQC为直角三角形.(11分)∵y=14(x-2)2+3,∴当y取最小值时,x=PC=2.(12分)∴P是BC的中点,MP⊥BC,而∠MPQ=60°,∴∠CPQ=30°,∴∠PQC=90°.∴△PQC是直角三角形.(13分)点评:本题考查平行四边形、直角三角形和等腰梯形的判定以及相似三角形的判定和性质的应用.。

《四边形、五边形内角和》(教案)北师大版四年级下册数学

《四边形、五边形内角和》(教案)北师大版四年级下册数学

《四边形、五边形内角和》(教案)北师大版四年级下册数学今天,我要为大家分享的是北师大版四年级下册数学教案《四边形、五边形内角和》。

一、教学内容本节课的主要内容是四边形和五边形的内角和。

我们将通过学习,让学生掌握多边形内角和的计算方法,并能够运用这一方法解决实际问题。

二、教学目标1. 让学生理解多边形内角和的计算方法,能够独立完成四边形和五边形内角和的计算。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队协作能力。

三、教学难点与重点1. 教学难点:理解并掌握多边形内角和的计算方法。

2. 教学重点:能够运用多边形内角和的知识解决实际问题。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:学生用书、练习本、剪刀、胶水。

五、教学过程1. 情景引入:通过展示一些生活中的四边形和五边形,如教室里的桌子、学校的操场等,让学生观察并思考:你能找出这些图形的内角和吗?2. 自主学习:让学生翻开学生用书,阅读有关四边形和五边形内角和的内容,并完成课后练习第1题。

3. 讲解与演示:讲解多边形内角和的计算方法,并通过多媒体课件进行演示,让学生直观地理解并掌握。

4. 实践操作:让学生分组进行实践,用剪刀和胶水制作四边形和五边形,并测量其内角和。

5. 例题讲解:出示一些有关四边形和五边形内角和的例题,让学生独立思考并解答,然后进行讲解和点评。

6. 随堂练习:让学生完成课后练习第2题,并进行讲解和点评。

六、板书设计板书设计如下:四边形内角和= 360°五边形内角和= 540°七、作业设计1. 完成课后练习第3题。

2. 请同学们课后思考:如何计算六边形和七边形的内角和?八、课后反思及拓展延伸课后反思:本节课通过生活情境的引入,激发了学生的学习兴趣,通过自主学习、讲解演示、实践操作、例题讲解等环节,让学生掌握了四边形和五边形的内角和的计算方法。

在教学过程中,我注意引导学生运用数学知识解决实际问题,培养了学生的实践能力。

人教版四年下数学第五单元第6课《多边形的内角和》教案

人教版四年下数学第五单元第6课《多边形的内角和》教案

四年下数学第五单元第6课《多边形的内角和》教案教学内容教科书P66例7,完成P66“做一做”,P67~68“练习十六”第4、5、7*题。

教学目标1.通过测量、剪拼、观察等活动探究四边形的内角和,能运用四边形的内角和为360°这一规律解决一些实际问题。

2.会运用探索三角形的内角和的经验探索四边形的内角和并得出结论,经历观察、思考、推理、归纳的过程,培养学生的探究推理能力、发现能力、观察和动手操作能力。

3.在各种活动中体验探索的乐趣和成功的快乐,培养合作探究精神,掌握一些学习与研究的方法。

教学重点通过动手操作,探索发现四边形的内角和的度数,并应用这一规律解决问题。

教学难点探索四边形的内角和时,如何把四边形转化成三角形。

教学准备课件,量角器,四边形纸片,剪刀。

教学过程一、提问激趣,导入新课1.课件出示一组平面图形。

师:观察这些图形,它们分别是什么图形?有什么共同特点?哪里是它们的内角?【学情预设】预设1:它们分别是长方形、正方形、梯形、平行四边形。

预设2:它们都是四边形,它们都有四条直的边和四个角,其中的四个角就是它们的内角。

【设计意图】通过复习四边形的相关知识,唤醒学生已有的知识经验,为进一步探究四边形的内角和打下坚实基础。

2.联系猜想,揭示课题。

师:上节课我们学习了三角形的内角和,同学们猜想一下,这些四边形的内角和是多少度呢?【学情预设】预设1:认为这些图形不一样,内角和度数不相同。

预设2:认为四边形的内角和与形状没有关系,有的学生可能猜等于180°,有的猜测大于180°,有的猜测等于360°,等等。

师:四边形的内角和到底是多少呢?谁猜的是对的呢?今天这节课我们一起来研究它。

(板书课题:多边形的内角和)【设计意图】学生的学习应当是生动活泼的和富有个性化的过程。

不管学生猜测的结果是多少,我们都要肯定他们的大胆猜测,给予他们充分想象的空间,激发他们探究的兴趣。

二、合作交流,探索四边形的内角和1.阅读与理解。

四边形内角和的二十种证法

四边形内角和的二十种证法

探索四边形内角和性质的二十种方法杭州师范大学理学字院 王晓楠1.拼接法法1.如图1,将四边形的四个角分别剪下,可拼成一个周角,可知其内角和为360°。

(图中:∠1=∠A,∠2=∠B,∠3=∠C,∠4=∠D )2.特殊值法法2.如图2,可将四边形ABCD 特殊化为一个平行四边形,根据同旁内角互补,可知四边形内角和为360°。

(也可特殊化为矩形)法3.如图3,将四边形ABCD 的一个顶点D 向内压,可将其压为一个三角形,由于三角形内角和为180°,∠D 为平角,等于180°,所以四边形内角和为360°。

BAACB3.构造三角形法4.如图4,连接AC ,可得△ACD 和△ABC ,两个三角形内角和均为180°,则四边形内角和为360°。

法5.如图5,连接AC ,再延长AB ,AD ,则∠1=∠DAC+∠DCA ,∠2=∠BAC+∠BCA ,则四边形内角和转化为两个平角的和,等于360°。

法6.如图6,连接并延长AC ,则,∠1=∠CDA+∠CAD ,∠2=∠CBA+∠CAB ,则四边形内角和转化为一个周角,等于360°。

BB AAB法7.连接AC 、BD 相交于点 P ,则四边形的内角和等于四个三角形的内角和减去以点P 为中心的一个周角。

图2图3图4图5图6图1∠2 ∠4 ∠3∠1法8.如图8,在四边形内部任取一点P ,连接PA 、PB 、PC 、PD ,然后同法7。

法9.如图9,在AB 边上任取一点P ,连接PC 、PD ,将四边形转化为三个三角形,则其内角和为三个三角形的内角之和减去平角∠APB 。

BBABAP法10.如图10,在四边形ABCD 的外部任取一点P ,连接PA 、PB 、PC 、PD ,则四边形内角和等于△APD 、△DCP 、△CBP 的所有内角之和减去△APB 的内角和。

法11.如图11,在四边形ABCD 的外部任取一点P ,连接PC 、PD ,分别交AB 于点E 、F ,则四边形内角和等于△AED 、△DCP 、△CBF 的所有内角之和减去△EFP 的内角和。

小学数学四年级下册第6课时 《多边形的内角和》教学PPT

小学数学四年级下册第6课时 《多边形的内角和》教学PPT

3.画一画,算一算,你发现了什么?
6
7
2
3 180º×4 180º×5
每个多边形都可以分成(n-2)个三角形, n边形的内角和=180º×(n-2)。
4.连一连。
有一个直角,有两条边相等。 只有两个锐角,没有直角。
三个角相等。 没有直角和钝角。
锐角三角形 直角三角形 钝角三角形 等腰三角形 等边三角形
5.下面图形中各有多少个三角形? 有什么规律?
1
1+2=3 1+2+3=6 1+2+3+4=10
第 n 幅图三角形个数为1+2+3+…+(n-1)+n, n 为大三角形被分成的基础三角形个数。
四、课堂小结
多边形的内角和 四边形的内角和是 360°。 n 边形的内角和= 180°×(n-2)。
3 × 180°= 540°
2.你能想办法求出右面这个多边 形的内角和吗?
你是怎么想的呢?
提示:将六边形分成了三角形再计算!
我把这个六边形分 成了 4 个三角形, 180º×4=720º。
我把这个六边形分成了 6 个 三角形,把 6 个三角形的内 角加起来再减去中间的一个 周角,180º×6-360º=720º
一、导入新课
观察这些图形,它们分别是什么图形?有什么共 同特点?哪里是它们的内角?
长方形 正方形 梯形 平行四边形
这些四边形的内角和是多少呢?
二、探究新知 四边形的内角和是多少度?
这些图形的内角和是 ห้องสมุดไป่ตู้是一样的呢?
我们学过哪些四边形?
长方形 正方形 梯形 平行四边形 普通四边形
长方形和正方形的4个角都是直 角,它们的内角和是 360°。

常用四边形的特征与边长计算方法

常用四边形的特征与边长计算方法

常用四边形的特征与边长计算方法一、四边形的定义与特征1.四边形是由四条线段首尾顺次连接而成的平面图形。

2.四边形有四条边,四个角,且内角和为360°。

3.根据四边形的边和角的性质,可以将四边形分为平行四边形、梯形、矩形、菱形和正方形等。

二、平行四边形的特征与边长计算方法1.平行四边形的对边平行且相等。

2.平行四边形的对角相等。

3.平行四边形的边长计算方法:利用相邻边的比例关系,设平行四边形的相邻两边分别为a和b,则第三边的长度可以表示为a x或b x,其中x为第三边与已知边的比例系数。

三、梯形的特征与边长计算方法1.梯形有一对平行边,称为上底和下底,平行边的长度不相等。

2.梯形的非平行边称为腰,腰的长度可以相等也可以不相等。

3.梯形的边长计算方法:利用上底、下底和腰的长度关系,设上底为a,下底为b,腰的长度为h,则梯形的周长可以表示为P=a+b+2h。

四、矩形的特征与边长计算方法1.矩形的对边平行且相等。

2.矩形的对角相等。

3.矩形的边长计算方法:利用相邻边的比例关系,设矩形的相邻两边分别为a和b,则第三边的长度可以表示为a x或b x,其中x为第三边与已知边的比例系数。

五、菱形的特征与边长计算方法1.菱形的四条边相等。

2.菱形的对角相等。

3.菱形的边长计算方法:设菱形的边长为a,则菱形的周长可以表示为P=4a。

六、正方形的特征与边长计算方法1.正方形的四条边相等。

2.正方形的四个角都是直角。

3.正方形的边长计算方法:设正方形的边长为a,则正方形的周长可以表示为P=4a。

七、特殊四边形的特征与边长计算方法1.等腰梯形的两腰相等,底角相等。

2.等边梯形的四条边都相等。

3.等腰梯形和等边梯形的边长计算方法:设梯形的上底为a,下底为b,腰的长度为h,则梯形的周长可以表示为P=a+b+2h。

以上就是关于常用四边形的特征与边长计算方法的总结,希望对你有所帮助。

习题及方法:1.习题:判断下列图形哪些是平行四边形。

四边形内角和定理的证明方法

四边形内角和定理的证明方法

四边形内角和定理的证明方法──一堂新授课的收获广东省珠海市实验中学马春摘要:本文是对一堂新授课的摘录和看法,对四边形内角和定理的证明给出若干种证明方法,主要强调充分展示学生的个性思维,让学生主动地获取知识、思考问题,而不再是一味地听取老师的传授。

关键词:四边形;内角和;证明;思维在一次《多边形的内角和》的课堂上,有一个教学环节是这样设计的:让学生思考任意一个四边形的内角和是多少?用这种方法能否求五边形、六边形等多边形的内角和?[1]而在课堂上,同学们给出了许多种求四边形内角和的方法,虽然有的方法不太适合推广到五边形、六边形,但其中不乏有课前我没有意料到的方法,当然我也没想到学生们会有如此多的方法。

为了不打断学生的想法,给学生一个展示自我的机会,更为了拓展学生的思维,我抓住了这一难得的机会,充分让学生展示他们活跃的思维,而把预先准备的一些内容放到了下一节课。

我不知道这样做好不好,但至少有一点,学生们主动地进行了观察、实验、猜测、验证、推理与交流等数学活动,这是一个生动活泼的、主动的和富有个性的过程,增强了学生学习数学的兴趣,使不同的人在数学上得到了不同的发展[2]。

下面就一一列举学生们的解法,其中解法一~解法五是预先设计的。

解法一:如图1,连接AC,四边形ABCD的内角和等于两个三角形内角和的和,即180°×2=360°。

解法二:如图2,连接AC、BD,四边形ABCD的内角和等于四个三角形内角和的和减去360°,即180°×4-360°=360°。

解法三:如图3,在四边形ABCD内取一点P,连接PA、PB、PC、PD,四边形ABCD 的内角和等于四个三角形内角和的和减去360°,即180°×4-360°=360°。

解法四:如图4,在BC边上取一点P,连接PA、PD,四边形ABCD的内角和等于三个三角形内角和的和减去180°,即180°×3-180°=360°。

多边形的内角和外角性质

多边形的内角和外角性质

多边形的内角和外角性质多边形是由若干条线段依次连接而成的图形,它具有许多有趣的性质。

其中,关于多边形的内角和外角性质是我们探讨的重点。

在本文中,我们将会详细介绍多边形内角和外角的定义、计算方法以及它们之间的关系。

一、多边形的内角性质多边形的内角是指多边形内部两条相邻边所形成的角。

对于n边形(n≥3),它的内角和公式为:(n-2) × 180°。

举例来说,三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,以此类推。

在多边形的内角性质中,有一个重要的定理是内角和定理。

该定理表明,任意n边形的内角和等于(n-2) × 180°。

通过这个定理,我们可以推导出各种多边形的内角和。

二、多边形的外角性质多边形的外角是指多边形内部的一条边与其相邻边的延长线所形成的角。

与内角不同,多边形的外角是通过延长边而得到的。

多边形的外角性质有一个重要的定理是外角和定理。

该定理表明,任意n边形的外角和等于360°,即多边形外角的总和始终等于一个圆周角。

三、内角和与外角和的关系多边形的内角和与外角和之间存在着紧密的联系。

我们可以通过比较发现,对于任意一个n边形,其内角和与外角和之间存在以下关系:内角和 + 外角和 = n × 180°这个关系式可以通过多边形的特殊情况来验证。

例如,对于三角形而言,内角和为180°,外角和也是180°,符合上述的关系式。

四、常见多边形的内角和与外角和计算在实际应用中,常见的多边形包括三角形、四边形、五边形和六边形。

对于这些多边形,它们的内角和和外角和计算如下:1. 三角形:内角和为180°,外角和也为180°。

2. 四边形:内角和为360°,外角和为360°。

3. 五边形:内角和为540°,外角和为360°。

四边形,多边形的内角和

四边形,多边形的内角和

四边形,多边形的内角和重点:多边形的内角和定理和外角和定理难点:多边形内角和定理的证明;多边形内角和定理和外角和定理的灵活运用一、知识点回顾1. 多边形(包括四边形)的定义:在同一平面内,不在同一直线上的一些线段首尾顺次相接组成的图形叫做多边形。

2. 多边形(包括四边形)的对角线:在多边形中,连结不相邻两个顶点的线段叫做多边形的对角线。

n 边形共有2)3( n n 条对角线。

连结多边形的对角线是一种常见的辅助线 3. 多边形的内角和定理:n 边形的内角和为(n -2)·180°。

定理证明的基本思路是要把问题转化为三角形的内角和问题。

4. 多边形外角和定理:n 边形的外角和为360°。

5. n 边形的内角中最多有3个是锐角二、例题:1、已知:四边形的四个外角度数为1:2:3:4,求各外角的度数。

解:设四个内角的度数分别为3x ,3 x ,5 x ,4 x ,根据题意得:3x +3 x +5 x +4 x =360°解得:x =36,∴2x =72,3x =108,4x =144答:四边形各外角度数分别为36°,72°,108°,144°2、如图:四边形ABCD 中,∠B=90°,AB :BC :CD :DA=2:2:3:1,求∠BAD 的度数。

解:连结AC ∵AB :BC :CD :DA=2:2:3:1∴设AB=BC=2K ,CD=3K ,DA=K ∵∠B=90°,AB=BC=2K∴AC 2=AB 2+BC 2=8K 2(勾股定理)∠BAC=∠BCA=45°(等边对等角)∵AC 2+AD 2=9K 2,CD 2=9K 2∴AC 2+AD 2=CD 2∴∠CAD=90°(勾股定理的逆定理)∴∠CAD=90°∴∠BAD=∠BAC+∠CAD=135°3、一个多边形的内角和是720°,求这个多边形的边数。

2024中考数学常见几何模型归纳总结—三角形中的倒角模型-“8”字模型、“A”字模型与三角板模型

2024中考数学常见几何模型归纳总结—三角形中的倒角模型-“8”字模型、“A”字模型与三角板模型

2024中考数学常见几何模型归纳总结—三角形中的倒角模型-“8”字模型、“A”字模型与三角板模型近年来各地中考中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。

熟悉这些模型可以快速得到角的关系,求出所需的角。

本专题“8”字模型、“A ”字模型与三角板模型进行梳理及对应试题分析,方便掌握。

模型1、“8”字模型图1图28字模型(基础型)条件:如图1,AD 、BC 相交于点O ,连接AB 、CD ;结论:①A B C D ∠+∠=∠+∠;②AB CD AD BC +<+。

8字模型(加角平分线)条件:如图2,线段AP 平分∠BAD ,线段CP 平分∠BCD ;结论:2∠P =∠B +∠D例1.(2021·河北·统考中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ∠,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应(填“增加”或“减少”)度.【答案】减少10【分析】先通过作辅助线利用三角形外角的性质得到∠EDF与∠D、∠E、∠DCE之间的关系,进行计算即可判断.【详解】解:∵∠A+∠B=50°+60°=110°,∴∠ACB=180°-110°=70°,∴∠DCE=70°,如图,连接CF并延长,∴∠DFM=∠D+∠DCF=20°+∠DCF,∠EFM=∠E+∠ECF=30°+∠ECF,∴∠EFD=∠DFM+∠EFM=20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD=110°,则∠EFD减少了10°,若只调整∠D的大小,由∠EFD=∠DFM+∠EFM=∠D+∠DCF+∠E+∠ECF=∠D+∠E+∠ECD=∠D+30°+70°=∠D+100°,因此应将∠D减少10度;故答案为:①减少;②10.【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.例2.(2023·浙江·八年级假期作业)如图,求∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠K 的度数.【答案】540°【分析】如图所示,由三角形外角的性质可知:∠A +∠B =∠IJL ,∠C +∠D =∠MLJ ,∠H +∠K =∠GIJ ,∠E +∠F =∠GML ,然后由多边形的内角和公式可求得答案.【详解】解:如图所示:由三角形的外角的性质可知:∠A +∠B =∠IJL ,∠C +∠D =∠MLJ ,∠H +∠K =∠GIJ ,∠E +∠F =∠GML ,∴∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠K =∠IJL +∠MLJ +∠GML +∠G +∠GIJ =(5-2)×180°=3×180°=540°.【点睛】本题主要考查的是三角形外角的性质和多边形的内角和公式的应用,利用三角形外角和的性质将所求各角的和转化为五边形的内角和是解题的关键例3.(2023·山东德州·八年级校考阶段练习)如图1,已知线段,AB CD 相交于点O ,连接,AC BD ,则我们把形如这样的图形称为“8字型”.(1)求证:A C B D ∠+∠=∠+∠;(2)如图2,若CAB ∠和BDC ∠的平分线AP 和DP 相交于点P ,且与,CD AB 分别相交于点M N 、.①若100,120B C ∠=︒∠=︒,求P ∠的度数;②若角平分线中角的关系改为“11,33CAP CAB CDP CDB ∠=∠∠=∠”,试探究P ∠与,B C ∠∠之间的数量关系.【答案】(1)见解析(2)①110︒;②()123P B C ∠=∠+∠【分析】(1)利用三角形内角和定理和对顶角相等即可证明;(2)①根据角平分线的定义得到CAP BAP ∠=∠,BDP CDP ∠=∠,再根据“8字形”得到,CAP C CDP P BAP P BDP B ∠+∠=∠+∠∠+∠=∠+∠,两等式相减得到C P P B ∠-∠=∠-∠,即()12P B C ∠=∠+∠,即可求解.②根据11,33CAP CAB CDP CDB ∠=∠∠=∠,可得23BAP BAC ∠=∠,23BDP BDC ∠=∠,再由三角形内角和定理和对顶角相等,可得()2C P P B ∠-∠=∠-∠,即可求解.【详解】(1)证明:在AOC 中,180A C AOC ∠+∠=︒-∠,在BOD 中,180B D BOD ∠+∠=︒-∠,∵AOC BOD ∠=∠,∴A C B D ∠+∠=∠+∠;(2)解:①∵CAB ∠和BDC ∠的平分线AP 和DP 相交于点P ,∴,CAP BAP BDP CDP ∠=∠∠=∠,∵CAP C CDP P ∠+∠=∠+∠①,BAP P BDP B ∠+∠=∠+∠②,由-①②,得:C P P B ∠-∠=∠-∠,即()12P C B ∠=∠+∠,∵100,120B C ∠=︒∠=︒,∴()11001201102P ∠︒=︒︒=+;②∵11,33CAP CAB CDP CDB ∠=∠∠=∠,∴23BAP BAC ∠=∠,23BDP BDC ∠=∠,∵CAP C CDP P ∠+∠=∠+∠,BAP P BDP B ∠+∠=∠+∠,∴()111333C P BDC BAC BDC BAC ∠-∠=∠-∠=∠-∠,()222333P B BDC BAC BDC BAC ∠-∠=∠-∠=∠-∠,∴()2C P P B ∠-∠=∠-∠,∴()123P B C ∠=∠+∠),故答案为:()123P B C ∠=∠+∠.【点睛】本题考查了三角形内角和、有关角平分线的计算,解题的关键是灵活运用“8字形”求解.例4.(2023春·广东深圳·七年级统考期末)定理:三角形任意两边之和大于第三边.(1)如图1,线段AD ,BC 交于点E ,连接AB ,CD ,判断AD BC +与AB CD +的大小关系,并说明理由;(2)如图2,OC 平分AOB ∠,P 为OC 上任意一点,在OA ,OB 上截取OE OF =,连接PE ,PF .求证:PE PF =;(3)如图3,在ABC 中,AB AC >,P 为角平分线AD 上异于端点的一动点,求证:PB PC BD CD ->-.【答案】(1)AD BC AB CD +>+;理由见详解(2)证明见详解(3)证明见详解【分析】(1)根据三角形任意两边之和大于第三边知,AE BE AB +>,CE ED CD +>,两式相加即可得出结论;(2)根据SAS 证OEP OFP △≌△即可得出结论;(3)在AB 上取一点E ,使AE AC =,连接DE 交BP 于点F ,证APE APC ≌,即PC PE =,同理证CD DE =,然后同理(1)得PB CD PC BD +>+,变形不等式即可得出结论.【详解】(1)解:AD BC AB CD +>+,理由如下:AE BE AB +> ,CE ED CD +>,AE BE CE ED AB CD ∴+++>+,即AD BC AB CD +>+;(2)证明:OC 平分AOB ∠,EOP FOP ∴∠=∠,在OEP 和OFP △中,OE OF EOP FOP OP OP =⎧⎪∠=∠⎨⎪=⎩,()OEP OFP SAS ∴ ≌,PE PF ∴=;(3)证明:在AB 上取一点E ,使AE AC =,连接DE 交BP 于点F,AD 是BAC ∠的角平分线,EAP CAP ∴∠=∠,在APE V 和APC △中,AE AC EAP CAP AP AP =⎧⎪∠=∠⎨⎪=⎩,()APE APC SAS ∴ ≌,PE PC ∴=,同理可证DE DC =,EF PF EP +> ,BF FD BD +>,EF PF BF FD EP BD ∴+++>+,即PB DE EP BD +>+,PB CD PC BD ∴+>+,PB PC BD CD ∴->-.【点睛】本题主要考查三角形的综合题,熟练掌握三角形的三边关系和全等三角形的判定和性质等知识是解题的关键.例5.(2023春·江苏苏州·七年级校联考期中)阅读:基本图形通常是指能够反映一个或几个定理,或者能够反映图形基本规律的几何图形.这些图形以基本概念、基本事实、定理、常用的数学结论和基本规律为基础,图形简单又具有代表性.在几何问题中,熟练把握和灵活构造基本图形,能更好地帮助我们解决问题.我们将图1①所示的图形称为“8字形”.在这个“8字形”中,存在结论A B C D ∠+∠=∠+∠.我们将图1②所示的凹四边形称为“飞镖形”.在这个“飞镖形”中,存在结论AOC A C P ∠=∠+∠+∠.(1)直接利用上述基本图形中的任意一种,解决问题:如图2,AP 、CP 分别平分BAD ∠、BCD ∠,说明:()12P B D ∠=∠+∠.(2)将图2看作基本图形,直接利用(1)中的结论解决下列问题:①如图3,直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,若30B ∠=︒,20D ∠=︒,求P ∠的度数.②在图4中,AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B ∠、D ∠的关系(直接写出结果,无需说明理由).③在图5中,AP 平分BAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B ∠、D ∠的关系(直接写出结果,无需说明理由).【答案】(1)见解析(2)①25︒;②()11802P B D ∠=︒-∠+∠;③()190+2P B D ∠=︒∠+∠【分析】(1)根据角平分线的定义可得1234∠=∠∠=∠,,再根据题干的结论列出3214P ABC P ADC ∠+∠=∠+∠∠+∠=∠+∠,,相加得到22314P ABC ADC ∠+∠+∠=∠+∠+∠+∠,继而得到2P ABC ADC ∠=∠+∠,即可证明结论;(2)①如图所示,分作BAD BCD ∠∠,的角平分线交于H ,根据(1)的结论得到()1252H B D ∠=∠+∠=︒,再由角平分线的定义和平角的定义证明90PCH ∠=︒,90PAH ∠=︒,再根据题干的结论可推出25P H ==︒∠∠;②如图所示,分作BAD BCD ∠∠,的角平分线交于H ,由(1)的结论可知()12H B D ∠=∠+∠,,同理可得90PCH ∠=︒,90PAH ∠=︒,则由四边形内角和定理可得()11802P B D ∠=︒-∠+∠;③由题干的结论可得P B BAP BCP =++∠∠∠∠,由角平分线的定义得到1122BAP BAO BCP BCE ==∠,∠,再求出1902BCP BCD =︒-∠,由题干的结论可知B BAO D BCD +=+∠∠∠∠,由此可得()1902P B BAP BCP B D =++=︒++∠∠∠∠∠∠.【详解】(1)解:∵AP CP 、分别平分BAD BCD ∠∠、,∴1234∠=∠∠=∠,,∴2314∠+∠=∠+∠,由题干的结论得:32P ABC ∠+∠=∠+∠,∠14P ADC +∠=∠+∠,∴21324P ABC ADC ∠+∠+∠=∠+∠+∠+∠,∴2P ABC ADC ∠=∠+∠,∴()12P ABC ADC ∠=∠+∠,即()12P B D ∠=∠+∠;(2)解:①如图所示,分作BAD BCD ∠∠,的角平分线交于H ,由(1)的结论可知()1252H B D ∠=∠+∠=︒,∵PC HC ,分别平分BCE BCD ∠,∠,∴1122BCP BCE BCH BCD ==∠,∠,∵180BCD BCE ∠+∠=︒∴119022BCP BCH BCD BCE +=+=︒∠∠∠∠,∴90PCH ∠=︒,同理可得90PAH ∠=︒,由题干的结论可得P PAH H PCH +=+∠∠∠∠,∴25P H ==︒∠∠;②如图所示,分作BAD BCD ∠∠,的角平分线交于H ,由(1)的结论可知()12H B D ∠=∠+∠,,同理可得90PCH ∠=︒,90PAH ∠=︒,∴()13601802P PAH PCH H B D =︒---=︒-+∠∠∠∠∠∠;③由题干的结论可得P B BAP BCP =++∠∠∠∠,∵AP 平分BAD ∠,CP 平分BCD ∠的外角BCE ∠,∴1122BAP BAO BCP BCE ==∠∠,∠∠,∵180BCE BCD =︒-∠∠,∴1902BCP BCD =︒-∠∠,由题干的结论可知B BAO D BCD +=+∠∠∠∠,∴BAO D BCD B =+-∠∠∠∠,∴P B BAP BCP =++∠∠∠∠119022B BAO BCD =++︒-∠∠1111902222B D BCD B BCD =++-+︒-∠∠∠∠()1902B D =︒++∠∠.【点睛】本题考查了三角形的内角和定理,角平分线的定义,多边形内角和定理,准确识图并运用好“8”字形的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.模型2、“A ”字模型结论:①∠3+∠4=∠D +∠E ;②∠1+∠2=∠A +180°。

特殊四边形知识与考点解析

特殊四边形知识与考点解析

特殊四边形知识考点解析1.多边形的分类:2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:(1)平行四边形定义:两组对边分别平行的四边形叫做平行四边形。

平行四边形不相邻两个顶点连成的线段叫对角线。

性质:平行四边形对边相等。

平行四边形对角相等, 邻角互补.平行四边形的对角线互相平分。

若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

推论:夹在两条平行线间的平行线段相等。

判定:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

两组对角分别相等的四边形是平行四边形.两条对角线互相平分的四边形是平行四边形。

(2)菱形:定义:一组邻边相等的平行四边形叫做菱形。

菱形的性质:菱形的四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形.对角线互相垂直平分的四边形是菱形。

四条边都相等的四边形是菱形。

菱形的面积等于两条对角线乘积的一半(面积计算,即S 菱形=L1.L2/2)。

(3)矩形:定义:有一个内角是直角的平行四边形叫做矩形。

矩形的性质:矩形的对角线相等;四个角都是直角。

矩形的判别方法:有一个角是直角的平行四边形是矩形。

对角线相等的平行四边形是矩形;对角线相等且平分的四边形是矩形;有三个角是直角的四边形是矩形。

直角三角形斜边上的中线等于斜边长的一半;在直角三角形中30°所对的直角边是斜边的一半。

(4)正方形:定义:一组邻边相等的矩形叫做正方形。

正方形的性质:正方形具有平行四边形、菱形、矩形的一切性质。

正方形的四个角都是直角,四条边都相等,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

(5)梯形:定义:一组对边平行而另一组对边不平行的四边形叫做梯形。

一组对边平行且不相等的四边形叫做梯形。

多边形的内角和外角和

多边形的内角和外角和

多边形的内角和外角和多边形是几何学中的一个基本概念,指的是由多条线段组成的闭合图形。

在多边形中,每个顶点都有相应的内角和外角。

本文将探讨多边形内角和外角的性质以及它们的和。

一、内角和的性质1. 正多边形的内角和:对于一个正多边形,内角和等于360°。

例如,一个正三角形的每个内角为60°,三角形的内角和为180°;一个正四边形的每个内角为90°,四边形的内角和为360°。

2. 不规则多边形的内角和:对于不规则多边形,内角和取决于它的边数和形状。

我们可以通过以下公式来计算不规则多边形的内角和:内角和 = (n - 2) × 180°,其中n表示多边形的边数。

3. 三角形的内角和:三角形是最简单的多边形,它的内角和始终为180°。

这可以通过欧拉公式证明:每个三角形可以划分为三个顶点,每个顶点都对应了一个内角,因此三角形的内角和为180°。

二、外角和的性质1. 外角和的性质:在任何一个凸多边形中,外角和等于360°。

凸多边形的外角和是通过将每个顶点的外角相加得出的。

2. 凹多边形的外角和:与凸多边形不同,凹多边形中的外角和可能大于360°。

原因在于凹多边形中某些外角的度数可能大于180°。

三、内角和与外角和的关系内角和和外角和存在一个重要的关系:内角和加上外角和等于360°。

这是因为内角和和外角和分别计算了多边形内部和外部的角度总和,它们加起来完全覆盖了一个平面。

结论:多边形的内角和是由多边形的边数和形状所决定的,而外角和则是由多边形的凸凹性质决定的。

无论多边形的类型如何,内角和加上外角和始终等于360°,这是一个重要的性质。

在几何学中,了解多边形内角和和外角和的性质对于解决各种与多边形相关的问题非常有帮助。

通过计算内角和和外角和,我们可以更好地理解多边形的结构和性质,从而应用于实际问题的解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形的内角和是360°
有同学把四边形如下分割、转化成多个三角形, 证明四边形的内角和不是360°,你觉得对吗?
180°x 3 =540°
540° —180°=360° 180°x 4 =720°
720° —360°=360°
得出结论
所有四边形的内角和 都是360°
证明四边形的内角和是360°,在这些方 法中,最快最好最直接的是什么? 分割法
方法1:量一量 算一算
四边形的内角和是360°。
方法2:剪一剪 拼一拼
1
4 3 2 3
1
4
2
拼成了一个周角。 四边形的内角和是360°。
方法3:分割 转化
把四边形分割、转化成学过的( 三角形) 。
(连对角线)怎样求四边形的内角和?
180° 180° 180° 180° 180° 180° 180°+180°=360° 或:180°X 2 =360°
360°
自主探究验证猜想
长方形
正方形
的内角和是 360°
的内角和是 360°
90 °×4 = 360°
方法 1、先用量角器量出每个内角的度数,并相加。 2、把四边形四个角剪下来,拼在一起。 3、把四边形分割成两个三角形,再计算。
四边形的内角和是 360 度?
1、4人为一小组,组长做好分工与指导。 2、利用不同的方法对3个四边形进行自主探究。 3、小组交流探究过程和结果,组长填写好表格。
先分割: 连接不相邻的顶点,将四边形
分割、转化为2个三角形。
后计算: 180°x ( 2 ) =360°
1. 画一画,算一算,你发现了什么?
6
7
2
3
180º ×4 180º ×5
我发现每个多边形都可以分成 边数 - 2 个三角形。
多边形的内角和=180º ×(边数-2)。
一个五边形的内角和是多少呢? 注意:连对角线时, 尽可能从同一个顶点 出发,与不相邻的顶 点画连线。
一个五边形可以分成3个三角形。
180 °x3=540°。
这个多边形内角和是多少度?
180°
180° 360°
180°
180°
360°
180°×4 =720°360°×2 =720°
课堂结
通过这节课的学习活动,你有什么收获?
我们全都要从前辈和同辈学习到一些东西。就 连最大的天才,如果想单凭他所特有的内在自 我去对付一切,他也决不会有多大成就。 ——歌德
三角形
四边形的内角和
复习旧知
三角形:
三角形内角和等于 180° 。
三角形有 3 条边, 3 个顶点, 3 个角。
四边形:
四边形有 4 条边, 4 个顶点, 4 个角。
四边形都包括哪些?
特殊的四边形
一般的四边形
所有的三角形内角和都是180 ° 所有的四边形的内角和是一样的吗? 如果一样,猜一猜是多少度?
相关文档
最新文档