新物理高中物理动量守恒定律

合集下载

2021_2022学年新教材高中物理第一章动量守恒定律1_2动量动量定理课件新人教版选择性必修1

2021_2022学年新教材高中物理第一章动量守恒定律1_2动量动量定理课件新人教版选择性必修1

3.如何确定动量变化量的大小和方向? 提示:方向:动量的变化量是矢量,其方向与物体速度变化量的方向相同。 大小:当物体初、末动量在同一直线上时,规定正方向,动量变化量的大小可通 过代数运算求得;当初、末动量不在同一条直 线上时,可应用平行四边形定则 求动量变化量的大小。
【结论生成】 1.动量的性质:(科学思维) (1)矢量性:方向与瞬时速度的方向相同,有关动量的运算,遵从矢量的平行四 边形定则。 (2)瞬时性:动量是描述物体运动状态的物理量,是针对某时刻而言的。 (3)相对性:大小与参考系的选择有关,通常情况是指相对地面的动量。
【典例示范】 (2020·全国Ⅰ卷)行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬 间充满气体。若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过 程中的作用,下列说法正确的是( ) A.增加了司机单位面积的受力大小 B.减少了碰撞前后司机动量的变化量 C.将司机的动能全部转换成汽车的动能 D.延长了司机的受力时间并增大了司机的受力面积
【解析】选D。a在竖直平面内做平抛运动,竖直方向是自由落体运动,b在斜面 上运动,受到重力和支持力,沿斜面向下是匀加速运动,加速度是g sin θ ,所 以b运动的时间长,故A错误;a、b在水平方向都是匀速运动,因为水平方向的初 速度相同,b运动时间长,所以沿x轴方向,b的位移大于a的位移,故B错误;a、 b两物体落地速度方向不同,速度不同,物体的动量p=mv也不同,故C错误;物 体在运动过程中只有重力做功,机械能守恒,因为物体初状态的机械能相等,则 落地时的机械能相同,两物体落地时的重力势能相等,则动能相等,所以D选项 是正确的。
课堂互动探究
【主题一】动量及其变化 动量的概念及特点
【生活情境】 情境1:质量为2 kg的物体,速度由3 m/s增大为6 m/s。 情境2:质量为2 kg的物体,速度由向东的3 m/s变为向西的3 m/s。 情境3:A物体质量是2 kg,速度是3 m/s,方向向东,B物体质量是3 kg,速度是 4 m/s,方向向西。

新教材人教版高中物理选择性必修第一册 1-3动量守恒定律 教学课件

新教材人教版高中物理选择性必修第一册 1-3动量守恒定律 教学课件

第十六页,共二十二页。
5.(单选)如图所示,弹簧的一端固定在竖直墙上,质量为M的光滑弧形槽静止在光滑水平面上,底部与水平面相切,一个
新课讲解 一、相互作用的两个物体的动量改变
1.试用牛顿运动定律推导两物体碰撞前后的总动量的关系
m2
m1
m2 m1
m2
F2
F1
A
B
A
a2
v2 v2 Δt
a2
F2 m2
F1
F2
a1
F1 m1
m1a1 m2a2
m1 B
a1
v1 v1 Δt
m1v1 + m2v2 m1v1 + m2v2
第四页,共二十二页。
Δp 0
第六页,共二十二页。
二、对动量守恒定律的理解?
3、条件: (1)系统不受外力;(理想条件)
(2)系统受到外力,但外力的合力为零;(实际条件)
(3)系统所受外力合力不为零,但系统内力远大于外力,外力相对来说可以忽略 不计,因而系统动量近似守恒;(近似条件)
(4)系统总的来看虽不符合以上三条中的任何一条,但在某一方向上符合以上三条
光滑
观看视频,你有何感想?
第五页,共二十二页。
二、对动量守恒定律的理解?
1、内容: 如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
这就是动量守恒定律。
2、公式: m1v1 + m2v2 m1v1 + m2v2 Δp1 Δp2
m1Δv1 m2Δv2 p p
p p
第十三页,共二十二页。
2.(单选)木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁
上,在b上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法

高中物理选修一动量守恒知识点归纳

高中物理选修一动量守恒知识点归纳

高中物理选修一:动量守恒知识点归纳一、动量的概念1. 动量的定义:动量是物体运动状态的量度,是物体质量和速度的乘积,通常用符号 p 表示。

2. 动量的单位:国际单位制中,动量的单位是千克·米/秒(kg·m/s)。

3. 动量的方向:动量的方向与物体的运动方向一致。

二、动量定理1. 动量定理的表述:一个物体的动量改变量等于作用在该物体上的合外力的冲量。

2. 动量定理的数学表达:Δp = F·Δt,其中Δp表示动量的改变量,F表示合外力,Δt表示时间。

3. 动量定理的应用:可以用来分析物体在外力作用下的运动状态。

三、动量守恒定律1. 动量守恒定律的表述:在一个封闭系统内,如果合外力为零,则系统的总动量保持不变。

2. 动量守恒定律的数学表达:Σpi = Σpf,即系统最初的总动量等于系统最终的总动量。

3. 动量守恒定律的应用:可用来分析弹性碰撞和完全非弹性碰撞等情况下物体的运动状态。

四、弹性碰撞1. 弹性碰撞的特点:在碰撞过程中,动能守恒,动量守恒。

2. 弹性碰撞的数学表达:m1v1i + m2v2i = m1v1f + m2v2f,即碰撞前的总动量等于碰撞后的总动量。

3. 弹性碰撞的应用:可用来分析弹簧振子、弹性小球碰撞等实际问题。

五、完全非弹性碰撞1. 完全非弹性碰撞的特点:在碰撞过程中,动量守恒,动能不守恒。

2. 完全非弹性碰撞的数学表达:m1v1i + m2v2i = (m1 + m2)v,即碰撞前的总动量等于碰撞后物体的总动量。

3. 完全非弹性碰撞的应用:可用来分析汽车碰撞、弹性小球与粘性物体碰撞等实际问题。

六、动量守恒实验1. 实验装置:常用的实验装置包括弹簧振子、动量棒等。

2. 实验原理:利用实验装置,进行不同形式的碰撞实验,验证动量守恒定律。

3. 实验过程:通过记录实验数据,进行数据分析,验证动量守恒定律在实验中的应用。

七、动量守恒在日常生活和工程实践中的应用1. 交通事故分析:利用动量守恒定律,可以分析交通事故中车辆碰撞的情况,从而减少事故损失。

高中物理动量守恒定律知识点总结

高中物理动量守恒定律知识点总结

高中物理动量守恒定律知识点总结
高中物理中,动量守恒定律是一个重要的概念,它表明在一个封闭系统中,如果没有
外力作用,系统的总动量将保持不变。

以下是关于动量守恒定律的知识点总结:
1. 动量的定义:动量是物体的质量与速度的乘积,用符号p表示,p = mv。

其中m是物体的质量,v是物体的速度。

2. 动量守恒定律的表述:在一个封闭系统中,如果没有外力作用,系统的总动量将保
持不变。

即Σpi = Σpf,其中Σpi表示系统的初始总动量,Σpf表示系统的最终总动量。

3. 弹性碰撞:在碰撞过程中,物体的总动能和总动量都守恒。

即碰撞前后物体的总动
量和总动能的和是相等的。

4. 完全非弹性碰撞:在碰撞过程中,物体之间会发生黏合或形变,使得总动能不守恒,但总动量仍然守恒。

5. 不同物体间的碰撞:当两个物体碰撞时,根据动量守恒定律可以推导出碰撞前后物
体的速度关系。

6. 动量的方向:动量是一个矢量量,具有大小和方向,通常使用向右为正,向左为负
的坐标系来表示。

7. 动量的变化:外力可以改变物体的动量,根据牛顿第二定律(F = ma),可以推导出物体的动量变化率等于物体所受外力的大小和方向。

8. 动量守恒定律的应用:动量守恒定律可用于解决各种碰撞问题,如弹性碰撞、完全
非弹性碰撞、两个物体间的碰撞等。

以上是关于高中物理动量守恒定律的知识点总结,希望对你有帮助!。

新教材-人教版高中物理选择性必修第一册 第一章 动量守恒定律 知识点考点重点难点提炼汇总

新教材-人教版高中物理选择性必修第一册 第一章 动量守恒定律 知识点考点重点难点提炼汇总

第一章 动量守恒定律1、2 动量 动量定理 .................................................................................................. - 1 - 3 动量守恒定律............................................................................................................ - 9 - 4 实验:验证动量守恒定律 ...................................................................................... - 17 - 5 弹性碰撞和非弹性碰撞 .......................................................................................... - 24 -1、2 动量 动量定理一、动量1.动量(1)定义:物理学中把物体的质量m 跟运动速度v 的乘积m v 叫作动量.(2)定义式:p =m v .(3)单位:在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s.(4)矢量:由于速度是矢量,所以动量是矢量,它的方向与速度的方向相同.2.用动量概念表示牛顿第二定律(1)公式表示:F =Δp Δt .(2)意义:物体所受到的合外力等于它动量的变化率.二、动量定理 1.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量.(2)公式:I =F Δt =F (t ′-t ).(3)矢量:冲量是矢量,它的方向跟力的方向相同.(4)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大. 2.动量定理(1)内容:物体在一个过程中所受力的冲量等于它在这个过程始末的动量变化量.(2)公式表示⎩⎨⎧I =p ′-p F (t ′-t )=m v ′-m v (3)意义:冲量是物体动量变化的量度,合外力的冲量等于物体动量的变化量.考点一 动量1.(1)定义:物体的质量m和其运动速度v的乘积称为物体的动量,记作p=m v.①动量是动力学中反映物体运动状态的物理量,是状态量.②在谈及动量时,必须明确是哪个物体在哪个时刻或哪个状态所具有的动量.(2)单位:动量的单位由质量和速度的单位共同决定.在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s.(3)矢量性:动量是矢量,它的方向与物体的速度方向相同,遵循矢量运算法则.2.动量与动能的区别与联系3.动量的变化量(1)p′,初动量为p,则Δp=p′-p=m v′-m v=mΔv.(2)动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同.(3)动量变化量Δp的计算方法①若物体做直线运动,只需选定正方向,与正方向相同的动量取正,反之取负.Δp=p′-p,若Δp是正值,就说明Δp的方向与所选正方向相同;若Δp是负值,则说明Δp的方向与所选正方向相反.②若初、末状态动量不在一条直线上,可按平行四边形定则求得Δp的大小和方向,这时Δp、p为邻边,p′为平行四边形的对角线.如图所示.动量为矢量,动量变化遵守矢量运算法则.【例1】质量为m=0.1 kg的橡皮泥,从高h=5 m处自由落下(g取10 m/s2),橡皮泥落到地面上静止,求:(1)橡皮泥从开始下落到与地面接触前这段时间内动量的变化;(2)橡皮泥与地面作用的这段时间内动量的变化;(3)橡皮泥从静止开始下落到停止在地面上这段时间内动量的变化.【审题指导】【解析】取竖直向下的方向为正方向.(1)橡皮泥从静止开始下落时的动量p1=0;下落5 m与地面接触前的瞬时速度v=2gh=10 m/s,方向向下,这时动量p2=m v=0.1×10 kg·m/s=1 kg·m/s,为正.则这段时间内动量的变化Δp=p2-p1=(1-0) kg·m/s=1 kg·m/s,是正值,说明动量变化的方向向下.(2)橡皮泥与地面接触前瞬时动量p1′=1 kg·m/s,方向向下,为正,当与地面作用后静止时的动量p2′=0.则这段时间内动量的变化Δp′=p2′-p1′=(0-1) kg·m/s=-1 kg·m/s,是负值,说明动量变化的方向向上.(3)橡皮泥从静止开始下落时的动量p1=0,落到地面后的动量p2′=0.则这段时间内动量的变化Δp″=p2′-p1=0,即这段时间内橡皮泥的动量变化为零.【答案】(1)大小为1 kg·m/s,方向向下(2)大小为1 kg·m/s,方向向上(3)0考点二冲量1.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量.(2)公式:通常用符号I表示冲量,即I=FΔt.(3)单位:在国际单位制中,冲量的单位是N·s.动量与冲量的单位关系是:1 N·s=1 kg·m/s.(4)对冲量的理解①时间性:冲量不仅与力有关,还与力的作用时间有关,恒力的冲量等于力与力作用时间的乘积,此公式I=Ft只适用于恒力.向变化的力来说,冲量的方向与相应时间内动量的变化量的方向一致,冲量的运算应遵循平行四边形定则.③绝对性:由于力和时间都跟参考系的选择无关,所以力的冲量也跟参考系的选择无关.④过程性:冲量是描述力F对时间t的累积效果的物理量,是过程量,必须明确是哪个力在哪段时间内对哪个物体的冲量.2.冲量与功的区别(1)冲量是矢量,功是标量.(2)由I=Ft可知,有力作用,这个力一定会有冲量,因为时间t不可能为零.但是由功的定义式W=F·s cosθ可知,有力作用,这个力却不一定做功.例如:在斜面上下滑的物体,斜面对物体的支持力有冲量的作用,但支持力对物体不做功;做匀速圆周运动的物体,向心力对物体有冲量的作用,但向心力对物体不做功;处于水平面上静止的物体,重力不做功,但在一段时间内重力的冲量不为零.(3)冲量是力在时间上的积累,而功是力在空间上的积累.这两种积累作用可以在“F-t”图像和“F-s”图像上用面积表示.如图所示.图甲中的曲线是作用在某一物体上的力F随时间t变化的曲线,图中阴影部分的面积就表示力F在时间Δt=t2-t1内的冲量.图乙中阴影部分的面积表示力F做的功.【例2】质量为2 kg的物体静止在足够大的水平面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力和滑动摩擦力大小视为相等.从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律如图所示.重力加速度g取10 m/s2,则物体在t=0到t=12 s这段时间内合外力的冲量是多少?【审题指导】关键词信息物体与地面间的动摩擦因数为0.2物体受摩擦力物体受到方向不变、大小呈周期性变化的水平拉力F,F随时间t的变化规律如图所示图线的面积等于力F的冲量大小f=μmg=0.2×2×10 N=4 N则摩擦力的冲量为I f=-ft=-4×12 N·s=-48 N·s 力F的冲量等于F-t图线的面积则I F=(F1t1+F2t2)×2=(4×3+8×3)×2 N·s=72 N·s 则合外力的冲量I=I f+I F=(-48+72) N·s=24 N·s. 【答案】24 N·s冲量计算注意问题(1)冲量是矢量,在计算过程中要注意正方向的选取,在同一直线上的矢量合成转化为代数运算,较为简单.(2)不在同一直线上的冲量计算要应用平行四边形定则或三角形定则.(3)要明确F-t图像面积的意义,且要知道t轴以上与以下的面积意义不同,两者表示方向相反.考点三动量定理1.对动量定理的理解(1)动量定理反映了合外力的冲量与动量变化量之间的因果关系,即合外力的冲量是原因,物体的动量变化量是结果.力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和.(3)动量定理表达式I=p′-p是个矢量式,式中的“=”表示合外力的冲量与动量的变化量等大、同向,但某时刻的合外力的冲量可以与动量的方向同向,也可以反向,还可以成某一角度.(4)动量定理具有普遍性,其研究对象可以是单个物体,也可以是物体系统,不论物体的运动轨迹是直线还是曲线,作用力不论是恒力还是变力,几个力作用的时间不论是相同还是不同,动量定理都适用.2.动量定理的应用(1)定性分析有关现象①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小.例如:车床冲压工件时,缩短力的作用时间,产生很大的作用力;而在搬运玻璃等易碎物品时,包装箱内放些碎纸、刨花、塑料等,是为了延长作用时间,减小作用力.因为越坚固,发生碰撞时,作用时间将会越短,由I=FΔt可知,碰撞时的相互作用力会很大,损坏会更严重.②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.例如:自由下落的物体,下落时间越长,速度变化越大,动量变化越大,反之,动量变化越小.(2)定量计算有关物理量①两种类型a .已知动量或动量的变化量求合外力的冲量,即 p 、p ′或Δp ――→I =ΔpIb .已知合外力的冲量求动量或动量的变化量,即I ――→Δp =p ′-p =IΔp 或p 、p ′应用I =Δp 求平均力,可以先求该力作用下物体的动量变化,Δp 等效代换变力冲量I ,进而求平均力F =Δp Δt .a .选定研究对象,明确运动过程.b .进行受力分析和运动的初、末状态分析.c .选定正方向,根据动量定理列方程求解.【例3】 杂技表演时,常可看见有人用铁锤猛击放在“大力士”身上的条石,石裂而人不伤,试分析其中道理.【审题指导】【解析】 设条石的质量为M ,铁锤的质量为m .取铁锤为研究对象,设铁锤打击条石前速度大小为v ,反弹速度大小为v ′,根据动量定理得(F -mg )Δt =m v ′-m (-v ),F =m (v +v ′)Δt+mg .Δt 极短,条石受到的铁锤对它的打击力F ′=F 很大,铁锤可以击断条石.对条石下的人而言,原来受到的压力为Mg ,铁锤打击条石时将对人产生一附加压力,根据牛顿第三定律,条石受到的冲量F ′Δt =F Δt =m (v +v ′)+mg Δt ,条石因此产生的动量变化量Δp =m (v +v ′)+mg Δt ,因人体腹部柔软,缓冲时间t较长,人体受到的附加压力大小为F 1=Δp t =m (v +v ′)t+mg Δt t ,可知附加压力并不大.【答案】 见解析应用动量定理的四点注意事项(1)明确物体受到冲量作用的结果是导致物体动量的变化.冲量和动量都是矢量,它们的加、减运算都遵循平行四边形定则.(2)列方程前首先要选取正方向,与规定的正方向一致的力或动量取正值,反之取负值,而不能只关注力或动量数值的大小.(3)分析速度时一定要选取同一个参考系,未加说明时一般是选地面为参考系,同一道题目中一般不要选取不同的参考系.(4)公式中的冲量应是合外力的冲量,求动量的变化量时要严格按公式,且要注意是末动量减去初动量.动量定理与牛顿定律的综合应用1.动量定理与牛顿定律(1)力F的大小等于动量对时间的变化率.在质量一定的问题中,反映的是力越大,运动状态改变越快,即产生的加速度越大.(2)动量定理与牛顿第二定律在实质上虽然是一致的,但是牛顿第二定律适用于解决恒力问题,而动量定理不但适用于恒力还适用于变力,所以动量定理在解决变力作用问题上更方便.但是要注意,通过动量定理得到的力,是作用过程的平均作用力.2.综合应用动量定理与牛顿定律解题该类问题除要明确研究对象的初、末状态外,还要对合理选取的研究对象进行受力分析,应用动量定理和牛顿第二定律列式求解.【典例】一枚竖直向上发射的火箭,除燃料外火箭的质量m火箭=6 000 kg,火箭喷气的速度为1 000 m/s,在开始时每秒大约要喷出多少质量的气体才能托起火箭?如果要使火箭开始时有19.6 m/s2向上的加速度,则每秒要喷出多少气体?【解析】火箭向下喷出的气体对火箭有一个向上的反作用力,正是这个力支持着火箭,根据牛顿第三定律,也就知道喷出气体的受力,再根据动量定理就可求得结果.设火箭每秒喷出的气体质量为m,根据动量定理可得Ft=m v2-m v1=m(v2-v1),其中F=m火箭g,v2-v1=1 000 m/s,得m=Ftv2-v1=m火箭gtv2-v1=58.8 kg.当火箭以19.6 m/s2的加速度向上运动时,由牛顿第二定律得F′-m火箭g=m 火箭a,设此时每秒喷出的气体质量为m′,根据动量定理有F′t=m′v2-m′v1,得m′=F′tv2-v1=m火箭(g+a)tv2-v1=176.4 kg.【答案】58.8 kg176.4 kg应用动量定理解题时所选研究对象一般是动量发生变化的物体,此题中是“喷出的气体”,再结合牛顿运动定律求解.3动量守恒定律一、动量守恒定律1.系统、内力和外力(1)系统:两个或两个以上的物体组成的研究对象称为一个力学系统,简称系统.(2)内力:系统中物体间的作用力称为内力.(3)外力:系统以外的物体施加给系统内物体的力称为外力.二、动量守恒定律的普适性1.动量守恒定律与牛顿运动定律用牛顿运动定律解决问题要涉及整个过程中的力.动量守恒定律只涉及过程始末两个状态,与过程中力的细节无关.这样,问题往往能大大简化.动量守恒定律并不是由牛顿运动定律推导出来的,它是自然界普遍适用的自然规律.而牛顿运动定律适用范围有局限性.(1)相互作用的物体无论是低速还是高速运动,无论是宏观物体还是微观粒子,动量守恒定律均适用.(2)高速(接近光速)、微观(小到分子、原子的尺度)领域,牛顿运动定律不再适用,而动量守恒定律仍然正确.考点一应用动量守恒定律解决问题的基本思路和一般方法1.分析题意,明确研究对象在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的.2.要对各阶段所选系统内的物体进行受力分析弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒.3.明确所研究的相互作用过程,确定过程的始、末状态即系统内各个物体的初动量和末动量的值或表达式.【注意】在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系.4.确定好正方向建立动量守恒方程求解【例1】(多选)如图所示,A、B两物体质量之比m A m B=32,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,水平地面光滑.当弹簧突然释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒在多个物体组成的系统中,动量是否守恒与研究对象的选择有关.系统可按解决问题的需要灵活选取.【审题指导】要判断A、B组成的系统是否动量守恒,要先分析A、B组成的系统受到的合外力与A、B之间相互作用的内力;看合外力是否为零,或者内力是否远远大于合外力.【解析】如果物体A、B与平板车上表面间的动摩擦因数相同,弹簧释放后,A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A m B=32,所以F A F B=32,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,选项A错;对A、B、C组成的系统,A、B与C 间的摩擦力为内力,该系统所受的外力的合力为零,故该系统的动量守恒,选项B、D均正确;若A、B所受的摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,选项C正确.【答案】BCD考点二多个物体组成的系统动量守恒问题多个物体相互作用时,物理过程往往比较复杂,分析此类问题时应注意:(1)正确进行研究对象的选取,有时需应用整体动量守恒,有时只需应用部分物体动量守恒.研究对象的选取,一是取决于系统是否满足动量守恒的条件,二是根据所研究问题的需要.(2)正确进行过程的选取和分析,通常对全程进行分段分析,并找出联系各阶段的状态量.列式时有时需分过程多次应用动量守恒,有时只需针对初、末状态建立动量守恒的关系式.【例3】质量为M=2 kg的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2 kg的物体A(可视为质点),如图所示.一颗质量为m B=20 g的子弹以600 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A仍静止在车上,求平板车最后的速度是多大.【审题指导】1.子弹与物体A能否组成系统?水平方向动量是否守恒?2.子弹射穿物体A后,物体A与小车是否可以组成系统?水平方向动量是否守恒?3.子弹、物体A和小车能否组成系统?该系统在水平方向动量是否守恒?【解析】解法一:子弹射穿A的过程极短,因此在射穿过程中车对A的摩擦力及子弹的重力作用可忽略,即认为子弹和A组成的系统水平方向动量守恒;同时,由于作用时间极短,可认为A的位置没有发生变化.设子弹击穿A后的速度为v′,由动量守恒定律m B v0=m B v′+m A v A,得v A=m B(v0-v′)m A=0.02×(600-100)2m/s=5 m/s.A获得速度v A后相对车滑动,由于A与车间有摩擦,最后A相对车静止,以共同速度v运动,对于A与车组成的系统,水平方向动量守恒,因此有m A v A=(m A+M)v,故v=m A v Am A+M=2×52+2m/s=2.5 m/s.解法二:因地面光滑,子弹、物体A、车三者组成的系统在水平方向不受外力,水平方向动量守恒,最后A与车速度相同.对于三者组成的系统,由动量守恒定律得m B v0=m B v′+(m A+M)v,得v=m B(v0-v′)m A+M=0.02×(600-100)2+2m/s=2.5 m/s.【答案】 2.5 m/s考点三碰撞、爆炸问题的处理方法碰撞和爆炸现象很多,如交通事故中人被车撞了、两车相撞、球与球之间相撞等,那么它们有什么特点呢?我们可以从以下几个方面分析:(1)过程的特点①相互作用时间很短.②在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大,远远大于外力,因此作用过程的动量可看成守恒.(2)位移的特点碰撞、爆炸、打击过程是在一瞬间发生的,时间极短,所以在物体发生碰撞、爆炸、打击的瞬间可忽略物体的位移.可以认为物体在碰撞、爆炸、打击前后在同一位置.(3)能量的特点爆炸过程系统的动能增加,碰撞、打击过程系统的动能不会增加,可能减少,也可能不变.【例4】以初速度v0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别是m和2m的两块弹片.其中质量较大的一块弹片沿着原来的水平方向以2v0的速度飞行.求:(1)质量较小的另一块弹片速度的大小和方向;(2)爆炸过程中有多少化学能转化为弹片的动能.【审题指导】1.手榴弹在空中受到的合力是否为零?2.手榴弹在爆炸过程中,各弹片组成的系统动量是否守恒,为什么?3.在爆炸时,化学能的减少量与弹片动能的增加量有什么关系?【解析】(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v=v0cos60°=12v0,设v的方向为正方向,如图所示,由动量守恒定律得3m v=2m v1+m v2,其中爆炸后大块弹片速度v1=2v0,小块弹片的速度v2为待求量,解得v2=-2.5v0,“-”号表示v2的方向与爆炸前速度方向相反.(2)爆炸过程中转化为动能的化学能等于系统动能的增量.ΔE k=12×2m v21+12m v22-12(3m)v2=6.75m v20.【答案】(1)大小为2.5v0,方向与原来的速度方向相反(2)6.75m v20考点四动量守恒定律和机械能守恒定律的比较和综合应用动量守恒定律和机械能守恒定律的比较定律名称项目动量守恒定律机械能守恒定律相同点研究对象研究对象都是相互作用的物体组成的系统研究过程研究的都是某一运动过程不同点守恒条件系统不受外力或所受外力的矢量和为零系统只有重力或弹力做功表达式p1+p2=p1′+p2′E k1+E p1=E k2+E p2表达式的矢量式标量式矢标性某一方向上应用情况可在某一方向独立使用不能在某一方向独立使用运算法则用矢量法则进行合成或分解代数运算光滑圆槽顶端由静止滑下.在槽被固定和可沿着光滑平面自由滑动两种情况下,木块从槽口滑出时的速度大小之比为多少?【审题指导】槽被固定时,木块的机械能守恒;槽不被固定时,木块和槽组成的系统的机械能守恒,且水平方向上动量守恒.【解析】圆槽固定时,木块下滑过程中只有重力做功,木块的机械能守恒.木块在最高处的势能全部转化为滑出槽口时的动能.设木块滑出槽口时的速度为v1,由mgR=12m v21①木块滑出槽口时的速度:v1=2gR②圆槽可动时,在木块开始下滑到脱离槽口的过程中,木块和槽所组成的系统水平方向不受外力,水平方向动量守恒.设木块滑出槽口时的速度为v2,槽的速度为u,则:m v2-Mu=0③又木块下滑时,只有重力做功,机械能守恒,木块在最高处的重力势能转化为木块滑出槽口时的动能和圆槽的动能,即mgR=12m v22+12Mu2④联立③④两式解得木块滑出槽口的速度:v2=2MgRm+M⑤两种情况下木块滑出槽口的速度之比:v1 v2=2gR2MgR/(m+M)=m+MM.【答案】m+MM多运动过程中的动量守恒包含两个及两个以上物理过程的动量守恒问题,应根据具体情况来划分过程,在每个过程中合理选取研究对象,要注意两个过程之间的衔接条件,如问题不涉及或不需要知道两个过程之间的中间状态,应优先考虑取“大过程”求解.(1)对于由多个物体组成的系统,在不同的过程中往往需要选取不同的物体组成的不同系统.(2)要善于寻找物理过程之间的相互联系,即衔接条件.【典例】如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C 向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.【解析】因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v C A与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v ABA与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立以上各式,代入数据得v A=2 m/s.【答案】 2 m/s动量守恒定律的研究对象是系统,为了满足守恒条件,系统的划分非常重要,往往通过适当变换划入系统的物体,可以找到满足守恒条件的系统.在选择研究对象时,应将运动过程的分析与系统的选择统一考虑.类题试解如图所示,质量为m的子弹,以速度v水平射入用轻绳悬挂在空中的木块,木块的质量为m′,绳长为l,子弹停留在木块中,求子弹射入木块后的瞬间绳子张力的大小.【解析】 在子弹射入木块的这一瞬间,系统动量守恒.取向左为正方向,由动量守恒定律有0+m v =(m +m ′)v ′,解得v ′=m v m +m ′. 随着整体以速度v ′向左摆动做圆周运动.在圆周运动的最低点,整体只受重力(m +m ′)g 和绳子的拉力F 作用,由牛顿第二定律有(取向上为正方向)F -(m +m ′)g =(m +m ′)v ′2l .将v ′代入即得F =(m +m ′)g +m 2v 2(m +m ′)l. 【答案】 (m +m ′)g +m 2v 2(m +m ′)l4 实验:验证动量守恒定律一、实验思路两个物体在发生碰撞时,作用时间很短,相互作用力很大,如果把这两个物体看作一个系统,虽然物体还受到重力、支持力、摩擦力、空气阻力等外力的作用,但是有些力的矢量和为0,有些力与系统内两物体的相互作用力相比很小.因此,在可以忽略这些外力的情况下,碰撞满足动量守恒定律的条件.我们研究最简单的情况:两物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运动.应该尽量创设实验条件,使系统所受外力的矢量和近似为0.二、物理量的测量确定研究对象后,还需要明确所需测量的物理量和实验器材.根据动量的定义,很自然地想到,需要测量物体的质量以及两个物体发生碰撞前后各自的速度.物体的质量可用天平直接测量.速度的测量可以有不同的方式,根据所选择的具体实验方案来确定.三、数据分析根据选定的实验方案设计实验数据记录表格.选取质量不同的两个物体进行碰撞,测出物体的质量(m1,m2)和碰撞前后的速度(v1,v′1,v2,v′2),分别计算出两物体碰撞前后的总动量,并检验碰撞前后总动量的关系是否满足动量守恒定律,即m1v′1+m2v′2=m1v1+m2v2四、参考案例参考案例1:研究气垫导轨上滑块碰撞时的动量守恒(1)实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧片、胶布、撞针、橡皮泥等.(2)实验步骤:接通电源,利用光电计时器测出两滑块在各种情况下碰撞前后的速度(例如:①改变滑块的质量;②改变滑块初速度的大小和方向),验证一维碰撞中的不变量.(3)实验方法①质量的测量:用天平测出两滑块的质量.②速度的测量:挡光板的宽度设为Δx,滑块通过光电门所用时间为Δt,则滑块相当于在Δx的位移上运动了时间Δt,所以滑块做匀速直线运动的速度v=Δx Δt.(4)数据处理将实验中测得的物理量填入相应的表格中,注意规定正方向,物体运动的速度方向与正方向相反时为负值.通过研究以上实验数据,找到碰撞前、后的“不变量”.考点一利用气垫导轨验证动量守恒定律[实验器材]气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等.[实验步骤]本方案优点:气垫导轨阻力很小,光电门计时准确,能较准确地验证动量守恒定律.。

2024-2025学年高中物理第一章动量守恒定律1、2动量动量定理教案新人教版选择性必修第一册

2024-2025学年高中物理第一章动量守恒定律1、2动量动量定理教案新人教版选择性必修第一册
本节课的教学重点是动量和动量定理的基本概念及其应用,教学难点是动量的矢量性质和动量定理在复杂情境中的应用。教师在教学过程中应针对这些重点和难点内容进行有针对性的讲解和强调,通过实例分析、问题讨论等方式帮助学生理解和掌握。
四、教学方法与手段
教学方法:
1. 讲授法:教师通过讲解动量和动量定理的基本概念、原理和公式,为学生提供系统的知识框架。在讲授过程中,教师可以通过生动的例子和实际应用场景,激发学生的兴趣和理解。
对于应用动量定理的难点,我计划让学生更多的参与进来,通过小组合作和讨论,共同解决问题。我会提供一些实际问题的案例,让学生分小组进行分析和讨论,找出解决问题的方法。此外,我还会安排一些课后作业,让学生在课后进一步巩固所学知识。
八、课堂
1. 提问评价:通过提问学生关于动量和动量定理的概念、公式和应用等问题,了解学生对知识点的掌握程度。对于回答正确的学生,给予肯定和鼓励;对于回答错误的学生,及时给予指导和纠正,帮助他们理解并掌握相关知识点。
答案:根据动量定理 FΔt=Δp,其中 F=10N,Δt=2s,所以 Δp=10N×2s=20kg·m/s。
3. 动量守恒定律
(3) 题目:一个质量为1kg的物体以5m/s的速度与另一个质量为2kg的物体以3m/s的速度相撞,求两个物体的最终速度。
答案:根据动量守恒定律,系统总动量保持不变,即 m1v1+m2v2=m1v'1+m2v'2。将已知数值代入公式,解得 v'1=1m/s,v'2=4m/s。
2. 观察评价:在课堂教学中,通过观察学生的参与程度、反应和表现,了解他们的学习状态。对于积极参与课堂讨论、提问和回答问题的学生,给予肯定和鼓励;对于沉默寡言、反应迟钝的学生,及时给予关注和指导,激发他们的学习兴趣和主动性。

动量定理—【新教材】 人教版高中物理选择性必修一

动量定理—【新教材】 人教版高中物理选择性必修一
⑤物理意义:冲量反映力对物体在一段时间上的积累作用, 动量反映了物体的运动状态。
二、动量定理的应用
类型1:定性解释
为什么杯子落到水泥地上 容 易摔碎,而落到松软的泥地 上不易 摔碎呢?
问题 用一条细线悬挂着一个重物,把重物拿到
悬挂点附近,然后释放,重物可以把细线拉断。 如果在细线上端拴一段橡皮筋,再把重物拿到 悬挂点附近释放,细线就不会被拉断了,现在 你能解释为什么吗?
(F–f)t–f2t=0
得 f=F/3
f
Ff
t
2t
例4. 如图表示物体所受作用力随时间变化的图象,若物 体初速度为零,质量为m,求物体在t2 时刻的末速度?
解: 从图中可知,物体所受冲量为F - t图线下面包围的 “面积”,
F
设末速度为v′,根据动量定理
F1
Σ F ·Δt=Δp ,有
F2
F1t1+ F2 (t2 -t1 ) =mv′ - 0
②相等性:物体在时间Δt内物体所受合外力的冲量等于物体在 这段时间Δt内动量的变化量;因而可以互求。
③独立性:某方向的冲量只改变该方向上物体的动量;
④广泛性:动量定理不仅适用于恒力,而且也适用于随时间而
变化的力.对于变力,动量定理中的力F应理解为变力在作用时
间内的平均值;不仅适用于单个物体,而且也适用于物体系统。
与vB同向.
vA
BO A
vB
例3. 水平面上一质量为m的物体,在水平恒力F作用下,由
静止开始做匀加速直线运动,经时间t 后撤去外力,又经过时间
2t 物体停下来,设物体所受阻力为恒量,其大小为( C )
A.F B. F / 2 C. F / 3
D. F / 4
解:整个过程的受力如图所示,

高中物理(新人教版)选择性必修1:动量守恒定律【精品课件】

高中物理(新人教版)选择性必修1:动量守恒定律【精品课件】

枪和子弹为系统,爆炸产生的作用力和子弹与枪管间的摩擦力均为内力,系
统在水平方向上不受外力,整体满足动量守恒定律的条件,选项D正确。
答案 D
课堂篇 探究学习
问题一
对动量守恒定律的理解
[情境探究]
在光滑的水平面上有一辆平板车,一个人站在车上用大锤敲打车的左端,如
图所示。开始时人和车均静止,在连续的敲打下,这辆车能持续地向右运动
1 2 +2 '
1 3
解得 = + ',代入数据得 = 2。
2
1
1
2
答案 3∶2
当堂检测
1.关于系统动量守恒的条件,下列说法正确的是(
)
A.只要系统所受的合外力为零,系统动量就守恒
B.系统中所有物体的加速度为零时,系统的总动量不一定守恒
C.只要系统内存在摩擦力,系统动量就不可能守恒
D.枪、子弹和车组成的系统水平方向动量守恒
解析 枪发射子弹的过程中,它们的相互作用力是火药的爆炸产生的作用力
和子弹在枪管中运动时与枪管间的摩擦力,枪和车一起在水平地面上做变
速运动,枪和车之间也有作用力。如果选取枪和子弹为系统,则车给枪的力
为外力;如果选取枪和车为系统,则子弹对枪的作用力为外力;如果选车、
)
答案 √
(2)一个系统初、末状态动量大小相等,即动量守恒。(
)
解析 动量守恒是指系统初末状态的动量的大小相等、方向相同。
答案 ×
(3)系统动量守恒也就是系统的动量变化量为零。(
)
答案 √
(4)在相互作用且动量守恒的某系统内,一个物体的动量增加时,另一个物
体的动量一定减少,系统的总动量不变。(
)

高中物理必备知识点:动量守恒定律及其应用总结

高中物理必备知识点:动量守恒定律及其应用总结

高中物理必备知识点:动量守恒定律及其应用总结第二课时动量守恒定律及其应用第一关:基本关与高考前景基础知识一、动量守恒定律知识解释(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)数学表达式①p=p′.也就是说,系统相互作用前的总动量P等于相互作用后的总动量P',如果有两个相互作用的物体,通常写为:m1v1+m2v2=m1v1'+m2v2'② δp=p′-p=0。

即系统总动量的增量为零.③δp1=-δp2.也就是说,相互作用系统中的物体被分成两部分,其中一部分动量的增量等于另一部分动量的增量,且方向相反(3)动量守恒定律成立的条件内力不会改变系统的总动量,而外力可以改变系统的总动量。

在以下三种情况下,可以使用动量守恒定律:①系统不受外力或所受外力的矢量和为零.② 系统上的外力远小于系统的内力。

例如,在碰撞或爆炸的瞬间,外力可以忽略③系统某一方向不受外力或所受外力的矢量和为零,或外力远小于内力,则该方向动量守恒(分动量守恒).灵活的学习和应用1.如图所示,a、b两物体的质量ma>mb,中间用一段细绳相连并在一被压缩的弹簧,放在平板小车c上后,a、b、c均处于静止状态.若地面光滑,则在细绳被剪断后,a、b从c上未滑离之前,a、b在c上向相反方向滑动过程中()a、如果a、B和C之间的摩擦力相同,由a和B组成的系统的动量守恒,由a、B和C组成的系统的动量也守恒b.若a、b与c之间的摩擦力大小不相同,则a、b组成的系统动量不守恒,a、b、c组成的系统动量也不守恒c、如果a、B和c之间的摩擦力不同,由a和B组成的系统的动量不守恒,但由a、B和c组成的系统的动量守恒d.以上说法均不对分析:当两个物体a和B形成一个系统时,弹簧力是内力,a、B和C之间的摩擦力是外力。

当a、B和C之间的摩擦力相反时,由a和B组成的系统的合力为零,动量守恒;当a、B和C之间的摩擦力不相等时,由a和B组成的系统上的组合外力不为零,对于由a、B和C组成的系统,动量不守恒,因为弹簧的弹性力以及a和B和C之间的摩擦力都是内力,无论a和B之间的摩擦力,B和C是否相等,由a、B和C组成的系统的合力为零,动量守恒,因此选项a和C是正确的,选项B和D是错误的答案:ac注:(1)动量守恒的条件是系统不受外力或组合外力为零。

2025版新教材高中物理第1章动量守恒定律4实验:验证动量守恒定律课件新人教版选择性必修第一册

2025版新教材高中物理第1章动量守恒定律4实验:验证动量守恒定律课件新人教版选择性必修第一册
解析:(1)实验过程中白纸必须始终放在复写纸的下面,不能调整位 置,故A错误;以最小的圆圈住小球的落地点,则该圆的圆心可视为小 球落点的平均位置,故B正确;为了防止小球m1弹回,两个小球的质量 需要满足m1大于m2,轨道表面不必光滑,故C错误;小球m1与m2发生碰 撞后,m1的落点是图中的M点,m2的落点是图中的P点,故D正确。
(1)关于实验操作,下列说法正确的是____B_D____。(填选项前的字母) A.实验过程中白纸和复写纸可以随时调整位置 B.以最小的圆圈住小球的落地点,则该圆的圆心可视为小球落点 的平均位置 C.两个小球的质量需要满足m1小于m2,且轨道表面必须光滑 D.小球m1与m2发生碰撞后,m1的落点是图中的M点,m2的落点是 图中的P点
③记录下 m2 释放时右侧压力传感器初始读数 F0 和 m2 与 m1 碰撞后 左侧压力传感器最大示数 F1 和右侧压力传感器最大示数 F2
两侧弹簧的劲度系数都为 k,弹簧弹性势能的表达式为 Ep=12kx2, 其中 k、x 分别为弹簧的劲度系数和形变量。
(1)在实验之前还需要进行的实验操作有( B ) A.测量弹簧的原长 B.在使用之前将压力传感器调零 C.测出初始时m1、m2到左右两侧压力传感器的距离 D.记录下m1、m2碰撞后到压缩左右两侧压力传感器到最大示数的 时间 (2) 为 使 m2 与 m1 碰 撞 后 反 弹 , 需 保 证 m2___<___m1( 填 “>”“=”“<”)。
F0 (3)m2碰前初速度为____k_m__2___(用题目所给字母表示)。
(4)实验要验证的动量守恒表达式为( D )
A.
F0 = m2
F1 - m1
F2 m2
B.mF02=mF11-mF22

高中物理选修3—5知识点

高中物理选修3—5知识点

物理选修3-5知识点总结一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。

(碰撞、爆炸、反冲) 注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。

内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。

2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/ (规定正方向) △p1=-△p、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。

必须注意区别总动量守恒与某一方向动量守恒。

4、碰撞(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒,(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒,;动能守恒,; 特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=. 特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)(3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。

5、人船模型--两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (注意:几何关系)二、量子理论的建立黑体和黑体辐射1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hν。

h为普朗克常数(6.63×10-34J.S)①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压: ;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率低于截止频率时不能发生光电效应;④效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。

_新教材高中物理第一章动量守恒定律12动量动量定理课件新人教版选择性必修第一册

_新教材高中物理第一章动量守恒定律12动量动量定理课件新人教版选择性必修第一册

4.动量定理的应用 (1)定性分析有关现象: ①物体的动量变化量一定时,力的作用时间越短,力就越大;力的 作用时间越长,力就越小. ②作用力一定时,力的作用时间越长,动量变化量越大;力的作用 时间越短,动量变化量越小.
(2)应用动量定理定量计算的一般步骤: ①选定研究对象,明确运动过程. ②进行受力分析和运动的初、末状态分析. ③选定正方向,根据动量定理列方程求解. 素养点评:本探究通过“动量定理”,培养“科学思维”素养.
(3)求变力的冲量: ①若力与时间呈线性关系变化,则可用平均力求变力的冲量. ②若给出了力随时间变化的图像如图所示,可用面积法求变力的冲 量. ③利用动量定理求解.
3.动量定理的理解 (1)动量定理的表达式F·Δt=mv′-mv是矢量式,等号包含了大小相 等、方向相同两方面的含义. (2)动量定理反映了合外力的冲量是动量变化的原因. (3)公式中的F是物体所受的合外力,若合外力是变力,则F应是合外 力在作用时间内的平均值.
冲量和动量定理 1.冲量
【答案】时间 N·s 力 时间
2.动量定理
(1)内容:物体在一个过程中所受力的冲量等于它在这个过程始末的 _动__量__变__化__量____.
(2)表达式:_F_(t_′_-__t)_=__m_v__′-__m__v__或__I=__p_′_-__p__.
在跳高比赛时,在运动员的落地处为什么要放很厚的海绵垫子? 【答案】跳过横杆后,落地时速度较大.人落到海绵垫子上时,可 经过较长的时间使速度减小到零,在动量变化量相同的情况下,人受到 的冲力减小,对运动员起到保护作用.
2.知道冲量的概念,知道冲量是矢量 3.知道动量定理的确切含义,掌握其表达式 4.会用动量定理解释碰撞、缓冲等生活中的现象

高中物理选修3-5动量守恒定律知识点总结

高中物理选修3-5动量守恒定律知识点总结

高中物理选修3-5动量守恒定律知识点总结动量守恒定律是物理课本选修3-5的内容,高中学生需要掌握重点知识点,下面小编给大家带来高中物理动量守恒定律知识点,希望对你有帮助。

高中物理动量守恒定律知识点 1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。

2. 动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。

当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。

即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。

(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。

(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。

3. 动量守恒定律应用中需注意:(1)矢量性:表达式m1v1+m2v2=中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。

在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。

(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。

(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。

(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).4. 碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。

按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。

(1)弹性碰撞碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。

_新教材高中物理第一章动量守恒定律4实验:验证动量守恒定律课件新人教版选择性必修第一册

_新教材高中物理第一章动量守恒定律4实验:验证动量守恒定律课件新人教版选择性必修第一册

方案2:利用等长悬线悬挂等大小的小球实现一维碰撞. 实验装置如图所示:
(1)质量的测量:用天平测量质量. (2)速度的测量:可以测量小球被拉起的角度,根据机械能守恒定律 算出小球碰撞前对应的速度;测量碰撞后两小球分别摆起的对应角度, 根据机械能守恒定律算出碰撞后对应的两小球的速度. (3)不同碰撞情况的实现:用贴胶布的方法增大两小球碰撞时的能量 损失.
多维课堂 | 素养初培
实验原理与操作 精练1 某同学利用气垫导轨做“探究碰撞中的不变量”的实验, 气垫导轨装置如图所示,所用的气垫导轨装置由导轨、滑块、弹射架、 光电门等组成.
(1)下面是实验的主要步骤: ①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平; ②向气垫导轨通入压缩空气; ③接通光电计时器; ④把滑块2静止放在气垫导轨的中间; ⑤滑块1挤压导轨左端弹射架上的橡皮绳; ⑥释放滑块1,滑块1通过光电门1后与左侧有固定弹簧的滑块2碰 撞,碰后滑块1和滑块2依次通过光电门2,两滑块通过光电门后依次被 制动;
七、注意事项 1.前提条件:碰撞的两物体应保证“水平”和“正碰”. 2.方案提醒: (1)若利用气垫导轨进行实验,调整气垫导轨时,注意利用水平仪确 保导轨水平. (2)若利用摆球进行实验,两小球静止时球心应在同一水平线上,且 刚好接触,摆线竖直,将小球拉起后,两条摆线应在同一竖直平面内. (3)若利用长木板进行实验,可在长木板的一端下垫一小木片用以平 衡摩擦力. 3.探究结论:寻找的不变量必须在各种碰撞情况下都不改变.
变式1 (2021届辽宁六校联考)如图为验证动量守恒定律的实验装 置,实验中选取两个半径相同、质量不等的小球,按下面步骤进行实
验: ①用天平测出两个小球的质量分别为m1和
m2; ②安装实验装置,将斜槽AB固定在桌边,

2024年高中物理新教材同步 选择性必修第一册 第1章 3 动量守恒定律

2024年高中物理新教材同步 选择性必修第一册 第1章 3 动量守恒定律

3动量守恒定律[学习目标] 1.会根据动量定理、牛顿第三定律推导动量守恒定律(重点)。

2.知道系统、内力、外力的概念。

3.理解并掌握动量守恒定律的内容、公式及成立条件(重点)。

4.能在具体问题中判断动量是否守恒,能熟练运用动量守恒定律解释相关现象和解决相关问题(重难点)。

一、动量守恒定律的理解相互作用的两个物体的动量改变如图所示,在光滑水平桌面上沿同一方向做匀速运动的两个物体,质量为m2的B物体追上质量为m1的A物体,并发生碰撞,设A、B两物体碰前速度分别为v1、v2(v2>v1),碰后速度分别为v1′、v2′,碰撞时间很短,设为Δt。

设B对A的作用力是F1,A对B的作用力是F2。

请用所学知识证明碰撞前后两物体总动量之和相等。

答案根据动量定理:对A:F1Δt=m1v1′-m1v1①对B:F2Δt=m2v2′-m2v2②由牛顿第三定律得F1=-F2③由①②③得两物体总动量关系为:m1v1′+m2v2′=m1v1+m2v2。

1.系统、内力与外力(1)系统:两个(或多个)相互作用的物体构成的整体叫作一个力学系统,简称系统。

(2)内力:系统中物体间的作用力。

(3)外力:系统以外的物体施加给系统内物体的力。

2.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。

(2)表达式:m1v1+m2v2=m1v1′+m2v2′(作用前后总动量相等)。

(3)适用条件:系统不受外力或者所受外力的矢量和为零。

(4)普适性:动量守恒定律既适用于低速物体,也适用于高速(接近光速)物体.既适用于宏观领域,也适用于微观领域。

光滑的地面上,A、B两完全相同的小车用一根轻弹簧相连。

用手缓慢向中间推两小车使弹簧压缩。

当A、B两小车同时释放后:两辆小车分别向左、向右运动,它们都获得了动量,它们的总动量是否增加了?答案两辆小车分别向左、向右运动,它们同时获得了动量,但两辆小车的动量的方向相反,动量的矢量和仍然为0,故系统的总动量没有增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量、冲量和动量定理1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。

是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。

单位是kg·m/s;2、动量和动能的区别和联系①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。

即动量相同而质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。

②动量是矢量,而动能是标量。

因此,物体的动量变化时,其动能不一定变化;而物体的动能变化时,其动量一定变化。

③因动量是矢量,故引起动量变化的原因也是矢量,即物体受到外力的冲量;动能是标量,引起动能变化的原因亦是标量,即外力对物体做功。

④动量和动能都与物体的质量和速度有关,两者从不同的角度描述了运动物体的特性,且二者大小间存在关系式:P2=2mE k3、动量的变化及其计算方法动量的变化是指物体末态的动量减去初态的动量,是矢量,对应于某一过程(或某一段时间),是一个非常重要的物理量,其计算方法:(1)ΔP=P t一P0,主要计算P0、P t在一条直线上的情况。

(2)利用动量定理ΔP=F·t,通常用来解决P0、P t;不在一条直线上或F为恒力的情况。

二、冲量1、冲量:力和力的作用时间的乘积叫做该力的冲量.是矢量,如果在力的作用时间内,力的方向不变,则力的方向就是冲量的方向;冲量的合成与分解,按平行四边形法则与三角形法则.冲量不仅由力的决定,还由力的作用时间决定。

而力和时间都跟参照物的选择无关,所以力的冲量也与参照物的选择无关。

单位是N·s;2、冲量的计算方法(1)I=F·t.采用定义式直接计算、主要解决恒力的冲量计算问题。

(2)利用动量定理Ft=ΔP.主要解决变力的冲量计算问题,但要注意上式中F为合外力(或某一方向上的合外力)。

三、动量定理1、动量定理:物体受到合外力的冲量等于物体动量的变化.Ft=mv/一mv或Ft=p/-p;该定理由牛顿第二定律推导出来:(质点m在短时间Δt内受合力为F合,合力的冲量是F合Δt;质点的初、未动量是mv0、mv t,动量的变化量是ΔP=Δ(mv)=mv t-mv0.根据动量定理得:F合=Δ(mv)/Δt)2.单位:牛·秒与千克米/秒统一:l千克米/秒=1千克米/秒2·秒=牛·秒;3.理解:(1)上式中F为研究对象所受的包括重力在内的所有外力的合力。

(2)动量定理中的冲量和动量都是矢量。

定理的表达式为一矢量式,等号的两边不但大小相同,而且方向相同,在高中阶段,动量定理的应用只限于一维的情况。

这时可规定一个正方向,注意力和速度的正负,这样就把大量运算转化为代数运算。

(3)动量定理的研究对象一般是单个质点。

求变力的冲量时,可借助动量定理求,不可直接用冲量定义式.4.应用动量定理的思路:(1)明确研究对象和受力的时间(明确质量m和时间t);(2)分析对象受力和对象初、末速度(明确冲量I合,和初、未动量P0,P t);(3)规定正方向,目的是将矢量运算转化为代数运算;(4)根据动量定理列方程(5)解方程。

四、动量定理应用的注意事项1.动量定理的研究对象是单个物体或可看作单个物体的系统,当研究对象为物体系时,物体系的总动量的增量等于相应时间内物体系所受外力的合力的冲量,所谓物体系总动量的增量是指系统内各个的体动量变化量的矢量和。

而物体系所受的合外力的冲量是把系统内各个物体所受的一切外力的冲量的矢量和。

2.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力。

它可以是恒力,也可以是变力。

当合外力为变力时F则是合外力对作用时间的平均值。

3.动量定理公式中的Δ(mv)是研究对象的动量的增量,是过程终态的动量减去过程始态的动量(要考虑方向),切不能颠倒始、终态的顺序。

4.动量定理公式中的等号表明合外力的冲量与研究对象的动量增量的数值相等,方向一致,单位相同。

但考生不能认为合外力的冲量就是动量的增量,合外力的冲量是导致研究对象运动改变的外因,而动量的增量却是研究对象受外部冲量作用后的必然结果。

5.用动量定理解题,只能选取地球或相对地球做匀速直线运动的物体做参照物。

忽视冲量和动量的方向性,造成I与P 正负取值的混乱,或忽视动量的相对性,选取相对地球做变速运动的物体做参照物,是解题错误的常见情况。

规律方法1、冲量和动量变化量的计算【例1】如图所示,倾角为α的光滑斜面,长为s,一个质量为m的物体自A点从静止滑下,在由A到B的过程中,斜面对物体的冲量大小是,重力冲量的大小是。

物体受到的冲量大小是(斜面固定不动).【例2】一单摆摆球质量m=0.2kg,摆长l=0.5m.今将摆球拉高与竖直方向成50角处由静止释放,求摆球运动至平衡位置过程中重力的冲量和合力的冲量.(g=10 m/s2)【例3】以初速度v水平抛出一质量为m的石块,不计空气阻力,则对石块在空中运动过程中的下列各物理量的判断正确的是()A.在两个相等的时间间隔内,石块受到的冲量相同B.在两个相等的时间间隔内,石块动量的增量相同C.在两个下落高度相同的过程中,石块动量的增量相同D.在两个下落高度相同的过程中,石块动能的增量相同2、动量定理的初步应用【例4】质量为2kg的物体,放在水平面上,受到水平拉力F=4N的作用,由静止开始运动,经过1s撤去F,又经过1s 物体停止,求物体与水平面间的动摩擦因数。

【例5】质量为m=2kg的小球,从离地面h1=5 m高处自由下落,球和地面相碰后又反弹至h2=3.2 m高处,已知上述过程经历的时间t=1.9s,求地面和小球间的平均弹力是多大?【例6】如图所示,A、B经细绳相连挂在弹簧下静止不动,A的质量为m,B的质量为M,当A、B间绳突然断开物体A上升到某位置时速度为v,这时B下落速度为u,在这段时间内弹簧弹力对物体A的冲量为【例8】滑块A和B用轻细绳连接在一起后放在水平桌面上,水平恒力F作用在B上,使A、B一起由静止开始沿水平桌面滑动,已知滑块A、B与水平桌面间的滑动摩擦因数μ,力F作用t秒后,A、B间连线断开,此后力F仍作用于B,试求:滑块A刚刚停住时,滑块B的速度多大?滑块A、B的质量分别为m A、m B二、动量守恒定律1、内容:相互作用的物体,如果不受外力或所受外力的合力为零,它们的总动量保持不变,即作用前的总动量与作用后的总动量相等.2、动量守恒定律适用的条件①系统不受外力或所受合外力为零.②当内力远大于外力时.③某一方向不受外力或所受合外力为零,或该方向上内力远大于外力时,该方向的动量守恒.3、常见的表达式①p/=p,其中p/、p分别表示系统的末动量和初动量,表示系统作用前的总动量等于作用后的总动量。

②Δp=0 ,表示系统总动量的增量等于零。

③Δp1=-Δp2,其中Δp1、Δp2分别表示系统内两个物体初、末动量的变化量,表示两个物体组成的系统,各自动量的增量大小相等、方向相反。

动量守恒定律习题归纳1、“合二为一”问题:两个速度不同的物体,经过相互作用,最后达到共同速度。

例1、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg 的小球若干个,甲和他的车及所带小球的总质量为M 1=50kg ,乙和他的车总质量为M 2=30kg 。

现为避免相撞,甲不断地将小球以相对地面16.5m/s 的水平速度抛向乙,且被乙接住。

假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时:(1)两车的速度各为多少?(2)甲总共抛出了多少个小球?分析与解:甲、乙两小孩依在抛球的时候是“一分为二”的过程,接球的过程是“合二为一”的过程。

(1)甲、乙两小孩及两车组成的系统总动量沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞。

设共同速度为V ,则:M 1V 1-M 2V 1=(M 1+M 2)Vs m s m V M M M M V /5.1/6802012121=⨯=+-=(2)这一过程中乙小孩及时的动量变化为:△P=30×6-30×(-1.5)=225(kg ·m/s ) 每一个小球被乙接收后,到最终的动量弯化为 △P 1=16.5×1-1.5×1=15(kg ·m/s )故小球个数为)(15152251个==∆∆=P P N 2、“一分为二”问题:两个物体以共同的初速度运动,由于相互作用而分开后以不同的速度运动。

例2、人和冰车的总质量为M ,另有一个质量为m 的坚固木箱,开始时人坐在冰车上静止在光滑水平冰面上,某一时刻人将原来静止在冰面上的木箱以速度V 推向前方弹性挡板,木箱与档板碰撞后又反向弹回,设木箱与挡板碰撞过程中没有机械能的损失,人接到木箱后又以速度V 推向挡板,如此反复多次,试求人推多少次木箱后将不可能再接到木箱?(已知2:31:=m M )解析:人每次推木箱都可看作“一分为二”的过程,人每次接箱都可以看作是“合二为一”的过程,所以本题为多个“一分为二”和“合二为一”过程的组合过程。

设人第一次推出后自身速度为V 1, 则:MV 1=mV , 人接后第二次推出,自身速度为V 2,则mV+2mV=MV 2 (因为人每完成接后推一次循环动作,自身动量可看成增加2mV) 设人接后第n 次推出,自身速度为V n ,则mV+2mV(n-1)=MV n∴V n =Mm(2n-1)V , 若V n ≥V ,则人第n 次推出后,不能再接回,将有关数据代入上式得n ≥8.25,∴n=9。

M (甲甲推出木箱速度为v ' v m Mv v m M '+=+0)( mMvv m M v -+='0)(s m v /2.5154.030245=⨯-⨯='3、“三体二次作用过程”问题所谓“三体二次作用”问题是指系统由三个物体组成,但这三个物体间存在二次不同的相互作用过程。

解答这类问题必须弄清这二次相互作用过程的特点,有哪几个物体参加?是短暂作用过程还是持续作用过程?各个过程遵守什么规律?弄清上述问题,就可以对不同的物理过程选择恰当的规律进行列式求解。

例3、光滑的水平面上,用弹簧相连的质量均为2kg 的A 、B 两物块都以V 0=6m/s 的速度向右运动,弹簧处于原长,质量为4kg 的物块C 静止在前方,如图所示。

B 与C 碰撞后二者粘在一起运动,在以后的运动中,当弹簧的弹性势能达到最大为 J 时,物块A 的速度是m/s 。

分析与解:本题是一个“三体二次作用”问题:“三体”为A 、B 、C 三物块。

相关文档
最新文档