《大学物理》量子物理基础一

合集下载

大学物理教案:量子力学基础知识

大学物理教案:量子力学基础知识

大学物理教案:量子力学基础知识简介量子力学是现代物理学的重要分支,它描述了微观世界中的粒子行为,并解释了许多奇特的现象。

本教案旨在向大学物理学生介绍量子力学的基础知识,包括波粒二象性、不确定性原理、波函数等核心概念。

目标•理解波粒二象性的概念及其实验观测•掌握不确定性原理及其与经典物理的区别•熟悉波函数的表示和应用教学内容1. 波粒二象性•定义:波粒二象性指微观粒子既具有粒子性质又具有波动性质。

•实验观测:通过双缝干涉实验、康普顿散射实验证明波粒二象性。

•特征:粒子表现出波动行为,如干涉和衍射;波动表现出离散行为,如能级和量子跳跃。

2. 不确定性原理•定义:不确定性原理是由海森堡提出的一个基本原理,它指出在某些物理量之间存在固有的不确定关系。

•区别于经典物理:经典物理中,粒子的位置和动量可以同时被准确测量;而在量子力学中,由于波粒二象性,位置和动量不能同时被准确确定。

•数学表述:∆x * ∆p ≥ h/4π,其中∆x表示位置的不确定性,∆p表示动量的不确定性,h为普朗克常数。

3. 波函数•定义:波函数是描述微观粒子状态及其演化的数学函数。

在薛定谔方程下演化。

•形式:一维情况下可用复数函数表示ψ(x),三维情况下可用复数函数表示ψ(x, y, z)。

•解释与应用:波函数的平方模值|ψ|^2 表征了粒子在空间中存在的概率分布。

波函数可以描述能级、态叠加等现象。

教学方法与活动建议1.通过实验演示双缝干涉实验,让学生亲身体验波粒二象性。

2.运用黑板或幻灯片展示不确定性原理的公式推导过程,并举例说明其应用。

3.利用计算机模拟软件绘制波函数的图像,让学生观察不同态的波函数变化。

4.在课堂上进行小组讨论和问题解答,加深学生对概念和原理的理解。

总结通过本教案,学生将能够初步了解量子力学中重要的基础知识。

这些核心概念对于理解量子物理现象以及后续相关课程的学习都具有重要意义。

在教学过程中,鼓励学生积极思考并提出问题,以促进他们对量子力学的兴趣和深入理解。

大学物理15 量子物理基础1

大学物理15 量子物理基础1

m
o
0.1A
(2) 若使其质量为m=0.1g的小球以与粒子相同的 速率运动,求其波长
若 m=0.1g 的小球速率 vm v
vm
v
q BR m
则 :m
h m vm
h m
1 v
h m
m q BR
h q BR
m m
6.64 10 27 0.1 10 3
6.641034
m
px x h
考虑到在两个一级极小值之外还有电子出现,
运动,则其波长为多少? (粒子质量为ma =6.64ⅹ10-27kg)(05.08…)
解:
(1)
求粒子德布罗意波长 h h
p m v
先求:m v ?
而:q vB
m
v2 R
m v q BR
h m v
h q BR
6.63 10 34 1.601019 0.025 0.083102
1.001011
( x,t ) 0 区别于经典波动
(
x,
t)
e i 2
0
(t x
)
自由粒子沿x方向运动时对应的单色平面波波函数
设运动的实物粒子的能量为E、动量为 p,与之相 关联的频率为 、波长为,将德布罗意关系式代入:
考虑到自由粒子沿三维方向的传播
式中的 、E 和 p 体现了微观粒子的波粒二象性
2、概率密度——波函数的统计解释 根据玻恩对德布罗意波的统计解释,物质波波
p mv h
德布罗意公式(或假设)
与实物粒子相联系的波称为德布罗意波(或物质波)
h h h
p mv m0v
1
v2 c2
如果v c,则 h
m0v

大学物理 第16章量子力学基本原理-例题及练习题

大学物理 第16章量子力学基本原理-例题及练习题
2( 2k + 1) ( k = 0,1,2......)
∴ n = 2,6,10...... 时概率密度最大
nhπ 6 × 10 = =1时 (3) n=1时: E = =1 2mL L
2 2 2 2 2 −38
A 例题3 例题3 设粒子沿 x 方向运动,其波函数为 ψ ( x ) = 方向运动, 1 + ix
( n = 1,2,3,...)
E n=4
p2 E = 2m p= nπh nh 2 mE = = a 2a
n=3 n=2 n=1
h 2a λ= = p n
二者是一致的。 二者是一致的。
( n = 1, 2, 3,...)
o a
x
例题2 粒子质量为m, 在宽度为L的一维无限 的一维无限深势 例题2 P516例1:粒子质量为m, 在宽度为 的一维无限深势 中运动,试求( 粒子在0 阱中运动,试求(1)粒子在0≤x≤L/4区间出现的概率。并 ≤ / 区间出现的概率。 求粒子处于n=1 状态的概率。 在哪些量子态上, 求粒子处于 1和n=∞状态的概率。(2)在哪些量子态上, 状态的概率 (2)在哪些量子态上 L/4处的概率密度最大?(3)求n=1时粒子的能量 补充 。 /4处的概率密度最大 (3)求 =1时粒子的能量(补充 处的概率密度最大? =1时粒子的能量 补充)。 2 nπ x 由题得: 解:(1) 由题得: 概率密度 |ψ | = sin
2 2 2 2 0
2
2
2
2
0
0
k
0
2
2
2 k
0
k
k
k
0
h ∴λ = = p
hc 2E m c + E
2 k 0

大学物理课件量子力学

大学物理课件量子力学

量子通信与量子密码学
利用量子态的特性实现信息传输和保护,具有更高的安全性和保密性。 量子通信 量子密码学 量子密钥分发 基于量子力学原理的密码学技术,能够提供更强的加密和认证能力,保障信息安全。 利用量子力学原理实现密钥分发,能够确保通信双方拥有相同的密钥,保障通信安全。
量子纠缠与量子隐形传态
量子纠缠 量子力学中的一种现象,两个或多个粒子之间存在一种特殊的关联,当一个粒子状态发生变化时,另一个粒子也会立即发生相应变化。 量子隐形传态 利用量子纠缠实现信息传输的技术,能够在不直接传输粒子的情况下传输量子态的信息。 量子隐形传态的应用 在量子通信和量子计算中具有重要的应用价值,能够实现更安全、更快速的信息传输和处理。
大学物理课件量子力学
汇报人姓名
汇报时间:12月20日
Annual Work Summary Report
#2022
O1
点击此处添加正文,文字是您思想的提炼。
catalogue
O2
点击此处添加正文,文字是您思想的提炼。
目 录
引言
O1
量子力学的起源与发展
量子力学的发展经历了从初步提出到逐步完善的过程,期间涌现出许多杰出物理学家,如普朗克、爱因斯坦、玻尔等。 19世纪末,经典物理学无法解释黑体辐射、光电效应等现象,为解决这些问题,量子力学应运而生。
量子系统的演化与动力学是由薛定谔方程所描述的,该方程是一个偏微分方程,用于描述系统状态随时间的变化。薛定谔方程的解给出了系统在任意时刻的状态,从而可以预测系统在未来时刻的状态。薛定谔方程是量子力学中最重要的方程之一,是研究量子系统演化与动力学的基础。
总结词
详细描述
演化与动力学
量子力学中的重要理论
O3

大学物理 量子物理基础知识点总结

大学物理  量子物理基础知识点总结

大学物理 量子物理基础知识点1.黑体辐射(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。

(2)斯特藩—玻尔兹曼定律:4o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2521M T ()1hckthc eλπλλ=-(,)3.光电效应和光的波粒二象性(1)遏止电压a U 和光电子最大初动能的关系为:212a mu eU = (2)光电效应方程: 212h mu A ν=+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K hν== (4)光的波粒二象性(爱因斯坦光子理论):2mc hεν==;hp mc λ==;00m =其中0m 为光子的静止质量,m 为光子的动质量。

4.康普顿效应: 00(1cos )hm cλλλθ∆=-=- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610hm m cλ-==⨯,0λ为康普顿波长。

5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()22111T T HR m n n m m nνλ==-=->()()(), (2)频率条件: k nkn E E hν-=(3) 角动量量子化条件:,1,2,3...e L m vr n n ===其中2hπ=,称为约化普朗克常量,n 为主量子数。

(4)氢原子能量量子化公式: 12213.6n E eVE n n=-=- 6.实物粒子的波粒二象性和不确定关系(1)德布罗意关系式: h h p u λμ== (2)不确定关系: 2x p ∆∆≥; 2E t ∆∆≥7.波函数和薛定谔方程(1)波函数ψ应满足的标准化条件:单值、有限、连续。

(2)波函数的归一化条件: (,)(,)1Vr t r t d ψψτ*=⎰(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)iiir t c r t c r t c r t ψψψψ=++=∑(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂=-∇+⎢⎥∂⎣⎦8.电子自旋和原子的壳层结构(1)电子自旋: 11),2S s ==;1,2z s s S m m ==±注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构①原子核外电子可用四个量子数(,,,l s n l m m )描述:主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。

大学物理理论:量子力学基础

大学物理理论:量子力学基础

大学物理理论:量子力学基础1. 介绍量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。

本文将介绍一些关于量子力学的基本概念和原理。

2. 原子结构和波粒二象性2.1 光电效应光电效应实验证明了光具有粒子性。

解释光电效应需要引入光量子(光子)概念,并讨论能量、动量和波长之间的关系。

2.2 德布罗意假设德布罗意假设认为微观粒子也具有波动性。

通过计算微观粒子的德布罗意波长,可以得出与经典物理不同的结果。

3. 波函数和不确定性原理3.1 波函数及其统计解释波函数描述了一个系统的状态,并包含了关于该状态各个可观测量的信息。

通过波函数,可以计算出一系列平均值,用来描述系统的特征。

3.2 不确定性原理不确定性原理指出,在某些情况下,无法同时准确地确定一个粒子的位置和动量。

这涉及到测量的本质和粒子与波的性质之间的关系。

4. 玻尔模型和量子力学4.1 玻尔模型玻尔模型是描述氢原子中电子运动的经典物理学模型。

它通过量子化角动量来解释氢原子光谱,并提供了首个对原子结构和能级分布的定性解释。

4.2 泡利不相容原理泡利不相容原理说明电子在同一能级上必须具有不同的状态。

这为填充多电子原子如何达到稳态提供了解释。

5. 薛定谔方程及其解析方法5.1 薛定谔方程薛定谔方程是量子力学中最基本的方程。

它描述了波函数随时间演化的规律,以及如何通过波函数求得可观测量的平均值。

5.2 解析方法介绍几种求解薛定谔方程的解析方法,如分离变量法、变换法等,并通过示例问题演示其使用过程和计算结果。

6. 哈密顿算符与算符方法6.1 哈密顿算符哈密顿算符是用于描述系统总能量的数量。

介绍哈密顿算符的概念和性质,并讨论如何通过其本征值和本征函数求解问题。

6.2 算符方法算符是量子力学中描述可观测量的数学工具,介绍常见的一些算符,如位置算符、动量算符等,并讨论它们之间的对易关系。

结论量子力学作为现代物理学的基石,为我们理解微观世界提供了全新的视角。

15 量子物理基础—康普顿效应及光子理论的解释

15 量子物理基础—康普顿效应及光子理论的解释

4.5 1023 kgms 1
h/

tan (h ) /( h 0 ) 0
0.20 arctan 42.3 0.22
视为黑体,则 1)太阳表面的温度; 2)太阳的辐射功率; 3)由于热辐射而使太阳质量耗损1%经历的时间。 (已知太阳半径 RS=6.96×108m, 质量Ms=2 ×1030kg)
解:
1)根据维恩位移定律 mT b
T
b m

2.897103 m K 49010 9 m
5.9 103 K
大学物理 第三次修订本
15
第15章 量子物理基础
实验规律
(1) 对于原子量较小的散射物质,康普顿散射 较强,反之较弱。 (2)波长的改变量 -0 随散射角θ的增加而增加。
(3)对不同的散射物质,只要在同一个散射角下, 波长的改变量 - 0 都相同。
大学物理 第三次修订本
16
第15章 量子物理基础
(3)电子的初速度
19
第15章 量子物理基础 例2 钾的光电效应红限为0= 6.210-7m。求(1)电子 的逸出功;(2)在波长为3.0 10-7m的紫外线照射下, 遏止电压为多少?(3)电子的初速度为多少? 解 (1)逸出功
2eU a 2 1.6 10 2.14 vm ms 1 8.67 105 ms 1 11 m 9.11031 大学物理 第三次修订本
0.01M s c 11 t 10 年 P
大学物理 第三次修订本
5
2
第15章 量子物理基础 1、光电效应的实验
饱和电流∝光强度I
存在截止频率: > 0
瞬时性
1 2 mVm ekν eU 0 最大初动能与入射频率成线性关系: 2

大学物理量子物理基础(stone)

大学物理量子物理基础(stone)

金属来说,只有当入射光的
频率大于某一频率υo时,电 子才能从金属表面逸出,电 路中才有光电流,这个频率 υo叫做截止频率——红限.
0
Ua
红限频率
(3).线性关系:用不同频率的光照射金属K的表面时, 只要入射光的频率大于截止频率,遏止电势差与入射 光频率具有线性关系,即最大初动能与入射光的频率 成正比而与入射光的光强无关.
普朗克(Max Karl Ernst Ludwig Planck, 1858―1947)
德国物理学家,量子物理学的开创者 和奠基人。 普朗克的伟大成就,就是创立了量子理论, 1900年12月14日他在德国物理学会上,宣 读了以《关于正常光谱中能量分布定律的 理论》为题的论文,提出了能量的量子化 假设,并导出了黑体辐射的能量分布公式。 这是物理学史上的一次巨大变革。从此结 束了经典物理学一统天下的局面。劳厄称 这一天为“量子论的诞生日”。
1918年普朗克由于创立了量子理论而获 得了诺贝尔奖金。
1.普朗克公式
2hc2 1
M (T) 5
hc
e kT 1
2.普朗克假说
•谐振子的能量可取值只能是某一最小能量单元ε 的整 数倍,即:E=nε , n=1,2,3,....ε叫能量子,n为量子数, 它只取正整数—能量量子化. •对于频率为υ的谐振子,最小能量为:ε=hυ 其中h=6.62610-34 J·s为普朗克常数 结论:谐振子吸收或辐射的能量只能是ε=hυ的整数倍.
里兹组合原理:任一条谱线的波数都等于该元素所固有 的许多光谱项中的两项之差,这是里兹在1908年发现的.
~ 1 T( k ) T( n )
T(k) R k2
T (n)
R n2
R=1.096776 107m1

量子物理知识点总结大学

量子物理知识点总结大学

量子物理知识点总结大学一、基本概念1. 波粒二象性在量子物理中,粒子表现出了波动性。

这意味着粒子不仅可以像经典物理学中的粒子那样具有位置和动量,还可以像波动那样传播。

这一现象成为波粒二象性。

著名的实验有双缝干涉实验,它展示了粒子具有波动性的特征。

2. 不确定性原理不确定性原理是量子物理的核心概念之一,由著名的物理学家海森堡提出。

它表明,对于一对共轭的物理量(比如位置和动量),我们无法同时精确地知道它们的数值。

如果我们知道其中一个量的值,那么对于另一个量,我们就无法确定其精确数值,并且只能知道其可能的取值范围。

这个原理对于解释微观世界中的许多现象都是非常重要的。

3. 物理量的量子化在经典物理中,我们习惯于将物理量看作是连续变化的,比如位置、速度、能量等。

然而在量子物理中,这些物理量被发现是离散的,只能取某些特定的数值,这一现象被称为量子化。

比如,电子只能存在于特定的能级上,能量也只能以量子的形式发射和吸收。

4. 相互作用的量子描述在经典物理中,我们常常通过描述相互作用的力来理解物质世界。

然而在量子物理中,力被描述为一种粒子交换的过程。

例如,电磁力是通过光子的交换传递的,强核力是通过胶子的交换传递的。

5. 观察者效应在量子物理中,观察者的存在和观察行为会影响到物质的状态和行为。

这一现象是被称为观察者效应。

具体来说,当我们观察量子粒子时,它的行为会因观察者的观察方式而发生变化。

二、量子力学1. 薛定谔方程薛定谔方程是量子力学中最基本的方程之一,描述了量子系统的演化。

它是线性、时间反演不变的方程,描述了量子系统的波函数随时间的演化。

通过薛定谔方程,我们可以预测量子系统在未来的状态。

2. 波函数和概率波在量子力学中,我们用波函数来描述粒子的状态。

波函数是一个数学函数,它包含了粒子的全部信息。

通过波函数,我们可以计算出粒子在不同位置和动量上的概率分布。

这个概率分布被称为概率波。

3. 微扰理论微扰理论是量子力学中的一种重要的近似计算方法,它被用于处理那些无法通过精确解析方法进行求解的问题。

大学物理第13章 量子物理

大学物理第13章 量子物理

5
在短波区, 很小 普朗克公式 →维恩公式
,T
2hc
2
,T
2 hc 2
1 ehc / kT 1
5

5
e
x

hc ,
e
hc kT
x 1
hc 1 kT
普朗克公式 →瑞利-金斯公式
( , T )
实验
维恩公式 T=1646k
,T c1 e
5 c2 / T
其中c1,c2 为常量。

高频段与实验符合很好,低频段明显偏离实 验曲线。
瑞利— 金斯公式
( , T )
实验 瑞利-琼斯
1900年6月,瑞利按经 典的能量均分定理, 把空腔中简谐振子平 均能量取与温度成正 比的连续值,得到一 个黑体辐射公式
能量子概念的提出标志了量子力学的诞生,普 朗克为此获得1918年诺贝尔物理学奖。
2. 黑体辐射的两个定律: 斯特藩 — 玻耳兹曼定律
M (T ) T 4
5.67 10 w/m K —— 斯特藩 — 玻耳兹曼常量
2 4 8
1879年斯特藩从实验上总结而得 1884年玻耳兹曼从理论上证明
要求自学光电效应的实验规律和经典波动理 论的困难。
实验规律 (特点): ① 光强 I 对饱和光电流 im的影响: 在 一定时, m I 。 i
② 频率的影响:
截止电压 U c K U 0 与 光强I 无关;
U0 。 存在红限频率 0 K
③ 光电转换时间极短 <10-9s 。 2、波动理论的困难:不能解释以上②、 ③
1 1 R 2 2 n 1 1 n 2, 3,4, n 4,5,6,

大学物理量子力学初步01黑体辐射和普朗克假设共30页文档

大学物理量子力学初步01黑体辐射和普朗克假设共30页文档

卢瑟福散射实验 是现代核物理学 的基石
黑体辐射与普朗克的量子假说
描述热辐射的物理量 黑体和黑体辐射的基本规律 经典物理学所遇到的困难 普朗克的能量子假说和黑体热辐射公式 量子假说的含义及其与宏观现象的关系
黑体辐射
分子(含有带电粒子)的热运动使物体辐射电磁波。这 种与温度有关的辐射称为热辐射 (heat radiation)。 热辐射的电磁波能量对频率有一个分布。频率分布 跟温度有关
例。若视太阳为黑体,测得 m51n0m
可得 T表面570K0
斯特藩—玻耳兹曼定律和维恩位移律是测量高温、 遥感和红外追踪等技术的物理基础。 维恩 因热辐射定律的发现
1911年获诺贝尔物理学奖。
5、黑体辐射的应用
(1).测量黑体温度
在实验室或工厂的高温炉子上开一小孔,小孔可看 作黑体,由小孔的热辐射特性,就可以确定炉内的温
而黑体的热辐射正好与空腔的形状、材料及 ‘表面状态’ 都无关,是最好的研究对象。
黑体的吸收本领最大,辐射本领也最大。
2. 研究黑体辐射的实验装置示意图
T
光栅光谱仪 (或棱镜光谱仪)
热电偶(测 M(T ))
3.斯特藩—玻耳兹曼定律(实验定律)
总辐出度M(T)与黑体温度
的四次方成正比
M
M(T ) T 4
当时许多著名的物理学家都认为物理学的基本规 律都已被发现.
当时赫赫有名权威人物开耳文勋爵在一篇于1900 年发表的瞻望二十世纪物理学发展的文章中也说: “在已经基本建成的科学大厦中,后辈物理学家只需 要做一些零星的修补工作就行了”,不过他还不愧为 一名确有远见卓识的物理学家,因为他接着又指出: “但是在物理晴朗天空的远处,还有两朵小小的令人 不安的乌云”,即运用当时的物理学理论所无法正确 解释的两个实验现象,

大学物理知识总结习题答案(第十章)量子物理基础

大学物理知识总结习题答案(第十章)量子物理基础

第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。

· 在任何温度下都能全部吸收照射到它表面上的各种波长的光(电磁波),则这种物体称为绝对黑体,简称黑体。

· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率,称为辐射出射度。

2. 维恩位移定律· 在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm ,维恩从热力学理论导出T 和λm 满足如下关系λm T b =其中b 是维恩常量。

3. 斯忒藩—玻尔兹曼定律· 斯忒藩—玻尔兹曼定律表明黑体的辐射出射度M 与温T 的关系4T M σ=其中s 为斯忒藩—玻尔兹曼常量。

对于一般的物体4T M εσ=e 称发射率。

4. 黑体辐射· 黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量E hv =被称为一个量子。

黑体辐射的能量为E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。

· 普朗克黑体辐射公式简称普朗克公式25/λ2πhc 1()λ1hc kT M T e l =-· 光是以光速运动的粒子流,这些粒子称为光量子,简称光子。

· 一个光子具有的能量为νh E =。

5. 粒子的波动性· 德布罗意认为实物粒子也具有波粒二象性,它的能量E 、动量p 跟和它相联系的波的频率ν、波长λ满足以下关系2E mc h ν==λh p m u == 这两个公式称为德布罗意公式或德布罗意假设。

与实物粒子相联系的波称为物质波或德布罗意波。

· x x p D D ?h 或者E t D D ?h 这一关系叫做不确定关系。

其中为位置不确定量、动量不确定量、能量不确定量、时间不确定量。

大学物理学(下册)第15章 量子物理基础

大学物理学(下册)第15章 量子物理基础
2020/12/10
5、爱因斯坦的光子假说和光电效应方程
1).爱因斯坦光子假设 ①.光是一束以光速c运动的粒子流,这些粒子称为光子;
②.光子的能量: h
③.光的强度: SNh
2).爱因斯坦光电效应方程
爱因斯坦认为:在光电效应中,金属中的电子吸收
一个光子的能量h,一部分消耗在使金属中电子挣脱原子
2020/12/10
2. 普朗克理论与经典理论不同
经典理论的基本观点
普朗克能量子假设
(1)电磁波辐射来源于 带电粒子的振动,电磁波 频率与带电粒子振动频率 相同。 (2)振子辐射电磁波含 各种波长,是连续的,辐 射能量也是连续的。
对于频率为的振子,
振子辐射的能量不是 连续的,而是分立的, 它的取值是某一最小 能量 的整数倍
出的、在波长 附近单位波长间隔内的能量。称为单色辐
射出射度或单色辐出度。
M(T)
dM(T)
d
单位: W / m 3
2020/12/10
温度为 T 的物体,在单位时间内,从单位面积上所辐射
出的各种波长的电磁波的能量总和。称为辐射出射度或辐
出度。
M(T) 0M(T)d
单位: W / m 2
太阳和钨丝的单色 辐出度曲线
即:光电子的最大初动能与入射光的强度成正比关系,而 与光的频率无关。与实验结果不符。
2020/12/10
红限问题
按上述理论,无论何种频率的入射光,只要其强 度足够大,就能使电子具有足够的能量逸出金属,不 存在红限问题。与实验结果不符。
驰豫时间
按上述理论,如果入射光强很弱,则电子逸出金 属所需的能量,需要有一定的时间来积累。与实验结 果不符。
光的波动性用光波的波长 和频率 描述,光

大学物理第17章.量子力学基础

大学物理第17章.量子力学基础
第17章 量子力学
§17.1 物质的波粒二象性 §17.2 不确定关系 §17.3 薛定谔方程 §17.4 一维无限深势阱 §17.5 势垒贯穿 §17.6 氢原子的量子力学处理 §17. 7 多电子原子 §17. 8 量子力学的理论假设
§17.1 物质的波粒二象性
一、德布罗意物质波假设 1.光的二象性
p2 eU , p 2meU
2m h 1.225 nm =0.167nm
pU
2. 汤姆逊(G.P.Thomson)实验(1927) 电子通过金薄膜的衍射实验
实验原理 3. 约恩逊(Jonsson)实验(1961)
电子的单缝、双缝、三缝和四缝衍射实验 基本数据
a 0.3μm d 1μm
V 50kV 0.5nm
微粒的波动性的应用 -----电子束代替光波来实现成像(电子显微镜)
电子与物质相互作用会产生透射电子,弹性散射电子,能量 损失电子,二次电子,背反射电子,吸收电子,X射线,俄 歇电子,阴极发光等等。电子显微镜就是利用这些信息来对 试样进行形貌观察、成分分析和结构测定。
由于微观粒子具有波粒二象性,这就要求在描述 微观粒子的运动时,要有创新的概念和思想来统一波 和粒子这样两个在经典物理中截然不同的物理图像。 波函数就是作为量子力学基本假设之一引入的一个新 的概念。
量子力学认为:微观粒子的运动状态可用一个复
函数(x,y,z,t)来描述,函数(x,y,z,t) —称为波函数。
2.波函数的统计解释
波动观点
粒子观点
明纹处: 电子波强(x,y,z,t)2大, 电子出现的概率大;
暗纹处: 电子波强(x,y,z,t)2小, 电子出现的概率小 。
可见,波函数模的平方(x,y,z,t)2与粒子在该处

大学物理_量子物理基础_课件

大学物理_量子物理基础_课件

单色吸收比 α(λ,T ) :物体 2.辐出度和吸收比 2.辐出度和吸收比 在温度T 对于波长在 波长在λ 在温度T时,对于波长在λ附 近单位波长间隔内吸收的能 近单位波长间隔内吸收的能 单色辐出度: 单色辐出度: 量与辐射的能量的比值 比值. 量与辐射的能量的比值. Mλ (T) = dMλ dλ 若用 ρ(λ,T ) 表示对应的 单色反射比, 单色反射比,对于不透明 单位时间内从物体单位表面 的物体有 发出的波长在 波长在λ 发出的波长在λ附近单位波 α(λ,T ) + ρ(λ,T ) =1 长间隔内的电磁波的能量 长间隔内的电磁波的能量 的电磁波的能量. ∞ 3.基尔霍夫定律 基尔霍夫定律(1859) 3.基尔霍夫定律(1859) 辐出度 : M(T) = ∫ Mλ (T)dλ Mλ (T) 0 = f (λ,T) 单位:W·m-2 单位 α(λ,T) 单位时间从物体表面单位 推论I:在热平衡态下, I:在热平衡态下 推论I:在热平衡态下,凡强 面积辐射的总能量. 面积辐射的总能量 吸收体必然是强辐射体. 吸收体必然是强辐射体.
理论物理学家寻找 MBλ (T ) 3. 斯特藩 玻耳兹曼定律 斯特藩-玻耳兹曼定律 黑体的辐出度与黑体 的温度的四次方成正 由热力学得出) 比.(由热力学得出 由热力学得出
MBλ (T) = αλ e
−5 −β λT
公式只在短波(高频) 公式只在短波(高频) 0 低温时才和实验相符, 区,低温时才和实验相符, σ = 5.67×10-8 W/m2K4 × 在长波范围内与实验不符. 在长波范围内与实验不符. 显然, ——斯特藩-玻耳兹曼常数 显然,维恩未找出 f (λ,T) 斯特藩斯特藩 dMBλ (T) 但令 定律只适用于黑体 黑体. =0 定律只适用于黑体 dλ 显然,斯特藩 斯特藩显然 斯特藩-玻耳兹 可得 维恩位移定律 曼未找出 f (λ,T ) λm T = b 4.维恩定律 b = 2.897756×10-3 m·K × 假设腔内谐振子的能量 当黑体的温度升高时,与单 当黑体的温度升高时 与单 按玻耳兹曼分布,可得出: 按玻耳兹曼分布,可得出: 色辐出度Mλ的峰值对应的 色辐出度 −5 −β λT 波长λ 向短波方向移动. 波长λm向短波方向移动 MBλ (T) = e 这与实验一致. 这与实验一致

大学物理,量子物理基础21-01 黑体辐射 普朗克能量子假设..

大学物理,量子物理基础21-01  黑体辐射 普朗克能量子假设..

3
这两条定律是黑体辐射的基本定律,它们在 现代科学技术中有广泛的应用,是测量高温以及 遥感和红外跟踪等技术的物理基础。恒星的有效 温度也是通过这种方法测量的。
17
21.1 黑体辐射 普朗克能量子假设
第21章 量子物理基础
例:1)温度为室温(20°C)的黑体,其单色辐出度 的峰值所对应的波长是多少?2)辐出度是多少? 解:1)由维恩位移定律
任何物体在任何温度下都不断地向四周发 射着不同波长的电磁波,这种现象称为辐射, 其原因是分子中包含的带电粒子的热运动会使 物体辐射电磁波。 物体以电磁波的形式向外辐射出去的能量, 称为辐射能。
物体辐射能量的大小及辐射能量按波长的 分布都与温度有关。
这种由于物质中的分子、原子受到热激发 而发射电磁波的现象称为热辐射。
Tm b
3
b 2.898 10 m T 293
9890 nm
2)由斯特藩-玻耳兹曼定律
M (T ) T
4
4
M (T ) T 4
5.67 10 (293)
8
4.17 10 W/m
2
2
18
21.1 黑体辐射 普朗克能量子假设
第21章 量子物理基础
例:实验测得太阳的单色辐出度的峰值波长为: m = 0.483 m,若将太阳当作黑体, 请估算:太阳表面的温度和太阳的辐出度。 解:由维恩位移定律:
是 h 的整数倍。 nh ,
(n 1,2,3)
普朗克常量 h 6.6260755 1034 J s
23
21.1 黑体辐射 普朗克能量子假设
• 能量是分立的,不是连续的。 存在着能量的最小单元: 能量子 0 = h ;
• 振子只能一份一份地按不 连续方式辐射或吸收能量。

大学mooc大学物理-相对论和量子物理章节测验期末考试答案

大学mooc大学物理-相对论和量子物理章节测验期末考试答案

解忧书店 JieYouBookshop第一周狭义相对论1单选(4分)以下那种说法是错误的?A.物体的静能随参考系的改变而变化。

B.相对论质能关系把质量与能量紧密联系在一起。

C.静质量为零的粒子没有静止状态,只能以光速运动。

D.物体的相对论性质量m是其运动速度v的函数。

正确答案:A你选对了2单选(4分)火箭以0.85 c的速率运动时,其运动质量与静止质量之比为?A.1B.1.9m0C.0.85D.1.5正确答案:B你选对了3单选(4分)狭义相对论的基本原理包含以下哪一条?A.等效原理B.光速不变原理C.广义相对性原理D.力的独立性原理正确答案:B你选对了4多选(4分)迈克耳孙-莫雷实验的结果说明了什么?A.不存在一个相对于以太静止的最优参考系。

B.迈克耳孙-莫雷实验是狭义相对论的实验基础C.没有观察到预期的条纹移动,地球相对于以太的运动并不存在。

D.以太不存在正确答案:A、C、D你选对了5判断(4分)所有验证相对论时间延缓效应的近代物理实验,都同样验证了相对论长度收缩效应。

正确答案:√你选对了6判断(4分)在狭义相对论的理论框架中,不允许存在超光速粒子。

A.√B.×正确答案:√你选对了1单选(4分)以下哪个不是广义相对论的实验验证?B.水星近日点的进动C.雷达回波时间延迟实验D.密立根油滴实验正确答案:D你选对了2单选(4分)以下那种说法是错误的?A.相对论能量-动量关系指出了静质量为零的粒子存在的可能性。

B.静质量为零的粒子没有静止状态,只能以光速运动。

C.相对论质能关系把质量与能量紧密联系在一起。

D.物体的静质量m0是在静止的惯性系中测到的物体质量。

正确答案:D你选对了3单选(4分)狭义相对论的基本原理包含以下哪一条?A.等效原理B.功能原理C.相对性原理D.伽利略相对性原理正确答案:C你选对了第二周量子物理基础11单选(4分)以下哪种说法是错误的?A.康普顿效应反映了光具有波动性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
hc
Байду номын сангаас
0
hc

1

1.68×10-16 J )
EK 0
hc (
0

1

答案 (B) 分析:遏止电压与入射光 的频率成线性关系,与光 的强度无关
光 强 较 强 光 强 较 弱
Ua
O
U
3. 康普顿效应的主要特点是 [ D ] (A) 散射光的波长均比入射光的波长短,且随散射角增大 而减小,但与散射体的性质无关. (B) 散射光的波长均与入射光的波长相同,与散射角、散 射体性质无关. (C) 散射光中既有与入射光波长相同的,也有比入射光波 长长的和比入射光波长短的.这与散射体性质有关. (D) 散射光中有些波长比入射光的波长长,且随散射角增 大而增大,有些散射光波长与入射光波长相同.这都与散 射体的性质无关. 康普顿效应:X射线被较轻物质散射后光的成分,发现散射
U a kv U 0
U a 0时,对应的v为红限频率
v 5 10 Hz
14
|Ua| (V) 2 -2 5 10
×1014 Hz)
Uo A vo k h
2V 14 A eU 0 ekv0 5 10 ( Hz )e 2eV 14 5 10 Hz
5.如图3所示,一频率为v的入射光子与起始静止的自由电子发生 碰撞和散射.如果散射光子的频率为v′,反冲电子的动量为p, 则在与入射光子平行的方向上的动量守恒定律的分量形式为 h (h cos ) p cos ____________________________ . c c ′

光子的能量: 光子的动量:
hv mc
2
hv p mc c 水平方向的动量守恒:
h (h cos ) p cos c c


e 反冲电子
6. 波长为 0 = 0.0500nm,的X射线被静止的自由电子所散射, 若散射线的波长变为 = 0.0522 nm, 试求反冲电子的动能 EK 。(普朗克常量h=6.63×10-34 J•s) 解:入射光子的能量为 散射光子的能量为 反冲电子的动能为:
0
h
分析:(1)光电效应存在红限频率 ,只有入射光频率 0 金属才有光电子逸出。因此选项之一是错误的。 (2)光电子的最大初动能与入射光频率成线性关系 1 2 m h A 不同 m也不同 ,因此选项之二是正确的。 2 (3)饱和电流和光的强度成正比:入射光的强度决定于能流密度, 设单位时间内通过单位面积的光子数为N,则入射光的能流密度 为 Nh ,当 强度 一定时,频率越高,N越小,照射到阴极的光子 数越少,单位时间释出的光电子越少,从而饱和电流也越小。因此 选项之三是错误的。 (4)由(3),当频率一定时,入射光强增大一倍,N增大一倍, 则逸出的光电子数也增大一倍,因此饱和电流增大一倍。因此选项 之四是正确的。 答案:D
2.以一定频率的单色光照射在某种金属上,测出其光电流曲线 在图中用实线表示,然后保持光的频率不变,增大照射光的强 度,测出光电流曲线在图中用虚线表示,满足题意的图是
I
I
(A)
I
U
I
(B)
U
(C)
U
(D)
U
要点回顾:
光电效应的实验规律 光电效应伏安特性曲线
I
饱 和 遏 电I s 止 Ua hv U0 , 则v U0 流 电 压 Ua与光强无关
要点回顾:
爱因斯坦对光电效应的解释:
1 2 h m m A 2
1. 光强越大,光子数越多,释放的光电子也越多, -- 所以 ,光电流也越大。 2. 电子只要吸收一个光子就可以从金属表面逸出, 所以无须时间的累积。 3. 从方程可以看出光电子初动能和照射光的频率 成线性关系。
4.从光电效应方程中,当初动能为零时,可得到 红限频率: A
量子物理基础习题
练习三十八 量子物理基础(一)
1.关于光电效应有下列说法: (1)任何波长的可见光照射到任何金属表面都能产生 光电效应; (2)若入射光的频率均大于一给定金属的红限,则该 金属分别受到不同频率的光照射时,释出的光电子的最 大初动能也不同; (3)若入射光的频率均大于一给定金属的红限,则该 金属分别受到不同频率,强度相等的光照射时,单位时 间释出的光电子数一定相等; (4)若入射光的频率均大于一给定金属的红限,则当 入射光频率不变而强度增大一倍时,该金属的饱和光电 流也增大一倍。 其中正确的是: (A)(1),(2),(3); (B)(2),(3),(4) (C)(2),(3); (D)(2),(4)
谱线中除了有波长相同的成分外还有波长较长的成分。
且随着散射角的增大而增大,都与散射体的性质无关。
4. 在光电效应实验中,测得某金属的遏止电压|Ua|与入射 光频率v的关系曲线如图2所示,由此可知该金属的红限频 14 2 率 0 =___________Hz ;逸出功 A =__________eV . 5 10
相关文档
最新文档