小升初数学知识点:正方形面积知识点
小升初数学必考知识点参考
千里之行,始于足下。
小升初数学必考知识点参考小升初数学的考试内容相对固定,主要包括数与代数、几何、统计与概率三个部分。
下面是对每个部分主要考察的知识点的参考,希望对您有所帮助。
一、数与代数1. 数的认识:整数、正数、负数、零的概念及大小比较2. 数的运算:四则运算(加、减、乘、除)、加法、减法的逆运算、乘法口诀表3. 分数与小数的认识及相互转化:分数的加、减、乘、除运算、约分与化简、小数的读法与写法4. 符号的应用:加减法运算中带有括号和加减号的计算、解方程中的代入与求解5. 数的整体性:自然数的认识、完全平方数、接近整十整百的估算二、几何1. 图形的认识:平行四边形、长方形、正方形、三角形的认识及特征2. 各种图形的面积计算:长方形、正方形、三角形、梯形的面积计算3. 图形的周长计算:矩形、正方形、三角形、梯形、圆的周长计算4. 正方体、长方体、圆柱体、圆锥体的认识及体积计算5. 空间几何:平面图形的展开与折叠、立体图形的展开与拼拓三、统计与概率1. 数据的认识:数据的收集与整理,频数表、条形统计图2. 数据的分析:数据的最大值、最小值、中位数、平均数的计算与比较3. 算术均值与调和均值的理解与应用4. 基本概率:概率的认识、可能性的大小比较、事件的概率计算第1页/共2页锲而不舍,金石可镂。
以上列举的知识点是小升初数学考试中非常重要的部分,但并不代表所有的考察内容。
学生应该综合考虑教材知识点的重要性,在备考中进行有针对性的复习和练习。
此外,小升初数学考试中也涉及到一些基本的解题技巧,例如三角形的细分、抽象思维、逻辑推理等,学生需要在平时的学习中培养这些能力。
最后,值得一提的是,在备考过程中还需要注重因材施教,根据孩子的实际情况进行有针对性的指导和辅导。
尽早制定学习计划,合理安排时间,多做真题和模拟题,逐步提高对题目的理解和解题能力。
同时,提醒孩子保持良好的心态,保持信心,不要过分紧张,考试时保持好的状态,发挥出自己的最佳水平。
小升初奥数专题_第六讲图形面积
第六讲图形面积简单的面积计算是小学数学的一项重要内容.要会计算面积,首先要能识别一些特别的图形:正方形、三角形、平行四边形、梯形等等,然后会计算这些图形的面积.如果我们把这些图形画在方格纸上,不但容易识别,而且容易计算.上面左图是边长为4的正方形,它的面积是4×4=16(格);右图是3×5的长方形,它的面积是3×5=15(格).上面左图是一个锐角三角形,它的底是5,高是4,面积是5×4÷2=10(格);右图是一个钝角三角形,底是4,高也是4,它的面积是4×4÷2=8(格).这里特别说明,这两个三角形的高线一样长,钝角三角形的高线有可能在三角形的外面.上面左图是一个平行四边形,底是5,高是3,它的面积是5×3=15(格);右图是一个梯形,上底是4,下底是7,高是4,它的面积是(4+7)×4÷2=22(格).上面面积计算的单位用“格”,一格就是一个小正方形.如果小正方形边长是1厘米,1格就是1平方厘米;如果小正方形边长是1米,1格就是1平方米.也就是说我们设定一个方格的边长是1个长度单位,1格就是一个面积单位.在这一讲中,我们直接用数表示长度或面积,省略了相应的长度单位和面积单位.6.1 三角形的面积用直线组成的图形,都可以划分成若干个三角形来计算面积.三角形面积的计算公式是:三角形面积= 底×高÷2.这个公式是许多面积计算的基础.因此我们不仅要掌握这一公式,而且要会灵活运用.例1 右图中BD长是4,DC长是2,那么三角形ABD的面积是三角形ADC面积的多少倍呢?解:三角形ABD与三角形ADC的高相同.三角形ABD面积=4×高÷2.三角形ADC面积=2×高÷2.因此三角形ABD的面积是三角形ADC面积的2倍.注意:三角形的任意一边都可以看作是底,这条边上的高就是三角形的高,所以每个三角形都可看成有三个底,和相应的三条高.例2 右图中,BD,DE,EC的长分别是2,4,2.F是线段AE的中点,三角形ABC的高为4.求三角形DFE的面积.解:BC=2+4+2=8.三角形ABC面积= 8×4÷2=16.我们把A和D连成线段,组成三角形ADE,它与三角形ABC的高相同,而DE长是4,也是BC的一半,因此三角形ADE面积是三角形ABC面积的一半.同样道理,EF是AE的一半,三角形DFE面积是三角形ADE面积的一半.三角形DFE面积= 16÷4=4.例3 右图中长方形的长是20,宽是12,求它的内部阴影部分面积.解:ABEF也是一个长方形,它内部的三个三角形阴影部分高都与BE一样长.而三个三角形底边的长加起来,就是FE的长.因此这三个三角形的面积之和是FE×BE÷2,它恰好是长方形ABEF面积的一半.同样道理,FECD也是长方形,它内部三个三角形(阴影部分)面积之和是它的面积的一半.因此所有阴影的面积是长方形ABCD面积的一半,也就是20×12÷2=120.通过方格纸,我们还可以从另一个途径来求解.当我们画出中间两个三角形的高线,把每个三角形分成两个直角三角形后,图中每个直角三角形都是某个长方形的一半,而长方形ABCD是由这若干个长方形拼成.因此所有这些直角三角形(阴影部分)的面积之和是长方形ABCD面积的的一半.例4 右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD (阴影部分)的面积是多少?解:把A和C连成线段,四边形ABCD就分成了两个,三角形ABC和三角形ADC.对三角形ABC来说,AB是底边,高是10,因此面积=4×10÷2=20.对三角形ADC来说,DC是底边,高是8,因此面积=7×8÷2=28.四边形ABCD面积= 20+28=48.这一例题再一次告诉我们,钝角三角形的高线有可能是在三角形的外面.例5 在边长为6的正方形内有一个三角形BEF,线段AE=3,DF=2,求三角形BEF 的面积.解:要直接求出三角形BEF的面积是困难的,但容易求出下面列的三个直角三角形的面积三角形ABE面积=3×6×2=9.三角形BCF面积= 6×(6-2)÷2=12.三角形DEF面积=2×(6-3)÷2=3.我们只要用正方形面积减去这三个直角三角形的面积就能算出:三角形BEF面积=6×6-9-12-3=12.例6 在右图中,ABCD是长方形,三条线段的长度如图所示,M是线段DE的中点,求四边形ABMD(阴影部分)的面积.解:四边形ABMD中,已知的太少,直接求它面积是不可能的,我们设法求出三角形DCE与三角形MBE的面积,然后用长方形ABCD的面积减去它们,由此就可以求得四边形ABMD的面积.把M与C用线段连起来,将三角形DCE分成两个三角形.三角形DCE的面积是7×2÷2=7.因为M是线段DE的中点,三角形DMC与三角形MCE面积相等,所以三角形MCE 面积是7÷2=3.5.因为BE=8是CE=2的4倍,三角形MBE与三角形MCE高一样,因此三角形MBE面积是3.5×4=14.长方形ABCD面积=7×(8+2)=70.四边形ABMD面积=70-7- 14=49.6.2 有关正方形的问题先从等腰直角三角形讲起.一个直角三角形,它的两条直角边一样长,这样的直角三角形,就叫做等腰直角三角形.它有一个直角(90度),还有两个角都是45度,通常在一副三角尺中.有一个就是等腰直角三角形.两个一样的等腰直角三角形,可以拼成一个正方形,如图(a).四个一样的等腰直角三角形,也可以拼成一个正方形,如图(b).一个等腰直角三角形,当知道它的直角边长,从图(a)知,它的面积是直角边长的平方÷2.当知道它的斜边长,从图(b)知,它的面积是斜边的平方÷4例7 右图由六个等腰直角三角形组成.第一个三角形两条直角边长是8.后一个三角形的直角边长,恰好是前一个斜边长的一半,求这个图形的面积.解:从前面的图形上可以知道,前一个等腰直角三角形的两个拼成的正方形,等于后一个等腰直角三角形四个拼成的正方形.因此后一个三角形面积是前一个三角形面积的一半,第一个等腰直角三角形的面积是8×8÷2=32.这一个图形的面积是32+16+8+4 +2+1=63.例8 如右图,两个长方形叠放在一起,小长形的宽是2,A点是大长方形一边的中点,并且三角形ABC是等腰直角三角形,那么图中阴影部分的总面积是多少?解:为了说明的方便,在图上标上英文字母D,E,F,G.三角形ABC的面积=2×2÷2=2.三角形ABC,ADE,EFG都是等腰直角三角形.三角形ABC的斜边,与三角形ADE的直角边一样长,因此三角形ADE面积=ABC面积×2=4.三角形EFG的斜边与三角形ABC的直角边一样长.因此三角形EFG面积=ABC面积÷2=1.阴影部分的总面积是4+1=5.例9 如右图,已知一个四边形ABCD的两条边的长度AD=7,BC=3,三个角的度数:角B和D是直角,角A是45°.求这个四边形的面积.解:这个图形可以看作是一个等腰直角三角形ADE,切掉一个等腰直角三角形BCE.因为A是45°,角D是90°,角E是180°-45°-90°=45°,所以ADE是等腰直角三角形,BCE也是等腰直角三角形.四边形ABCD的面积,是这两个等腰直角三角形面积之差,即7×7÷2-3×3÷2=20.这是1994小学数学奥林匹克决赛试题.原来试题图上并没有画出虚线三角形.参赛同学是不大容易想到把图形补全成为等腰直角三角形.因此做对这道题的人数不多.但是有一些同学,用直线AC把图形分成两个直角三角形,并认为这两个直角三角形是一样的,这就大错特错了.这样做,角A是45°,这一条件还用得上吗?图形上线段相等,两个三角形相等,是不能靠眼睛来测定的,必须从几何学上找出根据,小学同学尚未学过几何,千万不要随便对图形下结论.我们应该从题目中已有的条件作为思考的线索.有45°和直角,你应首先考虑等腰直角三角形.现在我们转向正方形的问题.例10 在右图11×15的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)面积是多少?解:长方形的宽,是“一”与“二”两个正方形的边长之和,长方形的长,是“一”、“三”与“二”三个正方形的边长之和.长-宽=15-11=4是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=11-4×2=3.中间小正方形面积=3×3=9.如果把这一图形,画在方格纸上,就一目了然了.例11 从一块正方形土地中,划出一块宽为1米的长方形土地(见图),剩下的长方形土地面积是15.75平方米.求划出的长方形土地的面积.解:剩下的长方形土地,我们已知道长-宽=1(米).还知道它的面积是15.75平方米,那么能否从这一面积求出长与宽之和呢?如果能求出,那么与上面“差”的算式就形成和差问题了.我们把长和宽拼在一起,如右图.从这个图形还不能算出长与宽之和,但是再拼上同样的两个正方形,如下图就拼成一个大正方形,这个正方形的边长,恰好是长方形的长与宽之和.可是这个大正方形的中间还有一个空洞.它也是一个正方形,仔细观察一下,就会发现,它的边长,恰好是长方形的长与宽之差,等于1米.现在,我们就可以算出大正方形面积:15.75×4+1×1=64(平方米).64是8×8,大正方形边长是8米,也就是说长方形的长+宽=8(米).因此长=(8+1)÷2=4.5(米).宽=8-4.5=3.5(米).那么划出的长方形面积是4.5×1=4. 5(平方米).例12 如右图.正方形ABCD与正方形EFGC并放在一起.已知小正方形EFGC的边长是6,求三角形AEG(阴影部分)的面积.解:四边形AECD是一个梯形.它的下底是AD,上底是EC,高是CD,因此四边形AECD面积=(小正方形边长+大正方形边长)×大正方形边长÷2三角形ADG是直角三角形,它的一条直角边长DG=(小正方形边长+大正方形边长),因此三角形ADG面积=(小正方形边长+大正方形边长)×大正方形边长÷2.四边形AECD与三角形ADG面积一样大.四边形AHCD是它们两者共有,因此,三角形AEH与三角形HCG面积相等,都加上三角形EHG面积后,就有阴影部分面积=三角形ECG面积=小正方形面积的一半= 6×6÷2=18.十分有趣的是,影阴部分面积,只与小正方形边长有关,而与大正方形边长却没有关系.6.3 其他的面积这一节将着重介绍求面积的常用思路和技巧.有些例题看起来不难,但可以给你启发的内容不少,请读者仔细体会.例13 画在方格纸上的一个用粗线围成的图形(如右图),求它的面积.解:直接计算粗线围成的面积是困难的,我们通过扣除周围正方形和直角三角形来计算.周围小正方形有3个,面积为1的三角形有5个,面积为1.5的三角形有1个,因此围成面积是4×4-3-5-1.5=6.5.例6与本题在解题思路上是完全类同的.例14 下图中ABCD是6×8的长方形,AF长是4,求阴影部分三角形AEF的面积.解:三角形AEF中,我们知道一边AF,但是不知道它的高多长,直接求它的面积是困难的.如果把它扩大到三角形AEB,底边AB,就是长方形的长,高是长方形的宽,即BC的长,面积就可以求出.三角形AEB的面积是长方形面积的一半,而扩大的三角形AFB是直角三角形,它的两条直角边的长是知道的,很容易算出它的面积.因此三角形AEF面积=(三角形AEB面积)-(三角形AFB面积)=8×6÷2-4×8÷2=8.这一例题告诉我们,有时我们把难求的图形扩大成易求的图形,当然扩大的部分也要容易求出,从而间接地解决了问题.前面例9的解法,也是这种思路.例15 下左图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)有多大?解:我们首先要弄清楚,平行四边形面积有多大.平行四边形的面积是底×高.从图上可以看出,底是2,高恰好是长方形的宽度.因此这个平行四边形的面积与10×2的长方形面积相等.可以设想,把这个平行四边形换成10×2的长方形,再把横竖两条都移至边上(如前页右图),草地部分面积(阴影部分)还是与原来一样大小,因此草地面积=(16-2)×(10-2)=112.例16 右图是两个相同的直角三角形叠在一起,求阴影部分的面积.解:实际上,阴影部分是一个梯形,可是它的上底、下底和高都不知道,不能直接来求它的面积.阴影部分与三角形BCE合在一起,就是原直角三角形.你是否看出,ABCD也是梯形,它和三角形BCE合在一起,也是原直角三角形.因此,梯形ABCD的面积与阴影部分面积一样大.梯形ABCD的上底BC,是直角边AD的长减去3,高就是DC的长.因此阴影部分面积等于梯形ABCD面积=(8+8-3)×5÷2=32.5.上面两个例子都启发我们,如何把不容易算的面积,换成容易算的面积,数学上这叫等积变形.要想有这种“换”的本领,首先要提高对图形的观察能力.例17 下图是两个直角三角形叠放在一起形成的图形.已知AF,FE,EC都等于3,CB,BD都等于4.求这个图形的面积.解:两个直角三角形的面积是很容易求出的.三角形ABC面积=(3+3+3)×4÷2=18.三角形CDE面积=(4+4)×3÷2=12.这两个直角三角形有一个重叠部分--四边形BCEG,只要减去这个重叠部分,所求图形的面积立即可以得出.因为AF=FE=EC=3,所以AGF,FGE,EGC是三个面积相等的三角形.因为CB=BD=4,所以CGB,BGD是两个面积相等的三角形.2×三角形DEC面积= 2×2×(三角形GBC面积)+2×(三角形GCE面积).三角形ABC面积= (三角形GBC面积)+3×(三角形GCE面积).四边形BCEG面积=(三角形GBC面积)+(三角形GCE面积)=(2×12+18)÷5=8.4.所求图形面积=12+18- 8.4=21.6.例18 如下页左图,ABCG是4×7长方形,DEFG是2×10长方形.求三角形BCM与三角形DEM面积之差.解:三角形BCM与非阴影部分合起来是梯形ABEF.三角形DEM与非阴影部分合起来是两个长方形的和.(三角形BCM面积)-(三角形DEM面积)=(梯形ABEF面积)-(两个长方形面积之和=(7+10)×(4+2)÷2-(4×7 +2×10)=3.例19 上右图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少?解:所求的影阴部分,恰好是三角形ABC与三角形CDE的公共部分,而面积为13,49,35这三块是长方形中没有被三角形ABC与三角形CDE盖住的部分,因此(三角形ABC面积)+(三角形CDE面积)+(13+49+35)=(长方形面积)+(阴影部分面积).三角形ABC,底是长方形的长,高是长方形的宽;三角形CDE,底是长方形的宽,高是长方形的长.因此,三角形ABC面积,与三角形CDE面积,都是长方形面积的一半,就有阴影部分面积=13 + 49+ 35= 97.6.4 几种常见模型一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△DC BA图⑴ 图⑵三、蝶形定理任意四边形中的比例关系(“蝶形定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++ 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.EDCBAEDCBAGF E ABCD AB CDEF G S 4S 3S 2S 1O DCB A A BCDO ba S 3S 2S 1S 4所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾模型和风筝模型)在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=. 上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.OFE DCBA。
小升初数学重要知识点汇总
小升初数学重要知识点汇总一、体积和表面积1、三角形的面积=底×高÷2公式:S=a×h÷22、正方形的面积=边长×边长公式:S=a23、长方形的面积=长×宽公式:S=a×b4、平行四边形的面积=底×高公式:S=a×h5、梯形的面积=(上底+下底)×高÷2公式:S=(a+b)h÷26、内角和:三角形的内角和=180度。
7、长方体的表面积=(长×宽+长×高+宽×高)×2 公式:S=(a×b+a×c+b×c)×28、正方体的表面积=棱长×棱长×6公式:S=6a29、长方体的体积=长×宽×高公式:V = abh10、长方体(或正方体)的体积=底面积×高公式:V = abh11、正方体的体积=棱长×棱长×棱长公式:V = a312、圆的周长=直径×π公式:L=πd=2πr13、圆的面积=半径×半径×π公式:S=πr214、圆柱的侧面积:圆柱的侧面积=底面的周长×高公式:S=ch=πdh=2πrh15、圆柱的表面积:圆柱的表面积=底面的周长×高+圆的面积×2公式:S=ch+2s=ch+2πr216、圆柱的体积:圆柱的体积=底面积×高公式:V=Sh17、圆锥的体积=1/3底面积×高公式:V=1/3Sh二、单位换算1、长度单位:1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米2、面积单位:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1亩=666.666平方米3、体积单位:1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1升=1立方分米=1000毫升1毫升=1立方厘米4、重量单位:1吨=1000千克1千克=1000克=1公斤=1市斤5、算术:(1)加法交换律:两数相加交换加数的位置,和不变。
小升初六年级数学必会的10种图形求面积解题法
三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。
面积及周长都有相应的公式直接计算,如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1:如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2:如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。
一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米.解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
常用的基本方法有一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积二、相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
专题17:《平面几何的面积(一)》小升初数学专题讲练 (思维导图+知识点精讲+例题分析+变式训练
2019-2020学年通用版数学小升初总复习专题汇编讲练专题17 平面几何的面积(一)1、三角形⑴特征:由三条线段围成的图形;内角和是180度;三角形具有稳定性;从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,一个三角形有三条高。
⑵计算公式:s=ah/2⑶分类①按角分A、锐角三角形:三个角都是锐角。
B、直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
C、钝角三角形:有一个角是钝角。
②按边分A、不等边三角形:三条边长度不相等。
B、等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
C、等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
2、四边形⑴特征:①四边形是由四条线段围成的图形。
②任意四边形的内角和是360度。
③只有一组对边平行的四边形叫梯形。
④两组对边分别平行的四边形叫平行四边形,它简洁变形。
长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。
⑵分类①长方形A、特征:对边相等,4个角都是直角的四边形。
有两条对称轴。
B、计算公式:c=2(a+b) s=ab②正方形A、特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
B、计算公式:c=4a s=a²③平行四边形A、特征:两组对边分别平行的四边形;相对的边平行且相等;对角相等;相邻的两个角的度数之和为180度;平行四边形简洁变形。
B、计算公式:s=ah④梯形A、特征:只有一组对边平行的四边形;中位线等于上下底和的一半;等腰梯形有一条对称轴。
B、计算公式:s=(a+b)h/2=mh3、圆⑴圆的生疏圆是平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r表示。
在同一个圆里,有很多条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有很多条直径,全部的直径都相等。
小升初数学正方形阴影面积
小升初数学正方形阴影面积
正方形是小学数学中的基础形状之一,孩子在小学阶段就会学习到与正方形相关的一些概念和计算方法。
其中,正方形的阴影面积问题是一种常见的数学题型。
在解决正方形阴影面积问题时,孩子需要掌握正方形的定义和性质。
正方形是指四条边相等且四个角都是直角的四边形。
根据正方形的对称性质,正方形的阴影面积可以通过计算正方形的面积来求解。
设正方形的边长为a,那么正方形的面积S=a*a=a^2。
如果正方形的边长增加了b,那么新的正方形的面积
S'=(a+b)*(a+b)=(a^2+2ab+b^2)。
根据计算公式,我们可以得出正方形阴影面积的计算公式为:阴影面积=S'-S=(a^2+2ab+b^2)-
a^2=2ab+b^2。
例如,如果一个正方形的边长是8cm,而阴影部分的边长是
3cm,那么阴影面积=2*8*3+3^2=48+9=57cm^2。
在解决正方形阴影面积问题时,孩子需要注意计算过程的准确性和逻辑性。
同时,孩子还可以通过绘制图形来帮助自己理解问题,提高解题效率。
此外,还可以引导孩子思考不同情况下正方形阴影面积的变化规律,培养孩子的逻辑思维和分析问题的能力。
通过解决正方形阴影面积问题,孩子可以巩固正方形的概念和性质,提升数学计算能力,培养解决问题的能力和思维方式。
这对孩子在小升初数学考试中取得好成绩,以及今后学习数学的基础打
下良好的基础。
小升初数学 圆与正方形 三角形的面积关系专题总结 教材通用版
小升初数学圆与正方形、三角形的面积关系专题总结教材通用版一、常用的公式1、正方形/三角形的面积(结合图形看圆的直径是正方形的边长还是对角线)①S正=边长2②S正=对角线2÷2 ③S三角形=底×高÷22、r2与d2的关系r2=d2÷4 d2=r2×43、圆的面积公式S圆=πr2二、经典例题1、已知正方形的面积为20cm2,求里面的圆的面积。
分析:圆的直径d是正方形的边长①S正=边长2=d2=20(cm2)②r2=d2÷4=5(cm2)③S圆=πr2=3.14×5=15.7(cm2)2、已知正方形的面积为20cm2,求外面的圆的面积。
分析:圆的直径d是正方形的对角线①S正=对角线2÷2=d2÷2=20(cm2)②r2=d2÷4=20÷2=10(cm2)③S圆=πr2=3.14×10=31.4(cm2)3、已知圆的面积为31.4cm2,求里面的正方形的面积。
分析:圆的直径d是正方形的边长①S圆=πr2=31.4(cm2),r2=S圆÷π=31.4÷3.14=10(cm2)② d2=r2×4=10×4=40(cm2)③S正=d2=40(cm2)4、已知圆的面积为31.4cm2,求外面的正方形的面积。
分析:圆的直径d是正方形的对角线①S圆=πr2=31.4(cm2),r2=S圆÷π=31.4÷3.14=10(cm2)② d2=r2×4=10×4=40(cm2)③S正=d2÷2=20(cm2)5、已知圆的面积为31.4cm2,求圆内以直径为底的最大三角形的面积。
分析:三角形的底是圆的直径,三角形的高是圆的半径;三角形的面积是圆内接正方形的一半。
①S圆=πr2=31.4(cm2),r2=S圆÷π=31.4÷3.14=10(cm2)② S三角形=d×r÷2=(d÷2)×r=r2=10(cm2)备注:圆的面积是其内部以直径为底的最大三角形的面积的π倍。
小升初面积计算知识点总结
小升初面积计算知识点总结一、基本概念1、面积是用来衡量平面图形的大小的一个物理量,它是一个二维的概念,可以理解为一个图形所占据的平面的大小。
2、面积的单位常用的有平方米、平方分米、平方厘米等,不同的单位可以根据具体的需要进行转换。
二、常见图形的面积计算1、矩形的面积计算:矩形的面积等于矩形的长乘以宽,即S=长*宽。
2、三角形的面积计算:三角形的面积等于底边乘以高并除以2,即S=(底边*高)/2。
3、长方形的面积计算:长方形的面积也等于长乘以宽,即S=长*宽。
4、正方形的面积计算:正方形的面积等于边长的平方,即S=边长*边长。
5、平行四边形的面积计算:平行四边形的面积等于底边乘以高,即S=底边*高。
三、复杂图形的面积计算1、梯形的面积计算:梯形的面积等于上底加下底再乘以高并除以2,即S=(上底+下底)*高/2。
2、圆的面积计算:圆的面积等于圆的半径的平方再乘以π,即S=πr²。
3、扇形的面积计算:扇形的面积等于扇形的面积减去扇形的内切正三角形的面积,即S=(πr²*θ)/360°-1/2*r²*sinθ。
四、图形的面积计算公式1、矩形:S=长*宽2、三角形:S=(底边*高)/23、长方形:S=长*宽4、正方形:S=边长*边长5、平行四边形:S=底边*高6、梯形:S=(上底+下底)*高/27、圆:S=πr²8、扇形:S=(πr²*θ)/360°-1/2*r²*sinθ五、面积计算的注意事项1、在计算面积时,要保证所使用的单位必须是统一的。
2、在计算面积时,要注意所给的数据是否齐全和准确,不可因为给定的数据不完整而导致计算错误。
3、在计算复杂图形的面积时,可能需要分解成为简单的图形进行计算,然后再将结果加总起来得到最终的面积。
4、在计算圆的面积时,可以直接使用圆的半径的平方再乘以π来计算,或者使用直径的平方再乘以π的方式来计算,这点需要根据具体的题目来确定。
小升初奥数几何问题之格点与面积知识点
【导语】马克思曾经说过:“⼀门学科只有成功的应⽤了数学,才能真正达到了完善的地步。
”这句话充分显⽰了数学知识的⼴泛应⽤及学习数学的必要性和重要性。
因此,数学作为认识世界的基础性学科,它可以在思想上⽀持不同学科的深⼊发展。
以下是整理的相关资料,希望对您有所帮助。
【篇⼀】 知识点: (⼀)正⽅形格点图⾯积 在⼀张纸上,先画出⼀些⽔平直线和⼀些竖直直线,并使任意两条相邻的平⾏线的距离都相等(通常规定为1个单位),这样在纸上就形成了⼀个⽅格,其中的每个交点就叫做⼀个格点。
多边形的所有顶点都在格点上,在⽅格中,像图(a)这样的多边形,以格点为顶点画出的多边形叫做格点多边形。
多边形的顶点⾄少有⼀个顶点格点上,⽐如A点,像图(b)这样的多边形虽然除A点之外所有顶点都是格点,但我们还不能把它称为格点多边形。
(⼆)三⾓形格点图的⾯积 三⾓形格点多边形是指:每相邻三点成“∴”或“∵”,形成的三⾓形都是等边三⾓形,规定它的⾯积为1,以这样的点为顶点画出的多边形为三⾓形格点多边形。
【篇⼆】 常见解题⽅法: 求格点图⾯积常见的⼏种⽅法:数格⼦法、分割法、扩展法、毕克定理。
(⼀)数格⼦法 对于格点图⾥⾯的规则图形,我们有时可以直接通过数图形所占的正⽅形⽅格或者三⾓形⽅格的个数得出规则图形的⾯积,或者由图形得出规则图形相应的⾯积公式需要的量,代⼊公式解出⾯积即可! 【详解】本题所给的图形都是规则图形,它们的⾯积运⽤公式直接可求,只要判断出相应的有关数据就⾏了。
第(1)图是正⽅形,边长是4,所以⾯积是4×4=16(⾯积单位); 第(2)图是矩形,长是5,宽是3,所以⾯积是5×3=15(⾯积单位); 第(3)图是三⾓形,底是5,⾼是4,所以⾯积是5×4÷2=10(⾯积单位); 第(4)图是平⾏四边形,底是5,⾼是3,所以⾯积是5×3=15(⾯积单位); 第(5)图是直⾓梯形,上底是3,下底是5,⾼是3,所以⾯积是(3+5)×3÷2=12(⾯积单位); 第(6)图是梯形,上底是3,下底是6,⾼是4,所以⾯积是(3+6)×4÷2=18(⾯积单位)。
北师大版小升初数学知识点集锦 北师大版
北师大版小升初数学知识点集锦北师大版小升初考试知识点集锦数学图形计算公式平面图形的周长和面积,立体图形的表面积和体积可以用以下公式计算:正方体的表面积为棱长×棱长×6,体积为棱长×棱长×棱长。
长方体的表面积为(长×宽+长×高+宽×高)×2,体积为长×宽×高。
圆柱体的表面积为侧面积+底面积×2,体积为底面积×高。
圆锥体的表面积为底面积加侧面积,体积为底面积×高÷3.正方形的周长为边长×4,面积为边长×边长。
长方形的周长为(长+宽)×2,面积为长×宽。
三角形的面积为底×高÷2.平行四边形的面积为底×高。
梯形的面积为(上底+下底)×高÷2.圆的周长为2πr,面积为πr²。
常用单位换算常见的长度单位有千米(km)、米(m)、分米(dm)、厘米(cm)、毫米(mm)等。
它们之间的换算关系是:1千米=1000米,1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米。
常见的面积单位有平方千米、公顷、平方米、平方分米、平方厘米等。
它们之间的换算关系是:1平方千米=100公顷,1公顷=平方米,1平方米=100平方分米,1平方分米=100平方厘米。
常见的体积(容积)单位有立方米、立方分米、立方厘米、立方毫米、升、毫升等。
它们之间的换算关系是:1立方米=1000立方分米,1立方分米=1000立方厘米,1立方分米=1升,1立方厘米=1毫升。
常见的重量单位有吨、千克、克等。
它们之间的换算关系是:1吨=1000千克,1千克=1000克,1千克=1公斤。
常见的货币单位有元、角、分。
它们之间的换算关系是:1元=10角,1角=10分,1元=100分。
常见的时间单位有世纪、年、月、日、时、分、秒、季度、旬、星期等。
小升初数学复习专题:求阴影部分面积(含答案解析)
解题公式、方法1、几何图形计算公式:1)正方形:周长=边长×4C=4a面积 = 边长×边长S=a×a2)正方体:表面积 = 棱长×棱长×6S 表 = a×a×6体积 = 棱长×棱长×棱长V=a×a×a3) 长方形:周长 =(长 + 宽)×2C=2(a+b)面积 = 长×宽S=ab4)长方体:表面积 =(长× 宽 + 长× 高 + 宽× 高)×2 S=2(ab+ah+bh)体积 = 长×宽×高V=abh5)三角形:面积 = 底×高÷2s=ah÷26)平行四边形:面积 = 底×高s=ah7) 梯形:面积 =(上底 + 下底)×高÷2s=(a+b)×h÷28)圆形:周长 = 直径×Π=2×Π×半径C=Πd=2Πr面积 = 半径× 半径×Π9)圆柱体:侧面积 = 底面周长× 高表面积 = 侧面积 + 底面积×2体积 = 底面积× 高10)圆锥体:体积 = 底面积× 高÷32、面积求解大致分为以下几类:Ø从整体图形中减去局部;割补法:将不规则图形通过割补,转化成规则图形。
重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
练习题参考答案例 21. 解:把中间部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为 2 厘米,所以面积为:2×2=4 平方厘米例 22 解法一: 将左边上面一块移至右边上面, 补上空白, 则左边为一三角形, 右边一个半圆.阴影部分为一个三角形和一个半圆面积之和. π()÷2+4×4=8 π+16=41.12 平方厘米解法二: 补上两个空白为一个完整的圆.所以阴影部分面积为一个圆减去一个叶形, 叶形面积为:π()÷2-4×4=8π-16。
苏教版小升初复习数学知识点归纳
苏教版小升初复习数学知识点归纳在小升初复数学知识点时,需要对苏教版六年级下册数学期末知识点进行归纳。
首先,我们需要了解数的认识。
整数包括正整数、负整数和零。
自然数是最小的整数,没有最大的自然数。
整数的读写和写法都需要注意,其中大数目的改写可以使用“万”或“亿”作单位。
在求一个数的近似值时,通常采用四舍五入法。
整数的大小比较需要注意位数和最高位上的数。
其次,小数可以表示分母是10、100、1000……的分数,其中一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
2、整数和小数都是用十进制计数法表示,其中个、十、百等是计数单位,相邻两个单位之间的进率都是10.3、小数点向右移动一位、两位、三位等,原数就会扩大10倍、100倍、1000倍等;小数点向左移动一位、两位、三位等,原数就会缩小10倍、100倍、1000倍等。
4、数位是按照一定的顺序排列,指每个计数单位所占的位置。
5、读小数时,整数部分按照整数的读法来读,小数点读作“点”,小数部分从左往右读出每个数位上的数字。
6、写小数时,整数部分按照整数的写法去写,小数点写在整数部分的右下角,小数部分顺次写出每一个数位上的数字。
7、小数末尾添上“0”或去掉“0”,小数的大小不变。
8、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
9、比较小数大小的方法是先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
10、求小数近似数的方法是先确定保留几位小数,然后根据需要确定看哪一位上的数,最后用“四舍五入”的方法求得结果。
分数【真分数、假分数】1、分数是把单位“1”平均分成若干份表示的数,其中一份或几份的数叫做分数单位,表示其中一份的数是这个分数的分子。
3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000等的分数。
4、分数可以分为真分数和假分数。
小升初数学正方形阴影面积
小升初数学正方形阴影面积小升初数学题目中经常涉及到正方形的计算题,其中包括正方形的面积计算和阴影面积计算。
正方形是一个具有四条边长相等、四个角为直角的特殊四边形。
首先,我们来看正方形的面积计算。
正方形的面积计算公式为:面积= 边长×边长。
也就是说,只需要知道正方形的边长,就可以求得其面积。
例如,如果一个正方形的边长为5cm,那么它的面积就是5cm × 5cm = 25平方厘米。
接下来,我们来看正方形的阴影面积计算。
阴影面积通常表示正方形内部被一些阴影区域占据的部分。
在解决这类问题时,需要使用减法。
首先计算整个正方形的面积,然后减去阴影部分的面积,即可得到阴影面积。
例如,假设一个正方形的边长为10cm,其中有一条直线通过该正方形的对角线,将其分成了两个三角形。
如果阴影部分只占据了其中一个三角形的面积的1/4,那么阴影面积可以计算如下:首先,整个正方形的面积为10cm × 10cm = 100平方厘米。
然后,一个三角形的面积为 (10cm × 10cm) / 2 = 50平方厘米。
最后,阴影面积为 50平方厘米× 1/4 = 12.5平方厘米。
除了面积计算外,小升初数学题目还会考察正方形的周长和对角线等内容。
正方形的周长计算公式为:周长 = 4 ×边长。
对角线的长度可以使用勾股定理来计算,即对角线的长度平方等于两条边长的平方和。
也就是说,对角线长度 = √(边长的平方 + 边长的平方) = √2 ×边长。
在解决问题时,我们可以根据已知条件来推导出所需的数据,然后使用相应的公式进行计算。
通过多做练习题,可以提高对正方形相关知识的理解和掌握,从而在小升初数学考试中取得好成绩。
小升初数学必考知识点归纳
小升初数学必考知识点归纳小升初数学必考知识点一.整数和小数1.最小的一位数是1,最小的自然数是02.小数的意义:把整数1平均分成10份、100份、1000份这样的一份或几份分别是十分之几、百分之几、千分之几可以用小数来表示。
3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位4.小数的分类:小数有限小数无限循环小数无限小数无限不循环小数5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位原来的数分别扩大10倍、100倍、1000倍小数点向左移动一位、二位、三位原来的数分别缩小10倍、100倍、1000倍二.数的整除1.整除:整数a除以整数b(b0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。
2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有的倍数。
一个数约数的个数是有限的,最小的约数是1,的约数是它本身。
4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。
质数都有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
合数至少有3个约数。
最小的质数是2,最小的合数是41~20以内的质数有:2、3、5、7、11、13、17、191~20以内的合数有4、6、8、9、10、12、14、15、16、186.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。
小学六年级数学小升初珍藏版复习资料第17讲 长方体和正方体的认识、周长、面积与体积(原卷)
基础版(通用)2022-2023学年小升初数学精讲精练专题汇编讲义第17讲长方体和正方体的认识、周长、面积与体积知识点一:长方体和正方体的认识1.表面积:一个立体图形所有面的面积总和叫作它的表面积。
2.长方体和正方体的表面积。
(1)长方体的表面积= 2×(长×宽+长×高+宽×高) ,用字母表示为:S=2(ab+ah+bh)(2)正方体的表面积= 6×棱长×棱长,用字母表示为:S= 6a2。
知识点三:长方体和正方体的体积1.体积:一个立体图形所占空间的大小叫作它的体积。
2.长方体的体积(容积)= 长×宽×高,用字母表示为:V= abh3.正方体的体积(容积)= 棱长×棱长×棱长,用字母表示为:V= a3提高达标百分练一.选择题(共5小题,满分10分,每小题2分)1.(2分)(2022•红谷滩区)把一个正方体铁块熔铸成一个长方体铁块,正确的是()A.体积变小,表面积不变B.体积不变,表面积变了C.体积变大,表面积变大D.无法确定2.(2分)(2022•双台子区)一盒酸奶,外包装是长方体,包装上标注“净含量650mL “实际量得外包装长8cm,宽5cm,高15cm。
根据这些数据,你认为标注的净含量是()A.真实的B.虚假的,过大C.虚假的,过小D.无法确定真假3.(2分)(2022•湛江)一个长4分米,宽3分米,高5分米的长方体鱼缸,倒入水后量得水深3.5分米,倒入的水是()升。
A.42 B.52.5 C.604.(2分)(2022•龙岗区)2020年3月12日,中国首班抗疫援外专家组包机飞越9619公里驰援意大利,机上载着9名医疗专家和180立方米医疗物资。
这批物资空运到达罗马后,要通过大货车运到医院,假设大货车的车厢里面长4米,宽2米,高3米,请问至少需要()辆这样的大货车才能一次性全部装完。
A.7 B.8 C.9 D.105.(2分)(2022•崇川区)一个封闭的玻璃缸,长8分米,宽5分米,高4分米,里面水深2分米。
【小升初】数学总复习:第十二讲 面积计算
【小升初】数学总复习:第十二讲面积计算【知识、方法梳理】计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
【典例精讲】例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。
由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。
因为BD=2/3BC,所以S△BDF=2S△DCF。
又因为AE=ED,所以S△ABF=S△BDF =2S△DCF。
因此,S△ABC=5 S△DCF。
由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习1:1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
2.如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。
求阴影部分的面积。
3.如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。
求三角形ABC的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S△BOC是S△DOC的2倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S△ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。
【人教版】小升初数学总复习知识点归纳总结
【人教版】小升初数学总复习知识点归纳总结常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
小升初数学组合图形的面积+数学趣题+分数计算技巧+奥数题训练及答案解析
小升初数学组合图形的面积+数学趣题+分数计算技巧+奥数题训练及答案解析组合图形的面积一、 知识要点:1. 我们学过的常见多边形的周长和面积求法:2.计算不规则图形的面积,常用到哪些方法?二、知识运用典型例题。
例题1:如图,两条对角线把梯形ABCD 分割成四个三角形,(1) 请写出图中面积相等的三角形?(2) 已知两个三角形的面积,求另两个三角形的面积各是多少? (3) 求梯形ABCD 的面积?B C例2:长方形ABCD 的面积是24平方厘米,三角形EBC 的面积是30平方厘米,两块阴影部分的面积相差多少?例3:如下图,长方形ABCD 的面积是20平方厘米,三角形ADF 的面积为5平方厘米,三角形ABE 的面积为7平方厘米,求三角形AEF 的面积。
例4:如下图,已知四条线段长分别是AB=2,CE=6,CD=5,AF=4,并有两个直角,求四边形ABCD 的面积。
D BCA D三、知识运用课堂练习。
1、三角形EBC的面积是40平方厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形ABCD的面积?2、如下图,长方形的长和宽分别是12和9,把三角形的三条边分别平均分成三段,得到A,B,C,D,E,F六个点,连接AF、BC、DE,得到一个六边形。
这个六边形的面积是多少?3、在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD 的面积大18厘米2。
求ED的长。
4、下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积。
课后练习 等级1、下图中的甲和乙都是正方形,求阴影部分的面积。
2、下图中,矩形ABCD 的边AB 为4厘米,BC 为6厘米,三角形ABF 比三角形E DF 的面积大9厘米2,求ED 的长。
3、(动手操作题)右图是一个4×4的方格纸,请在保持每个小方格完整的情况下,将它分割成大小、形状完全相同的两部分。
(至少要有4种不同的方法)甲乙生活中的数学趣题一、知识要点。
小学小升初数学复习长方形和正方形的面积(含答案)(8)
长方形和正方形的面积一、单选题。
1.一个长方形的周长是48m,长是16m,它的面积是()。
A.48B.128C.512D.1302.小华家的住房面积是130()。
A.平方米B.平方厘米C.平方分米3.正方形的边长扩大2倍,面积就扩大()倍。
A.2B.4C.8D.14.测量文具盒表面的面积,用()面积单位比较合适.A.平方厘米B.平方分米C.平方米5.()的面积接近1平方厘米。
A.手指甲面B.手机面C.房间地砖面D.电视屏幕面二、判断题。
1.你手中的这张试卷面积大约是10cm2。
()2.长为8分米,宽为6厘米的长方形的面积为48cm2。
()3.一间长方形卧室的长是5米,宽是3米,用边长5分米的地砖铺满,需要60块。
()4.不同的面积单位之间不可以比较大小。
()5.一个边长为4分米的正方形,它的面积和周长相等。
()三、填空题。
1.在里填上“>”“<”或“=”。
5平方米_______460平方分米400平方厘米________4平方分米720平方分米_______8平方米40000平方厘米______5平方米4平方米_______46平方分米9平方米________907平方分米2.在括号里填上适当的单位名称。
小明的身高是146________跑道一圈长400________一块毛巾的面积是12________一枚邮票的面积是4________小明的腰围是6________王芳家客厅的面积是24________3.正方形的边长是________分米,面积是4平方分米,周长是________分米。
4.一个长方形长5厘米,宽3厘米,它的周长是________厘米,面积是________平方厘米。
5.用一根120厘米长的铁丝恰好围成一个正方形,这个正方形的边长是________厘米,面积是________平方厘米。
6.一块正方形草坪,将它的边长增加2米,正方形草坪的面积就比原来增加40平方米,原来草坪的面积是________平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学知识点:正方形面积知识点小升初数学是小升初综合素质评价考试的重头戏,在试卷中所占分值比重最大。
为了帮助学生们顺利备考,下面为大家整理了正方形面积知识点,供大家参考学习!
【正方形面积知识点】
1.正方形面积:边长×边长
2.正方形面积:两条对角线长度的积÷2
三角形、四边形的关系
1.两个完全一样的三角形能组成一个平行四边形。
2.两个完全一样的直角三角形能组成一个长方形。
3.两个完全一样的等腰直角三角形能组成一个正方形。
4.两个完全一样的梯形能组成一个平行四边形。
【课后练习题】
【一】基础训练
1、用4个相同的正方形拼成一个长方形,只有一种拼法。
( )
2、边长4米的正方形,它的周长和面积相等。
( )
3、用长12米的铁丝围成的长方形,要比围成的正方形面积小。
( )
4、用9个1平方厘米的小正方形拼成的任意图形,它们的面积都是9平方厘米。
( )
【二】能力提升
1、下面( )图的周长和其他图形的周长不相等。
2、( )的面积最接近1平方分米。
〝师〞之概念,大体是从先秦时期的〝师长、师傅、先生〞而来。
其中〝师傅〞更早那么意指春秋时国君的老师。
«说文解字»中有注曰:〝师教人以道者之称也〞。
〝师〞之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
〝老师〞的原意并非由〝老〞而形容〝师〞。
〝老〞在旧语义中也是一种尊称,隐喻年长且学识渊博者。
〝老〞〝师〞连用最初见于«史记»,有〝荀卿最为老师〞之说法。
慢慢〝老师〞之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的〝老
师〞当然不是今日意义上的〝教师〞,其只是〝老〞和〝师〞的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以〝道〞,但其不一定是知识的传播者。
今天看来,〝教师〞的必要条件不光是拥有知识,更重于传播知识。
①指甲②粉笔盒底面③课本封面④方凳面我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:〝中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪
事!〞寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的〝三要素〞是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道〝是这样〞,就是讲不出〝为什么〞。
根本原因还是无〝米〞下〝锅〞。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到〝死记硬背〞的重要性,让学生积累足够的〝米〞。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
3、一个长方形的长是8分米,宽是5厘米,它的面积是( )。
①40平方分米②40厘米③400平方分米④400平方厘米。