常用DNA分子标记类型和特点
分子标记技术的类型及其原理
分子标记技术的类型及其原理08农生1班陈耀光 200830010403所谓分子标记就是基于基因组DNA 存在极其丰富的多态性而发展的一类可以直接反映生物个体间DNA 水平上差异的新型的遗传标记方法。
在遗传学发展过程中,先后出现了形态学标记、细胞学标记、生化标记和分子标记,其中以分子标记最为理想、可靠,因为DNA分子中碱基的缺失、插入、易位、倒位或是长短与排列不一的重复序列等产生的差异,都可以通过分子标记进行检测。
DNA 分子标记较以往的形态标记其优越性表现在:(1)以核酸为研究对象,不受季节、环境限制,不存在基因表达与否的问题,也没有组织或器官特异性;(2)数量的丰富性,遍及整个基因组,标记的数量几乎是无限的;(3)多态性高,自然存在丰富的等位变异;(4)许多标记表现为共显性,能很好地鉴别纯合基因型与杂合基因型;(5)检测手段简便、快速,并且重复性好;(6)既不对目标形状的表达造成影响,也不会与不良性状之间产生必然的关联。
1 分子标记的类型及其原理分子标记技术自诞生以来,短短的几十年时间中得到突飞猛进的发展,至今被发展和利用的分子标记技术已有二十余种,为不同研究领域提供了有效的技术手段,同时也发挥着至关重要的作用。
目前,根据对DNA 多态性检测手段和所应用序列范围的不同,对部分分子标记技术分类如下。
1.1 基于全基因序列的分子标记RFLP (restriction fragment length polymorphism,限制性片段长度多态性):RFLP 作为最早发展的分子标记技术由Grozdicker 等于1974 年创建,并由Bostein 等再次提出。
RFLP 技术的出现开创了直接在DNA 水平上进行遗传研究的新时代。
其基本原理是:基因组DNA中限制性内切酶所识别的序列由于出现碱基变化而致使酶切位点的数量也变化,从而使酶切片段长短发生差异产生长度多态性。
利用特定的限制性内切酶切割不同个体的基因组DNA,由于不同个体中酶切位点的差别就得到了长短相异的片段DNA,电泳分离后,借助Southern 杂交将DNA 片段转移至硝酸纤维素膜上,将具有放射性标记的探针与膜上的片段杂交,通过放射自显影技术就可以获得显示物种特异性的多态性图谱。
dna分子标记技术概述
DNA分子标记技术概述1. 引言DNA分子标记技术是现代生物学和医学领域中非常重要的一项技术。
它可以通过特定的标记方法,在DNA分子上进行特异性地标记,从而实现对DNA序列的检测、定位和分析。
本文将对DNA分子标记技术进行全面、详细、完整和深入地探讨。
2. DNA分子标记技术的原理2.1 标记物选择在进行DNA分子标记之前,需要选择合适的标记物。
常用的DNA分子标记物包括荧光染料、辣根过氧化物酶标记物、生物素标记物等。
这些标记物具有不同的优势和适用范围,可以根据具体实验需求来选择合适的标记物。
2.2 标记方法DNA分子标记方法有多种,常用的包括直接标记法和间接标记法。
直接标记法是将标记物直接连接到DNA分子上,常用于荧光标记。
间接标记法是通过先引入标记物、再进行特定的反应来实现标记,常用于酶标记和生物素标记等。
2.3 标记效率和准确性DNA分子标记技术的效率和准确性是衡量其优劣的重要指标。
高效率和准确性可以保证实验结果的可靠性和准确性。
因此,在选择标记物和标记方法时,需要考虑到其标记效率和准确性,以及对实验结果的影响。
3. DNA分子标记技术的应用领域3.1 DNA测序和基因组学研究DNA分子标记技术在DNA测序和基因组学研究中有广泛的应用。
通过标记技术,可以对DNA序列进行检测和定位,从而实现对基因组的研究和分析。
3.2 分子诊断和疾病检测DNA分子标记技术在分子诊断和疾病检测中起到关键作用。
通过标记技术,可以检测和分析与疾病相关的基因或基因突变,从而实现早期诊断和治疗。
3.3 人类遗传学研究DNA分子标记技术对人类遗传学研究具有重要意义。
通过标记技术,可以进行人类遗传多样性和遗传变异的研究,为疾病发生机制和个体差异提供重要的参考和依据。
3.4 动植物遗传改良DNA分子标记技术在动植物遗传改良中有广泛应用。
通过标记技术,可以进行动植物基因分型和基因定位,为遗传改良工作提供重要的科学依据和技术支持。
分子标记介绍
分⼦标记介绍分⼦标记是指可遗传的并可检测的DNA序列或蛋⽩质。
即DNA⽚段即能反映⽣物个体或种群间基因组中某种差异特征的DNA ⽚段;能受基因控制并且能够稳定遗传的,能代表个体或群体的遗传特征,并可被⽤作遗传分析的物质。
它能够直接反映基因组间DNA间的差异。
常⽤的分⼦标记有RFLP、RAPD、AFLP、SSR、ISSR、EST等。
RAPD、AFLP属于以PCR为基础的分⼦标记;RFLP属于以Southern为基础的分⼦标记;SSR、ISSR属于以重复序列为基础的分⼦标记;EST以mRNA为基础的分⼦标记。
1 主要的分⼦标记介绍1.1 限制性⽚段长度多态性(RFLP)RFLP是应⽤Southern杂交技术检测DNA在限制性内切酶酶切后形成的特定DNA⽚段的⼤⼩。
所以对于引起酶切位点变异的突变如点突变或部分DNA⽚段的缺失、插⼊、倒位⽽引起酶切位点缺失或获得等均可应⽤。
此⽅法的基本步骤包括:DNA的提取、⽤限制性内切酶酶切DNA、凝胶电泳分开DNA⽚段、把DNA⽚段转移到滤膜上、利⽤放射性标记的探针显⽰特定的DNA⽚段、分析结果。
探针⼀般选择单拷贝的。
其优点为共显性标记,稳定且可重复但耗时,昂贵且需应⽤同位素。
⽤该技术可作出植物的RFLP图谱,并应⽤于植物遗传和育种研究。
杨长红等采⽤PCR-RFLP技术,对库尔勒⾹梨等19个主要梨品种的cpDNA遗传多态性进⾏研究,其利⽤10对通⽤引物对总DNA进⾏扩增,并且采⽤7种限制性内切酶对PCR产物进⾏酶切,通过软件分析得出:7对引物(cp01、cp02、cp03、cp04、cp06、cp09、cp10)能在梨属植物上扩增出1条特异性谱带,cp09/MvaI,cp03/Hin6I的酶切位点有显著差异。
根据结果分析,库尔勒⾹梨与鸭梨、砀⼭梨、苹果梨、早酥、慈梨、⾦川雪梨、锦丰、新疆句句梨的平均距离系数较⼩,与其他梨的平均距离系数较⼤。
1.2 随机扩增多态性DNA(RAPD)RAPD是以8-10个碱基的随机寡聚核苷酸序列为引物,利⽤PCR技术⾮特异性扩增DNA⽚段,然后⽤凝胶电泳分开扩增⽚段,即得到⼀系列多态性DNA⽚段.染⾊后即可进⾏多态性分析。
常用DNA分子标记类型和特点
常用DNA分子标记类型和特点DNA分子标记是一种广泛应用于生物学研究和诊断领域的技术,用于识别、检测和定量目标DNA序列。
常见的DNA分子标记类型包括荧光染料、酶和放射性同位素等。
每种标记类型都具有其独特的特点和应用场景。
荧光染料是DNA分子标记中最常用的类型之一、它们通过在DNA分子上附着荧光染料,使其在荧光显微镜下可见。
荧光染料具有多种颜色和化学性质,可用于多重标记和多个目标的同时检测。
其主要特点包括:1.高灵敏度:每个荧光染料分子都有较强的荧光信号,因此可以在微量样品中进行检测。
2.高选择性:荧光染料可以针对目标DNA序列进行选择性标记,从而实现目标分子的准确检测。
3.高兼容性:荧光染料可以与不同的DNA分析方法兼容,如凝胶电泳、荧光定量PCR等。
酶也是常用的DNA分子标记类型之一、通过将酶与DNA标记物结合,可以通过酶的催化反应产生可定量的信号。
常用的酶标记包括辣根过氧化物酶(HRP)和碱性磷酸酶(AP)。
其主要特点包括:1.高灵敏度:酶催化反应可以在大量酶底物的参与下放大信号,从而提高检测的灵敏度。
2.稳定性:酶标记的DNA可以在各种条件下稳定存在,并且可以长期保存。
3.可视性:酶催化反应可以产生可见的颜色或发光信号,从而直观地观察到标记物。
放射性同位素是DNA分子标记的传统方式之一、通过将放射性同位素与DNA标记物结合,可以通过放射性测量来定量目标DNA序列。
1.高灵敏度:放射性测量可以实现非常低浓度目标DNA的检测。
2.高特异性:放射性同位素标记DNA具有非常高的特异性,可以准确检测目标序列。
3.长期保存:放射性同位素标记的DNA可以长期保存,方便未来的回溯和再分析。
虽然放射性同位素标记具有较高的灵敏度和特异性,但其使用需要特殊的设备和技术,并且存在较高的辐射风险,因此在现代实验室中较少使用。
总结而言,DNA分子标记在生物学研究和诊断中起着至关重要的作用。
不同类型的DNA标记具有各自的特点和应用场景,研究人员可以根据实验需求选择合适的标记方式,以便实现高灵敏度、高特异性和可视化的目标DNA检测。
DNA分子标记及其优缺点
DNA分子标记种类及相应的优缺点摘要: 对RFLP、RAPD、AFLP、SSR、ISSR 等常用的DNA 分子标记技术以及其他几种新兴的标记技术( SNP、EST 等) 的原理、特点进行了综述,并对各自的优缺点进行了探讨。
关键词:DNA分子标记优缺点分子标记是继形态标记、细胞标记和生化标记之后发展起来的一种较为理想的遗传标记形式,它以蛋白质、核酸分子的突变为基础,检测生物遗传结构与其变异。
分子标记技术从本质上讲,都是以检测生物个体在基因或基因型上所产生的变异来反映生物个体之间的差异。
每一种分子标记都有其自身的特点和特定的应用范围,但就一般意义而言,DNA 分子标记与形态标记和生化标记等相比,具有许多独特的优点: ①不受组织类别、发育阶段等影响。
植株的任何组织在任何发育时期均可用于分析。
②不受环境影响。
因为环境只影响基因表达(转录与翻译) ,而不改变基因结构即DNA 的核苷酸序列。
③标记数量多,遍及整个基因组。
④多态性高,自然存在许多等位变异。
⑤有许多标记表现为共显性,能够鉴别纯合基因型和杂合基因型, 提供完整的遗传信息。
⑥DNA 分子标记技术简单、快速、易于自动化。
⑦提取的DNA 样品,在适宜条件下可长期保存,这对于进行追溯性或仲裁性鉴定非常有利。
因此,DNA 分子标记可以弥补和克服在形态学鉴定及同工酶、蛋白电泳鉴定中的许多缺陷和难题,因而在品种鉴定方面展示了广阔的应用前景。
1. 1 第1 代分子标记1.1. 1 RFLP 标记技术。
1980 年Botesin提出的限制性片段长度多态性(Restriction fragment length polymorphisms ,RFLP) 可以作为遗传标记,开创了直接应用DNA 多态性的新阶段,是最早应用的分子标记技术 。
RFLP 是检测DNA 在限制性内切酶酶切后形成的特定DNA 片段的大小,反映DNA 分子上不同酶切位点的分布情况,因此DNA 序列上的微小变化,甚至1 个核苷酸的变化,也能引起限制性内切酶切点的丢失或产生, 导致酶切片段长度的变化。
dna分子标记技术概述
dna分子标记技术概述DNA分子标记技术是一种基于DNA序列的分析方法,可以用来研究生物体的遗传变异和基因表达。
它是现代分子生物学和遗传学研究的重要工具之一,被广泛应用于农业、医学、生态学等领域。
DNA分子标记技术的基本原理是利用DNA序列的差异性,通过特定的方法将其转化为可检测的标记,然后利用这些标记来分析不同生物体之间的遗传关系和基因表达差异。
常用的DNA分子标记技术包括PCR-RFLP、RAPD、AFLP、SSR、SNP等。
PCR-RFLP是一种利用PCR扩增DNA片段后,通过酶切鉴定其长度差异的方法。
RAPD是一种利用随机引物扩增DNA片段后,通过其长度和数量的差异来分析不同生物体之间的遗传关系的方法。
AFLP是一种利用限制性内切酶和连接酶对DNA片段进行特异性扩增的方法。
SSR是一种利用特定的引物扩增含有重复序列的DNA片段的方法。
SNP是一种利用单核苷酸多态性来分析不同生物体之间的遗传关系和基因表达差异的方法。
DNA分子标记技术具有高度的灵敏性、准确性和可重复性,可以用来研究不同生物体之间的遗传关系、基因表达差异、基因型鉴定等问题。
它在农业领域的应用主要包括品种鉴定、遗传多样性分析、杂交种育种等方面。
在医学领域,DNA分子标记技术可以用来研究遗传疾病的发生机制、基因诊断、药物反应等问题。
在生态学领域,DNA分子标记技术可以用来研究物种多样性、种群遗传结构、生态系统功能等问题。
总之,DNA分子标记技术是一种重要的分子生物学和遗传学研究工具,具有广泛的应用前景。
随着技术的不断发展和完善,它将在更多领域发挥重要作用,为人类的生产和生活带来更多的福利。
DNA分子标记技术在药用植物研究方面的应用
DNA分子标记技术在药用植物研究方面的应用
一、绪论
药用植物的研究对于促进人类健康有着重要的作用。
在现代药学的发展中,DNA分子标记技术已经成为一种重要的技术,它可以帮助我们更好地利用药用植物,也可以更好地了解药用植物的分子基础。
本文将从以下几方面探讨DNA分子标记技术在药用植物研究方面的应用:
1、DNA分子标记技术的基本原理
2、DNA分子标记技术的种类
3、DNA分子标记技术在药用植物研究中的应用
4、DNA分子标记技术的发展前景
二、DNA分子标记技术的基本原理
DNA分子标记技术是一种利用DNA来识别和定位细胞或分子的技术。
它可以通过检测特定的DNA序列,从而让研究者更好地了解一个基因的结构、功能以及其与其他基因周围交互的方式。
DNA分子标记技术可以根据特定的DNA片段的存在或缺失来鉴定它们在特定的细胞内是否存在,从而给出有关它们起作用的生物过程的其中一种细胞活性的信号。
三、种类
1、RFLP(限制性片段长度多态)是最常使用的DNA分子标记技术之
一、它的原理是对特定DNA片段进行限制性酶切,并使用电泳技术对酶切产物进行纯化,从而产生具有特定长度的DNA条带。
借助于这种特定的DNA条带长度,研究者可以定位特定的DNA片段,进而进行基因定位。
2、RAPD(随机扩增多态位点)也是一种常用的DNA分子标记技术。
分子标记技术的种类
分子标记技术的种类根据不同的核心技术基础,DNA 分子标记技术大致可分为三类分子标记技术大致可分为三类: : : 第一类以第一类以Southern 杂交为核心杂交为核心, , , 其代表性技术为其代表性技术为RFLP ;第二类以PCR 技术为核心,如RAPD 、SSR 、AFLP 、STS 、SRAP 、TRAP 等;第三类以DNA 序列序列((mRNA 或单核苷酸多态性单核苷酸多态性))为核心,其代表性技术为EST 标记、SNP 标记等。
理想的分子标记应达到以下的要求:标记应达到以下的要求:①具有高的多态性;①具有高的多态性;①具有高的多态性;②共显性遗传;②共显性遗传;②共显性遗传;③能够明确辨别等③能够明确辨别等位基因;位基因;④分布于整个基因组中;④分布于整个基因组中;④分布于整个基因组中;⑤选择中性⑤选择中性⑤选择中性((即无基因多效性即无基因多效性));⑥检测手段简单、快速;⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。
目前,没有任何一种分子标记均满足以上的要求,它们均具有各自的优点和不足。
其特点比较见表一。
其特点比较见表一。
1限制性内切酶片段长度态多态性性标记(Restriction Fragment Length Polymorphism ,RFLP )19741974年,年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA 突变体时,发现了经限制性内切酶酶解后得到的DNA 片段产生了差异,由此首创了第一代DNA 分子标记技术——限制性内切酶片段长度多态性标记(RFLP )。
其原理是由于不同个体基因型中内切酶位点序列不同同个体基因型中内切酶位点序列不同((可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA 时,会产生长度不同的DNA 酶切片段,通过凝胶电泳将通过凝胶电泳将 DNA 片段按各自的长度分开,通过Southern 印迹法,将这些大小不同的DNA 片段转移到硝酸纤维膜或尼龙膜上,再用经同位素或地高辛标记的探针与膜上的酶切片段分子杂交,的探针与膜上的酶切片段分子杂交,最后通过放射性自显影显示杂交带,最后通过放射性自显影显示杂交带,最后通过放射性自显影显示杂交带,即检出即检出限制性片段长度多态性。
几种常用的分子标记.
RAPD标记的特点: 1.RAPD标记引物扩增产物所扩增的DNA区段是事
先未知的,具有随机性和任意性,因此随机引物PCR标 记技术可用于对任何未知基因组的研究。
2.RAPD标记的不足之处是,一般表现为显性遗传, 不能区分显性纯合和杂合的基因型,因而提供的信息 量不完整。
0.2kb 0.5kb
0.2kb 0.5kb
0.3kb
0.3kb ×
品系1 品系2
0.5kb 0.3kb 0.2kb
S451对DH962×冀棉5号F2群体扩增图
RAPD可用于对整个基因组DNA进行多态性检测,也可 用于构建基因组指纹图谱。
1.品种鉴定、系谱分析:用于识别种群、家族、 种内或 种间的遗传变异,为生物血缘关系或分类提供依据,还可以 分析混合基因组样品等。
谢谢观看
Thank you for watching
头 (c)寡核苷酸接头与限制片段连接 (d)用选择性引物进行PCR扩 增
种子生产与经营专业教学资源库
四、简单序列重复(SSR)标记
又称微卫星,是一类由几个(一般2-6个)核苷酸为 重复单位组成的长达几十个核苷酸的串联重复序列。如 (CA)n、(AT)n、(GGC)n等。
微卫星DNA的简单序列的重复次数在同一物种的不同 品种或不同个体中存在较大的差异,即微卫星座位上存在 丰富的等位基因。如在水稻中,RFLP座位的等位基因数 为2-4个,而SSR的等位基因数为2-25个。
种子生产与经营专业教学资源库
三、扩增片段长度多态性(AFLP)标记
AFLP标记,是结合RFLP和PCR的优点发明的一种 DNA指纹技术。通过对基因组DNA酶切片段的选择性扩 增来检测DNA酶切片段长度的多态性 。
9植物DNA分子标记
RFLP标记缺点
(1)DNA需要量大。 (2)所需仪器较多 (3)技术较为复杂 (4)多数RFLP表现为二态性,提供的信息量较
低 (5)与内切酶选用密切相关
RAPD标记
• 1990年,美国杜邦公司科学家Williams推出。
• RAPD方法是在PCR技术基础上发展起来的, 它利用一系列单个随机引物(通常为10个核 苷酸),对所研究的基因组DNA进行PCR扩 增,引物与基因组DNA某一区段互补时,就 与其结合,就可对引物下游DNA进行合成, 即扩增。
进行Southern印迹转移操作,用特定的探针与 滤膜上的DNA杂交,经过放射自显影就能检测 到高等植物核DNA的RFLP。
0.4kb 0.1kb0.2kb
0.5kb
(1)
品系1 品系2
–
0.4kb
0.3kb
(2)
×
0.5kb
0.5kb
0.4kb
0.3kb 0.2kb 0.1kb
+
RFLP标记方法与步骤
EcoRI MseI
CORE 5 ´ -GACTGCGTACC
ENZ AATTC
EXT NNN-3 ´
5 ´ -GATGAGTCCTGAG TAA NNN-3´
AFLP的优缺点
• 优点:
(1)少量引物可获得较多标记,50~150条带
(2)多为显性标记或共显性标记,受环境影响 无复等位效应
小,
(3)带型清晰,具高分别率
基于分子杂交技术的分子标记技术
此类标记技术是利用限制性内切酶解及凝胶电 泳分离不同的生物 DNA 分子,然后用经标记 的特异 DNA 探针与之进行杂交,通过放射自 显影或非同位素显色技术来揭示 DNA 的多态 性。
分子标记特点和应用
分子标记技术方法和他们特点1、限制性片段长度多态性标记分析(Re striction Fragment Length Polymorphism,RFLP)—RFLPRFLP技术的是检测DNA 在限制性内切酶酶切后形成的特定DNA 片段的大小。
因此凡是可以引起酶切位点变异的突变如点突变(新产生和去除酶切位点) 和一段DNA 的重新组织(如插入和缺失造成酶切位点间的长度发生变化) 等均可的产生RFLP技术特点:RFLP技术优点:①结果稳定,重复性好,特别是PCR-RFLP(CAPS)由于是特定引物扩增,退火温度高,因而假阳性低,可靠性更高。
②是一种共显性标记,可区分纯合体与杂合体,数据多态信息量大,不受显隐性关系、环境条件、发展阶段及组织部位影响。
③RFLP标记广泛存在于生物体内,不受组织、环境和发育阶段的影响,具有个体、种、属及各种各层次水平的特异性。
④核基因组的RFLP标记表现为孟德尔的共显性遗传,而细胞质基因组的RFLP一般表现为母性遗传。
RFLP技术缺点:①分析所需DNA量较大,分析速度慢。
②步骤较多,周期长,技术复杂,费用高。
③检测多态性水平过分依赖限制性内切酶,使多态性降低,对DNA质量要求高。
④检测中需放射性物质,限制了广泛应用。
⑤对于线粒体DNA而言,因为其进化速度快,影响种以上水平的RFLP分析的准确性。
但是种以上水平影响很小。
2.随机扩增多态性DNA技术(Random Amplified Polymorphism DNA)—RAPD以单一的随机引物(一般为10个碱基)利用PCR技术随机扩增未知序列的基因组DNA获得的DNA片段长度变异。
它是利用随机引物通过PCR反应非定点扩增DNA片段,然后用凝胶电泳分析扩增产物DNA片段的多态性。
RAPD技术特点:RAPD优点:①无种属特异性,一套RAPD引物可以应用于任意一种生物的研究,具有广泛和通用的特点。
②适合于自动化分析。
操作技术简单,不涉及分子杂交和放射性自显影等技术,省工省力和工作进度快。
推荐-DNA分子标记的种类有哪些,各有何特点? 精品
DNA分子标记的种类有哪些,各有何特点?分子标记大多以电泳谱带的形式表现,大致可分为三大类。
第一类是以分子杂交为核心的分子标记技术,包括:(1)限制性片段长度多态性标记(Restriction fragment length polymorphism, 简称RFLP标记);(2)DN A指纹技术(DNA Fingerprinting);(3)原位杂交(in situ hybridization)等;第二类是以PCR反应为核心的分子标记技术,包括:(1)随机扩增多态性DNA标记(Random amplification polymorphism DNA, 简称R APD标记);(2)简单序列重复标记(Simple sequence repeat, 简称SSR标记)或简单序列长度多态性(Sim ple sequence length polymorphism, 简称SSLP标记);(3)扩展片段长度多态性标记(Amplified fragment le ngth polymorphism, 简称AFLP标记);(4)序标位(Sequence tagged sites, 简称STS标记);(5)序列特征化扩增区域(Sequence charactered amplified region, 简称SCAR标记)等;第三类是一些新型的分子标记,如:(1)单核苷酸多态性(Single nuleotide polymorphism, 简称SNP标记);(2)表达序列标签(Expressed sequences tags, 简称EST标记)等。
比较RFLP、RAPD、AFLP、SSR的差异和优缺点。
RFLP,(Restriction fragment length polymorphism, 限制性片段长度多态性):特定生物类型的基因组DNA经某一种限制性内切酶完全酶解后,会产生分子量不同的同源等位片段,或称限制性等位片段。
分子标记技术的类型及其原理
分子标记技术的类型及其原理08农生1班陈耀光 200830010403所谓分子标记就是基于基因组DNA 存在极其丰富的多态性而发展的一类可以直接反映生物个体间DNA 水平上差异的新型的遗传标记方法。
在遗传学发展过程中,先后出现了形态学标记、细胞学标记、生化标记和分子标记,其中以分子标记最为理想、可靠,因为DNA分子中碱基的缺失、插入、易位、倒位或是长短与排列不一的重复序列等产生的差异,都可以通过分子标记进行检测。
DNA 分子标记较以往的形态标记其优越性表现在:(1)以核酸为研究对象,不受季节、环境限制,不存在基因表达与否的问题,也没有组织或器官特异性;(2)数量的丰富性,遍及整个基因组,标记的数量几乎是无限的;(3)多态性高,自然存在丰富的等位变异;(4)许多标记表现为共显性,能很好地鉴别纯合基因型与杂合基因型;(5)检测手段简便、快速,并且重复性好;(6)既不对目标形状的表达造成影响,也不会与不良性状之间产生必然的关联。
1 分子标记的类型及其原理分子标记技术自诞生以来,短短的几十年时间中得到突飞猛进的发展,至今被发展和利用的分子标记技术已有二十余种,为不同研究领域提供了有效的技术手段,同时也发挥着至关重要的作用。
目前,根据对DNA 多态性检测手段和所应用序列范围的不同,对部分分子标记技术分类如下。
1.1 基于全基因序列的分子标记RFLP (restriction fragment length polymorphism,限制性片段长度多态性):RFLP 作为最早发展的分子标记技术由Grozdicker 等于1974 年创建,并由Bostein 等再次提出。
RFLP 技术的出现开创了直接在DNA 水平上进行遗传研究的新时代。
其基本原理是:基因组DNA中限制性内切酶所识别的序列由于出现碱基变化而致使酶切位点的数量也变化,从而使酶切片段长短发生差异产生长度多态性。
利用特定的限制性内切酶切割不同个体的基因组DNA,由于不同个体中酶切位点的差别就得到了长短相异的片段DNA,电泳分离后,借助Southern 杂交将DNA 片段转移至硝酸纤维素膜上,将具有放射性标记的探针与膜上的片段杂交,通过放射自显影技术就可以获得显示物种特异性的多态性图谱。
分子标记辅助选择
第十七章分子标记辅助选择育种分子标记:以DNA多态性为基础的遗传标记分子标记的特点:1、遗传多态性高;2、在基因组中大量存在且均匀分布;3、稳定性、重现性好;4、信息量大,分析效率高第一节 分子标记的类型及原理一、分子标记的类型1、以DNA-DNA杂交为基础的DNA标记技术:限制性片段长度多态性标记,简称RFLP标记;可变数目串联重复序列标记,简称VNTR标记;原位杂交,简称ISH2、基于PCR的DNA标记:1)单引物PCR标记;2)双引物选择性扩增的PCR标记;3)通过克隆、测序来构建特殊双引物的PCR标记。
3、基于PCR与限制性内切酶技术相结合的DNA标记。
分为两类:限制性酶切片段的选择性扩增,如AFLP;PCR扩增片段的限制性酶切,如CAPs4、基于单核苷多态性的DNA标记:单核苷酸多态性,简称SNP二、主要分子标记1、RFLP(Restriction Fragment Length po1ymorpams)限制性片段长度多态性1980,Bostein用限制性内切酶酶切不同个体的基因组DNA后,含有与探针序列同源的酶切片段在长度上的差异。
(1)RFLP标记的原理基因组DNA序列上的变化:碱基替换、插入、缺失或重复造成某种限制性内切酶(restriction enzymes )酶切位点的增加或丧失以及内切酶酶切位点间DNA片段变化(1)RFLP标记的分析步骤(2)RFLP分析探针单拷贝或寡拷贝探针来源:cDNA克隆;基因组克隆(Random Genome);PCR克隆(3)RFLP标记的特点优点:①数目几乎无限;②共显性;③可以利用现有探针,具有种族特异性;④RFLP标记遍及全基因组;⑥重复性好缺点:成本较高;一个探针只能产生一个多态位点;需要许多克隆探针;所需DNA量大(5~15μg);易造成环境污染2、RAPD(Random Amplification Polymorphism DNA)随机扩增多态性DNA1990,Williams通过PCR扩增染色体组DNA所获得的长度不同的多态性DNA片段。
DNA分子标记的种类
13
可编辑ppt
1.1.3任意引物PCR (Arbitrarily Primed Polymerase Chain Reaction, AP— PCR)
在AP—PCR分析中,所使用的引物较长(10 -50 bp) , PCR反应分为两个阶段,首先寡核 苷酸引物在低严谨条件下与模板DNA退火,此时 发生了一些合成,以便稳定模板与引物之间相互 作用。然后进行高严谨退火条件的循环,两个位 点间那些序列在低严谨度退火条件下发生的引物 延伸可继续在高严谨条件下扩增。采用变性聚丙 烯酰胺凝胶电泳分析PCR产物,最终反应结果与 RAPD类似。只要设计的引物在低严谨退火条件 下能减少引物产生人为产物,应用成对组合的引 14 物可以产生新的AP—PC R谱带, 可编辑ppt
5
可编辑ppt
流程图
酶切→→电泳
→→标记探 针杂交→→
分析
6
可编辑ppt
一般选择单拷贝探针
如果RFLP探针是来自拷贝数可变串联重复(Varible
number of tandem repeats,缩VNTR).则产生另一类
因相同或相近序列的拷贝数变化所起的多态性。凡是
引起复单位的大小和序列不同、基因组中重复的数目
但是,目前发现的任何一种分子标记均不能满
3
足以上所有要求
可编辑ppt
DNA分子标记分类
一、第一代分子标记技术
以southern杂交为核心的分子标记技术:RELP标记等
二、第二代分子标记技术
基于PCR的DNA分子标记:RAPD标记、ISSR标记、SSR标 记、STS标记等
基于PCR与限制性酶切技术结合的DNA标记:AFLP标记、 CAPS标记等
11
可编辑ppt
dna分子标记的种类
在结论部分,将总结 报告的主要观点和结 论,并展望DNA分子 标记未来的发展趋势 和应用前景。
02
DNA分子标记的定义和重要性
DNA分子标记的定义
01
DNA分子标记是指基因组DNA中 的碱基变异,包括单核苷酸多态性 (SNP)、插入或缺失、重复序列 等。
02
DNA分子标记可以通过基因组测序、 限制性片段长度多态性(RFLP)、 扩增片段长度多态性(AFLP)等 技术进行检测。
04
DNA分子标记的应用
遗传图谱构建
遗传图谱构建
利用DNA分子标记技术,可以构 建物种的遗传图谱,揭示基因与 表型之间的关联,为遗传研究和 育种提供基础数据。
基因定位和克隆
通过遗传图谱,可以定位和克隆 控制特定性状的基因,为基因功 能研究和基因组编辑提供依据。
物种鉴定和系统发生学研究
物种鉴定
DNA分子标记技术可以用于物种鉴 定,通过比较不同物种的基因组序列 差异,确定物种的亲缘关系和进化历 程。
系统发生学研究
系统发生学是研究生物进化和系统分 类的学科,DNA分子标记技术可以用 于研究物种之间的系统发生关系,构 建物种进化树。
个体识别和亲缘关系分析
个体识别
DNA分子标记技术可以用于个体识别, 通过比较个体的基因组序列差异,确 定个体之间的亲缘关系和遗传背景。
亲缘关系分析
在法医学、动物育种和人类遗传学等 领域,亲缘关系分析具有重要意义。 DNA分子标记技术可以用于鉴定个体 之间的亲缘关系,如亲子鉴定、家族 谱系分析等。
DNA分子标记的种类
• 引言 • DNA分子标记的定义和重要性 • DNA分子标记的种类 • DNA分子标记的应用 • 结论
01
引言
DNA分子标记
AFLP具有以下特点: 1) AFLP标记的检测不受环境、季节和时间以及组织 部位和发育阶段的影响。可以用它在植株的早期鉴 定和预测。 2) AFLP可以对无任何分子生物学研究基础的物种进 行研究,不需要知道基因组DNA的序列就可构建其 指纹图谱。因此,AFLP适合于研究任何生物。 3) AFLP所需DNA用量少、反应灵敏、快速高效,适 合于大规模样品的研究。一个0.5mg的DNA样品就 可以做约4,000个反应。 4) AFLP指纹图谱多态性丰富,每个样品每次扩增反 应可产生50~150条带,用最少量的引物就能获得 最多的标记。
► 分子标记技术是建立于DNA水平的标记技术,可为
农业研究中的性状选择、品种改良、资源分析、种 及种源的鉴别提供稳定、准确的分子标记。可克服 形态、生化、细胞等遗传标记作为辅助选择和鉴定 中遇到的许多难以解决的疑难。目前,DNA分子标 记技术已广泛地用于生物多样性的分析、种质资源 的分类演化、遗传图谱的构建、基因的分离测序、 作物品种及纯度的鉴定和杂交育种等许多方面,并 显示了独到的优势。分子标记虽处于起步阶段,存 在一定的局限性,但其准确、可靠、高效率等优越 性在实践中已充分表现出来,展现出巨大的应用潜 力和前景。
► 前三种标记都是基因表达的结果,是对基因
的间接反映,标记数目有限,多态性较差, 易受环境的影响,不能满足种质资源鉴定和 育种工作的进行。而DNA分子标记是直接在 DNA分子上检测生物间的差异,是DNA水平 遗传变异的直接反映,它具有不受生育期、 环境和基因表达与否的限制,数量极多,遍 及整个基因组,多态性高,遗传稳定的特点。
AFLP技术的特点: ► AFLP检测的多态性是酶切位点的变化或是酶 切片段间DNA序列的插入与缺失,本质与 RFLP一致。RFLP要采用Southern杂交方 法识别大小不同的限制性酶切片段,从而揭 示DNA的多态性。而AFLP要比RFLP简单得 多,将RAPD的随机性与专一性引物扩增巧 妙结合,而且可以通过控制引物随机核苷酸 的种类和数目来选择扩增不同的DNA片段和 数目。此外,还可以选用不同的内切酶以达 到选择的目的。
DNA分子标记的种类
1.2.1 SSR(Simple sequence Repeats, 简单重复序列)
SSR 分子标记由Lit t M ,等于1989 年创建的。简单 重复序(SSR)也称微卫星DNA,其串联重复的核心序 列为1一6 bp,其中最常见是双核苷酸重复,即(CA) n 和(TG) n每个微卫星DNA的核心序列结构相同,重复 单位数目10一60个,其高度多态性主要来源于串联数目 的不同。SSR标记的基本原理:根据微卫星序列两端互 补序列设计引物,通过PCR反应扩增微卫星片段,由于 核心序列串联重复数目不同,因而能够用PCR的方法扩 增出不同长度的PCR产物,将扩增产物进行凝胶电泳, 根据分离片段的大小决定基因型并计算等位基因频率。
STMS的发展和相近的分子标记种类
(1)把与SSR互补的寡核苷酸作为多位点RFLP技术中 的探针; (2)把与SSR互朴的寡核苷酸作为PCR引物(可单独作 引物或与随机引物配合使用),扩增的是基因组DNA 的特定片段,即MP— PCR和RAMPs: (3)用标记的SSR探针与RAPD扩增片段杂交.即 RAMPO或称为RAHM 或RAMS; (4)用5 ‘或3 ‘端加锚的SSR 作引物(如GG[CA] ),即 ISSR。
1.2.3 序列特异性扩增区 (Sequence— characterized amplified regions SCAR)
SCAR 标记是在RAPD技术的基础上发展起来的。 其基本步骤是:先作RAPD分析,然后把目标RAP D片段(如与某目的基因连锁的R 片段)进行克隆和 测序,根据原RAPD片段两末端的序列设计特定引 物(一般比RAPD 引物长,通常24个碱基),再进行 PCR特异扩增,这样就可把与原RAPD片段相对 应的单一位点鉴定出来。这样的位点就称为SCAR。 SCAR比RAPD和其它利用随机引物的方法在基因 定位和作图中的应用更好,因为它有更高的可重 复性(原因是使用的引物长),标记是共显性遗传的。 SCAR标记方便、快捷、可靠,可以快速检测大量 个体,结果稳定性好,重现性高。
常用DNA分子标记类型和特点
常用DNA分子标记类型和特点
依据对DNA多态性的检测手段,DNA标记可分为四大类:
第一类为基于DNA.DNA杂交的DNA标记。
主要有限制性片段长度多态性标记(RFLP)、可变数目串联重复序列标记(VNTR)、单链构象多态性RFLP(SSCP.RFLP)等;
第二类为基于PCR的DNA标记。
主要有随机扩增多态性DNA(RAPD),简单重复序列DNA
标记(SSR),测定序列标签位点(STS),表达序列标签(EST),测序的扩增区段(SCAR);
第三类为基于PCR与限制性酶切技术结合的DNA标记。
主要有两种,一种是扩增片段艮度多态性(AFLP),第二种是酶解扩增多态顺序(CAPS);
第四类为基于单核苷酸多态性的DNA标记.主要是单核苷酸酸多态性(SNP).
各类常用分子标记的特点和应用如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用DNA分子标记类型和特点
依据对DNA多态性的检测手段,DNA标记可分为四大类:
第一类为基于DNA.DNA杂交的DNA标记。
主要有限制性片段长度多态性标记(RFLP)、可变数目串联重复序列标记(VNTR)、单链构象多态性RFLP(SSCP.RFLP)等;
第二类为基于PCR的DNA标记。
主要有随机扩增多态性DNA(RAPD),简单重复序列DNA
标记(SSR),测定序列标签位点(STS),表达序列标签(EST),测序的扩增区段(SCAR);
第三类为基于PCR与限制性酶切技术结合的DNA标记。
主要有两种,一种是扩增片段艮度多态性(AFLP),第二种是酶解扩增多态顺序(CAPS);
第四类为基于单核苷酸多态性的DNA标记。
主要是单核苷酸酸多态性(SNP)。
各类常用分子标记的特点和应用如下:。