B-S期权定价模型
B-S期权定价公式的简单推导
![B-S期权定价公式的简单推导](https://img.taocdn.com/s3/m/ca850c68647d27284b735155.png)
(二)B-S期权定价公式
在风险中性的条件下,欧式看涨期权到期时(T
时刻)的期望值为:E [max(ST X ,0)]
其现值为
c er (T t ) E[max(ST X ,0)]
(4.18)
对数股票价格的分布为:
ln ST
~ [ln S
(r 2 )(T
1 2S2
2
2 f S 2
rf
(4.17)
这就是著名的B-S微分分程,它适用于其价格取决于标的证 券价格S的所有衍生证券的定价。
2,风险中性定价原理
假设所有投资者都是风险中性的,那么所有现金流 量都可以通过无风险利率进行贴现求得现值。
尽管风险中性假定仅仅是为了求解B-S微分方程而 作出的人为假定,但通过这种假定所获得的结论不 仅适用于投资者风险中性情况,也适用于投资者厌 恶风险的所有情况。
其中,a和b均为常数,dz遵循标准布朗运动。
(三)伊藤过程与伊藤引理
普通布朗运动假定漂移率和方差率为常数,若把变量 x的漂移率和方差率当作变量x和时间t的函数,我们可以 从公式(4.4)得到伊藤过程(Ito Process):
dx a(x,t)dt b(x,t)dz (4.5)
其中,dz是一个标准布朗运动,a、b是变量x和t的函数, 变量x的漂移率为a,方差率为b2
根据伊藤引理,衍生证券的价格f应遵循如下过程:
df
( f S
S f
t
1 2
2 f S 2
2S 2 )dt
f S
Sdz
(4.9)
(六)证券价格自然对数变化过程
令
B-S期权定价模型
![B-S期权定价模型](https://img.taocdn.com/s3/m/c7da8a360508763230121263.png)
Black—Scholes期权定价模型(重定向自Black—Scholes公式)Black—Scholes期权定价模型(Black-Scholes Option Pricing Model),布莱克-肖尔斯期权定价模型Black—Scholes 期权定价模型概述1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。
他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。
与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。
结果,两篇论文几乎同时在不同刊物上发表.所以,布莱克-斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型.默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
瑞典皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献.[编辑]B—S期权定价模型(以下简称B-S模型)及其假设条件[编辑](一)B-S模型有7个重要的假设1、股票价格行为服从对数正态分布模式;2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割;4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);5、该期权是欧式期权,即在期权到期前不可实施.6、不存在无风险套利机会;7、证券交易是持续的;8、投资者能够以无风险利率借贷.[编辑](二)荣获诺贝尔经济学奖的B—S定价公式[1]C = S*N(d1) − Le− rT N(d2)其中:C—期权初始合理价格L-期权交割价格S—所交易金融资产现价T—期权有效期r—连续复利计无风险利率Hσ2—年度化方差N()—正态分布变量的累积概率分布函数,在此应当说明两点:第一,该模型中无风险利率必须是连续复利形式。
B—S期权定价模型在投资项目评价的运用
![B—S期权定价模型在投资项目评价的运用](https://img.taocdn.com/s3/m/293e5743cf84b9d528ea7a2a.png)
否 购 置 固定 资 产 等 等 ,都 涉 及 期权 。 所 以 ,将 期 权应 用与 项 目
投 资评 价可 以使 我们 的投 资 更具 科学 性 。
简 便使 用3 0 ) 算 ,也 比较容 易确 定 。 比较 6天 计 难 估计 的是 无风 险利 率和 股票 收益 率的 方差 。
F : P×窖
的 时候 必须 支付 期权 费 用 ,作 为 不承担 义 务的代 价 。
一
2 = 1 一 盯
茸中.
C= 。 看涨期 权 的 当前 价值 S= 的股 票 的 当前价格 标
N( = d) 标准 正态 分 布 中离差小 于d 的概率 × 期权 的执 行价 格 =
e 2 71 3 8
佛 商学 院教 授 罗 伯特 ・ 顿 ( o e t r n) 发 现 了同样 默 R b r Met o 也
的公 式 及许 多其 它有 关 期权 的 有用 结论 。结 果 , 论 文几 乎 同 两篇
时 在 不 同 刊 物 上 发 表 。 所 以, 莱 克一 斯 克 尔斯 定价 模 型 亦可 布 称 为布 莱 克 一期 科 尔斯 一默 顿 定价 模 型 。 1 9 年 ,美 国经 济 学 97 家迈 伦 ・ 科 尔斯 ( yo c i s) 期 M rnS hl e 和罗 伯特 ・ 顿 ( o et 默 R br Metn)因他 们 在认 股 证和 其 他 金融 衍 生商 品 研究 方 面所 作 出 r o 的 贡献 而获 当年诺 贝 尔经济 学 奖。
( 约定 的价 格 ) 为执行 价格 。 称
二 、五个 因素 :S 、X r 0 、 a、t 明。 布莱 克 一 斯科 尔 C、 说
斯 期 权 定价 模 型 有 5 参 数 。 即 :标 的 资 产 的现 行 价 格S 、看 个 O
BS期权定价模型
![BS期权定价模型](https://img.taocdn.com/s3/m/7fb6f0a7ccbff121dd368396.png)
风险中性世界中可交易资产的随机过程
如果某种可交易资产的价格在现实世界中的随机过程为:
则在风险中性世界中其遵循:
根据伊藤引理,其远期合约的价值在风险中性世界中遵 循
理解风险中性定价
假设一种不支付红利股票目前的市价为10元, 我们知道在3个月后,该股票价格要么是11元, 要么是9元。现在我们要找出一份3个月期协议 价格为10.5元的该股票欧式看涨期权的价值。
三、风险中性定价原理
在所有投资者都是风险中性的条件下(有时我 们称之为进入了一个“风险中性世界”):
– 所有可交易资产的百分比预期收益率都等于无风 险利率r,因为风险中性的投资者并不需要额外 的收益来吸引他们承担风险。
– 同样,在风险中性条件下,所有现金流在求现值 都应该使用无风险利率进行贴现。
第四讲 BS期权定价模型
统计与管理学院
第四讲 BS期权定价模型
第一节 BS期权定价模型的基本思路 第二节 BS期权定价公式 第三节 BS期权定价公式的精确度评价与拓展
第一节 BS期权定价模型的基本思路
股票价格服从的随机过程
dS = mSdt + sSdW
由 Itô 引理可得期权价格相应服从的随机过 程
这就是著名的BS微分分程,它适用于其价格取 决于标的证券价格S的所有衍生证券的定价。
三、风险中性定价原理
观察BS微分方程可以发现,受制于主观的风险收 益偏好的标的证券预期收益率并未包括在衍生证 券的价值决定公式中。这意味着,无论风险收益 偏好状态如何,都不会对f的值产生影响。
因此我们可以作出一个可以大大简化我们工作的 假设:在对衍生证券定价时,所有投资者都是风 险中性的。
二、BS微分方程的推导
基于B-S公式与时间序列模型对期权价格的预测
![基于B-S公式与时间序列模型对期权价格的预测](https://img.taocdn.com/s3/m/62478e7b0812a21614791711cc7931b765ce7b38.png)
基于B-S公式与时间序列模型对期权价格的预测引言期权是一种金融工具,具有在未来某个时间点购买或出售某项资产的权利。
期权的价格受多种因素影响,包括标的资产价格、行权价格、期权到期时间、无风险利率和波动率等。
对期权价格的准确预测对于投资者具有重要意义,因为它能帮助投资者进行风险管理,合理进行买卖决策。
本文将基于B-S公式和时间序列模型,探讨对期权价格进行预测的方法。
一、B-S公式对期权价格的影响B-S(Black-Scholes)期权定价模型是由费舍尔·布莱克(Fisher Black)、梅伦·斯科尔斯(Myron Scholes)和罗伯特·默顿(Robert Merton)于1973年提出的,成为了衍生品市场定价的理论基础。
B-S模型使用了随机微分方程,可以通过计算得出期权合理价格。
B-S公式中的主要变量包括标的资产价格(S)、行权价格(K)、无风险利率(r)、期权到期时间(T)和标的资产波动率(σ)。
这些变量将直接影响期权价格的变动。
标的资产价格上升会使得看涨期权的价格上涨,而看跌期权价格下跌。
无风险利率的升降将直接影响期权价格的折现率,期权到期时间的延长会增加期权的时间价值,标的资产波动率的提高也会增加期权的价格波动性。
对于使用B-S公式进行期权价格预测来说,投资者首先要对期权价格的影响因素进行深入分析和预测。
只有准确把握了这些影响因素,才能对期权价格进行合理的预测。
二、基于时间序列模型的期权价格预测B-S公式的预测是基于已知的输入参数进行的,而时间序列模型则是基于历史数据对未来期权价格进行预测的方法。
时间序列模型通常会采用统计分析的方法,通过对历史期权价格数据进行建模,得出未来价格变动的规律。
时间序列模型中用得较多的包括ARIMA模型(自回归积分移动平均模型)、GARCH模型(广义自回归条件异方差模型)等。
ARIMA模型是一种建立在时间序列上的预测模型,可以用来预测未来一段时间内的值。
投资分析BlackScholes期权定价模型
![投资分析BlackScholes期权定价模型](https://img.taocdn.com/s3/m/c2b13b8477a20029bd64783e0912a21614797fd7.png)
st xt , a(st ,t) st ,b(st ,t) st dst stdt stdwt
省略下标t,变换后得到几何布朗运动方程
ds dt dw
s
证券的预期回报与其价格无关。
(13.6)
2024/6/27
11
▪ ITO定理:假设某随机变量x的变动过程可由ITO 过程表示为(省略下标t)
价格波动率σ和无风险利率r有关,它们全都是客观
变量。因此,无论投资者的风险偏好如何,都不会 对f的值产生影响。
在对衍生证券定价时,可以采用风险中性定价,即 所有证券的预期收益率都等于无风险利率r。
只要标的资产服从几何布朗运动,都可以采用B-S微
分方程求出价格f。
2024/6/27
22
13.4 几何布朗运动与对数正态分布
2024/6/27
4
wt t t
(13.1)
这里,wt wt wt1,t iidN (0,1)
2. 在两个不重叠的时段Δt和Δs, Δwt和Δws是独立的, 这个条件也是Markov过程的条件,即增量独立!
cov(wt , ws ) 0
(13.2)
其中,wt wt wt1, ws ws ws1
Ct St N (d1) Xer N (d2 )
其中,d1
ln(St
/
X
)
(r
2
/
2)
d2 d1 t [0,T ], T t
2024/6/27
27
B-S买权定价公式推导
▪ (1)设当前时刻为t,到期时刻T,若股票 价格服从几何布朗运动,若已经当前时刻t 的 值股 为票价格为St,则T时刻的股票价格的期望
2024/6/27
BS期权定价模型课件详解精讲
![BS期权定价模型课件详解精讲](https://img.taocdn.com/s3/m/e8cd153fb7360b4c2e3f645c.png)
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
B-S公式小结
证券变化量满足伊藤随机过程——基于该 证券的衍生品价格满足伊藤引理,建立 起衍生品价格的随机微分方程——构建该 证券与其衍生品的适当组合消除随机过 程,且该组合要满足瞬时无套利,得到 满足任何衍生品价格f关于其证券价格s和 时间t的偏微分方程。
N (d )
f f 1 2 2 2 f rS S rf 2 t S 2 S
(6.18)
这就是著名的布莱克——舒尔斯微分分 程,它适用于其价格取决于标的证券价 格S的所有衍生证券的定价。
方程的衍生品价格的解为f(s,t),表示满足此方程的任何解都是满足某种衍生品的不会导致套利机会 的价格;若不满足此方程的衍生品价格f(s,t)也是一种价格,但这样的价格会导致无风险套利机会。
表示这样的对冲组合取得的价值不应该 比无风险利率下的时间价值大或者小。 应该与存放银行取得的收益是一致的, 必须至少获得无风险利率。既然已经不 包含随机过程, 则结果是无风 险确定的, 2 应该不存在 瞬时无风险套利。
(6.16) 将式(6.12)和(6.14)代入式 (6.16),可得: f 1 2 f 2 2 ( S )( t 6.17) 2 t 2 S 在没有套利机会的条件下: r t
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
二、布朗运动
(一)标准布朗运动 z代表变 设t代表一个小的时间间隔长度, 量z在时间 t 内的变化,遵循标准布朗运 动的 z 具有两种特征: z和 t 的关系满足(6.1): 特征1: z t (6.1) 其中,代表从标准正态分布(即均值为0、 标准差为1.0的正态分布)中取的一个随 机值。
第九章 B-s期权定价模型
![第九章 B-s期权定价模型](https://img.taocdn.com/s3/m/97276e3aee06eff9aef807eb.png)
4、无套利定价 由于式(5)中不含有Δz,该组合的价值在 一个小时间间隔Δt后必定没有风险。 因此该组合在 Δt 中的瞬时收益率一定等 于Δt中的无风险收益率。 否则的话,套利者就可以通过套利获得 无风险收益率。 因此,在没有套利机会的条件下: ΔΠ=rΠΔt……(6) 把式(3)和(5)代入(6)得:
值。
考虑到在风险中性条件下,ST实际上是S按无风险利率 增长在T时刻) ST
因此SN(d1) 可以变换为:
SN(d1)=e-r(T-t) STN(d1) 期权定价公式可以相应表示为:
c ST er (T t ) N (d1 ) Xer (T t ) N (d2 )
T t 2 ln(F / X ) ( / 2)(T t ) d2 d1 T t T t
例1 假设当前英镑的即期汇率为 $1.5000,美国的无风 险连续复利年利率为7%,英国的无风险连续复利年 利率为 10%,英镑汇率遵循几何布朗运动,其波动 率为 10%,求 6 个月期协议价格为 $1.5000 的英镑 欧式看涨期权价格。
f f S (3) s 在t时间后, 该投资组合的价值变化 为:
f f S (4) s 将式(1)和(2)代入(4),可得 :
f 1 f 2 2 S t ( 5 ) t 2 S 2
欧式看跌期权定价
在标的资产无收益情况下,由于 C=c,因 此式 (10) 也给出了无收益资产美式看涨期 权的价值。 根据欧式看涨期权和看跌期权之间存在平 价关系,可以得到无收益资产欧式看跌期 权的定价公式: p=Xe-r(T-t) N(—d2)—SN(—d1) (11)
B-S定价模型
![B-S定价模型](https://img.taocdn.com/s3/m/777d88ee524de518964b7db1.png)
(1)无风险利率r是已知的,为一个常数,不随时间的变化而改变
(2)标的证券为股票,正股价格S的变化符合随机漫步,但这种随机漫步能够使股票的回报率成对数正态分布。
(3)标的股票不分红
(4)期权为欧式期权,即到期日才能行权
B-S模型
期权定价模型。
B-S是两位经济学家BLACK、SCHOLES名字的缩写,为了纪念他们发现该模型而用他们的名字命名.
在二叉树的期权定价模型中,如果标的证券期末价格的可能性无限增多时,其价格的树状结构将无限延伸,从每个结点变化到下一个结点(上涨或下跌)的时间将不断缩短,如果价格随着时间周期的缩短,其调整的幅度也逐渐缩小的话,在极限的情况下,二叉树模型对欧式权证的定价就演变为关于权证定价理论的经典模型:B-S模型.
第一个角度根据定价原理,该模型可以看作两部分, 和 ,正好理解为一个投资组合的两个组成部分,即N(d1)份正股和XeN(d2)元的无息贷款的组合。也就是说,在权证未到期前的任何时刻,一份认购权证的价值与N(d1)份正股和XeN(d2)元的无息贷款的组合价值相同。
第二个角度是从权证的到期收益来理解模型,权证的价值由其到期日能够给持有者带来的收益决定。但是到期时正股价格不确定,因此权证的收益也难以确定。假设到期时正股价格为S,则到期时认购权证的价格为S-X。那么在到期前的任一时刻t,要想知道认购权证的价格,我们就需要推算认购权证到期时正股价为S的概率,同时将行权价格按一定的贴现率折算为时刻t的现值。因此,认购权证的定价模型可以理解为在任一时刻t,认购权证到期时正股价格为S的概率为N(d1), 为行权价格在时刻t的现值,N(d2)为概率。因此,在任一时刻t,认购权证给投资者带来的收益即为 。
期权定价的连续模型之B-S公式
![期权定价的连续模型之B-S公式](https://img.taocdn.com/s3/m/a33c9d2116fc700abb68fc2f.png)
如何使概率问题转化为实变量的函数形式 ?
如何入手将概率问题转化为实变量的函数形式 ?
我们研究的对象是随机事件的概率 我们研究的对象是 随机变量的取值或取值范围 的概率 P( X = x ), P( X x ), P( X > x ), P ( x1 X x2 ),…
能否选用一个事件将所有事件都表达出来?
用随机变量的取值或取值范围来表示随机事件
例如,从某一学校随机选一学生,测量他的 身高. 我们可以把可能的身高看作随机变量 X , 然后我们可以提出关于X 的各种问题. 如 P(X > 1.7 )=? P(X ≤1.5 )= ? P(1.5<X<1.7) =?
一旦我们实际选定了一个学生并量了其身高 之后,我们就得到 X 的一个具体的值,记作 x . 这时要么 x≥1.7, 要么 x <1.7, 再求 P(x ≥1.7)就没有意义了.
这种选择并 不是唯一的
P( X x)
P( A ) X() P( X x )
本质是什么?
函数
变量 ?
由此引进了分布函数的概念:
随机变量的分布函数
1. 定义
F ( x) P( X x)
分布函数是一个普通的函数, , 我们就可以用分析的 设 X 是随机变量,称 通过它 特殊形式事件的概率 ( x )工具来研究随机变量的取值规律
期权定价的连续模型之B-S公式
期权定价理论的发展 几何布朗运动 Black-Scholes定价公式 其他有关知识
概率知识:§1 随机变量
(1) 掷一颗骰子, 出现的点数 X 1,2,……,6. (2) n个产品中的不合格品个数 Y 0,1,2,……,n (3) 某商场一天内来的顾客数 Z 0,1,2,……
Black-Scholes期权定价模型
![Black-Scholes期权定价模型](https://img.taocdn.com/s3/m/876d4b3bf342336c1eb91a37f111f18583d00cdc.png)
Black-Scholes期权定价模型Black-Scholes期权定价模型是一种能用来计算股票期权价格的数学模型。
它是由费希尔·布莱克和默顿·斯科尔斯于20世纪70年代初提出的,因此得名。
该模型的基本假设是市场条件持续稳定,且不存在利率和股票价格变动的趋势。
此外,它还假设股票价格服从几何布朗运动,即价格的波动是随机的。
根据这些假设,Black-Scholes模型将股票价格与利率、期权行权价、到期时间以及波动率等因素联系起来,以计算期权的合理价格。
Black-Scholes模型的公式为:C = S_0 * N(d1) - X * e^(-r * T) * N(d2)其中,C为期权的价格,S_0为股票的当前价格,N(d1)和N(d2)分别为标准正态分布函数的值,X为期权的行权价,r为无风险利率,T为期权的到期时间。
d1和d2是通过一系列数学计算得出的。
利用Black-Scholes模型,投资者可以根据个人的风险偏好和市场条件来评估一个期权的合理价格。
它对市场参与者来说是一种有用的工具,因为它能够帮助他们理解和衡量期权的价值。
然而,Black-Scholes模型也存在一些局限性。
首先,它假设市场条件持续稳定,而实际上市场是非常复杂和动态的。
其次,它假设股票价格服从几何布朗运动,这在现实中并不总是成立。
另外,模型中的波动率是一个固定的参数,而实际上波动率是随着时间和市场条件的变化而变化的。
因此,在使用Black-Scholes模型时,投资者需要慎重考虑其局限性,并结合其他因素和分析来作出投资决策。
此外,人们也一直在尝试改进这个模型,以更好地适应实际市场的复杂性和动态性。
Black-Scholes期权定价模型是金融领域中最著名的定价模型之一。
它提供了一个基于几何布朗运动的股票价格模型,可以计算欧式期权的合理价格。
该模型的公式给出了欧式期权的理论价格,而不考虑市场上的任何其他因素。
Black-Scholes模型的創始人费希尔·布莱克和默顿·斯科尔斯在1973年发布了这一模型,并以此获得了1997年诺贝尔经济学奖。
bs模型计算公式
![bs模型计算公式](https://img.taocdn.com/s3/m/c1faddc2c9d376eeaeaad1f34693daef5ff7135f.png)
bs模型计算公式BS模型又称为布莱克-斯科尔斯模型(Black-Scholes model),是一种用于计算欧洲期权价格的数学模型。
它是由费希尔·布莱克(Fischer Black)、默顿·斯科尔斯(Myron Scholes)和罗伯特·马顿(Robert Merton)于1970年提出。
BS模型基于一些假设,如市场效率、股票价格的几何布朗运动、无风险利率等,通过对期权和股票组合进行对冲交易,从而得出期权的正确定价。
BS模型的计算公式如下:C=S*N(d1)-X*e^(-r*T)*N(d2)P=X*e^(-r*T)*N(-d2)-S*N(-d1)其中,C表示期权的看涨定价,P表示期权的看跌定价。
S表示标的资产的现价,X表示期权的执行价格,r表示无风险利率,T表示期权到期时间。
N(代表标准正态分布的累积分布函数。
d1和d2的计算公式如下:d1 = (ln(S/X) + (r + 0.5 * sigma^2) * T) / (sigma * sqrt(T)) d2 = d1 - sigma * sqrt(T)其中,sigma表示标的资产的波动率。
波动率是BS模型中的一个重要参数,通常需要根据历史数据或市场预期进行估计。
用于计算d1和d2的sigma应该是年化波动率。
BS模型的核心思想是对冲交易,即构建一个期权和标的资产的组合,使其不受市场波动的影响,从而消除了市场风险,只保留了无风险利率的影响。
通过对冲交易,可以使用风险中性的概率测度,将未来的现金流折现到当前时刻,得到期权的正确定价。
BS模型在计算期权价格时使用了一些理论前提和假设,比如市场效率、收益率的对数正态分布等。
这些假设可能与实际情况有所偏差,因此BS模型的应用也存在一定的局限性。
在实际应用中,需要根据具体情况对模型进行调整和修正,以提高对期权价格的准确度和可靠性。
总之,BS模型是一种用于计算欧洲期权价格的数学模型,通过对期权和标的资产的对冲交易,消除了市场风险,保留了无风险利率的影响,从而得出期权的正确定价。
bs模型计算公式(二)
![bs模型计算公式(二)](https://img.taocdn.com/s3/m/2c10f3c4900ef12d2af90242a8956bec0975a59c.png)
bs模型计算公式(二)bs模型计算公式1. bs模型简介Black-Scholes模型,简称bs模型,是一种金融衍生品定价模型,常被用于计算欧式期权的理论价格。
该模型假设市场上不存在套利机会,且金融资产价格的变动服从几何布朗运动。
2. bs模型计算公式bs模型主要通过以下公式进行计算:欧式看涨期权价格公式根据bs模型,欧式看涨期权的价格(C)可以通过以下公式计算:C = S * N(d1) - X * e^(-r*T) * N(d2)其中: - S为标的资产当前价格 - N()为标准正态分布的累积概率函数 - d1 = [ln(S/X) + (r + σ^2/2) * T] / (σ * sqrt(T)) - d2 = d1 - σ * sqrt(T) - X为期权行权价 - r为无风险利率 - σ为标的资产的波动率 - T为期权的剩余到期时间欧式看跌期权价格公式bs模型还可以用于计算欧式看跌期权的价格(P),其公式如下:P = X * e^(-r*T) * N(-d2) - S * N(-d1)同样地,其中的变量和符号含义与前述一致。
3. 公式解释和示例欧式看涨期权示例假设标的资产的当前价格S为100,期权行权价X为105,无风险利率r为,标的资产的波动率σ为,期限T为1年。
那么我们可以使用bs模型来计算该欧式看涨期权的价格。
根据公式,首先计算d1和d2的值:d1 = [ln(100/105) + ( + ^2/2) * 1] / ( * sqrt(1))≈ -d2 = - - * sqrt(1)≈ -接下来,使用累积概率函数N()计算d1和d2对应的值:N(d1) ≈N(d2) ≈最后,将这些值代入公式,可以得到期权的价格:C = 100 * - 105 * e^(-*1) *≈因此,根据bs模型,该期权的理论价格约为。
欧式看跌期权示例与上例类似,假设标的资产的当前价格S仍为100,期权行权价X 为105,无风险利率r为,标的资产的波动率σ为,期限T为1年。
Black-Scholes期权定价模型
![Black-Scholes期权定价模型](https://img.taocdn.com/s3/m/2c7a9091db38376baf1ffc4ffe4733687e21fc26.png)
2024/9/22
9
为何证券价格能够用几何布朗运动表 达?
一般认同旳“弱式效率市场假说”:
证券价格旳变动历史不包括任何对预测证券价格将来变动有用旳信 息。
马尔可夫过程:只有变量旳目前值才与将来旳预测有关,变量过去 旳历史和变量从过去到目前旳演变方式与将来旳预测无关。
ST
Se(T-t),=
1 T-t
ln
ST S
,
由ln
ST
ln
S
~
[(
2 2
)(T
t),
T t ]可得
~
[(
2 2
),
]
T t
2024/9/22
16
结论
几何布朗运动很好地描绘了股票价格旳运动过 程。
2024/9/22
17
参数旳了解
μ:
几何布朗运动中旳期望收益率,短时期内旳期望值。
根据资本资产定价原理, μ取决于该证券旳系统性风险、无风险利
连续复利收益率旳问题:尽管时间序列旳收益率加总能够很轻易旳实现;但是 横截面旳收益率加总则不是单个资产收益率旳加权平均值,因为对数之和不是 和旳对数。但是在很短时间内几乎能够以为是近似。JP摩根银行旳 RiskMetrics措施就假定组合旳收益率是单个资产连续复利收益率旳加权平均。
2024/9/22
Black-Scholes期权定价模型
2024/9/22
1
Black-Scholes期权定价模型旳基本思绪
期权是标旳资产旳衍生工具,其价格波动旳起源就是标旳资产价 格旳变化,期权价格受到标旳资产价格旳影响。
标旳资产价格旳变化过程是一种随机过程。所以,期权价格变化 也是一种相应旳随机过程。
BLACK-SCHOLES期权定价模型
![BLACK-SCHOLES期权定价模型](https://img.taocdn.com/s3/m/80f12e3a10661ed9ad51f3e9.png)
BLACK-SCHOLES期权定价模型Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。
他们创立和发展的布莱克-斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础,特别是为评估组合保险成本、可转换债券定价及认股权证估值等提供了依据。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式(看涨和看跌)。
与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。
结果,两篇论文几乎同时在不同刊物上发表。
所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型(含红利的)。
默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。
(一)B-S模型有5个重要的假设1、金融资产收益率服从对数正态分布;(股票价格走势遵循几何布朗运动)2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;3、市场无摩擦,即不存在税收和交易成本;4、该期权是欧式期权,即在期权到期前不可实施;5、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);6、不存在无风险套利机会;7、证券交易是持续的;8、投资者能够以无风险利率借贷。
(二)荣获诺贝尔经济学奖的B-S 定价公式)()(21d N Le d SN c rT --=其中:C —期权初始合理价格L —期权交割价格S —所交易金融资产现价T —期权有效期r —连续复利计无风险利率2σ—年度化方差(波动率)N()—正态分布变量的累积概率分布函数,(标准正态分布 μ=0)在此应当说明两点: 第一,该模型中无风险利率必须是连续复利形式。
Black-Scholes期权定价模型论文终稿
![Black-Scholes期权定价模型论文终稿](https://img.taocdn.com/s3/m/85f98c06f12d2af90242e615.png)
Black-Scholes期权定价模型摘要:期权定价是所有金融应用领域数学上最复杂的问题之一。
第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世。
B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。
不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。
现在,几乎所有从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。
这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用,该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
关键词:期权定价;有限差分方法一、引言期权,也即期货合约的选择权,指的是其购买者在交付一定数量的权利金之后,所拥有的在未来一定时间内以一定价格买进或卖出一定数量相关商品合约(不论是实物商品,金融证券或期货)的权利,但不负有必须买进或卖出的义务。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。
随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。
在过去的20年中,投资者通过运用布莱克——斯克尔斯期权定价模型,将这一抽象的数字公式转变成了大量的财富。
二、期权定价(一)期权定价的概念期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品(underlying-assets)的选择权。
期权价格是期权合约中唯一随市场供求变化而改变的变量,它的高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。
早在1900年法国金融专家劳雷斯·巴舍利耶就发表了第一篇关于期权定价的文章。
此后,各种经验公式或计量定价模型纷纷面世,但因种种局限难于得到普遍认同。
70年代以来,伴随着期权市场的迅速发展,期权定价理论的研究取得了突破性进展。
BS模型推导
![BS模型推导](https://img.taocdn.com/s3/m/d2ad16df58f5f61fb7366665.png)
B-S 模型专门用来解决期权或权证这类衍生品的定价问题。
模型的假设条件主要有:
(1)资产价格的运动可以用对数正态分布描述;
(2)资产收益率的变化属于正态分布;
(3)模型使用的无风险利率在相应投资期内为常数;
(4)市场没有摩擦,无需支付税收或交易成本;
(5)期权为欧式期权,除非在到期日才能执行;
(6)投资者在市场中不能进行无风险套利;
(7)市场允许投资者根据个人选择进行卖空。
从这些假设出发,B-S 模型推导出期权价格是股票价格、股价波动率、无风险利率、期权执行价格和距到期曰剩余时间这五个变量的函数,并得出适用于无收益资产欧式看涨期权的一个微分方程:
rf S
f S S f rS t f =∂∂+∂∂+∂∂222221σ (3-3)
f:期权价格;S:当前时刻股票价格;r 无风险利率;t:当前时刻
求解该微分方程,即可得到在无收益条件下买入期权的定价公式: (3-
4)
c:期权理论价格;X:期权执行价格;T:到期时刻
其中,服从标准正态分布的d 1、d 2的数值由下列公式确定,公式中字母含义与上文一致。
t T d t
T t T r X S d t T t T r X S d --=---+=--++=
σσσσσ12221))(2/()/ln())(2/()/ln( (3-5)
)()(2)(1d N Xe d SN c t T r ---=。
B-S期权定价公式
![B-S期权定价公式](https://img.taocdn.com/s3/m/784bfdff951ea76e58fafab069dc5022aaea46e8.png)
B-S期权定价公式Black-Schole期权定价模型一、Black-Schole期权定价模型的假设条件Black-Schole期权定价模型的七个假设条件如下:1.风险资产(Black-Schole期权定价模型中为股票),当前时刻市场价格为S。
S遵循几何布朗运动,即dSSdtdz。
dt其中,dz为均值为零,方差为dt的无穷小的随机变化值(dz,称为标准布朗运动,代表从标准正态分布(即均值为0、标准差为1的正态分布)中取的一个随机值),为股票价格在单位时间内的期望收益率,则是股票价格的波动率,即证券收益率在单位时间内的标准差。
和都是已知的。
2.没有交易费用和税收,不考虑保证金问题,即不存在影响收益的任何外部因素。
3.资产价格的变动是连续而均匀的,不存在突然的跳跃。
4.该标的资产可以被自由地买卖,即允许卖空,且所有证券都是完全可分的。
5.在期权有效期内,无风险利率r保持不变,投资者可以此利率无限制地进行借贷。
6.在衍生品有效期间,股票不支付股利。
7.所有无风险套利机会均被消除。
二、Black-Schole期权定价模型在上述假设条件的基础上,Black和Schole得到了如下适用于无收益资产欧式看涨期权的Black-Schole微分方程:ftrSfS122S22f2rfS其中f为期权价格,其他参数符号的意义同前。
通过这个微分方程,Black和Schole得到了如下适用于无收益资产欧式看涨期权的定价公式:c其中,d1ln(S/某)(r2SN(d1)某er(Tt)N(d2)/2)(Tt)Tt2/2)(Tt)d1Ttd2ln(S/某)(rTtc为无收益资产欧式看涨期权价格;N(某)为标准正态分布变量的累计概率分布函数(即这个变量小于某的概率),根据标准正态分布函数特性,我们有N(某)1N(某)。
(二)Black-Schole期权定价公式的理解1.SN(d1)可看作证券或无价值看涨期权的多头;Ker(Tt)N(d2)可看作K份现金或无价值看涨期权的多头。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于dlnS是股票的连续复利收益率,得出的公式说明股票的连续 复利收益率服从期望值 ( µ −
σ2
2 ) dt ,方差为
σ 2 dt 的正态分布。
9
一般来说,金融研究者认为证券价格的变化过程可以用 漂移率为μS、方差率为 σ 2 S2的伊藤过程(即几何布朗运动) 来表示: = µ Sdt + σ Sdz dS 之所以采用几何布朗运动其主要原因有两个: 一是可以避免股票价格为负从而与有限责任相矛盾 的问题,二是几何布朗运动意味着股票连续复利收益率 服从正态分布,这与实际较为吻合。
ln S T − ln S ~ φ[(µ − σ2 )(T − t ), σ T − t ]
2
11
由上一页的推导可知证券价格对数服从正态分布。如果 一个变量的自然对数服从正态分布,则称这个变量服从对数 正态分布。这表明ST服从对数正态分布。根据对数正态分布 的特性,以及符号的定义,我们可以得到 E ( S T ) = Se µ (T −t ) 和 var(S T ) = S e
4
将标准布郎运动扩展我们将得到普通布郎运动,令 漂移率为a,方差率为b2,我们就可得到变量x 的普通布 朗运动: dx = adt + bdz 标准布朗运动是普通布朗运动的一个特例,即漂移 率为0,方差为1的普通布郎运动。
5
普通布朗运动的离差形式为 ∆x = a∆t + bε ∆t ,显然,∆x也 具有正态分布特征,其均值为 a∆t ,标准差为 b ∆t ,方差为 b 2 ∆t
= (
∂G 1 ∂ 2 G 1 ∂G = , 2 =− 2 , =0 ∂S S ∂S S ∂t
∂G ∂G 1 ∂ 2 G 2 ∂G a+ + b ) dt + bdz 我们就可得到 2 ∂x ∂t 2 ∂x ∂x
G = ln S 所
遵循的随机过程为 d G
= d ln S = ( µ −
σ
2
2
)dt + σ dz
1
我们为了给股票期权定价,必须先了解股票本身的走势。 因为股票期权是其标的资产(即股票)的衍生工具,在已知 执行价格、期权有效期、无风险利率和标的资产收益的情况 下,期权价格变化的唯一来源就是股票价格的变化,股票价 格是影响期权价格的最根本因素。 因此,要研究期权的价格,首先必须研究股票价格的变 化规律。在 了解了股票价格的规律后,我们试图通过股票来 复制期权,并以此为依据给期权定价。 在下面几节中我们会用数学的语言来描述这种定价的思 想。
∆ =0.25
1、显然,遵循普通布朗运动的变量x是关于时间和dz的动态过程, 1 x dz 其中第一项adt为确定项,它意味着x的期望漂移率是每单位时间为a 。 第二项bdz是随机项,它表明对x的动态过程添加的噪音 。这种噪音是 由维纳过程的b倍给出的。 2、在任意时间长度T后x值的变化也具有正态分布特征,其均值为 aT,标准差为 b T ,方差为b2T。
7
在伊藤过程的基础上,数学家伊藤(K.Ito)进一步推 导出:若变量x遵循伊藤过程,则变量x和t的函数G将遵循 如下过程:
∂G ∂G 1 ∂ 2 G 2 ∂G dG = ( a+ + b )dt + bdz ∂x ∂t 2 ∂x 2 ∂x
其中,dz是一个标准布朗运动。这就是著名的伊藤引 理。
8
**随机微积分与非随机微积分的差别 d ln S ≠
2 2 µ (T − t )
[e
2 σ (T − t )
− 1]
ln S T − ln S上就是股票价格在T-t期间的连续复利收益率,
则T-t期间年化的连续复利收益率可以表示为 η 从式(11.9)可知随机变量 η 服从正态分布 σ η ~ φ [( µ − σ2 ), ]
19
观察布莱克-舒尔斯微分方程,我们可以发现,受制于主观的 风险收益偏好的标的证券预期收益率并未包括在衍生证券的价值决 定公式中。这意味着,无论风险收益偏好状态如何,都不会对f的值 产生影响。因此我们可以作出一个可以大大简化我们工作的假设: 在对衍生证券定价时,所有投资者都是风险中性的。 在对衍生证券定价时,所有投资者都是风险中性的。尽管这只是一 个人为的假定,但通过这种假定所获得的结论不仅适用于投资者风 险中性情况,也适用于投资者厌恶风险的所有情况。 在风险中性的条件下,所有证券的预期收益率都可以等于无风 险利率r,所有现金流量都可以通过无风险利率进行贴现求得现值。 这就是风险中性定价原理。
2
=
,
T −t
12
µ
:
1、几何布朗运动中的期望收益率。
µ 2、根据资本资产定价原理, 取决于该证券的系统性风险、 无风险利率水平、以及市场的风险收益偏好。由于后者涉 及主观因素,因此其决定本身就较复杂。然而幸运的是, 我们将在下文证明,衍生证券的定价与标的资产的预期收 µ 益率 是无关的。
3 、较长时间段后的连续复利收益率的期望值等于µ − σ / 2 < µ ,这是因为较长时间段后的连续复利收益率的期望值 是较短时间内收益率几何平均的结果,而较短时间内的收 益率则是算术平均的结果。
比较(11.1)和(11.11)可看出,衍生证券价格G和 股票价格S都受同一个不确定性来源dz的影响,这点对于 以后推导衍生证券的定价公式很重要。
15
假设: 1、证券价格遵循几何布朗运动,即 2、允许卖空标的证券;
µ
和
σ
为常数;
3、没有交易费用和税收,所有证券都是完全可分的; 4、衍生证券有效期内标的证券没有现金收益支付; 5、存在无风险套利机会; 6、证券交易是连续的,价格变动也是连续的; 7、衍生证券有效期内,无风险利率r为常数。
3
布朗运动(Brownian Motion)起源于英国植物学 家布郎对水杯中的花粉粒子的运动轨迹的描述。
对于标准布朗运动来说:设 ∆t 代表一个小 的时间间隔长度,∆z 代表变量z在 ∆t 时间内的 变化,遵循标准布朗运动的 ∆z 具有两种特征: 特征1: 特征 :∆z 和 ∆t 的关系满足: ∆z = ε ∆t ε 其中, 代表从标准正态分布(即均值为0、标 准差为1的正态分布)中取的一个随机值。 特征2: 特征 :对于任何两个不同时间间隔 ∆t ,∆z 的 值相互独立。
21
为了找出该期权的价值,我们可构建一个由一单位看 涨期权空头和 ∆ 单位的标的股票多头组成的组合。若3 个月后该股票价格等于11元时,该组合价值等于( 11 ∆ -0.5)元;若3个月后该股票价格等于9元时,该组合价值 等于9 ∆ 元。为了使该组合价值处于无风险状态,我们应 选择适当的 ∆ 值,使3个月后该组合的价值不变,这意味 着: 11 ∆-0.5=9 ∆
dS S
案例11.1 运用伊藤引理推导lnS所遵循的随机过程 案例 运用伊藤引理推导 所遵循的随机过程 假设变量S服从 dS = µ Sdt + σ Sdz 其中µ和σ都为常数,则lnS遵循怎样的随机过程? 由于µ和σ是常数,S显然服从 a( S , t ) = µ S b( S , t ) = σ 的伊藤过程,我 , S 们可以运用伊藤引理推导lnS所遵循的随机过程。 令G = ln S,则 代入式 dG
2
13
: σ
1、证券价格的年波动率,又是股票价格对数收益率的年 标准差 2、一般从历史的证券价格数据中计算出样本对数收益 率的标准差,再对时间标准化,得到年标准差,即为波 动率的估计值。在计算中,一般来说时间距离计算时越 近越好;时间窗口太短也不好;一般来说采用交易天数 计算波动率而不采用日历天数。
中不含任何风险源,因
此组合 Π 必须获得无风险收益,即
∆Π = rΠ∆t
代入上式可得
∂f 1 ∂ 2 f 2 2 ∂f ( + σ S )∆t = r ( f − S )∆t ∂t 2 ∂S 2 ∂S
化简为
∂f ∂f 1 2 2 ∂2 f + rS + σ S = rf ∂t 2 ∂S ∂S 2
**这就是著名的布莱克——舒尔斯微分分程, 它适用于其价格取决于标的证券价格S的所有 衍生证券的定价。
6
普通布朗运动假定漂移率和方差率为常数,若把变 量x的漂移率和方差率当作变量x和时间t的函数,我们就 可以得到 dx = a( x, t )dt + b( x, t )dz 这就是伊藤过程(Ito Process)。其中,dz是一个 标准布朗运动,a、b是变量x和t的函数,变量x的漂移率 为a,方差率为b2。
14
当股票价格服从几何布朗运动 dS = µSdt + σSdz 时,由 于衍生证券价格G是标的证券价格S和时间t的函数G(S,t), 根据伊藤引理,衍生证券的价格G应遵循如下过程:
∂G ∂G 1 ∂ 2 G 2 2 ∂G dG = ( µS + + σ S ) dt + σSdz ∂S ∂t 2 ∂S 2 ∂S
2
市场有效理论与随机过程
1965年,法玛(Fama)提出了 著名的效率市场假说。该假说认为, 证券价格对新的市场信息的反应是 迅速而准确的,证券价格能完全反 应全部信息。
有效 市场 三个 层次
1、弱式效率市场假说 2、半强式效率市场假说 3、强式效率市场假说
根据众多学者的实证研 究,发达国家的证券市场 大体符合弱式效率市场假 说。一般认为,弱式效率 市场假说与马尔可夫随机 过程(Markov Stochastic Process)是内在一致的。 因此我们可以用数学来刻 画股票的这种特征。
1973年,美国芝加哥大学教授 Fischer Black& Myron Scholes提出了著名的B-S定价模型,用于确 定欧式股票期权价格,在学术界和实务界引起了强烈反 响;同年,Robert C. Merton独立地提出了一个更为一般 化的模型。舒尔斯和默顿由此获得了1997年的诺贝尔经 济学奖。在本章中,我们将循序渐进,尽量深入浅出地 介绍布莱克-舒尔斯-默顿期权定价模型(下文简称B-SM模型),并由此导出衍生证券定价的一般方法。