2021年宜昌市近五届中考数学应用题压轴题(22题)汇编及答案
湖北省宜昌市2021年中考数学预测试题(含解析)
湖北省中考数学精选真题预测(含答案)一、选择题1.(湖北省宜昌市)﹣2018的绝对值是()A.2018 B.﹣2018 C.D.﹣【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.(湖北省宜昌市)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义逐个判断即可.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意;故选:D.【点评】本题考查了轴对称图形的定义,能够正确观察图形和理解轴对称图形的定义是解此题的关键.3.(湖北省宜昌市)工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.21万=1.21×104,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(湖北省宜昌市)计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.24【分析】根据有理数的乘方、乘法和加法可以解答本题.【解答】解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.5.(湖北省宜昌市)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.B.C.D.【分析】直接利用概率公式求解.【解答】解:这句话中任选一个汉字,这个字是“绿”的概率=.故选:B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.(湖北省宜昌市)如图,是由四个相同的小正方体组合而成的几何体,它的左视图是()A.B.C.D.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:该几何体的主视图为:;左视图为;俯视图为;故选:C.【点评】此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.7.(湖北省宜昌市)下列运算正确的是()A.x2+x2=x4B.x3•x2=x6C.2x4÷x2=2x2D.(3x)2=6x2【分析】根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论.【解答】解:A、x2+x2=2x2,选项A错误;B、x3•x2=x3+2=x5,选项B错误;C、2x4÷x2=2x4﹣2=2x2,选项C正确;D、(3x)2=32•x2=9x2,选项D错误.故选:C.【点评】本题考查了整式的混合运算,牢记整式混合运算的运算法则是解题的关键.8.(湖北省宜昌市)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c 的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9.(湖北省宜昌市)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.【点评】本题考查正方形的性质,解题的关键是利用轴对称的性质解决问题,属于中考常考题型.10.(湖北省宜昌市)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选:A.【点评】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.11.(湖北省宜昌市)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2) B.(2,﹣2)C.(2,5) D.(﹣2,5)【分析】依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).【解答】解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选:A.【点评】本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.12.(湖北省宜昌市)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E 在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30° B.35° C.40° D.45°【分析】由切线的性质知∠OCB=90°,再根据平行线的性质得∠COD=90°,最后由圆周角定理可得答案.【解答】解:∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=∠COD=45°,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握圆的切线垂直于经过切点的半径及圆周角定理.13.(湖北省宜昌市)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.14.(湖北省宜昌市)如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA 的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米【分析】根据正切函数可求小河宽PA的长度.【解答】解:∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选:C.【点评】考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.15.(湖北省宜昌市)如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C 面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p1【分析】直接利用反比例函数的性质进而分析得出答案.【解答】解:∵p=,F>0,∴p随S的增大而减小,∵A,B,C三个面的面积比是4:2:1,∴p1,p2,p3的大小关系是:p3>p2>p1.故选:D.【点评】此题主要考查了反比例函数的性质,正确把握反比例函数的性质是解题关键.二、解答题(本题共9题,75分)16.(湖北省宜昌市)先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.【分析】根据单项式乘多项式、平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:x(x+1)+(2+x)(2﹣x)=x2+x+4﹣x2=x+4,当x=﹣4时,原式=﹣4+4=.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.17.(湖北省宜昌市)解不等式组,并把它的解集在数轴上表示出来.【分析】解一元一次不等式组的方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分;并把它的解集在数轴上表示出来即可.【解答】解:解不等式①,得:x≥1;解不等式②,得:x<2;∴原不等式组的解集是1≤x<2..【点评】此题主要考查了解一元一次不等式组的方法,要熟练掌握,解答此题的关键是要明确方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.18.(湖北省宜昌市)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD 的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.【点评】本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.19.(湖北省宜昌市)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.【分析】直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.20.(湖北省宜昌市)某校创建“环保示范学校”,为了解全校学生参加环保类杜团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称A.酵素制作社团B.回收材料小制作社团C.垃圾分类社团D.环保义工社团E.绿植养护社团人数10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是10 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.【分析】(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.【点评】此题考查了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(湖北省宜昌市)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.【点评】本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(湖北省宜昌市)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.【分析】(1)直接利用第一年有40家工厂用乙方案治理,共使Q值降低了12,得出等式求出答案;(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家得出等式求出答案;(3)利用n的值即可得出关于a的等式求出答案.【解答】解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=100×0.3=30,解法一:(30﹣a)+2a=39.5a=9.5x=20.5解法二:解得:【点评】考查了一元二次方程和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.(湖北省宜昌市)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB 即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴B P=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.24.(湖北省宜昌市)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A (﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA= 6 ,k= ﹣6 ,点E的坐标为(﹣,4);(2)当1≤t≤6时,经过点M(t﹣1,﹣ t2+5t﹣)与点N(﹣t﹣3,﹣ t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c的顶点.①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.【分析】(1)根据题意将先关数据带入(2)①用t表示直线MN解析式,及b,c,得到P点坐标带入双曲线y=解析式,证明关于t的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B和在BD上时的情况;③由②中部分结果,用t表示F、P点的纵坐标,求出t的取值范围及直线MN在四边形OAEB 中所过的面积.【解答】解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)(2)①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣x2﹣x+5t﹣2 ∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t=或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=【点评】本题为二次函数与反比例函数综合题,考查了数形结合思想和分类讨论的数学思想.解题过程中,应注意充分利用字母t表示相关点坐标.湖北省中考数学精选真题预测(含答案)(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
2021年湖北省各地中考数学压轴题汇编(解析版)可打印
2021年湖北省各地中考数学试题压轴题汇编(解析版)1、(2020湖北黄冈)已知抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点(0,3)C ,顶点为点D .(1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且:3:5ACE CEB S S =,求直线CE 的解析式 (3)若点P 在抛物线上,点Q 在x 轴上,当以点D 、C 、P 、Q 为顶点的四边形是平行四边形时,求点P 的坐标;(4)已知点450,,(2,0)8H G ⎛⎫ ⎪⎝⎭,在抛物线对称轴上找一点F ,使HF AF +的值最小此时,在抛物线上是否存在一点K ,使KF KG +的值最小,若存在,求出点K 的坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++;(2)63y x =-+;(3)点P 的坐标为(11),(1±-±;(4)存在,点K 的坐标为(2,3)【解析】【分析】(1)由于点A 、B 为抛物线与x 轴的交点,可设两点式求解;也可将A 、B 、C 的坐标直接代入解析式中利用待定系数法求解即可;(2)根据两个三角形的高相等,则由面积比得出:3:5AE EB =,求出AE,根据点A 坐标可解得点E 坐标,进而求得直线CE 的解析式;(3)分两种情况讨论①当四边形DCPQ 为平行四边形时;②当四边形DCQP 为平行四边形时,根据平行四边形的性质和点的坐标位置关系得出纵坐标的关系式,分别代入坐标数值,解方程即可解答;(4)根据抛物线的对称性,AF=BF ,则HF+AF=HF+BF ,当H 、F 、B 共线时,HF+AF 值最小,求出此时点F 的坐标,设()00,K x y ,由勾股定理和抛物线方程得0174KF y =-,过点K 作直线SK ,使//SK y 轴,且点S 的纵坐标为174,则点S 的坐标为017,4x ⎛⎫ ⎪⎝⎭,此时,0174KS y =-,∴KF+KG=KS+KG,当S 、K 、G 共线且平行y 轴时,KF+KG 值最小,由点G 坐标解得0x ,代入抛物线方程中解得0y ,即为所求K 的坐标.【详解】解:(1)方法1:设抛物线的解析式为(3)(1)y a x x将点(0,3)C 代入解析式中,则有1(03)31a a ⨯-=∴=-.∴抛物线的解析式为()222323y x x x x =---=-++.方法二:∵经过,,A B C 三点抛物线的解析式为2y ax bx c =++,将(1,0),(3,0),(0,3)A B C -代入解析式中,则有 30930c a b c a b c =⎧⎪∴-+=⎨⎪++=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为2y x 2x 3=-++.(2):3:5ACE CEB S S ∆∆=,132152AE CO EB CO ⋅∴=⋅. :3:5AE EB ∴=.3334882AE AB ∴==⨯=. 31122E x ∴=-+=. E ∴的坐标为1,02⎛⎫ ⎪⎝⎭.又C 点的坐标为(0,3).∴直线CE 的解析式为63y x =-+.(3)2223(1)4y x x x =-++=--+.∴顶点D 的坐标为(1,4).∴当四边形DCPQ 为平行四边形时,由DQ ∥CP ,DQ=CP 得:D Q C P y y y y -=-,即403P y -=-.1p y ∴=-.令1y =-,则2231x x -++=-.1x ∴=∴点P 的坐标为(11)±-.∴当四边形DCQP 为平行四边形时,由CQ ∥DP ,CQ=DP 得:c Q D p y y y y -=-,即304P y -=-1p y ∴=.令1y =,则2231x x -++=.1x ∴=±∴点P 的坐标为(1.∴综合得:点P 的坐标为(11),(1±-±(4)∵点A 或点B 关于对称轴1x =对称∴连接BH 与直线1x =交点即为F 点.∵点H 的坐标为450,8⎛⎫ ⎪⎝⎭,点B 的坐标为(3,0), ∴直线BH 的解析式为:154588y x =-+. 令1x =,则154y =. 当点F 的坐标为151,4⎛⎫ ⎪⎝⎭时,HF AF +的值最小.11分 设抛物线上存在一点()00,K x y ,使得FK FG +的值最小.则由勾股定理可得:()222001514KF x y ⎛⎫=-+- ⎪⎝⎭. 又∵点K 在抛物线上,()20014y x ∴=--+()20014x y ∴-=-代入上式中, ()2220001517444KF y y y ⎛⎫⎛⎫∴=-+-=- ⎪ ⎪⎝⎭⎝⎭ 0174KF y ∴=-. 如图,过点K 作直线SK ,使//SK y 轴,且点S 的纵坐标为174. ∴点S 的坐标为017,4x ⎛⎫ ⎪⎝⎭. 则0174SK y =-. 000171717,444y y y ⎛⎫<∴-=- ⎪⎝⎭(两处绝对值化简或者不化简者正确.)KF SK ∴=.KF KG SK KG ∴+=+当且仅当,,S K G 三点在一条直线上,且该直线干行于y 轴,FK FG +的值最小. 又∵点G 的坐标为(2,0),02x ∴=,将其代入抛物线解析式中可得:03y =.∴当点K 的坐标为(2,3)时,KF KG +最小.【点睛】本题主要考查了二次函数与几何图形的综合,涉及待定系数法、平行四边形的性质、、三角形面积、求线段和的最小值(即将军饮马模型)等知识,解答的关键是认真审题,找出相关条件,运用待定系数法、数形结合法等解题方法确定解题思路,对相关信息进行推理、探究、发现和计算.2、(2020湖北咸宁).如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线223y x bx c =-++过点B 且与直线相交于另一点53,24C ⎛⎫ ⎪⎝⎭.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,当PAO BAO ∠=∠时,求点P 的坐标;(3)点5(,0)02N n n ⎛⎫<< ⎪⎝⎭在x 轴的正半轴上,点(0,)M m 是y 轴正半轴上的一动点,且满足90MNC ︒∠=. ①求m 与n 之间的函数关系式;②当m 在什么范围时,符合条件的N 点的个数有2个?【答案】(1)227236y x x =-++;(2)53,24⎛⎫ ⎪⎝⎭或(3,12-)或(-2,-3);(3)①241033m n n =-+;②0<m <2512【解析】【分析】(1)利用一次函数求出A 和B 的坐标,结合点C 坐标,求出二次函数表达式;(2)当点P 在x 轴上方时,点P 与点C 重合,当点P 在x 轴下方时,AP 与y 轴交于点Q ,求出AQ 表达式,联立二次函数,可得交点坐标,即为点P ;(3)①过点C 作CD ⊥x 轴于点D ,证明△MNO ∽△NCD ,可得MO NO ND CD =,整理可得结果;②作以MC 为直径的圆E ,根据圆E 与线段OD 的交点个数来判断M 的位置,即可得到m 的取值范围.【详解】解:(1)∵直线122y x =-+与x 轴交于点A ,与y 轴交于点B , 令x=0,则y=2,令y=0,则x=4,∴A (4,0),B (0,2), ∵抛物线223y x bx c =-++经过B (0,2),53,24C ⎛⎫ ⎪⎝⎭, ∴2322554342c b c =⎧⎪⎨=-⨯++⎪⎩,解得:762b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:227236y x x =-++; (2)当点P 在x 轴上方时,点P 与点C 重合,满足PAO BAO ∠=∠, ∵53,24C ⎛⎫ ⎪⎝⎭, ∴53,24P ⎛⎫ ⎪⎝⎭, 当点P 在x 轴下方时,如图,AP 与y 轴交于点Q ,∵PAO BAO ∠=∠,∴B ,Q 关于x 轴对称,∴Q (0,-2),又A (4,0),设直线AQ 的表达式为y=px+q ,代入,204q p q -=⎧⎨=+⎩,解得:122p q ⎧=⎪⎨⎪=-⎩, ∴直线AQ 的表达式为:122y x =-,联立得: 212227236y x y x x ⎧=-⎪⎪⎨⎪=-++⎪⎩,解得:x=3或-2, ∴点P 的坐标为(3,12-)或(-2,-3), 综上,当PAO BAO ∠=∠时,点P 的坐标为:53,24⎛⎫⎪⎝⎭或(3,12-)或(-2,-3);(3)①如图,∠MNC=90°,过点C 作CD ⊥x 轴于点D ,∴∠MNO+∠CND=90°,∵∠OMN+∠MNO=90°,∴∠CND=∠OMN,又∠MON=∠CDN=90°,∴△MNO ∽△NCD , ∴MO NO ND CD =,即5324m n n =-, 整理得:241033m n n =-+;②如图,∵∠MNC=90°,以MC为直径画圆E,∵5 (,0)02N n n⎛⎫<<⎪⎝⎭,∴点N在线段OD上(不含O和D),即圆E与线段OD有两个交点(不含O和D),∵点M在y轴正半轴,当圆E与线段OD相切时,有NE=12MC,即NE2=14MC2,∵M(0,m),53,24C⎛⎫ ⎪⎝⎭,∴E(54,382m+),∴2382m⎛⎫+⎪⎝⎭=22153424m⎡⎤⎛⎫⎛⎫+-⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得:m=25 12,当点M与点O重合时,如图,此时圆E与线段OD(不含O和D)有一个交点,∴当0<m <2512时,圆E 与线段OD 有两个交点, 故m 的取值范围是:0<m <2512. 【点睛】本题是二次函数综合,考查了求二次函数表达式,相似三角形的判定和性质,圆周角定理,一次函数表达式,难度较大,解题时要充分理解题意,结合图像解决问题.3、(2020湖北襄阳)如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.【答案】(1)A (0,2),B (﹣2,0),C (4,0),抛物线的解析式是211242y x x =-++;(2)四边形ABCM 面积的最大值为8,点M 的坐标为(2,2);(3)34m -≤≤-或32m -+≤≤.【解析】【分析】(1)对直线122y x =-+,分别令x=0,y=0求出相应的y ,x 的值即得点A 、C 的坐标,根据待定系数法即可求出抛物线的解析式,利用抛物线的对称性即可求出点B 的坐标; (2)过点M 作ME ⊥x 轴于点E ,交直线AC 于点F ,如图1所示.设点M 的横坐标为m ,则MF 的长可用含m 的代数式表示,然后根据S 四边形ABCM =S △ABC +S △AMC 即可得出S 四边形ABCM 关于m 的函数关系式,再利用二次函数的性质即可求出四边形ABCM 面积的最大值及点M 的坐标;(3)当m >0时,分旋转后点A '与点O '落在抛物线上时,分别画出图形如图2、图3,分别用m 的代数式表示出点A '与点O '的坐标,然后代入抛物线的解析式即可求出m 的值,进而可得m 的范围;当m <0时,用同样的方法可再求出m 的一个范围,从而可得结果.【详解】解:(1)对直线122y x =-+,当x=0时,y=2,当y=0时,x=4, ∴点A 的坐标是(0,2),点C 的坐标是(4,0),把点A 、C 两点的坐标代入抛物线的解析式,得:2214404c b c =⎧⎪⎨-⨯++=⎪⎩,解得:122b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式为211242y x x =-++, ∵抛物线的对称轴是直线1x =,C (4,0),∴点B 的坐标为(﹣2,0);∴A (0,2),B (﹣2,0),C (4,0),抛物线的解析式是211242y x x =-++; (2)过点M 作ME ⊥x 轴于点E ,交直线AC 于点F ,如图1所示.设M (m ,211242m m -++),则F (m ,122m -+), ∴221112424122m m m m MF m ⎛⎫⎛⎫=--+=-++- ⎪ ⎪⎝⎭⎭+⎝,∴S 四边形ABCM =S △ABC +S △AMC =1122BC AO MF OC ⋅+⋅ 2111624224m m ⎛⎫=⨯⨯+⨯-+⨯ ⎪⎝⎭21262m m =-++()21282m =--+,∵0<m <4,∴当m=2时,四边形ABCM 面积最大,最大值为8,此时点M 的坐标为(2,2);(3)若m >0,当旋转后点A '落在抛物线上时,如图2,线段O A ''与抛物线只有一个公共点,∵点A '的坐标是(m+2,m ),∴()()21122242m m m -++++=,解得:3m =-+3m =-;当旋转后点O '落在抛物线上时,如图3,线段O A ''与抛物线只有一个公共点, ∵点O '的坐标是(m ,m ),∴211242m m m -++=,解得:m=2或m=﹣4(舍去); ∴当m >0时,若线段O A ''与抛物线只有一个公共点,m 的取值范围是:32m -+≤≤;若m <0,当旋转后点O '落在抛物线上时,如图4,线段O A ''与抛物线只有一个公共点, ∵点O '的坐标是(m ,m ), ∴211242m m m -++=,解得:m=﹣4或m=2(舍去);当旋转后点A '落在抛物线上时,如图5,线段O A ''与抛物线只有一个公共点, ∵点A '的坐标是(m+2,m ),∴()()21122242m m m -++++=,解得: 3m =--3m =-+; ∴当m <0时,若线段O A ''与抛物线只有一个公共点,m 的取值范围是:34m --≤≤-;综上,若线段O A ''与抛物线只有一个公共点,m 的取值范围是:34m -≤≤-或32m -+≤≤.【点睛】本题是二次函数的综合题,主要考查了待定系数法求二次函数的解析式、旋转的性质、一元二次方程的解法、二次函数的图象与性质以及抛物线上点的坐标特点等知识,具有较强的综合性,属于中考压轴题,熟练掌握二次函数的图象与性质、灵活应用数形结合的思想是解题的关键.4、(2020湖北荆门).如图,抛物线215:324L y x x =--与x 轴正半轴交于点A ,与y 轴交于点B .(1)求直线AB 的解析式及抛物线顶点坐标;(2)如图1,点P 为第四象限且在对称轴右侧抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求PD BD +的最大值,并求出此时点P 的坐标; (3)如图2,将抛物线215:324L y x x =--向右平移得到抛物线L ',直线AB 与抛物线L '交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L '的解析式.【答案】(1)直线AB 的解析式为334y x =-,抛物线顶点坐标为5121,432⎛⎫- ⎪⎝⎭;(2)当134x =时,PD BD +的最大值为16932; 1357,432P ⎛⎫- ⎪⎝⎭;(3)21133242y x x =-+. 【解析】 【分析】(1)先根据函数关系式求出A 、B 两点的坐标,设直线AB 的解析式为y kx b =+,利用待定系数法求出AB 的解析式,将二次函数解析式配方为顶点式即可求得顶点坐标; (2)过点D 作DE y ⊥轴于E ,则//DE OA .求得AB=5,设点P 的坐标为2155,34244x x x x ⎛⎫⎛⎫--<< ⎪⎪⎝⎭⎝⎭,则点D 的坐标为3,34x x ⎛⎫- ⎪⎝⎭,ED=x ,证明BDE BAO ∽,由相似三角形的性质求出54BD x =,用含x 的式子表示PD ,配方求得最大值,即可求得点P 的坐标; (3)设平移后抛物线L '的解析式21121()232y x m =--,将L′的解析式和直线AB 联立,得到关于x 的方程,设()()1122,,,M x y N x y ,则12,x x 是方程2232520416x m x m ⎛⎫-++-= ⎪⎝⎭的两根,得到12324x x m ⎛⎫+=+ ⎪⎝⎭,点A 为MN 的中点,128x x +=,可求得m 的值,即可求得L′的函数解析式.【详解】(1)在215324y x x =--中, 令0y =,则2153024x x --=,解得123,42x x =-=,∴(4,0)A .令0x =,则3y =-,∴()0,3B -.设直线AB 的解析式为y kx b =+,则403k b b +=⎧⎨=-⎩,解得:343k b ⎧=⎪⎨⎪=-⎩,∴直线AB 的解析式为334y x =-. 2215151213242432y x x x ⎛⎫=--=--⎪⎝⎭, ∴抛物线顶点坐标为5121,432⎛⎫-⎪⎝⎭(2)如图,过点D 作DE y ⊥轴于E ,则//DE OA . ∵4,3OA OB ==,∴5AB =, 设点P 的坐标为2155,34244x x x x ⎛⎫⎛⎫--<< ⎪⎪⎝⎭⎝⎭, 则点D 坐标为3,34x x ⎛⎫- ⎪⎝⎭, ∴ED x =.∵//DE OA ,∴BDE BAO ∽,∴BD EDBA OA =, ∴54BD x=, ∴54BD x =.而2231513324242PD x x x x x ⎛⎫=----=-+ ⎪⎝⎭, ∴22215113113169224242432PD BD x x x x x x ⎛⎫+=-++=-+=--+⎪⎝⎭, ∵102-<,544x <<,由二次函数的性质可知:当134x =时,PD BD +的最大值为16932.的2235313513573344444432x x ⎛⎫--=⨯-⨯-=- ⎪⎝⎭, ∴1357,432P ⎛⎫-⎪⎝⎭.(3)设平移后抛物线L '的解析式21121()232y x m =--,联立23341121()232y x y x m ⎧=-⎪⎪⎨⎪=--⎪⎩,∴2311213()4232x x m -=--, 整理,得:2232520416x m x m ⎛⎫-++-= ⎪⎝⎭, 设()()1122,,,M x y N x y ,则12,x x 是方程2232520416x m x m ⎛⎫-++-= ⎪⎝⎭的两根, ∴12324x x m ⎛⎫+=+⎪⎝⎭. 而A 为MN 的中点,∴128x x +=,∴3284m ⎛⎫+= ⎪⎝⎭,解得:134m =. ∴抛物线L '的解析式2211312111332432242y x x x ⎛⎫=--=-+ ⎪⎝⎭.【点睛】本题考查二次函数的图象和性质、相似三角形的判定与性质、待定系数法求一次函数解析式,解题的关键是熟练掌握二次函数的图象和性质.5、(2020湖北荆州)如图1,在平面直角坐标系中,()()2,1,3,1A B ---,以O 为圆心,OA 的长为半径的半圆O 交AO 的延长线于C ,连接AB ,BC ,过O 作ED//BC 分别交AB 和半圆O 于E ,D ,连接OB ,CD . (1)求证:BC 是半圆O 的切线;(2)试判断四边形OBCD 的形状,并说明理由;(3)如图2,若抛物线经过点D ,且顶点为E ,求此抛物线的解析式;点P 是此抛物线对称轴上的一动点,以E ,D ,P 为顶点的三角形与OAB ∆相似,问抛物线上是否存在点Q ,使得EPQ OAB S S ∆∆=,若存在,请直接写出Q 点的横坐标;若不存在,说明理由.【答案】(1)见解析;(2)平行四边形,见解析;(3)抛物线的解析式为241()132y x =--,存在,Q 点的横坐标为236或176-或76或16- 【解析】 【分析】(1)证得OE 是△ABC 中位线,求得点E 的坐标,分别求得AB 、AC 、BC 的长,利用勾股定理的逆定理证得ABC ∆是直角三角形,从而证明结论;(2)求得,利用平行四边形的判定定理可证得四边形OBCD 是平行四边形;(3)证明Rt △ODN ~Rt △OEM ,求得点D 的坐标,利用待定系数法可求得此抛物线的解析式;分△PED ~△OAB 和△DEP ~△OAB 两种情况讨论,利用相似三角形的性质求得PE 的长,再根据三角形的面积公式即可求得Q 点的横坐标. 【详解】(1)如图1,设AB 与y 轴交于点M ,则AM=2,OM=1,AB=5,则OA=OC ===∵OE ∥BC ,∴OE 是△ABC 的中位线,∴AE=12AB=52,BC=2EO , ∴点E 的坐标为(12,1-),ME=12,OM=1,∴==,∴∵(2222225AC BC AB +=+==,ABC ∆∴是直角三角形,即BC AC ⊥,所以BC 是半圆的O 的切线; (2)四边形OBCD 是平行四边形,由图知: ∵OD ∥BC ,∴四边形OBCD 是平行四边形;(3)①由(2)知:E 为AB 的中点,过点D 作DN y ⊥轴,则DN//ME ,∴Rt △ODN ~Rt △OEM , ∴ON DN ODOM ME OE==,∴112ON DN ==∴2ON =,1DN =, ∴点D 的坐标为(1-,2),∵抛物线经过点D(1-,2),且顶点为E(12,1-), ∴设此抛物线的解析式为21()12y a x =--,则211122a ⎛⎫⋅---= ⎪⎝⎭ ∴43a =, ∴此抛物线的解析式为241()132y x =--, 即2442333y x x =--, 如图,设抛物线对称轴交AC 于F ,由(1)知:∠AOE=∠ACB=90︒,∠AEF=90︒, ∴∠OEF+∠AEO=90︒,∠A+∠AEO=90︒, ∴∠OEF=∠A ,∵以E ,D ,P 为顶点的三角形与OAB ∆相似, ∴分△PED ~△OAB 和△DEP ~△OAB 两种情况讨论,当△PED ~△OAB 时,ED=OE+OD=22+=PE EDOA AB=25=,∴32PE =, ∵EPQ OAB S S ∆∆=, 设点Q 到PE 的距离为h ,∴11h 22PE AB OM ⋅=⋅,即3h 512=⨯, ∴10h 3=,∴点Q 的横坐标为10123326+=或11017236-=-;当△DEP ~△OAB 时,ED=OE+OD=22+=PE EDAB OA=,即5PE =∴152PE =, ∵EPQ OAB S S ∆∆=,设点Q 到PE 距离为1h , ∴111h 22PE AB OM ⋅=⋅,即15h 512=⨯, ∴2h 3=, ∴点Q 的横坐标为217326+=或121236-=-; ∴符合条件的Q 点的横坐标为236或176-或76或16-. 【点睛】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,圆的切线的判定,相似三角形的性质和判定,勾股定理的逆定理,平行四边形的判定等知识点的应用,此题综合性比较强,有一定的难度,对学生提出较高的要求.注意:不要漏解,分类讨论思想的巧妙运用.6、(2020湖北十堰)已知抛物线22y ax ax c =-+过点()1,0A -和()0,3C ,与x 轴交于另一点B ,顶点为D .(1)求抛物线的解析式,并写出D 点的坐标;(2)如图1,E 为线段BC 上方的抛物线上一点,EF BC ⊥,垂足为F ,EM x ⊥轴,垂足为M ,交BC 于点G .当BG CF =时,求EFG 的面积;(3)如图2,AC 与BD 的延长线交于点H ,在x 轴上方的抛物线上是否存在点P ,使OPB AHB ∠=∠?若存在,求出点P 的坐标:若不存在,请说明理由.的【答案】(1)2y x 2x 3=-++,(1,4)D ;(2)1EFG S =;(3)存在,1(0,3),P 2P ⎝⎭,3P ⎝⎭ 【解析】【分析】(1)利用待定系数法求出a 的值即可得到解析式,进而得到顶点D 坐标;(2)先求出BC 的解析式3y x =-+,再设直线EF 的解析式为y x b =+,设点E 的坐标为()2,23m m m -++,联立方程求出点F ,G 的坐标,根据22BG CF =列出关于m 的方程并求解,然后求得G 的坐标,再利用三角形面积公式求解即可;(3)过点A 作AN ⊥HB ,先求得直线BD ,AN 的解析式,得到H ,N 的坐标,进而得到45H ︒∠=,设点()2,23p n n n -++,过点P 作PRx 轴于点R ,在x 轴上作点S 使得RS=PR ,证明OPS OPB ∽,根据相似三角形对应边成比例得到关于n 的方程,求得后即可得到点P 的坐标.详解】(1)把点A (-1,0),C (0,3)代入22y ax ax c =-+中, 203a a c c ++=⎧⎨=⎩, 解得13a c =-⎧⎨=⎩, 223y x x ∴=-++, 当12b x a=-=时,y=4, (1,4)D ∴(2)223y x x =-++令0,1,y x =∴=-或x=3(3,0)∴B设BC 的解析式为(0)y kx b k =+≠【将点(0,3),(3,0)C B 代入,得330b k b =⎧⎨+=⎩, 解得13k b =-⎧⎨=⎩, 3y x ∴=-+EF CB ⊥设直线EF 的解析式为y x b =+,设点E 的坐标为()2,23m m m -++, 将点E 坐标代入y x b =+中,得23b m m =-++,23y x m m ∴=-++233y x y x m m =-+⎧⎨=-++⎩ 22262m m x m m y ⎧-=⎪⎪∴⎨-++⎪=⎪⎩ 226,22m m m m F ⎛⎫--++∴ ⎪⎝⎭把x=m 代入3y x =-+(,3)G m m ∴-+BG CF =22BG CF ∴= 即222222(3)(3)22m m m m m m ⎛⎫⎛⎫---+-=+ ⎪ ⎪⎝⎭⎝⎭解得m=2或m=-3∵点E 是BC 上方抛物线上的点∴m=-3舍去∴点(2,3),(1,2)(2,1)E F G ,==EFFG ==112EFG S ∴== (3)过点A 作AN ⊥HB ,∵点(1,4),(3,0)D B26DB y x ∴=-+∵点(1,0)A -,点(0,3)C33AC y x ∴=+326y x y x =+⎧⎨=-+⎩ 35245x y ⎧=⎪⎪∴⎨⎪=⎪⎩324,55H ⎛⎫∴ ⎪⎝⎭设12AN y x b =+,把(-1,0)代入,得b=12 1122y x ∴=+ 112226y x y x ⎧=+⎪⎨⎪=-+⎩ 11585x y ⎧=⎪⎪∴⎨⎪=⎪⎩ 118,55N ⎛⎫∴ ⎪⎝⎭222118155AN ⎛⎫⎛⎫∴=++ ⎪ ⎪⎝⎭⎝⎭ 2216855⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 22258516HN ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ AN HN ∴=45H ︒∴∠=设点()2,23p n n n -++过点P 作PR ⊥x 轴于点R ,在x 轴上作点S 使得RS=PR45RSP ︒∴∠=且点S 的坐标为()233,0n n -++ 若45OPB AHB ︒∠=∠=在OPS 和OPB △中,POS POB OSP OPB∠=∠⎧⎨∠=⎩ OPS OPB ∴∽OP OS OB OP∴= 2OP OB OS ∴=⋅2222(1)(3)323)n n n n n ∴++-=⋅-++(0n ∴=或n =1(0,3)P ∴2P ⎝⎭31522P ⎛-- ⎝⎭【点睛】本题考查的是二次函数的综合,涉及到的知识点较多,运算较复杂,第3问的解题关键在于添加适当的辅助线,利用数形结合的思想列出方程求解.7、(2020湖北鄂州)如图,抛物线212y x bx c =++与x 轴交于A 、B 两点(点A 在点B 左边),与y 轴交于点C .直线122y x =-经过B 、C 两点.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,过点P 且垂直于x 轴的直线与直线BC 及x 轴分别交于点D 、M .PN BC ⊥,垂足为N .设(),0M m .①点P 在抛物线上运动,若P 、D 、M 三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m 的值;②当点P 在直线BC 下方的抛物线上运动时,是否存在一点P ,使PNC △与AOC △相似.若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)213222y x x =--;(2)-2,12-,1;(3)存在,(3,-2) 【解析】【分析】 (1)根据直线122y x =-经过B 、C 两点求出B 、C 两点的坐标,将B 、C 坐标代入抛物线212y x bx c =++可得答案; (2)①由题意得P (m ,213222m m --),D (m ,122m -);根据P 、D 、M 三点中恰有一点是其它两点所连线段的中点列式计算即可求得m 的值;②先证明CBO AOC △∽△,得出ACO=ABC ∠∠,再根据PNC △与AOC △相似得出ACO=PCN ∠∠,则ABC=PCN ∠∠,可得出AB//PC ,求出点P 的纵坐标,代入抛物线213222y x x =--,即可求得点P 的横坐标. 【详解】解:(1)由直线122y x =-经过B 、C 两点得B (4,0),C (0,-2) 将B 、C 坐标代入抛物线得2840c b c =-⎧⎨++=⎩,解得322b c ⎧=-⎪⎨⎪=-⎩, ∴抛物线的解析式为:213222y x x =--; (2)①∵PN BC ⊥,垂足为N . (),0M m∴P (m ,213222m m --),D (m ,122m -), 分以下几种情况:M 是PD 的中点时,MD=PM ,即0-(122m -)=213222m m -- 解得12m =-,24m =(舍去);P 是MD 的中点时,MD=2MP ,即122m -=2(213222m m --) 解得112m =-,24m =(舍去);D 是MP 的中点时,2MD=MP ,即213222m m --=2(122m -) 解得11m =,24m =(舍去);∴符合条件的m 的值有-2,12-,1;②∵抛物线的解析式为:213222y x x =--, ∴A (-1,0),B (4,0),C (0,-2)∴AO=1,CO=2,BO=4, ∴AO CO =CO BO,又AOC=COB ∠∠=90°, ∴AOC COB △∽△,∴ACO=ABC ∠∠,∵PNC △与AOC △相似∴ACO=PCN ∠∠,∴ABC=PCN ∠∠,∴ AB//PC ,∴点P 的纵坐标是-2,代入抛物线213222y x x =--,得 2322122x x --=- 解得:10x =(舍去),23x =,∴点P 的坐标为:(3,-2)【点睛】本题考查二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定和性质;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式;会利用分类讨论的思想解决数学问题.8、(2020湖北武汉)将抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C .(1)直接写出抛物线1C ,2C 的解析式;(2)如图(1),点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,OAB 是以OB 为斜边的等腰直角三角形,求点A 的坐标;(3)如图(2),直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,M 为线段EF 的中点;直线4y x k=-与抛物线2C 交于G ,H 两点,N 为线段GH 的中点.求证:直线MN 经过一个定点.【答案】(1)抛物线1C 的解析式为: y=x 2-4x-2;抛物线2C 的解析式为:y=x 2-6;(2)点A 的坐标为(5,3)或(4,-2);(3)直线MN 经过定点(0,2)【解析】【分析】(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可;(2)先判断出点A 、B 、O 、D 四点共圆,再根据同弧所对的圆周角相等得到∠BDA=∠BOA=45°,从而证出DAC △是等腰直角三角形.设点A 的坐标为(x ,x 2-4x-2),把DC 和AC 用含x 的代数式表示出来,利用DC=AC 列方程求解即可,注意有两种情况; (3)根据直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,联立两个解析式,得到关于x 的一元二次方程,根据根与系数的关系求出点M 的横坐标,进而求出纵坐标,同理求出点N 的坐标,再用待定系数法求出直线MN 的解析式,从而判断直线MN 经过的定点即可.【详解】解:(1)∵抛物线2:(2)C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C ,∴抛物线1C 的解析式为:y=(x-2)2-6,即y=x 2-4x-2,抛物线2C 的解析式为:y=(x-2+2)2-6,即y=x 2-6.(2)如下图,过点A 作AC ⊥x 轴于点C ,连接AD ,∵OAB是等腰直角三角形,∴∠BOA =45°,又∵∠BDO=∠BAO=90°,∴点A、B、O、D四点共圆,∴∠BDA=∠BOA=45°,∴∠ADC=90°-∠BDA=45°,△是等腰直角三角形,∴DAC∴DC=AC.∵点A在抛物线1C对称轴l右侧上,点B在对称轴l上,C的对称轴为x=2,∴抛物线1设点A的坐标为(x,x2-4x-2),∴DC=x-2,AC= x2-4x-2,∴x-2= x2-4x-2,解得:x=5或x=0(舍去),∴点A的坐标为(5,3);同理,当点B、点A在x轴的下方时,x-2= -(x2-4x-2),x=4或x=-1(舍去),∴点A的坐标为(4,-2),综上,点A的坐标为(5,3)或(4,-2).(3)∵直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,∴26y kxy x =⎧⎨=-⎩,∴x 2-kx-6=0,设点E 的横坐标为x E ,点F 的横坐标为x F ,∴x E +x F =k ,∴中点M 的横坐标x M =2E F x x +=2k , 中点M 的纵坐标y M =kx=22k , ∴点M 的坐标为(2k ,22k ); 同理可得:点N 的坐标为(2k -,28k), 设直线MN 的解析式为y=ax+b (a ≠0),将M (2k ,22k )、N (2k -,28k )代入得: 222282k k a b a b k k ⎧=+⎪⎪⎨⎪=-+⎪⎩, 解得:242k a k b ⎧-=⎪⎨⎪=⎩,∴直线MN 的解析式为y= 24k k-·x+2(0k ≠), 不论k 取何值时(0k ≠),当x=0时,y=2,∴直线MN 经过定点(0,2).【点睛】本题考查二次函数综合应用,熟练掌握图象平移的规律、判断点A 、B 、O 、D 四点共圆的方法、用待定系数法求函数解析式的步骤是解题的关键.9、(2020湖北恩施)如图,抛物线214y x bx c =-++经过点()6,0C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC 逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标.(3)MPC 在(2)的旋转变换下,若PC =.①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.【答案】(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM =1-或CM =1+ 【解析】【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45°,因此设直线EF 的解析式为y=x+b ,设点M 的坐标为(m ,0),推出点F (m ,6-m ),直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,设点M 的坐标为(m ,0),由PC =EHM ≌△MGP ,得到点E 的坐标为(m-1,5-m ),再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把E (m-1,5-m )代入抛物线解析式,解出m 的值,进而求出CM 的长.【详解】(1)∵点()6,0C 在抛物线上, ∴103664b c =-⨯++, 得到6=9b c +,又∵对称轴2x =, ∴2122()4b b x a =-=-=⨯-, 解得1b =,∴3c =, ∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如下图:∵抛物线的解析式为2134y x x =-++,对称轴为2x =,()6,0C∴点A (2,0),顶点B (2,4),∴AB=AC=4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将MPC 逆时针旋转90︒得到△MEF ,∴FM=CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6-m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y=x+b ,把点F (m ,6-m )代入得:6-m=m+b ,解得:b=6-2m ,直线EF 的解析式为y=x+6-2m ,∵直线EF 与抛物线2134y x x =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵PC =2)知∠BCA=45°,∴PG=GC=1,∴点G (5,0),设点M 坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF ,∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°,∴∠HEM=∠GMP ,在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EHM ≌△MGP (AAS ),∴EH=MG=5-m ,HM=PG=1,∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴又∵D 为线段BC 的中点,B (2,4),C (6,0),∴点D (4,2),∴∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED .②当点E 在(1)所求的抛物线2134y x x =-++上时, 把E (m-1,5-m )代入,整理得:m 2-10m+13=0,解得:m=5+m=5-∴CM =1或CM =1+.【点睛】本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键.10、(2020湖北随州)如图,在平面直角坐标系中,抛物线21y ax bx =++的对称轴为直线32x =,其图象与x 轴交于点A 和点(4,0)B ,与y 轴交于点C .(1)直接写出抛物线的解析式和CAO ∠的度数;(2)动点M ,N 同时从A 点出发,点M 以每秒3个单位的速度在线段AB 上运动,点N个单位的速度在线段AC 上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为(0)t t >秒,连接MN ,再将线段MN 绕点M 顺时针旋转90︒,设点N 落在点D 的位置,若点D 恰好落在抛物线上,求t 的值及此时点D 的坐标;(3)在(2)的条件下,设P 为抛物线上一动点,Q 为y 轴上一动点,当以点C ,P ,Q 为顶点的三角形与MDB △相似时,请直接写出....点P 及其对应的点Q 的坐标.(每写出一组正确的结果得1分,至多得4分)【答案】(1)213144y x x =-++,45CAO ∠=︒;(2)t=34,D 点坐标为32,2⎛⎫ ⎪⎝⎭; (3)13495,,0,26P Q ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;223535,,0,222P Q ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;333171,,0,26P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭;443371,,0,222P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭;552591257,,0,3918P Q ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭; 6625911151,,0,3999P Q ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;7771959,,0,3918P Q ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭; 88719251,,0,3999P Q ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭994139373,,0,11121242P Q ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭; 101041391687,,0,11121363P Q ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;111125171617,,0,11121242P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; 1212251711613,,0,11121363P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. 【解析】【分析】(1)根据抛物线的对称轴以及点B 坐标可求出抛物线表达式;(2)过点N 作NE AB ⊥于E ,过点D 作DF AB ⊥于F ,证明NEM MFD △≌△,得到,NE MF EM DF ==,从而得到点D 坐标,代入抛物线表达式,求出t 值即可; (3)设点P (m ,213144m m -++),当点P 在y 轴右侧,点Q 在y 轴正半轴,过点P 作PR ⊥y 轴于点R ,过点D 作DS ⊥x 轴于点S ,根据△CPQ ∽△MDB ,得到CP PR MD DS=,从而求出m 值,再证明△CPQ ∽△MDB ,求出CQ 长度,从而得到点Q 坐标,同理可求出其余点P 和点Q 坐标.【详解】解:(1)∵抛物线21y ax bx =++的对称轴为直线32x =, ∴322b a -=,则b=-3a , ∵抛物线经过点B (4,0),∴16a+4b+1=0,将b=-3a 代入,解得:a=14-,b=34, 抛物线的解析式为:213144y x x =-++, 令y=0,解得:x=4或-1,令x=0,则y=1,∴A (-1,0),C (0,1),∴tan ∠CAO=1CO AO=, ∴45CAO ∠=︒;(2)由(1)易知()1,0A -,过点N 作NE AB ⊥于E ,过点D 作DF AB ⊥于F ,∵∠DMN=90°,∴∠NME+∠DMF=90°,又∠NME+∠ENM=90°,∴∠DMF=∠ENM ,NM DM =,90DMN ∠=︒ ,NEM MFD ∴≌(AAS ),,NE MF EM DF ∴==,由题意得:45CAO ∠=︒,AN =,3AM t =,,2AE CE t EM AM AE t ∴===-=,2,,41DF t MF t OF t ∴===-,()41,2D t t ∴- ,213(41)(41)1244t t t ∴--+-+=,又0t >, 故可解得:t=34或0(舍), 经检验,当t=34时,点,M N 均未到达终点,符合题意, 此时D 点坐标为32,2⎛⎫ ⎪⎝⎭;(3)由(2)可知:D 32,2⎛⎫ ⎪⎝⎭,t=34时,M (54,0),B (4,0),C (0,1), 设点P (m ,213144m m -++), 如图,当点P 在y 轴右侧,点Q 在y 轴正半轴,过点P 作PR ⊥y 轴于点R ,过点D 作DS ⊥x 轴于点S , 则PR=m ,DS=32, 若△CPQ ∽△MDB , ∴CP PR MD DS =,则2222CP PR MD DS=, 22221344459164m m m m ⎛⎫+-+ ⎪⎝⎭=,解得:m=0(舍)或1或5(舍), 故点P 的坐标为:31,2⎛⎫ ⎪⎝⎭, ∵△CPQ ∽△MDB ,∴CP CQ PR MD MB DS==, 当点P 31,2⎛⎫ ⎪⎝⎭时,111342CQ=,解得:CQ=116,1117166+=, ∴点Q 坐标为(0,176), 3171,,0,26P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭;同理可得:点P 和点Q 的坐标为:13495,,0,26P Q ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;223535,,0,222P Q ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭; 333171,,0,26P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭;443371,,0,222P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; 552591257,,0,3918P Q ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;6625911151,,0,3999P Q ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;7771959,,0,3918P Q ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭;88719251,,0,3999P Q ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭994139373,,0,11121242P Q ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;101041391687,,0,11121363P Q ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭;111125171617,,0,11121242P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭;1212251711613,,0,11121363P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题是二次函数综合题,考查了二次函数的图像和性质,二次函数表达式,全等三角形的判定和性质,相似三角形的性质,难度较大,计算量较大,解题时注意结合函数图像,找出符合条件的情形.11、(2020湖北孝感)在平面直角坐标系中,已知抛物线()24460y ax ax a a =++->与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D . (1)当6a =时,直接写出点A ,B ,C ,D 的坐标:A ______,B ______,C ______,D ______;(2)如图1,直线DC 交x 轴于点E ,若4tan 3AED =∠,求a 的值和CE 的长; (3)如图2,在(2)的条件下,若点N 为OC 的中点,动点P 在第三象限的抛物线上,过点P 作x 轴的垂线,垂足为Q ,交AN 于点F ;过点F 作FH DE ⊥,垂足为H .设点P 的横坐标为t ,记f FP FH =+.①用含t 的代数式表示f ;②设()50t m m -<≤<,求f 的最大值.【答案】(1)()3,0-,()1,0-,()0,18,()2,6--;(2)23;256;(3)①228433f t t =--+;②263. 【解析】【分析】(1)求出0y =时,x 的值可得点A 、B 的坐标,求出0x =时,y 的值可得点C 的坐标,将二次函数的解析式化为顶点式即可得点D 的坐标;(2)先求出顶点D 的坐标,从而可得DK 、OK 的长,再利用正切三角函数可得EK 、OE 、OC 的长,从而可得出点C 的坐标,然后将点C 的坐标代入二次函数的解析式可得a 的值,利用勾股定理可求出CE 的长;(3)①如图,先利用待定系数法求出直线AN 的解析式,从而可得点F 的坐标,由此可得出PF 的长,再利用待定系数法求出直线CE 的解析式,从而可得点J 的坐标,由此可得出FJ 的长,然后根据相似三角形的判定与性质可得FH FJ OE CE=,从而可得FH 的长,最后根据f 的定义即可得;②先将f 的表达式化为顶点式,从而得出其增减性,再利用二次函数的性质即可得.【详解】(1)当6a =时,262418y x x =++当0y =时,2624180x x ++=,解得1x =-或3x =-则点A 的坐标为(3,0)A -,点B 的坐标为(1,0)B -当0x =时,18y =则点C 的坐标为(0,18)C将262418y x x =++化成顶点式为26()62y x =+-则点D 的坐标为(2,6)D --故答案为:()3,0-,()1,0-,()0,18,()2,6--;(2)如图,作DK x ⊥轴于点K将2446y ax ax a =++-化成顶点式为2(2)6y a x =+- 则顶点D 的坐标为(2,6)D --∴6DK =,2OK =在Rt DKE 中,tan DK AED EK ∠=,即643EK = 解得92EK = 95222K OE EK O =--=∴= 在Rt COE △中,tan OC AED OE =∠,即4532OC = 解得103OC =。
2021年湖北省各市中考数学真题汇编压轴题:《圆》及答案
2021年湖北省各市中考数学真题汇编压轴题:《圆》1.(2021•孝感)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.2.(2021•襄阳)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D,过D作直线DG∥BC.(1)求证:DG是⊙O的切线;(2)若DE=6,BC=6,求优弧的长.3.(2021•黄石)如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.4.(2021•荆门)已知锐角△ABC的外接圆圆心为O,半径为R.(1)求证:=2R;(2)若△ABC中∠A=45°,∠B=60°,AC=,求BC的长及sin C的值.5.(2021•荆州)如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,在射线l 上取点F,使FC=FD.(1)求证:FC是⊙O的切线;(2)当点E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若tan∠ABC=,且AB=20,求DE的长.6.(2021•咸宁)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.7.(2021•宜昌)已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF 的垂线交DC于点H,以EF为直径作半圆O.(1)填空:点A(填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tan∠AEF的值.8.(2021•十堰)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.9.(2021•随州)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为3,sin∠CBF=,求BC和BF的长.10.(2021•湖北)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.11.(2021•宜昌)如图,点O是线段AH上一点,AH=3,以点O为圆心,OA的长为半径作⊙O,过点H作AH的垂线交⊙O于C,N两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作▱ABCD.(1)求证:AD是⊙O的切线;(2)若OH=AH,求四边形AHCD与⊙O重叠部分的面积;(3)若NH=AH,BN=,连接MN,求OH和MN的长.12.(2021•咸宁)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.13.(2021•鄂州)如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O 于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB=,BC=1,求PO的长.参考答案1.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠ADE=∠BDA,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.2.(1)证明:连接OD交BC于H,连接OB、OC,如图,∵点E是△ABC的内心,即∠BAD=∠CAD,∴∠BOD=∠COD,∴=,∴OD⊥BC,BH=CH,∵DG∥BC,∴OD⊥DG,∴DG是⊙O的切线;(2)解:连接BD、OB,如图,∵点E是△ABC的内心,∴∠ABE=∠CBE,∵∠DBC=∠BAD,∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,∴DB=DE=6,∵BH=BC=3,在Rt△BDH中,sin∠BDH===,∴∠BDH=60°,而OB=OD,∴△OBD为等边三角形,∴∠BOD=60°,OB=BD=6,∴∠BOC=120°,∴优弧的长==8π.3.解:(1)连接OC,如右图所示,∵AB是⊙O的直径,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF;(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△DCB∽△DAC,∴,∴,∴DA=2,∴AB=AD﹣BD=2﹣1=1,设BC=a,AC=a,由勾股定理可得:,解得:a=,∴.4.解:(1)如图1,连接AO并延长交⊙O于D,连接CD,则∠ACD=90°,∠ABC=∠ADC,∵sin∠ABC=sin∠ADC=,∴=2R;(2)∵=2R,同理可得:==2R,∴2R==2,∴BC=2R•sin A=2sin45°=,如图2,过C作CE⊥AB于E,∴BE=BC•cos B=cos60°=,AE=AC•cos45°=,∴AB=AE+BE=,∵AB=2R•sin C,∴sin C==.5.解:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD∴∠FCD=∠FDC∵∠FDC=∠BDP∴∠OCB+∠FCD=90°∴OC⊥FC∴FC是⊙O的切线.(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②若tan∠ABC=,且AB=20,求DE的长.∵=tan∠ABC=,设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=202,解得k=4,∴AC=12,BC=16,∵点E是的中点,∴OE⊥BC,BH=CH=8,∴OE×BH=OB×PE,即10×8=10PE,解得:PE=8,由勾股定理得OP===6,∴BP=OB﹣OP=10﹣6=4,∵=tan∠ABC=,即DP=BP==3∴DE=PE﹣DP=8﹣3=5.6.解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵CD=2.5,∴AB=2CD=5,∴BC==4,∵CD为⊙O的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=2,∵sin∠ABC=,即=,∴FG=.7.解:(1)连接AO,∵∠EAF=90°,O为EF中点,∴AO=EF,∴点A在⊙O上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FH,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=FQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.8.解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BAC.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.9.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过点C作CH⊥BF于H.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=3,∴BE=AB•sin∠1=3×=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,∵sin∠CBF==,∴CH=2,∵CH∥AB,∴=,即=,∴CF=6,∴AF=AC+CF=9,∴BF==6.10.解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.11.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC =90°,∴∠HAD =90°,即OA ⊥AD ,又∵OA 为半径,∴AD 是⊙O 的切线;(2)解:如右图,连接OC ,∵OH =OA ,AH =3,∴OH =1,OA =2,∵在Rt △OHC 中,∠OHC =90°,OH =OC , ∴∠OCH =30°,∴∠AOC =∠OHC +∠OCH =120°,∴S 扇形OAC ==, ∵CH ==, ∴S △OHC =×1×=,∴四边形ABCD 与⊙O 重叠部分的面积=S 扇形OAC +S △OHC =+;(3)设⊙O 半径OA =r =OC ,OH =3﹣r , 在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3﹣r )2+12=r 2,∴r =,则OH =,在Rt △ABH 中,AH =3,BH =+1=,则AB =, 在Rt △ACH 中,AH =3,CH =NH =1,得AC =, 在△BMN 和△BCA 中,∠B =∠B ,∠BMN =∠BCA ,∴△BMN∽△BCA,∴=即==,∴MN=,∴OH=,MN=.12.解:(1)证明:∵四边形ABCD为圆内接四边形,∴∠A+∠C=180°,∠ABC+∠ADC=180°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD,∴四边形ABCD是等补四边形;(2)AC平分∠BCD,理由如下:如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,则∠AEB=∠AFD=90°,∵四边形ABCD是等补四边形,∴∠B+∠ADC=180°,又∠ADC+∠ADF=180°,∴∠B=∠ADF,∵AB=AD,∴△ABE≌△ADF(AAS),∴AE=AF,∴AC是∠BCF的平分线,即AC平分∠BCD;(3)如图3,连接AC,∵四边形ABCD是等补四边形,∴∠BAD+∠BCD=180°,又∠BAD+∠EAD=180°,∴∠EAD=∠BCD,∵AF平分∠EAD,∴∠FAD=∠EAD,由(2)知,AC平分∠BCD,∴∠FCA=∠BCD,∴∠FCA=∠FAD,又∠AFC=∠DFA,∴△ACF∽△DAF,∴,即,∴DF=5﹣5.13.(1)证明:连结OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵PA为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)证明:连结AE,∵PA为⊙O的切线,∴∠PAE+∠OAE=90°,∵AD⊥ED,∴∠EAD+∠AED=90°,∵OE=OA,∴∠OAE=∠AED,∴∠PAE=∠DAE,即EA平分∠PAD,∵PA、PB为⊙O的切线,∴PD平分∠APB∴E为△PAB的内心;(3)解:∵∠PAB+∠BAC=90°,∠C+∠BAC=90°,∴∠PAB=∠C,∴cos∠C=cos∠PAB=,在Rt△ABC中,cos∠C===,∴AC=,AO=,∵△PAO∽△ABC,∴,∴PO===5.。
【中考冲刺】2021年湖北省宜昌市中考数学模拟试卷(附答案)
(2)随着市场需求不断变化,经营策略也随之调整.2017年,该公司将每份 套餐的利润增加到 元,每份 套餐的利润不变.经核算,两种套餐在这一年的销售总量与2016年相同,其中 套餐的销售量增加 ,两种套餐的总利润增加 万元.
①求2017年每种套餐的销售量;
②由于 套餐的需求量逐年上涨,而原材料供应不足,因此,2018年该公司将每份 套餐的利润在2017年的基础上增加 ,2019年在2018年的基础上又增加 、若 套餐在近三年销售量不变的情况下,仅2019年一年就获利 万元,求 的值.
A. B. C. D.
11.如图,抛物线 与直线 的交点为 .当 时, 的取值范围是()
A. B.
C. 或 D. 或
二、填空题
12.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,则指针停止后落在黄色区域的概率是_____.
13.已知 是关于 的一元二次方程 的一个根,则 的值是_____.
此时抛物线l与线段oa有两个交点分别为答案第22页总22点睛本题考查直线与抛物线参数问题掌握先确定直线过边界点再确定范围利用平行x纵坐标相同利用mn对称性设出坐标代入抛物线确定开口方向与大小利用直线ab的特征构造点e的函数利用配方是关键确定抛物线与oa有交点讨论抛物线过o与过a情形结合此时m的方程可解决问题
(1)填空: (______,______);当直线 与正方形 没有交点时, 的取值范围是______;
(2)当 时,已知抛物线 顶点 在直线 上,设抛物线与直线 的另一个交点为 ,过 作 轴交抛物线于另一点 ,若 ,求 的值;
(3)在(2)的条件下,抛物线 与边 所在的直线交于点 .
2021年湖北省宜昌市中考数学试卷(附答案详解)
2021年湖北省宜昌市中考数学试卷一、选择题(本大题共11小题,共33.0分)1.(2021·湖北省宜昌市·历年真题)−2021的倒数是()A. 2021B. −2021C. 12021D. −120212.(2021·湖北省宜昌市·历年真题)下列四幅图案是四所大学校徽的主体标识,其中是中心对称图形的是()A. B.C. D.3.(2021·湖北省宜昌市·历年真题)2021年5月15日07时18分,“天问一号”火星探测器成功登陆火星表面,开启了中国人自主探测火星之旅.地球与火星的最近距离约为5460万公里.“5460万”用科学记数法表示为()A. 5.46×102B. 5.46×103C. 5.46×106D. 5.46×1074.(2021·湖北省宜昌市·历年真题)如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC=60°,∠EFD=90°,∠DEF=45°,AB//DE,则∠AFD的度数是()A. 15°B. 30°C. 45°D. 60°5.(2021·湖北省宜昌市·历年真题)下列运算正确的是()A. x3+x3=x6B. 2x3−x3=x3C. (x3)2=x5D. x3⋅x3=x96. (2021·湖北省宜昌市·历年真题)在六张卡片上分别写有6,−227,3.1415,π,0,√3六个数,从中随机抽取一张,卡片上的数为无理数的概率是( )A. 23B. 12C. 13D. 167. (2021·湖北省宜昌市·历年真题)某气球内充满了一定质量m 的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m 3)的反比例函数:p =mV ,能够反映两个变量p 和V 函数关系的图象是( )A.B.C.D.8. (2021·湖北省宜昌市·历年真题)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x 人,物价为y 钱,下列方程组正确的是( )A. {y =8x −3y =7x +4B. {y =8x +3y =7x +4C. {y =8x −3y =7x −4D. {y =8x +3y =7x −49. (2021·湖北省宜昌市·历年真题)如图,△ABC 的顶点是正方形网格的格点,则cos∠ABC 的值为( )A. √23 B. √22C. 43D. 2√2310. (2021·湖北省宜昌市·历年真题)如图,C ,D 是⊙O 上直径AB 两侧的两点,设∠ABC =25°,则∠BDC =( )A. 85°B. 75°C. 70°D. 65°11.(2021·湖北省宜昌市·历年真题)从前,古希腊一位庄园主把一块边长为a米(a>6)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A. 没有变化B. 变大了C. 变小了D. 无法确定二、填空题(本大题共4小题,共12.0分)12.(2021·湖北省宜昌市·历年真题)用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km气温的变化量为−6℃,攀登2km后,气温下降______ ℃.13.(2021·湖北省宜昌市·历年真题)如图,在平面直角坐标系中,将点A(−1,2)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标是______ .14.(2021·湖北省宜昌市·历年真题)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是______ .(填“黑球”或“白球”)15.(2021·湖北省宜昌市·历年真题)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为______ 平方厘米.(圆周率用π表示)三、解答题(本大题共9小题,共75.0分)16.(2021·湖北省宜昌市·历年真题)先化简,再求值:2x2−1÷1x+1−1x−1,从1,2,3这三个数中选择一个你认为适合的x代入求值.17.(2021·湖北省宜昌市·历年真题)解不等式组{x−3(x−2)≥4 2x−13≤x+12.18.(2021·湖北省宜昌市·历年真题)如图,在△ABC中,∠B=40°,∠C=50°.(1)通过观察尺规作图的痕迹,可以发现直线DF是线段AB的______ ,射线AE是∠DAC的______ ;(2)在(1)所作的图中,求∠DAE的度数.19.(2021·湖北省宜昌市·历年真题)国家规定“中小学生每天在校体育活动时间不低于1h”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5ℎB组:0.5ℎ≤t<1ℎC组:1ℎ≤t<1.5ℎD组:t≥1.5ℎ请根据上述信息解答下列问题:(1)本次调查的人数是______ 人;(2)请根据题中的信息补全频数分布直方图;(3)D组对应扇形的圆心角为______ °;(4)本次调查数据的中位数落在______ 组内;(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.20.(2021·湖北省宜昌市·历年真题)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.x(单位:kg)表示购买苹果的重量,y(单位:元)表示付款金额.(1)文文购买3kg苹果需付款______ 元;购买5kg苹果需付款______ 元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖,文文如果要购买10kg苹果,请问她在哪个超市购买更划算?21.(2021·湖北省宜昌市·历年真题)如图,在菱形ABCD中,O是对角线BD上一点(BO>DO),OE⊥AB,垂足为E,以OE为半径的⊙O分别交DC于点H,交EO的延长线于点F,EF与DC交于点G.(1)求证:BC是⊙O的切线;(2)若G是OF的中点,OG=2,DG=1.①求HE⏜的长;②求AD的长.22.(2021·湖北省宜昌市·历年真题)随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌更节水的灌溉方式,喷灌和滴灌时每亩用水量分别是漫灌时的30%和20%.去年,新丰收公司用各100亩的三块试验田分别采用喷灌、滴灌和漫灌的灌溉方式,共用水15000吨.(1)请问用漫灌方式每亩用水多少吨?去年每块试验田各用水多少吨?(2)今年该公司加大对农业灌溉的投入,喷灌和滴灌试验田的面积都增加了m%,漫灌试验田的面积减少了2m%.同时,该公司通过维修灌溉输水管道,使得三种灌溉方式下的每亩用水量都进一步减少了m%.经测算,今年的灌溉用水量比去年减少9m%,求m的值.5(3)节水不仅为了环保,也与经济收益有关系.今年,该公司全部试验田在灌溉输水管道维修方面每亩投入30元,在新增的喷灌、滴灌试验田添加设备所投入经费为每亩100元,在(2)的情况下,若每吨水费为2.5元,请判断,相比去年因用水量减少所节省的水费是否大于今年的以上两项投入之和?23.(2021·湖北省宜昌市·历年真题)如图,在矩形ABCD中,E是边AB上一点,BE=BC,EF⊥CD,垂足为F.将四边形CBEF绕点C顺时针旋转α(0°<α<90°),得到四边形CB′E′F′,B′E′所在的直线分别交直线BC于点G,交直线AD于点P,交CD于点K.E′F′所在的直线分别交直线BC于点H,交直线AD于点Q,连接B′F′交CD于点O.(1)如图1,求证:四边形BEFC是正方形;(2)如图2,当点Q和点D重合时.①求证:GC=DC;②若OK =1,CO =2,求线段GP 的长;(3)如图3,若BM//F′B′交GP 于点M ,tan∠G =12,求S △GMBS△CF′H的值.24. (2021·湖北省宜昌市·历年真题)在平面直角坐标系中,抛物线y 1=−(x +4)(x −n)与x 轴交于点A 和点B(n,0)(n ≥−4),顶点坐标记为(ℎ1,k 1).抛物线y 2=−(x +2n)2−n 2+2n +9的顶点坐标记为(ℎ2,k 2). (1)写出A 点坐标;(2)求k 1,k 2的值(用含n 的代数式表示) (3)当−4≤n ≤4时,探究k 1与k 2的大小关系;(4)经过点M(2n +9,−5n 2)和点N(2n,9−5n 2)的直线与抛物线y 1=−(x +4)(x −n),y 2=−(x +2n)2−n 2+2n +9的公共点恰好为3个不同点时,求n 的值.答案和解析1.【答案】D【知识点】倒数【解析】解:−2021的倒数是−1.2021故选:D.根据乘积是1的两个数互为倒数判断即可.此题主要考查了倒数,正确掌握相关定义是解题关键.2.【答案】C【知识点】中心对称图形【解析】解:A.不是中心对称图形,故本选项不合题意;B.不是中心对称图形,故本选项不合题意;C.是中心对称图形,故本选项符合题意;D.不是中心对称图形,故本选项不合题意.故选:C.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.据此判断即可.本题考查了中心对称图形的概念,熟记定义是解答本题的关键.3.【答案】D【知识点】科学记数法-绝对值较大的数【解析】解:5460万=54600000=5.46×107,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【知识点】平行线的性质【解析】解:如图,∵∠ACB=90°,∠ABC=60°,∴∠A=180°−∠ACB−∠ABC=180°−90°−60°=30°,∵∠EFD=90°,∠DEF=45°,∴∠D=180°−∠EFD−∠DEF=180°−90°−45°=45°,∵AB//DE,∴∠1=∠D=45°,∴∠AFD=∠1−∠A=45°−30°=15°,故选:A.利用三角形的内角和定理可得∠A=30°,∠D=45°,由平行线的性质定理可得∠1=∠D=45°,利用三角形外角的性质可得结果.本题主要考查了三角形的内角和定理,平行线的性质定理和外角的性质,求出∠A,∠D 的度数是解本题的关键.5.【答案】B【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】解:A.x3+x3=2x3,故本选项不合题意;B.2x3−x3=x3,故本选项符合题意;C.(x3)2=x6,故本选项不合题意;D.x3⋅x3=x6,故本选项不合题意;故选:B.分别根据合并同类项法则,幂的乘方运算法则以及同底数幂的乘法法则逐一判断即可;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方,底数不变,指数相乘;同底数幂相乘,底数不变,指数相加.本题考查了合并同类项,同底数幂的乘法以及幂的乘方,熟记相关运算法则是解答本题的关键.6.【答案】C【知识点】无理数、概率公式【解析】解:∵六张卡片上分别写有6,−227,3.1415,π,0,√3六个数,无理数的是π,√3,∴从中任意抽取一张卡片上的数为无理数的概率是:26=13.故选:C .先找出无理数,再利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 7.【答案】B【知识点】反比例函数的应用【解析】解:∵气球内气体的气压p(单位:kPa)是气体体积V(单位:m 3)的反比例函数:p =mV (V,p 都大于零),∴能够反映两个变量p 和V 函数关系的图象是:.故选:B .直接利用反比例函数的性质,结合p ,V 的取值范围得出其函数图象分布在第一象限,即可得出答案.此题主要考查了反比例函数的应用,正确掌握反比例函数图象分布规律是解题关键. 8.【答案】A【知识点】由实际问题抽象出二元一次方程组、数学常识【解析】解:设有x 人,买此物的钱数为y ,由题意得:{y =8x −3y =7x +4, 故选:A .设有x 人,买此物的钱数为y ,根据关键语句“人出八,盈三;人出七,不足四”列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.9.【答案】B【知识点】锐角三角函数的定义、解直角三角形【解析】解:法一、如图,在Rt△ABD中,∠ADB=90°,AD=BD=3,∴AB=√AD2+BD2=√32+32=3√2,∴cos∠ABC=BDAB =33√2=√22.故选:B.法二、在Rt△ABD中,∠ADB=90°,AD=BD=3,∴∠ABD=∠BAD=45°,∴cos∠ABC=cos45°=√22.故选:B.由图可知,可把∠ABC放在Rt△ABD中,利用勾股定理可求出斜边AB的长,再利用余弦的定义可得cos∠ABC=BDAB =33√2=√22.本题主要考查勾股定理,锐角三角函数的定义等内容,题目比较简单,找到角所在的直角三角形是解题关键.10.【答案】D【知识点】圆周角定理【解析】解:连接OC,如图,∵∠ABC=25°,∴∠AOC=2∠ABC=2×25°=50°,∴∠BOC=180°−∠AOC=180°−50°=30°,∴∠BDC=12∠BOC=12×130°=65°.故选:D.连接OC,根据圆周角定理可得∠AOC的度数,再根据平角的性质可得∠BOC的度数,再根据圆周角定理即可求出∠BDC的度数.本题主要考查了圆周角定理,熟练应用圆周角定理进行求解是解决本题的关键.11.【答案】C【知识点】平方差公式的几何背景【解析】解:矩形的面积为(a+6)(a−6)=a2−36,∴矩形的面积比正方形的面积a2小了36平方米,故选:C.矩形的长为(a+6)米,矩形的宽为(a−6)米,矩形的面积为(a+6)(a−6),根据平方差公式即可得出答案.本题考查了平方差公式的几何背景,列出矩形的面积的代数式,根据平方差公式计算是解题的关键.12.【答案】12【知识点】有理数的混合运算、正数和负数【解析】解:由题意可得,2÷1×(−6)=2×(−6)=−12(℃),即气温下降12℃,故答案为:12.根据每登高1km气温的变化量为−6℃,可以得到登2km后,气温下降的度数.本题考查有理数的混合运算,解答本题的关键是明确题意,列出相应的算式.13.【答案】(1,−2)【知识点】平移中的坐标变化、轴对称中的坐标变化【解析】解:∵将点A(−1,2)向右平移2个单位长度得到点B,∴B(1,2),则点B关于x轴的对称点C的坐标是(1,−2).故答案为:(1,−2).直接利用平移的性质得出B点坐标,再利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即可得出答案.此题主要考查了点的平移以及关于x轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.14.【答案】白球【知识点】利用频率估计概率、频数与频率【解析】解:由图可知,摸出黑球的概率约为0.2,∴摸出白球的概率约为0.8,∴白球的个数比较多,故答案为白球.根据频率估计概率得出摸到黑球的近似概率,再得出摸到白球的概率,即可推断出是白球多还是黑球多.本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率.15.【答案】(2π−2√3)【知识点】扇形面积的计算、等边三角形的性质【解析】解:过A作AD⊥BC于D,∵AB=AC=BC=2厘米,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1厘米,AD=√3BD=√3厘米,∴△ABC的面积为12BC⋅AD=√3(厘米 2),S扇形BAC =60π×22360=23π(厘米 2),∴莱洛三角形的面积S=3×23π−2×√3=(2π−2√3)厘米 2,故答案为:(2π−2√3).图中三角形的面积是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.16.【答案】解:2x2−1÷1x+1−1x−1=2(x+1)(x−1)⋅(x+1)−1x−1=2x−1−1x−1=1x−1,∵(x+1)(x−1)≠0,∴x≠1,−1,∴x=2或3,当x=2时,原式=12−1=1.【知识点】分式的化简求值【解析】根据分式的除法和减法可以化简题目中的式子,然后从1,2,3这三个数中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.【答案】解:{x−3(x−2)≥4①2x−13≤x+12②,解不等式①得:x≤1,解不等式②得:x≤5,∴不等式组解集为x≤1.【知识点】一元一次不等式组的解法【解析】先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式和解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.18.【答案】垂直平分线角平分线【知识点】尺规作图与一般作图、三角形内角和定理【解析】解:(1)通过观察尺规作图的痕迹,可以发现直线DF是线段AB的垂直平分线,射线AE是∠DAC的角平分线.故答案为:垂直平分线,角平分线.(2)∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=B=40°,∵∠B=40°,∠C=50°,∴∠BAC=90°,∴∠CAD=50°,∵AE平分∠CAD,∠CAD=25°.∴∠DAE=12(1)根据作图痕迹判断即可.(2)想办法求出∠CAD,可得结论.本题考查作图−基本作图,三角形内角和定理等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.19.【答案】400 36 C【知识点】扇形统计图、用样本估计总体、中位数、频数(率)分布直方图【解析】解:(1)∵A组有40人,占10%,=400(人),∴总人数为4010%故答案为400;(2)C组的人数为400−40−80−40=240(人),统计图如下:×100%=10%,(3)D组所占的百分比为40400∴D组所对的圆心角为360°×10%=36°,故答案为36;(4)中位数为第200个数据和第201个数据的平均数,都在C组,∴中位数在C组,故答案为C;(5)优秀人数所占的百分比为280400×100%=70%,∴全市优秀人数大约为80000×70%=56000(人).(1)根据A 组的人数和百分比即可求出总人数;(2)根据总人数和条形统计图即可求出C 组人数;(3)先算出D 组所占的百分比,再求出对应的圆心角;(4)根据第200个和第201个数据所在的组即可求出中位数所在的组;(5)根据优秀人数的百分比即可估算出全市优秀的人数.本题主要考查统计图形的应用,最关键的是得出抽查人数,只需要看两个统计图里都已知的量即可,像中位数,众数,平均数这样的统计量中考比较爱考,要牢记它们的概念和计算公式. 20.【答案】30 46【知识点】一次函数的应用【解析】解:(1)由题意可知:文文购买3kg 苹果,不优惠,∴文文购买3kg 苹果需付款:3×10=30(元),购买5kg 苹果,4kg 不优惠,1kg 优惠,∴购买5kg 苹果需付款:4×10+1×10×0.6=46(元),故答案为:30,46;(2)由题意得:当0<x ≤4时,y =4x ,当x >4时,y =4×10+(x −4)×10×0.6=6x +16,∴付款金额y 关于购买苹果的重量x 的函数解析式为:y ={4x(0<x ≤4)6x +16(x >4); (3)文文在甲超市购买10kg 苹果需付费:6×10+16=76(元),文文在乙超市购买10kg 苹果需付费:10×10×0.8=80(元),∴文文应该在甲超市购买更划算.(1)根据题意直接写出购买3kg 和5kg 苹果所需付款;(2)分0<x ≤4和x >4两种情况写出函数解析式即可;(3)通过两种付款比较那个超市便宜即可.本题主要考查一次函数的应用,关键是写出分段函数的解析式.21.【答案】解:(1)证明:如图1,过点O 作OM ⊥BC 于点M ,∵BD 是菱形ABCD 的对角线,∴∠ABD=∠CBD,∵OM⊥BC,OE⊥AB,∴OE=OM,∴BC是⊙O的切线.(2)①如图2,∵G是OF的中点,OF=OH,∴OG=12OH,∵AB//CD,OE⊥AB,∴OF⊥CD,∴∠OGH=90°,∴sin∠GHO=12,∴∠GHO=30°,∴∠GOH=60°,∴∠HOE=120°,∵OG=2,∴OH=4,∴由弧长公式得到HE⏜的长:120×4×π180=83π.②如图3,过A作AN⊥BD于点N,∵DG=1,OG=2,OE=OH=4,∴OD=√5,OB=2√5,DN=3√52,∴△DOG∽△DAN,∴ODAD =DGDN,∴√5AD =13√52,∴AD=152.【知识点】圆的综合【解析】(1)过点O作OM⊥BC于点M,证明OM=OE即可;(2)①先求出∠HOE=120°,再求出OH=4,代入弧长公式即可;②过A作AN⊥BD,由△DOG∽△DAN,对应边成比例求出AD的长.本题主要考查了圆的切线的判定、圆中弧长的计算,以及相似三角形的判定与性质,作高构造出相似三角形是解题的关键.22.【答案】解:(1)设漫灌方式每亩用水x吨,则100x+100×30%x+100×20%x=15000,解得x=100,∴漫灌用水:100×100=10000吨,喷灌用水:30%×10000=3000吨,滴灌用水:20%×10000=2000吨,∴漫灌方式每亩用水100吨,漫灌试验田用水10000吨,喷灌试验田用水3000吨,滴灌试验田用水2000吨.(2)由题意可得,100×(1−2m%)×100×(1−m%)+100×(1+m%)×30×(1−m%)+100×(1+m%)×20×(1−m%)=15000×(1−95m%),解得m=0(舍),或m=20,∴m=20.(3)节省水费:15000×95m%×2.5=13500元,维修投入:300×30=9000元,新增设备:100×2m%×100=4000元,13500>9000+4000,∴节省水费大于两项投入之和.【知识点】一元二次方程的应用【解析】(1)设漫灌方式每亩用水x吨,则100x+100×30%x+100×20%x=15000,解得x=100,可得结论;m%”可列出等式,进而求出m的值;(2)由“今年的灌溉用水量比去年减少95(3)分别计算去年因用水量减少所节省的水费和今天的两项投入之和,再进行比较即可.此题主要考查了一元一次方程和一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系列出方程.23.【答案】(1)证明:如图1中,在矩形ABCD中,∠B=∠BCD=90°,∵EF⊥AB,∴∠EFB=90°,∴四边形BEFC是矩形,∴BE=BC,∴四边形BEFC是正方形.(2)①证明:如图2中,∵∠GCK=∠DCH=90°,∴∠CDF′+∠H=90°,∠KGC+∠H=90°,∴∠KGC=∠CDF′,∵B′C=CF′,∠GB′C=∠CF′D,∴△CGB′≌△CDF′(ASA),∴CG=CD.②解:设正方形的边长为a,∵KB′//CF′,∴△B′KO∽△F′CO,∴B′KCF′=OKCO=12,∴B′K=12B′C=12a,在Rt△B′KC中,B′K2+B′C2=CK2,∴a2+(12a)2=32,∴a=6√55,由B′KCF′=12,可得B′K=KE′=12a,∵KE′//CF′∴△DKE′∽△DCF′,∴DE′DF′=KE′CF′=12aa=12,∴DE′=E′F′=a,∴PE′=2a,∴PK=52a,∵DK=KC,∠P=∠G,∠DKP=∠GKC,∴△PKD≌△GKC(AAS),∴GK=PK,∴PG=2PK=5a,∴PG=5a=6√5.(3)解:如图3中,延长B′F′交CH的延长线于R.∵CF′//GP,RB//BM,∴△GB∽△GRB′,∠G=∠F′CR,∴tan∠G=tan∠F′CH=F′HCF′=12,设F′H=x.CF′=2x,则CH=√5x,∴CB′=CF′=E′F′=BC=2x,∵CB′//HE′,∴△RB′C∽△RF′H,∴F′HB′C =RHRC=RF′RB′=12,∴CH=RH,B′F′=RF′,∴CR=2CH=2√5x,∴S△CF′R=2S△CF′H,∵CB′//HE′,∴△GB′C∽△GE′H,∴GCGH =B′CE′H=2x3x=23,∴GB+2x+√5x=B′CE′H=23∴GB=2(√5−1)x,∵△GBM∽△CRF′,∴S△GMBS△CRF′=(BGCR)2=[√5−1)x2√5x]2=6−2√55,∵S△CRF′=2S△CHF′,∴S△GMBS△CF′H =12−4√55.【知识点】四边形综合【解析】(1)根据邻边相等的矩形的正方形证明即可.(2)①证明△CGB′≌△CDF′(ASA),可得结论.②设正方形的边长为a,利用勾股定理构建方程求出a,再证明GK=PK,求出PG=2PK,求出PK 可得结论.(3)如图3中,延长B′F′交CH 的延长线于R.由tan∠G =tan∠F′CH =F′H CF′=12,设F′H =x.CF′=2x ,则CH =√5x ,由△RB′C∽△RF′H ,推出F′H B′C =RH RC =RF′RB′=12,推出CH =RH ,B′F′=RF′,可得CR =2CH =2√5x ,S △CF′R =2S △CF′H ,再由△GB′C∽△GE′H ,推出GC GH =B′C E′H =2x 3x =23,可得GB+2x+√5x =B′C E′H =23推出GB =2(√5−1)x ,由△GBM∽△CRF′,可得S △GMBS △CRF′=(BG CR )2=[√5−1)x 2√5x ]2=6−2√55,由此即可解决问题. 本题属于四边形综合题,考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.24.【答案】解:(1)∵y 1=−(x −4)(x −n),令y 1=0,−(x −4)(x −n)=0,∴x 1=−4,x 2=n ,∴A(−4,0);(2)y 1=−(x −4)(x −n)=−x 2+(n −4)x +4n ,∴k 1=14n 2+2n +4,∵y 2=−(x +2n)2−n 2+2n +9,∴k 2=−n 2+2n +9,(3)k 1−k 2=54n 2−5, ①当54n 2−5>0时,可得n >2或n <−2,即当−4≤n <−2或2<n ≤4时,k 1>k 2;②当54n 2−5<0时,可得−2<n <2,即当−2<n <2时,k 1<k 2;③当54n 2−5=0,可得n =2或n =−2,即当n =2或n =−2时,k 1=k 2;(4)设直线MN 的解析式为:y =kx +b ,则{(2n +9)k +b =−5n 2①2nk +b =9−5n 2②, 由①−②得,k =−1,∴b =−5n 2+2n +9,直线MN的解析式为:y=−x−5n2+2n+9.①如图:当直线MN经过抛物线y1,y2的交点时,联立抛物线y1=−x2+(n−4)x+4n与y2=−x2−4nx−5n2+2n+9的解析式可得:(5n−4)x=−5n2−2n+9①,联立直线y=−x−5n2+2n+9与抛物线y2=−x2−4nx−5n2+2n+9的解析式可得:x2+(4n−1)x=0,则x1=0,x2=1−4n②,当x1=0时,把x1=0代入y1得:y=4n,把x1=0,y=4n代入直线的解析式得:4n=−5n2+2n+9,∴5n2+2n−9=0,∴n=−1±√46,5此时直线MN与抛物线y1,y2的公共点恰好为三个不同点,当x2=1−4n时,把x2=1−4n代入①得:(5n−4)(1−4n)=−5n2−2n+9,该方程判别式△<0,所以该方程没有实数根;②如图:当直线MN与抛物线y1或者与抛物线y2只有一个公共点时,当直线MN与抛物线y1=−x2+(n−4)x+4n只有一个公共点时,联立直线y=−x−5n2+2n+9与抛物线y=−x2+(n−4)x+4n可得,−x2+(n−3)x+5n2+2n−9=0,此时△=0,即(n−3)2+4(5n2+2n−9)=0,∴21n2+2n−27=0,∴n=−1±2√142,21由①而知直线MN与抛物线y2=−x2−4nx−5n2+2n+9公共点的横坐标为x1=0,x2=1−4n,时,1−4n≠0,当n=−1±2√14221∴x1≠x2,所以此时直线MN与抛物线y1,y2的公共点恰好为三个不同点,③如图:当直线MN与抛物线y2=−x2−4nx−5n2+2n+9只有一个公共点,∵x1=0,x2=1−4n,∴n=1,4联立直线y=−x−5n2+2n+9与抛物线y1=−x2+(n−4)x+4n,−x2+(n−3)x+5n2+2n−9=0,△=(n −3)2+4(5n 2+2n −9)=21n 2+2n −27,当n =14时,△<0,此时直线MN 与抛物线y 1,y 2的公共点只有一个,∴n ≠14, 综上所述:n 1=−1+√465,n 2=−1−√465,n 3=−1+2√14221,n 4=−2−−1−2√14221.【知识点】二次函数综合【解析】(1)令y 1=0,得到x 值即为A 、B 的横坐标,(2)由顶点坐标公式可得顶点的纵坐标.(3)讨论k 1−k 2=54n 2−5与0比较大小得n 的取值范围,即在不同的取值范围内得k 1、k 2大小.(4)两点确定一条直线的解析式,直线MN 的解析式为:y =−x −5n 2+2n +9.①当直线MN 经过抛物线y 1,y 2的交点时,联立抛物线y 1与y 2得解析式(5n −4)x =−5n 2−2n +9①,联立直线y =−x −5n 2+2n +9与抛物线y 2得解析式x 2+(4n −1)x =0,解得n =−1±√465,此时直线MN 与抛物线y 1,y 2的公共点恰好为三个不同点,即(5n −4)(1−4n)=−5n 2−2n +9,该方程判别式△<0,②当直线MN 与抛物线y 1或者与抛物线y 2只有一个公共点时,当直线MN 与抛物线y 1只有一个公共点时,联立直线y =−x −5n 2+2n +9与抛物线y =−x 2+(n −4)x +4n 可得,−x 2+(n −3)x +5n 2+2n −9=0,解得∴n =−1±2√14221,由①而知直线MN 与抛物线y 2公共点的横坐标为x 1=0,x 2=1−4n ,x 1≠x 2,所以此时直线MN 与抛物线y 1,y 2的公共点恰好为三个不同点,联立直线y =−x −5n 2+2n +9与抛物线y 1得:−x 2+(n −3)x +5n 2+2n −9=0,△=21n 2+2n −27,当n =14时,△<0,此时直线MN 与抛物线y 1,y 2的公共点只有一个,n ≠14.本题考查了二次函数的综合应用,解本题的关键掌握二次函数的性质顶点坐标和一元二次方程的解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年宜昌市近五届中考数学应用题(22题)汇编及答案
(本大题一般2~3小问,共10分)上传校勘:柯老师
【2016/22】某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.
(1)求A品牌产销线2018年的销售量;
(2)求B品牌产销线2016年平均每份获利增长的百分数.
【2017/22】某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.
2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3: 2.
(1)这三年用于辅助配套的投资将达到多少亿元?
(2)市政府2015年年初对三项工程的总投资是多少亿元?
(3)求搬迁安置投资逐年递减的百分数.
【2018/22】某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”( 下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算,第一年有40家工厂用乙方案治理,共使Q值降低了12。
经过三年治理,境内长江水质明显改善.
(1)求n的值;
(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;
(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加一个相同的数值a. 在(2) 的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等、第三年,用甲方案使Q值降低了39.5 。
求第一年用甲方案治理降低的Q值及a的值.
【2019/22】HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10% 。
(1)求2018年甲类芯片的产量;
(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m %,乙类芯片的产量平均每年增长的百分数比m %小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值。
【2020/22】
资料:公司营销区域面积是指公司营销活动范围内的地方面积,公共营销区域面积是指两家及以上公司营销活动重叠范围内的地方面积.
材料:某地有A,B两家商贸公司(以下简称A,B公司).去年下半年A,B公司营销区域面积分别为m平方千米,n平方千米,其中m=3n,公共营销区域面积与A公司营销区域面积的比为;今年上半年,受政策鼓励,各公司决策调整,A公司营销区域面积比去年下半年增长了x%,B公司营销区域面积比去年下半年增长的百分数是A公司的4倍,公共营销区域面积与A公司营销区域面积的比为,同时公共营销区域面积与A,B两公司总营销区域面积的比比去年下半年增加了x个百分点.问题:
(1)根据上述材料,针对去年下半年,提出一个你喜欢的数学问题(如求去年下半年公共营销区域面积与B公司营销区域面积的比),并解答;
(2)若同一个公司去年下半年和今年上半年每平方千米产生的经济收益持平,且A公司每半年每平方千米产生的经济收益均为B公司的1.5倍,求去年下半年与今年上半年两公司总经济收益之比.
参考答案:
【2016/22】
解:(1)9.5﹣(2018﹣2015)×0.5=8(万份);
答:品牌产销线2018年的销售量为8万份;
(2)设A 品牌产销线平均每份获利的年递减百分数为x ,B 品牌产销线的年销售量递增相同的份数为k 万份; 根据题意得:,
解得:
,或(不合题意,舍去),
∴, ∴2x=10%;
答:B 品牌产销线2016年平均每份获利增长的百分数为10%.
【2017/22】
解:(1)三年用于辅助配套的投资将达到54×=36(亿元);
(2)设2015年年初,对辅助配套的投资为x 亿元,则线路敷设的投资为2x 亿元,搬迁安置的投资是4x 亿元,
根据题意,得: 解得:
∴市政府2015年年初对三项工程的总投资是7x=35亿元;
(3)由x=5得,2015年初搬迁安置的投资为20亿元,
设从2016年初开始,搬迁安置投资逐年递减的百分数为y ,
由题意,得:20(1﹣y )2=5,
解得:y 1=0.5,y 2=1.5(舍)
答:搬迁安置投资逐年递减的百分数为50%.
【2018/12】
22.解:(1)4012n =
0.3n ∴=
(2)
24040(1)40(1)190m m ++++= 解得:1217,22
m m ==-(舍去) ∴第二年用乙方案治理的工厂数量为40(1)40(150%)60m +=⨯+=(家)
(3)设第一年用甲方案整理降低的Q 值为x ,
第二年Q 值因乙方案治理降低了1001000.330n =⨯=, 解法一:()30239.5
a a -+= 9.5a ∴= 20.5x ∴= 解法二:30239.5
x a x a +=⎧⎨+=⎩ 20.5x ∴=,9.5
a =
【2019/22】
【2020/22】。