霍尔效应测磁场实验报告
大学物理实验报告霍尔效应

大学物理实验报告霍尔效应一、实验目的1、了解霍尔效应的原理。
2、掌握用霍尔效应法测量磁场的原理和方法。
3、学会使用霍尔效应实验仪器,测量霍尔电压和励磁电流,并计算霍尔系数和载流子浓度。
二、实验原理1、霍尔效应置于磁场中的载流导体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一横向电势差,这种现象称为霍尔效应。
设导体中的载流子为电子,它们以平均速度 v 沿 x 方向定向运动。
在磁场 B 作用下,电子受到洛伦兹力 F = e v × B,其中 e 为电子电荷量。
洛伦兹力使电子向导体一侧偏转,从而在导体两侧产生电荷积累,形成横向电场 E。
当电场力与洛伦兹力达到平衡时,有 e E = e v B,即 E = v B。
此时产生的横向电势差称为霍尔电压 UH ,UH = E b ,其中 b 为导体在磁场方向的宽度。
2、霍尔系数霍尔电压 UH 与电流 I 和磁场 B 以及导体的厚度 d 有关,其关系式为 UH = R H I B / d ,其中 R H 称为霍尔系数。
对于一种材料,R H 是一个常数,它反映了材料的霍尔效应的强弱。
3、载流子浓度由 R H 的表达式,可推导出载流子浓度 n = 1 /(R H e) 。
三、实验仪器霍尔效应实验仪,包括霍尔样品、电磁铁、励磁电源、测量电源、数字电压表等。
四、实验内容与步骤1、连接实验仪器按照实验仪器说明书,将霍尔样品、电磁铁、励磁电源、测量电源和数字电压表正确连接。
2、测量霍尔电压(1)保持励磁电流 IM 不变,改变测量电流 IS 的大小和方向,测量对应的霍尔电压 UH 。
(2)保持测量电流 IS 不变,改变励磁电流 IM 的大小和方向,测量对应的霍尔电压 UH 。
3、绘制曲线根据测量数据,分别绘制 UH IS 和 UH IM 曲线。
4、计算霍尔系数和载流子浓度根据曲线的斜率,计算霍尔系数 R H ,进而计算载流子浓度 n 。
五、实验数据记录与处理1、实验数据记录表格| IM (A) | IS (mA) | UH1 (mV) | UH2 (mV) | UH3 (mV) | UH4 (mV) | UH (mV) |||||||||| 05 | 10 ||||||| 05 | 20 ||||||| 05 | 30 ||||||| 10 | 10 ||||||| 10 | 20 ||||||| 10 | 30 ||||||(注:UH1、UH2、UH3、UH4 分别为在不同测量条件下得到的霍尔电压值,UH 为其平均值。
霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】实 验 报 告学生姓名: 学 号: 指导教师: 实验地点: 实验时间:一、实验室名称:霍尔效应实验室二、 实验项目名称:霍尔效应法测磁场三、实验学时:四、实验原理:(一)霍耳效应现象将一块半导体(或金属)薄片放在磁感应强度为B 的磁场中,并让薄片平面与磁场方向(如Y 方向)垂直。
如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。
如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。
霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即d BI RU H H =(1)式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。
因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有B KI U H H = (2)式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。
如果霍耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式HH KI U B =(3)算出磁感应强度B 。
图 1霍耳效应示意图图2 霍耳效应解释(二)霍耳效应的解释现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。
当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为evB f B =方向沿Z 方向。
在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为H E eE f =方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。
当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为vbB U H = (4)通过的电流H I 可表示为nevbd I H -=式中n 是电子浓度,得nebdI v H -=(5)将式(5)代人式(4)可得 nedBI U H H -= 可改写为B KI dBI RU H H H == 该式与式(1)和式(2)一致,neR 1-=就是霍耳系数。
霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
利用霍尔效应测磁场实验报告

六、实验误差分析
1、系统误差
实验仪器本身的精度限制,如电源输出的稳定性、电表的测量精度等。
磁场的不均匀性,可能导致测量的磁场值与实际值存在偏差。
2、随机误差
读数误差,在读取电表数据时,由于人的视觉和反应时间等因素,可能会产生一定的误差。
实验环境的干扰,如电磁场的干扰等。
|01|50|25|-24|245|
|பைடு நூலகம்2|50|48|-47|475|
|03|50|72|-71|715|
|04|50|96|-95|955|
根据实验数据,计算霍尔系数RH。由于VH=RHIB,所以RH=VH/(IB)
以第一组数据为例,RH=245×10^-3/(01×50×10^-3)=49×10^-3(m³/C)
三、实验仪器
霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计。
四、实验步骤
1、连接实验仪器
将霍尔效应实验仪的电源、毫安表、伏特表等按照正确的方式连接好。
确保连接线路牢固,接触良好。
2、校准仪器
使用特斯拉计对实验仪器进行校准,确保测量磁场的准确性。
3、测量霍尔电压
接通电源,调节电流I为某一固定值。
改变磁场B的大小,测量不同磁场下对应的霍尔电压VH。
eEH=e(v×B)
设导体的宽度为b,厚度为d,则霍尔电压VH=EHb=(v×B)bd
又因为电流I=nevbd,其中n为单位体积内的电子数,所以v=I/(nebd)
将v代入霍尔电压的表达式,可得:
VH=IB/(ned)
令RH=1/(ned),称为霍尔系数,则VH=RHIB
通过测量霍尔电压VH、电流I和导体的几何尺寸b、d,就可以计算出磁场B的大小。
霍尔效应实验报告[共8篇]
![霍尔效应实验报告[共8篇]](https://img.taocdn.com/s3/m/658a1033f78a6529647d53ac.png)
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isb?rhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/???? (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍尔效应法测磁场实验报告

霍尔效应法测磁场实验报告一、实验目的1、了解霍尔效应的基本原理。
2、学习用霍尔效应法测量磁场的原理和方法。
3、掌握霍尔元件的特性和使用方法。
二、实验原理1、霍尔效应将一块半导体薄片置于磁场中(磁场方向垂直于薄片平面),当有电流通过时,在垂直于电流和磁场的方向上会产生一个横向电位差,这种现象称为霍尔效应。
这个横向电位差称为霍尔电压,用$U_H$ 表示。
霍尔电压的大小与电流$I$、磁感应强度$B$ 以及薄片的厚度$d$ 等因素有关,其关系式为:$U_H = K_H IB$其中,$K_H$ 称为霍尔系数,它与半导体材料的性质有关。
2、用霍尔效应法测磁场若已知霍尔元件的灵敏度$K_H$ ,通过测量霍尔电压$U_H$ 和电流$I$ ,就可以计算出磁感应强度$B$ :$B =\frac{U_H}{K_H I}$三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计等。
四、实验步骤1、仪器连接(1)将霍尔效应实验仪的各个部件按照说明书正确连接。
(2)将直流电源、毫安表、伏特表等仪器与实验仪连接好。
2、调节仪器(1)调节直流电源的输出电压,使通过霍尔元件的电流达到预定值。
(2)调节特斯拉计,使其归零。
3、测量霍尔电压(1)在不同的磁场强度下,测量霍尔元件两端的电压。
(2)改变电流的方向,再次测量霍尔电压。
4、数据记录将测量得到的数据记录在表格中,包括电流、磁场强度、霍尔电压等。
五、实验数据及处理1、实验数据记录|电流(mA)|磁场强度(T)|霍尔电压(mV)(正电流)|霍尔电压(mV)(负电流)|||||||50|01|256|-258||50|02|512|-515||50|03|768|-771||100|01|512|-515||100|02|1024|-1028||100|03|1536|-1542|2、数据处理(1)计算每个测量点的平均霍尔电压:$U_{H平均} =\frac{U_{H正} + U_{H负}}{2}$(2)根据霍尔系数$K_H$ 和平均霍尔电压、电流计算磁场强度:$B =\frac{U_{H平均}}{K_H I}$3、绘制曲线以磁场强度为横坐标,霍尔电压为纵坐标,绘制霍尔电压与磁场强度的关系曲线。
磁场分布测量实验报告

磁场分布测量实验报告一、实验目的本实验旨在测量磁场的分布情况,了解磁场的特性和规律,掌握磁场测量的基本方法和技术。
二、实验原理磁场的测量通常使用霍尔效应传感器。
霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差。
通过测量这个电势差,可以计算出磁场的强度。
在本次实验中,将霍尔传感器沿着特定的路径移动,测量不同位置的磁场强度,从而得到磁场的分布情况。
三、实验仪器1、霍尔效应磁场测量仪2、直流电源3、导轨4、探头5、数据采集系统四、实验步骤1、搭建实验装置将导轨水平放置,并确保其平稳。
将霍尔传感器探头安装在导轨上,使其能够沿导轨自由移动。
2、连接仪器将霍尔传感器与数据采集系统连接。
将直流电源与霍尔传感器连接,提供稳定的电流。
3、校准仪器进行零点校准,消除仪器本身的误差。
4、测量磁场分布沿导轨缓慢移动探头,在不同位置记录磁场强度的数据。
5、数据记录仔细记录每个测量点的位置和对应的磁场强度值。
五、实验数据以下是测量得到的磁场强度与位置的数据:|位置(cm)|磁场强度(mT)|||||0|50||1|48||2|45||3|42||4|38||5|35||6|32||7|28||8|25||9|22||10|20|六、数据处理与分析1、绘制磁场分布曲线以位置为横坐标,磁场强度为纵坐标,绘制曲线。
从曲线可以看出,磁场强度随着距离的增加而逐渐减小,呈现出一定的衰减趋势。
2、分析磁场分布规律观察曲线的形状和变化趋势,可以初步判断磁场的分布特点。
在本实验中,磁场的衰减较为均匀,可能是由于磁场源的分布较为均匀。
七、误差分析1、仪器误差霍尔传感器本身存在一定的精度限制,可能导致测量结果的偏差。
2、环境干扰周围的电磁场可能对测量结果产生干扰。
3、操作误差在移动探头的过程中,可能存在移动速度不均匀或者位置不准确的情况,影响数据的准确性。
八、实验结论通过本次实验,我们成功测量了磁场的分布情况。
霍尔效应实验报告步骤(3篇)

第1篇一、实验目的1. 理解霍尔效应的基本原理。
2. 学习使用霍尔效应实验仪测量磁场。
3. 掌握霍尔效应实验的数据记录和处理方法。
4. 通过实验确定材料的导电类型和载流子浓度。
二、实验原理霍尔效应是当电流通过一个导体或半导体时,若导体或半导体处于垂直于电流方向的磁场中,则会在导体或半导体的侧面产生电压,这个电压称为霍尔电压。
霍尔电压的大小与磁感应强度、电流强度以及导体或半导体的厚度有关。
三、实验仪器1. 霍尔效应实验仪2. 直流稳流电源3. 毫伏电压表4. 霍尔元件5. 导线6. 螺线管7. 磁铁四、实验步骤1. 仪器连接与调整- 将霍尔元件放置在实验仪的样品支架上,确保霍尔元件处于隙缝的中间位置。
- 按照实验仪的接线图连接电路,包括直流稳流电源、霍尔元件、螺线管和毫伏电压表。
- 调节稳流电源,使霍尔元件的工作电流保持在安全范围内(一般不超过10mA)。
- 使用调零旋钮调整毫伏电压表,确保在零磁场下电压读数为零。
2. 测量不等位电压- 在零磁场下,测量霍尔元件的不等位电压,记录数据。
3. 测量霍尔电流与霍尔电压的关系- 保持励磁电流不变,逐渐调节霍尔电流,从1.00mA开始,每隔1.0mA改变一次,记录每次霍尔电流对应的霍尔电压值。
- 改变霍尔电流的方向,重复上述步骤,记录数据。
4. 测量励磁电流与霍尔电压的关系- 保持霍尔电流不变,逐渐调节励磁电流,从100.0mA开始,每隔100.0mA改变一次,记录每次励磁电流对应的霍尔电压值。
- 改变励磁电流的方向,重复上述步骤,记录数据。
5. 绘制曲线- 根据实验数据,绘制霍尔电流与霍尔电压的关系曲线和励磁电流与霍尔电压的关系曲线。
6. 数据处理与分析- 根据霍尔效应的原理,计算霍尔系数和载流子浓度。
- 分析实验结果,确定材料的导电类型。
五、注意事项1. 操作过程中,注意安全,避免触电和电火花。
2. 霍尔元件的工作电流不应超过10mA,以保护元件。
3. 在调节电流和磁场时,注意观察毫伏电压表的读数变化,避免超出量程。
实验报告 霍尔效应

实验报告霍尔效应一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应法测量磁场的原理和方法。
3、学会使用霍尔效应实验仪器,测量霍尔电压、电流等物理量。
二、实验原理1、霍尔效应将一块半导体薄片置于磁场中,当在薄片的纵向通以电流时,在薄片的横向两侧会产生一个电位差,这种现象称为霍尔效应。
这个电位差称为霍尔电压,用$U_H$ 表示。
霍尔电压的产生是由于运动的载流子在磁场中受到洛伦兹力的作用而发生偏转,在薄片的两侧积累了正负电荷,从而形成了电场。
当电场力与洛伦兹力达到平衡时,电荷的积累停止,霍尔电压达到稳定值。
2、霍尔电压的计算设半导体薄片的厚度为$d$,载流子的浓度为$n$,电流为$I$,磁感应强度为$B$,则霍尔电压$U_H$ 可以表示为:\U_H =\frac{1}{nq}IBd\其中,$q$ 为载流子的电荷量。
3、测量磁场如果已知半导体薄片的参数(如载流子浓度$n$、薄片厚度$d$)以及通过的电流$I$,测量出霍尔电压$U_H$,就可以计算出磁感应强度$B$:\B =\frac{nqdU_H}{I}\三、实验仪器1、霍尔效应实验仪,包括霍尔元件、电磁铁、电源、电压表、电流表等。
2、特斯拉计,用于测量磁场强度。
四、实验步骤1、连接实验仪器按照实验电路图连接好霍尔效应实验仪的各个部分,确保连接正确无误。
2、调整磁场打开电磁铁电源,逐渐增加电流,使磁场强度逐渐增大。
使用特斯拉计测量磁场强度,并记录下来。
3、测量霍尔电压(1)保持磁场强度不变,改变通过霍尔元件的电流$I$,分别测量不同电流下的霍尔电压$U_H$,记录数据。
(2)保持电流$I$ 不变,改变磁场强度,测量不同磁场强度下的霍尔电压$U_H$,记录数据。
4、数据处理(1)根据测量的数据,绘制霍尔电压$U_H$ 与电流$I$ 的关系曲线。
(2)绘制霍尔电压$U_H$ 与磁场强度$B$ 的关系曲线。
(3)根据实验原理中的公式,计算出半导体薄片的载流子浓度$n$ 和薄片厚度$d$。
霍尔效应与磁场测量实验报告

霍尔效应与磁场测量实验报告摘要本实验利用霍尔效应测量不同磁场下电流对电压的影响,得到了霍尔系数和磁场强度之间的关系,并用线性回归得出了磁场强度和电压的线性关系式。
此外,还探究了霍尔电压在不同置入方向时的变化规律,证明了霍尔电压与磁场和电流方向的夹角相关。
最后,还比较了实验数据和理论计算值的误差,证明实验结果具有较高的精度。
关键词:霍尔效应;霍尔系数;磁场强度;线性关系引言在磁场测量中,霍尔效应是一种较常用的方法。
它利用了霍尔元件在磁场作用下产生的电势差,通过简单的测量,可以得到磁场的相关参数。
霍尔效应也广泛应用于电子学、传感器和精密测量等领域。
因此,掌握霍尔效应在磁场测量中的应用和实验方法是十分必要的。
实验目的1.学习霍尔效应的基本原理和相关概念。
2.通过实验掌握利用霍尔效应测量磁场的方法。
3.研究霍尔系数与磁场强度之间的关系,并得出线性关系式。
4.研究霍尔电压在不同方向输入时的变化规律。
实验原理霍尔效应是指,当一块导电材料被竖直放置于磁场中,并在该材料的一个面(称为霍尔面)上通电流时,垂直于霍尔面方向的电势差被感应。
这个电势差被称为霍尔电压VH,它的大小与电流I、磁场B以及材料本身的性质有关。
其中,材料本身的属性用霍尔系数RH表示,RH是一个常量,它与材料类型、温度和其它因素有关,一般在室温下只与材料本身的物理结构相关。
因此,VH和B之间的关系可以用下列公式表示:VH= RH×B×I当B、I固定时,VH与RH成正比,而RH被称为霍尔系数。
霍尔系数是一重要物理参数,它的大小决定了霍尔电压的灵敏度和分辨率。
实验装置霍尔效应实验仪、数字万用表、磁铁、直流电源。
实验步骤1.首先,将试样(霍尔元件)平放在实验仪器的省略图所示的导轨上,并用望远镜对试样进行调节,使其保持水平态度。
同时,用数字万用表测量试样上的电阻值。
2.然后,在铁环上放置一个直径约为10 cm的磁铁,使其置于试样正下方10 cm左右的位置。
霍尔效应法测量磁场实验报告

霍尔效应法测量磁场实验报告霍尔效应法测量磁场实验报告引言:磁场是物理学中一个重要的概念,它在我们的日常生活中扮演着重要的角色。
为了准确测量磁场的强度和方向,科学家们发明了多种测量方法。
其中一种常用的方法是利用霍尔效应进行测量。
本实验旨在通过霍尔效应法测量磁场,探究霍尔效应的原理和应用。
实验步骤:1. 实验仪器准备:将霍尔元件、电源、数字万用表等仪器连接好,确保电路连接正确。
2. 调整电路:通过调整电源电压和电流,使得霍尔元件正常工作。
3. 测量电压:用数字万用表测量霍尔元件产生的电势差(霍尔电压)。
4. 改变磁场:通过改变磁场的强度和方向,观察霍尔电压的变化。
5. 记录数据:记录不同磁场条件下的霍尔电压数值,并绘制磁场与霍尔电压的关系曲线。
实验原理:霍尔效应是指当电流通过导体时,如果该导体处于垂直于磁场的情况下,就会在导体两侧产生一种电势差,即霍尔电压。
霍尔电压的大小与磁场的强度和方向有关。
根据霍尔效应的原理,我们可以通过测量霍尔电压来间接测量磁场的强度和方向。
实验结果:在实验中,我们改变了磁场的强度和方向,观察到了相应的霍尔电压变化。
当磁场的强度增加时,霍尔电压也随之增加;当磁场的方向改变时,霍尔电压的正负号也会相应改变。
通过记录数据和绘制曲线,我们可以清晰地看到磁场与霍尔电压之间的关系。
实验讨论:通过实验,我们验证了霍尔效应法测量磁场的可行性。
然而,实验中也存在一些误差和不确定性。
首先,霍尔元件本身的参数和性能可能会对实验结果产生影响。
其次,电路连接的稳定性和准确性也会对测量结果产生影响。
在实际应用中,我们需要对这些因素进行充分考虑,并采取相应的措施来减小误差。
实验应用:霍尔效应法广泛应用于磁场测量和传感器技术中。
通过利用霍尔效应,我们可以制造出各种类型的磁场传感器,用于测量和控制磁场。
例如,在电动汽车中,霍尔效应传感器可以用于测量电动机的转速和位置,从而实现精确的控制。
此外,霍尔效应还可以应用于磁存储器、磁共振成像等领域。
霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vhis,vhim曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 feeehevh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,flfe vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为isne (2)由(1),(2)两式可得 vhehlib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh/ (4)式中为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍尔效应测量磁感应强度实验报告

霍尔效应测量磁感应强度实验报告1. 实验背景1.1 霍尔效应简介哎,大家都知道,霍尔效应这个名字一听就有点儿高大上,但其实它并不复杂。
简单来说,这是一种通过电流在导体中流动时,磁场会对它产生作用的现象。
这就像你走路时被风推了一下,感觉不一样了,只不过这里的“风”是磁场。
霍尔效应的测量可以告诉我们磁场的强度,简单来说,就是可以量化磁场的“力气”。
1.2 实验目的那我们为什么要做这个实验呢?就是为了更好地了解霍尔效应,并且测量磁感应强度。
通过实验,我们可以学到如何用实际的操作来验证霍尔效应,并且掌握测量磁场的技巧。
是不是听上去很有趣?2. 实验准备2.1 所需设备首先,咱们得准备好一些工具。
实验需要霍尔元件,这玩意儿是测量霍尔效应的关键;还有磁铁、万用表、直流电源以及一些导线。
别忘了,工作台上的所有东西都得整整齐齐,这样操作起来才顺手。
2.2 实验步骤准备好这些之后,我们就可以开始实验了。
第一步,将霍尔元件固定在工作台上,然后用导线把它连接到直流电源。
接着,用磁铁在霍尔元件上施加磁场,这时我们就可以看到万用表上的电压变化啦。
注意,电压的变化就是我们要找的霍尔电压,它能帮助我们计算磁场的强度。
3. 实验过程3.1 实际操作在操作的过程中,大家一定要小心。
我们首先调整直流电源的电流,然后把磁铁的磁场逐渐加大。
慢慢地,我们会发现霍尔电压在变化。
哎,这就好比在晴天里突然下了场小雨,电压的变化就像是我们测到的“雨量”。
3.2 数据记录与分析记录数据的时候,记得要详细,这样才能确保我们分析结果的准确性。
我们需要测量不同电流下的霍尔电压,并且在不同磁场强度下记录相应的数值。
之后,用公式将这些数据代入,最终计算出磁感应强度。
这个过程就像解谜一样,得一步一步来,才能找到最终的答案。
4. 实验结果与讨论4.1 结果分析实验结束后,我们把所有的数据都整理好。
结果显示,霍尔电压随着磁场的变化而变化,这与我们的预期是一致的。
霍尔效应测量磁场实验报告

霍尔效应测量磁场实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪进行测量和数据处理。
二、实验原理1、霍尔效应当电流 I 沿垂直于磁场 B 的方向通过半导体薄片时,在薄片的垂直于电流和磁场的两侧面之间会产生一个横向电势差 UH,这个现象称为霍尔效应。
UH 称为霍尔电势差。
霍尔电势差的产生是由于运动电荷在磁场中受到洛伦兹力的作用。
设半导体薄片中的载流子(假设为电子)的电荷量为 q,平均定向移动速度为 v,薄片的宽度为 b,厚度为 d,则电子受到的洛伦兹力为:F = qvB在洛伦兹力的作用下,电子向一侧偏转,从而在薄片的两侧面之间形成了一个电场E,当电场力与洛伦兹力达到平衡时,电子不再偏转,此时有:qE = qvBE = vB电场强度 E 与电势差 UH 的关系为:E = UH / b所以霍尔电势差为:UH = IB / nqd其中,n 为载流子浓度。
2、霍尔系数和灵敏度霍尔系数 RH = 1 / nq,它反映了材料的霍尔效应特性。
霍尔元件的灵敏度 KH = RH / d,表示单位磁感应强度和单位控制电流下的霍尔电势差。
三、实验仪器霍尔效应实验仪、特斯拉计、直流电源、毫安表、伏特表等。
四、实验内容及步骤1、仪器连接按照实验仪器说明书,将霍尔效应实验仪、直流电源、毫安表、伏特表等正确连接。
2、调节磁场打开特斯拉计,调节磁场强度到一定值,并记录下来。
3、测量霍尔电势差(1)保持磁场强度不变,改变电流 I 的大小,测量不同电流下的霍尔电势差 UH,并记录数据。
(2)保持电流 I 不变,改变磁场强度 B 的大小,测量不同磁场强度下的霍尔电势差 UH,并记录数据。
4、数据处理(1)根据测量数据,绘制 UH I 曲线和 UH B 曲线。
(2)通过曲线斜率计算霍尔系数 RH 和灵敏度 KH。
五、实验数据记录与处理1、数据记录|电流 I (mA) |霍尔电势差 UH (mV) |磁场强度 B (T) |霍尔电势差 UH (mV) ||::|::|::|::|| 100 | 500 | 010 | 550 || 200 | 1000 | 020 | 1100 || 300 | 1500 | 030 | 1650 || 400 | 2000 | 040 | 2200 || 500 | 2500 | 050 | 2750 |2、绘制曲线以电流 I 为横坐标,霍尔电势差 UH 为纵坐标,绘制 UH I 曲线。
霍尔效应测量磁场实验报告

霍尔效应测量磁场实验报告霍尔效应测量磁场实验报告引言:霍尔效应是指当电流通过导体时,垂直于电流方向的磁场会引起导体中的电荷分布不均匀,从而产生电势差。
这一效应在磁场测量中有着广泛的应用。
本实验旨在通过使用霍尔效应测量磁场的方法,了解霍尔效应的原理,并通过实验验证霍尔效应的可行性。
实验仪器和材料:1. 霍尔效应测量仪2. 磁铁3. 电源4. 导线5. 铜片实验步骤:1. 将霍尔效应测量仪连接到电源上,确保电源正常工作。
2. 将磁铁放置在霍尔效应测量仪的一侧,使其产生一个均匀的磁场。
3. 将铜片固定在测量仪的另一侧,使其与磁场垂直。
4. 调整电源的电流大小,记录下相应的电势差值。
5. 移动磁铁的位置,重复步骤4,记录不同位置下的电势差值。
6. 根据记录的数据,绘制出电势差与磁场强度的关系曲线。
实验结果:根据实验数据绘制的曲线显示,电势差与磁场强度之间存在线性关系。
随着磁场强度的增加,电势差也随之增加。
这一结果与霍尔效应的原理相符。
讨论:在本实验中,我们利用霍尔效应测量了磁场的强度。
霍尔效应的基本原理是,当导体中的电荷受到磁场的作用时,会在导体内部产生一个电势差。
通过测量这个电势差,我们可以间接地得到磁场的强度。
在实验中,我们使用了铜片作为导体。
铜具有良好的电导率和热导率,因此非常适合用于霍尔效应的测量。
通过调整电流大小和移动磁铁的位置,我们可以得到不同磁场强度下的电势差值。
通过绘制电势差与磁场强度的关系曲线,我们可以得到一个直观的结果。
实验结果显示,电势差与磁场强度之间存在线性关系。
这一结果与霍尔效应的原理相符。
根据霍尔效应的数学表达式,电势差与磁场强度之间的关系应该是线性的。
因此,我们的实验结果验证了霍尔效应的可行性。
结论:通过本实验,我们成功地利用霍尔效应测量了磁场的强度。
实验结果显示,电势差与磁场强度之间存在线性关系,这与霍尔效应的原理相符。
因此,我们可以得出结论,霍尔效应是一种可靠的测量磁场的方法。
霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍尔效应测磁场实验报告[共7篇]
![霍尔效应测磁场实验报告[共7篇]](https://img.taocdn.com/s3/m/497a90b26529647d272852ac.png)
篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。
由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。
六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。
利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。
由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。
此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。
近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。
在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。
了解这一富有实用性的实验,对今后的工作将大有益处。
教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。
2. 掌握用霍尔元件测量磁场的原理和方法。
3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。
教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。
实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。
这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。
图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实 验 报 告
学生姓名: 学 号: 指导教师: 实验地点: 实验时间:
一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理:
(一)霍耳效应现象
将一块半导体(或金属)薄片放在磁感应强度为B 的磁场中,并让薄片平面与磁场方向(如Y 方向)垂直。
如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。
如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。
霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即
d B
I R
U H H =
(1)
式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。
因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有
B KI U H H = (2)
式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。
如果霍耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式
H
H
KI U B =
(3)
算出磁感应强度B 。
图1 霍耳效应示意图 图2 霍耳效应解释
(二)霍耳效应的解释
现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。
当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为
evB f B =
方向沿Z 方向。
在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为
H E eE f =
方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。
当B f 和E f 达到静态平衡后,有
E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为
vbB U H = (4)
通过的电流H I 可表示为
nevbd I H -=
式中n 是电子浓度,得
nebd I v H
-
=
(5)
将式(5)代人式(4)可得
ned
B
I U H H -
= 可改写为
B KI d
B
I R
U H H H == 该式与式(1)和式(2)一致,ne
R 1
-=就是霍耳系数。
五、实验目的:
研究通电螺线管内部磁场强度
六、实验内容:
(一)测量通电螺线管轴线上的磁场强度的分布情况,并与理论值相比较; (二)研究通电螺线管内部磁场强度与励磁电流的关系。
七、实验器材:
霍耳效应测磁场装置,含集成霍耳器件、螺线管、稳压电源、数字毫伏表、直流毫安表等。
八、实验步骤及操作:
(一)研究通电螺线管轴线上的磁场分布。
要求工作电流H I 和励磁电流N I 都固定,并让
500=M I mA ,逐点(约12-15个点)测试霍耳电压H U ,记下H I 和K 的值,同时记录长
直螺线管的长度和匝数等参数。
1.接线:霍尔传感器的1、3脚为工作电流输入,分别接“I H 输出”的正、负端; 2、4脚为霍尔电压输出,分别接“V H 输入”的正、负端。
螺线管左右接线柱(即“红”、“黑”)分别接励磁电流I M 的“正”、“负”,这时磁场方向为左边N 右边S 。
2、测量时应将“输入选择”开关置于“V H ”挡,将“电压表量程”选择按键开关置于“200” mV 挡,霍尔工作电流I H 调到5.00mA ,霍尔传感器的灵敏度为:245mV/mA/T 。
3、螺线管励磁电流I M 调到“0A ”,记下毫伏表的读数0V (此时励磁电流为0,霍尔工作电流H I 仍保持不变)。
4、再调输出电压调节钮使励磁电流为mA I M 500=。
5、将霍耳元件在螺管线轴线方向左右调节,读出霍耳元件在不同的位置时对应的毫伏表读数i V ,对应的霍耳电压0V V V i Hi -=。
霍尔传感器标尺杆坐标x =0.0mm 对准读数环时,表示霍尔传感器正好位于螺线管最左端,测量时在0.0mm 左右应对称地多测几个数据,推荐的测量点为x =-30.0、-20.0、-12.0、-7.0、-3.0、0.0、3.0、7.0、12.0、20.0、40.0、75.0mm 。
(开始电压变化快的时候位置取密一点,电压变化慢的时候位置取疏一点)。
6、为消除副效应,改变霍耳元件的工作电流方向和磁场方向测量对应的霍耳电压。
计算霍尔电压时,V 1、V 2、V 3、V 4方向的判断:按步骤(4)的方向连线时,I M 、I H 换向开关置
于“O ”(即“+”)时对应于V 1(+B 、+I H ),其余状态依次类推。
霍尔电压的计算公式是V=(V 1-V 2+V 3-V 4)÷ 4 。
7、实验应以螺线管中心处(x ≈75mm )的霍尔电压测量值与理论值进行比较。
测量B~I M
关系时也应在螺线管中心处测量霍尔电压。
8、计算螺线管轴线上磁场的理论值应按照公式)cos (cos 2120
ββμ-=
nI B (参见教材实
验16,p.152公式3-16-6
)计算,即02μNI B L ⎛⎫=理,计算各测量点的理论值,并绘出B 理论~x 曲线与B 测量~x 的原因。
如只计算螺线管中点和端面走向上的磁场强度,
公式分别简化为B =
理
、
B =
理,分析这两点B 理论与实测不能吻合的原因。
9B ~X 曲线,分析螺线管内磁场的分布规律。
(二)研究励磁特性。
固定H I 和霍耳元件在轴线上的位置(如在螺线管中心),改变M I ,测量相应的H U 。
将霍耳元件调至螺线管中心处(x ≈75mm ),调稳压电源输出电压调节钮使励磁电流在0mA 至600mA 之间变化,每隔100mA 测一次霍耳电压(注意副效应的消除)。
绘制M I ~B 曲线,分析励磁电流与磁感应强度的关系。
九、实验数据及结果分析:
1、计算螺线管轴线上磁场强度的理论值B 理:
实验仪器编号: 6 ,线圈匝数:N = 1535匝 , 线圈长度:L = 150.2mm ,
线圈平均直径:D = 18.9mm ,励磁电流:I = 0.500A ,霍尔灵敏度K = 245 mV/mA/T
x =L /2=75.1mm 时得到螺线管中心轴线上的磁场强度:
)mT (37.60189
.01502.00.500
153510142.342
2
42
2
0=+⨯⨯⨯⨯=
+=
-D
L NI μB ;
x =0或x =L 时,得到螺线管两端轴线上的磁场强度:
)mT (20.34
0189.01502.020.500153510142.344
22
2
42
2
0=+⨯⨯⨯=
+=
-//D L NI μB ;
同理,可以计算出轴线上其它各测量点的磁场强度。
3、不同励磁电流下螺线管中点霍尔电压测量值和磁场强度
零差(I M=0.000A时):V01= 0.3mV ,V02= -0.4mV ,V03= -0.4mV ,V04= 0.3mV
4、螺线管轴线上的磁场强度分布图(注:理论曲线不是必作内容)
5、螺线管中点磁场强度随励磁电流的变化关系图
6、误差分析:(只列出部分,其余略)
B理论~x曲线与B测量~x曲线,不能吻合的原因主要是:
(1)螺线管中部不吻合是由于霍尔灵敏度K存在系统误差,可以通过与实验数据比较进行修正。
(2)霍尔灵敏度K修正后,螺线管两端处的磁场强度的测量值一般偏低,原因是霍尔传感器标尺杆越往外拉,就越倾斜,由于磁场没有完全垂直穿过霍尔传
感器,检测到的霍尔电压就会下降。
(3)x=-30.0mm处磁场强度的测量值一般偏高,因为这里可能螺线管产生的磁场已经很弱,主要是地磁和其它干扰磁场引起检测到的霍尔电压增大。
十、实验结论:
1、在一个有限长通电螺线管内,当L>>R时,轴线上磁场在螺线管中部很大范围内近于均匀,在端面附近变化显著。
2、通电螺线管中心轴线上磁场强度与励磁电流成正比。
十一、总结及心得体会:
1、霍耳元件质脆、引线易断,实验时要注意不要碰触或振动霍耳元件。
2、霍耳元件的工作电流H I有一额定值,超过额定值后会因发热而烧毁,实验时要注意实验
室给出的额定值,一定不要超过。
3、螺线管励磁电流有一额定值,为避免过热和节约用电,在不测量时应立即断开电源。
4、消除负效应的影响要注意V1、V2、V3、V4的方向定义。
十二、对本实验过程及方法、手段的改进建议:
霍耳元件在螺线管中移动时,与螺线管间有较大间隙,导致霍尔传感器标尺杆越往外拉,就越倾斜,由于磁场没有完全垂直穿过霍尔传感器,检测到的霍尔电压就会下降,从而带来较大的误差。
可以考虑在霍尔传感器标尺杆拉出时,额外增加一个支架类的支撑装置,使其能沿轴线方向移动。