矩阵的初等变换及应用的总结

合集下载

矩阵的初等变换及其应用

矩阵的初等变换及其应用
(3)传递性 即对任何矩阵 , 与 ,若 与 等价, 与 等价,则 与 等价;
3.矩阵的初等变换的应用
3.1求矩阵的秩
求矩阵秩的方法很多,一般有定义法、初等变换法、相关公式法、综合法、但当矩阵的具体元素为已知时,一般采用初等变换法即求非零行(列)的个数。
定义3.1.1 矩阵 中非零子式的最高阶数 称为矩阵 的秩.亦即, 中存在不为0的 阶子式,而所有 阶子式(若有的话)均为0,这时矩阵 的秩记作 (或 或秩 )
定义3.5.1 设 是一个 阶方阵,如果存在一个数 及一个 维非零列向量 ,使得

成立,则称数 为方阵 的一个特征值,非零列向量 称为方阵 的对应于(或属于)特征值 的特征向量.
定义3.5.2 行列式 (或 )称为矩阵 的特征多项式(注:特征多项式是 的 次多项式.) 是矩阵 的特征方程,具体形式为:
总之,矩阵初等变换是线性代数中一种重要的计算手段,我们可以利用矩阵初等变换求矩阵的秩,求逆矩阵,求矩阵方程等各种计算实例。随着科学技术的不断发展,矩阵的应用已经深入到了自然,社会,工程,经济等各个领域,而且人工智能、手机通讯和一般的算法设计和阐发等,矩阵在其应用中是通讯优化。我们不能局限于书本的学习,要理论联系实际,更好的运用理论知识解决实际遇到的问题。
时,子块 就化为 ,使得 。此时,若令 ,则 化为标准形
例8 化二次型 为标准形。
解:二次型矩阵为
实施初等变换
这样,经坐标变换 ,其中
二次型化为标准形
注:二次型可以用多种方法化标准形,其标准形不唯一。
总 结
在解决代数方面的一些题目时,运用矩阵的初等变换可以使问题简单化,比如在化二次型为标准型时,除了可以用初等变换法,还可以用正交变换法和配方法来计算,相比较初等变换更为简单,易于计算,好理解。矩阵的初等变换在解决线性代数的计算问题中有很多应用,这些计算格式有不少类似之处,一旦掌握了矩阵的运算,我们分析和解决方程组的能力将会大大增强。

初等变换内容总结

初等变换内容总结

初等变换内容总结
初等变换内容总结
1、定义:
初等变换就是使用某种方法对给定的数据或信息进行的操作,以改变、改善或者改造其内容的操作。

用心灵手指,将信息重新编排,使思维的物质化,而得出的结果就是初等变换。

2、作用:
初等变换具有多种作用:
(1)它能够使一些复杂的数据更容易理解,更容易记忆;
(2)它能够把复杂的关系简洁地表达出来;
(3)它还可以暗示出额外的数据存在,从而提示出可以深入研
究的方向;
(4)它还能够让人精确控制计算精度,从而能够在一定范围内
对数据进行准确的预测。

3、种类:
(1)线性变换:使用矩阵乘法进行矩阵变换,将原矩阵或矢量
投影到另一个空间,使得相应的元素转换为另一个较容易理解的形式。

(2)对数变换:通过取对数的方式把一组数据变换成指数变换,其把数据转换到的指数坐标系,使其数值关系更容易理解。

(3)幂变换:通过幂次函数变换,将曲线转换为折线,从而比
较容易捕捉数据特征,观察曲线变化趋势的变换。

(4)傅立叶变换:将实际物理量转换成振动的频谱,从而可以
更加准确地估计数据的变化趋势以及其他的分析特征。

(5)概率变换:根据一定的概率分布,将某些变量的变化转换为概率分布,从而可以更好地预测和分析数据。

4、应用:
初等变换在实际应用中有着广泛的应用,尤其是在数据挖掘、信号处理、机器学习等领域都有着广泛的应用。

矩阵的初等变换及其应用

矩阵的初等变换及其应用

在数学中矩阵最早来源于方程组的系数及常数所构成的方阵,现在矩阵是线性代数最基本也是最重要的概念之一。

在线性代数及其许多的问题中都能看到矩阵的身影,它能把抽象的问题用矩阵表示出来,通过对矩阵进行计算得出结果。

作为矩阵的基础及核心,矩阵的初等变换及应用是非常重要的,它能够把各种复杂的矩阵转化成我们需要的矩阵形式,从而使计算变得更加的简便。

本文总结了线性变换在线性代数、初等数论、通信、经济、生物遗传等方面的应用。

关键词:矩阵;初等变换;标准型;逆矩阵;标准型;秩;方程组ABSTRACTMatrix derived from the first phalanx of the coefficients and constants of the equations in mathematics, now matrix is the most fundamental and important concepts of linear algebra, in linear algebra and many other questions can be seen the figure of the matrix, It can abstract the matrix representation, then matrix calculated results. As the foundation and core of the matrix, the elementary transformation matrix and its application is very important, it can conversion a variety of complex matrix into a matrix form we need, then the calculation becomes more simple.This paper summarizes the application of linear algebra, elementary number theory, communications, and economic, biological heredity.Key words:Matrix; Elementary transformation; standard; inverse matrix; standard; rank; equations;1矩阵及其初等变换的概念 (1)2矩阵初等变换的应用 (1)2.1在线性代数中的应用 (2)2.1.1 将矩阵化简为阶梯型和等价标准型 (2)2.1.2矩阵的分块和分块矩阵的初等变换 (3)2.1.3求伴随矩阵和逆矩阵 (4)2.1.4求矩阵的秩,向量组的秩 (5)2.1.5求矩阵的特征值和特征向量 (6)2.1.6 解线性方程组 (7)2.1.7求解矩阵方程 (8)2.1.8化二次型为标准型 (9)2.1.9判断向量组的线性相关性,求其极大线性无关组 (11)2.2在数论中的应用 (11)2.3在通信中的应用 (13)2.4在经济方面的应用 (14)2.5在生物遗传方面的应用 (15)总结 (18)致谢 (19)参考文献 (20)矩阵的初等变换及其应用在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为对这些矩阵的转化过程,除方程组之外,还有很多方面的问题也都涉及矩阵的概念及其应用,这些问题的研究常常转化为对矩阵的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结成矩阵问题以后却是相同的。

矩阵的初等变换规则

矩阵的初等变换规则

矩阵的初等变换规则
(一)初等变换的规则
1. 交换行法:将矩阵中的两行互换,行对应元素也随之改变。

2. 改变系数法:将矩阵中的某行乘以一定的非零常数,行对应的元素也随之改变。

3. 复合法:将矩阵中的某行乘以一定的非零常数后,与另一行按和或差的方法结合,行对应的元素也随之改变。

4. 交换列法:将矩阵中的两列互换,列对应的元素也随之改变。

(二)初等变换的意义
初等变换是用来将一个线性方程组转化为一个有解的线性方程。

使用初等变换的原则,如将两个方程乘以不同的负数,甚至一步就能解出有解的线性方程,使方程系数矩阵更加简洁,容易操作。

同时这也可以使我们更加清楚地理解线性方程和不同解的对应关系。

(三)初等变换的应用
1. 运用初等变换可以将零向量和零矩阵转换为方便求解的标准乘法型和齐次方程组。

2. 初等变换可以用来求解边界值来解决边界值问题,为做出最终的选择提供保障。

3. 使用初等变换可以有效地求解线性方程组,给出正确的结果,对计
算机科学方面有很大帮助。

4. 初等变换可以用来求解有关矩阵与特征值、特征向量的求解问题,计算机硬件和软件设计中也有着广泛的应用。

矩阵初等变换及其在线性代数中的应用

矩阵初等变换及其在线性代数中的应用

矩阵初等变换及其在线性代数中的应用线性代数是一门重要的数学分支,它研究的是线性变换及其代数分析性质。

其中,矩阵是线性代数中非常重要的工具,它可以把线性方程组转化成一个更简单的形式,使得我们可以更容易地进行求解。

而矩阵的初等变换则是在求解线性方程组时必须要用到的一种基本技巧。

本篇文章将深入探讨矩阵初等变换及其在线性代数中的应用。

矩阵初等变换到底是什么?矩阵初等变换是指对于一个矩阵来说,可以通过三种基本变换操作得到新的矩阵。

这三种操作分别是:交换矩阵的任意两行或两列;用一个非零常数 k 乘以矩阵的某一行或某一列;将矩阵的某一行或某一列加上另一行或另一列的 k 倍。

这三种操作称为矩阵的行初等变换或列初等变换。

首先来看一个示例,假设有如下矩阵:$$\begin{bmatrix}1 &2 \\3 &4 \\\end{bmatrix}$$对于这个矩阵,我们可以进行如下初等变换:①交换第一行和第二行$$\begin{bmatrix}3 &4 \\1 &2 \\\end{bmatrix}$$②将第二行乘以2$$\begin{bmatrix}1 &2 \\6 & 8 \\\end{bmatrix}$$③将第二行减去第一行的两倍$$\begin{bmatrix}1 &2 \\4 & 4 \\\end{bmatrix}$$通过这三种基本变换,我们可以将原始矩阵变换成一个新的矩阵。

这个过程通常用矩阵的运算符号表示,比如将第二行减去第一行两倍的操作可以表示为:$$\begin{bmatrix}1 & 0 \\-2 & 1 \\\end{bmatrix}\begin{bmatrix}1 &2 \\3 &4 \\\end{bmatrix}=\begin{bmatrix}1 &2 \\1 & 0 \\\end{bmatrix}$$其中,左侧的矩阵就是一个变换矩阵,它表示了对原矩阵的操作。

矩阵的初等变换及其应用

矩阵的初等变换及其应用

矩阵的初等变换是指对矩阵进行一系列特定的行变换、列变换或行列变换,其目的是简化矩阵的形式或者解方程组。

常见的初等变换包括以下三种:
1.交换两行或两列:将矩阵中的两行或两列进行交换。

2.某一行或列乘以一个非零常数**:将矩阵中的某一行或某一列的所有元素乘以一个非零常数。

3.某一行或列加上另一行或列的若干倍**:将矩阵中的某一行或某一列的元素分别加上另一行或列对应位置元素的若干倍。

矩阵的初等变换可以应用于多个领域,主要包括以下几个方面的应用:
1.线性方程组的求解:通过对增广矩阵进行初等变换,将线性方程组化简为最简形式,从而求得方程组的解。

2.矩阵的求逆:通过初等变换将原矩阵化为单位矩阵或对角矩阵,从而求得原矩阵的逆矩阵。

3.矩阵的标准形式:利用初等变换将矩阵化为标准形式,如行阶梯形矩阵或最简行阶梯形矩阵,便于进一步的研究和计算。

4.特征值和特征向量的求解:通过初等变换将矩阵转化为对角矩阵,
从而求得矩阵的特征值和特征向量。

5.线性空间的基变换:在线性代数中,我们可以通过初等变换将一组向量变换为线性空间的一组基,从而简化问题的处理。

总的来说,矩阵的初等变换在线性代数、方程组求解、特征值分析等领域都具有重要的应用价值,能够简化计算、找出规律、解决实际问题。

矩阵的广义初等变换及应用

矩阵的广义初等变换及应用

设 A, B, C , D ∈ M n ( F ) ,证明
A B C D B A D C C D A B D C B A
M =
=
1 8 2 0 −2 14 2 − 2 11 = 1 ⋅ 14 − 20 11 8 − ⋅ [0 − 20 2 2] −2 = 14 −5 = 118 − 24

1 B, 2
A 0
0 A B → B 0 B

A 0
A + B B
万方数据
芜湖职业技术学院学报 2005 年第 7 卷第 2 期
57
A 0 A A + B ∴ r ≥ r(A+B) 0 B =r 0 B
对此分块矩阵

A B C D
实施一次广义初等变换后得到的矩阵称为广义初等 矩阵 广义初等矩阵有下面三种形式 1
0 E n Em 0
B A 广义初等变换 → −1 0 D − CA B
由行列式的性质知在此变换过程中矩阵 M 作成的行 列式的值不变,即

−E E
− ( A − B) ( A − B) 1 1 [( A + B ) −1 − ( A − B ) −1 ] [( A + B ) −1 + ( A − B ) −1 ] 2 2
−1 −1
r(A)+r(B) ≤ n 证明 构造分块矩阵
E B E 0 E → → → B E A − AB 0 0 0 0 0
B −1 = 1 B B = 1 A − B −1 4 B − B 4

矩阵的初等变换及其应用

矩阵的初等变换及其应用

矩阵的初等变换及其应用线性代数第一次讨论课1.导语2.讨论内容目录3.正文4.个人总结导语:矩阵是研究线性代数方程组和其他相关问题的有力工具,也是线性代数的主要研究啊、对象之一。

它的理论和方法在自然科学、工程技术、社会科学等众多领域等都有极其广泛的应用。

矩阵作为一些抽象数学的具体表现,在数学研究中占有极其重要的地位。

本文从矩阵的概念讨论矩阵的运算及性质,进而讨论用途很广的矩阵的初等变换及其应用。

讨论内容目录矩阵的初等变换及其应用1.两个矩阵的等价2.两个矩阵的乘积3.将矩阵化为行阶梯型、行最简形、标准型4.求矩阵的秩5.求可逆矩阵的逆矩阵6.求线性方程组的解7.判断向量组的线性相关性8.求向量组的秩与极大无关组9.求矩阵的对角化矩阵(采用行列初等变换,对角线元素为特征值)10.二次型化为标准形正文一、矩阵的等价1.定义:若矩阵A经过一系列初等行变换化为B矩阵,则称A与B行等价;若矩阵A经过一系列初等列变换化为B矩阵,则称A与B列等价;若矩阵A经过一系列初等变换化为B矩阵,则称A与B等价(相抵)。

2.矩阵的等价变换形式主要有如下几种:1)矩阵的i行(列)与j行(列)的位置互换;2)用一个非零常数k乘矩阵的第i行(列)的每个元;3)将矩阵的第j行(列)的所有元得k倍加到第i行(列)的对应元上去;即如果两个矩阵可通过有限次上述变换中的一个或几个的组合变为一样的,两个矩阵等价。

3.矩阵等价具有下列性质(1)反身性任一矩阵A与自身等价;(2)对称性若A与B等价,则B与A等价;(3)传递性若A与B等价,B与C等价,则A与C等价;注意:矩阵作初等变换是矩阵的一种运算,得到的是一个新矩阵,这个矩阵一般与原矩阵不会相等。

下面举例说明矩阵等价及等价变换:13640824100412204128--?? ?- ? ?-- ?-??13r r +→43213131414331222136413640824100824100412204122041280 412813641364082410082410000300030060000r rr r r r r rr r r r B ++-++-----???? ? ?-- ? ????→???→---- ? ?-------- ? ?→= ? ? ? ?????1231213121310341813601030013001300001000100000000r r r r r r r r r C -------???? ?-- ? ?→→= ?显然,根据矩阵等价的定义,以上变换过程中的每一个矩阵均为等价的,每个步骤都是等价转换。

矩阵的初等变换及应用的总结

矩阵的初等变换及应用的总结

矩阵的初等变换及应用的总结矩阵的初等变换是线性代数中非常重要的一个概念,它可以通过对矩阵的行或列进行一系列的操作,得到新的矩阵。

初等变换主要包括三种:行交换、行倍乘和行倍加。

在实际应用中,初等变换可以用来求解线性方程组、计算矩阵的逆和秩等。

一、行交换:行交换是将矩阵中的两行进行调换。

具体操作是互换两行的顺序,即将矩阵的第i行与第j行进行互换。

这个操作可以用一个初等矩阵来表示,即单位矩阵中将第i行和第j行进行交换。

应用:在线性方程组的求解中,我们可以通过行交换将系数矩阵的行变换成一个上三角矩阵,从而方便进行后续的计算。

二、行倍乘:行倍乘是将矩阵中的其中一行的所有元素同时乘以一个非零常数k。

具体操作是将矩阵的第i行的每个元素都乘以k。

这个操作可以用一个初等矩阵来表示,即在单位矩阵的第i行的对角线位置上放置k。

应用:行倍乘在求解线性方程组时,可以用来将一些方程的系数标准化,使得系数矩阵变为一个拥有单位元的对角矩阵,从而简化方程组的求解。

三、行倍加:行倍加是将矩阵中的其中一行的每个元素都乘以一个非零常数k,并加到另一行的对应元素上。

具体操作是将矩阵的第i行的每个元素都乘以k,然后加到矩阵的第j行的对应元素上。

这个操作可以用一个初等矩阵来表示,即在单位矩阵的第j行的第i列上放置k。

应用:行倍加在线性方程组的求解中,可以用来将一些方程的k倍加到另一个方程上,从而使一些方程的一些变量消失,达到消元的目的。

综上所述,矩阵的初等变换是通过对矩阵的行或列进行一系列的操作,得到新的矩阵。

初等变换主要包括行交换、行倍乘和行倍加。

在实际应用中,初等变换可以用来求解线性方程组、计算矩阵的逆和秩等。

在线性方程组的求解中,通过矩阵的初等变换可以将系数矩阵变为一个上三角矩阵,从而方便后续的计算。

同时,可以通过初等变换将方程组化为最简形式,从而得到方程组的解。

在计算矩阵的逆时,可以通过初等变换将原矩阵左边加上单位矩阵,并经过一系列的操作将原矩阵化为单位矩阵,从而得到矩阵的逆。

矩阵的初等变换及应用的总结

矩阵的初等变换及应用的总结

矩阵的初等变换及应用内容摘要:矩阵是线性代数的重要研究对象。

矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。

一矩阵的概念定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵二矩阵初等变换的概念定义:矩阵的初等行变换与初等列变换,统称为初等变换1.初等行变换矩阵的下列三种变换称为矩阵的初等行变换:(1) 交换矩阵的两行(交换两行,记作);(2) 以一个非零的数乘矩阵的某一行(第行乘数,记作);(3) 把矩阵的某一行的倍加到另一行(第行乘加到行,记为).1.初等列变换把上述中“行”变为“列”即得矩阵的初等列变换3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B矩阵之间的等价关系具有下列基本性质:(1) 反身性;(2) 对称性若,则;(3) 传递性若,,则.三矩阵初等变换的应用1.利用初等变换化矩阵为标准形定理:任意一个m×n矩阵A,总可以经过初等变换把它化为标准形2.利用初等变换求逆矩阵求n阶方阵的逆矩阵:即对n×2n矩阵(A¦E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1)即(A|E)经过初等变换得到(E|A^(-1))这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时,若其中的非零行的个数等于n时,则A可逆,否则A不可逆。

设矩阵可逆,则求解矩阵方程等价于求矩阵,为此,可采用类似初等行变换求矩阵的逆的方法,构造矩阵,对其施以初等行变换将矩阵化为单位矩阵,则上述初等行变换同时也将其中的单位矩阵化为,即.这样就给出了用初等行变换求解矩阵方程的方法.同理, 求解矩阵方程等价于计算矩阵亦可利用初等列变换求矩阵. 即.3.利用矩阵初等变换求矩阵的秩矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具. 从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.定理:矩阵的初等变换不改变矩阵的秩,即若A~B则R(A)=R(B)为求矩阵的秩,只要把矩阵用初等行变换变成阶梯矩阵解体矩阵中非零行的行数即是该矩阵的秩利用矩阵值得概念,能够讨论线性方程组有解的条件,然后通过研究向量组的线性相关性,向量组的秩等重要概念,讨论线性方程组的结构。

矩阵中的初等矩阵运算

矩阵中的初等矩阵运算

矩阵中的初等矩阵运算矩阵是线性代数中非常重要的概念。

它是一个由数及它们的行列组成的数组。

在矩阵中,初等矩阵运算是一种基本的矩阵运算,它对于线性代数的学习十分关键。

本文将介绍矩阵中的初等矩阵运算,并讨论它在矩阵计算中的应用。

一、初等矩阵运算的基本概念初等矩阵是指那些只进行一次初等行、列变换后得到的矩阵。

其中,初等行、列变换包括以下三种:(1)交换两行或两列;(2)用一个非零常数k乘以某一行或某一列;(3)用一个非零常数k乘以某一行或某一列,然后加到另一行或另一列上。

由此可见,初等矩阵是通过对单位矩阵(即对角线上的元素都为1,其余元素都为0的矩阵)进行上述初等行、列变换得到的矩阵。

简单来说,如果将单位矩阵进行一次初等行、列变换后得到的矩阵就是初等矩阵。

二、初等矩阵运算的基本规律初等矩阵与单位矩阵之间的关系比较特殊。

以下是初等矩阵运算的基本规律:(1)如果E是任意一个初等矩阵,则它的逆矩阵E-1也是一个初等矩阵;(2)若A是任意一个矩阵,B是用E左乘A得到的矩阵(即B=E*A),则B和A等价;(3)若A是任意一个矩阵,B是用A右乘E得到的矩阵(即B=A*E),则B和A等价。

可以发现,初等矩阵与单位矩阵之间的运算比较简单,并且与矩阵的行、列变换密切相关。

这也是初等矩阵运算在计算中广泛应用的原因之一。

三、初等矩阵运算的应用初等矩阵运算在矩阵计算中有广泛的应用。

以下是几个常见的应用:(1)矩阵求逆矩阵求逆是一个非常重要的计算。

在求逆时,可以将原矩阵与单位矩阵组合成一个增广矩阵,然后进行初等行变换,使得原矩阵变成单位矩阵,从而求出原矩阵的逆矩阵。

(2)矩阵变换在图像处理中,经常需要对图像进行变换。

例如,将一张图片进行翻转或旋转等操作。

这些变换可以通过对单位矩阵进行初等列、行变换来实现。

(3)线性方程组求解线性方程组求解是矩阵计算中的一个重要应用。

在求解线性方程组时,可以将系数矩阵与常数向量构成一个增广矩阵,然后进行初等行变换,将增广矩阵转化为简化阶梯形矩阵,从而求出解向量。

线性代数-矩阵的初等变换

线性代数-矩阵的初等变换

求解未知量
根据行最简形式的矩阵,直接求解出未知量 的值。
案例分析:具体求解过程展示
案例一
01
简单线性方程组求解过程展示,包括构造增广矩阵、进行初等
变换和求解未知量等步骤。
案例二
02
复杂线性方程组求解过程展示,涉及更多未知量和更复杂的增
广矩阵,展示如何利用初等变换求解该类问题。
案例三
03
含参数线性方程组求解过程展示,通过引入参数,展示如何对
含参数的线性方程组进行求解和分析。
04 初等变换在矩阵秩计算中 应用
矩阵秩定义及性质
矩阵秩定义:矩阵A中不等 于0的子式的最大阶数称为
矩阵A的秩,记作r(A)。
矩阵秩的性质
矩阵的秩是非负的,且等于 其行秩或列秩。
若矩阵A可逆,则r(A)=n, 其中n为A的阶数。
若矩阵A为0矩阵,则 r(A)=0。
初等变换与矩阵的等价关系
通过初等变换,我们可以得到与原矩阵等价的矩阵。这种等价关系在线性代数中具有重要意义,它揭示了矩 阵之间的一种本质联系。
初等变换在求解线性方程组中的应用
通过对方程组的增广矩阵进行初等变换,我们可以将方程组化为简化阶梯形式,从而方便地求出方程组的解。
对未来研究方向和趋势展望
深入研究初等变换的 性质和应用
条件
01
非零行的首非零元为1;
02
首非零元所在列的其他元素全 为零。
03
性质
最简形矩阵是唯一的;
对于任意行阶梯形矩阵,总可
04
05
以通过初等行变换化为最简形
矩阵。
06
行阶梯形与最简形矩阵,二者都可以通过初等行变换得到。
区别
行阶梯形矩阵只要求非零行的首非零元所在列的上三角元素全为零,而最简形矩阵还要求非零行的首非零元为1, 且所在列的其他元素全为零。因此,最简形矩阵比行阶梯形矩阵具有更简洁的形式。

矩阵 初等变换

矩阵 初等变换

矩阵初等变换:从入门到实践
矩阵初等变换是线性代数重要的基础知识,也是机器学习和人工
智能领域必须掌握的技能。

本文将从基本概念到实际应用,全面深入
地介绍矩阵初等变换的相关知识。

什么是矩阵初等变换?矩阵初等变换指的是对矩阵的行、列进行
一些基本的变换操作,比如交换矩阵的某两行(列)、将某一行(列)中的元素乘以一个非零常数、将某一行(列)加上另一行(列)的k
倍等。

通过矩阵初等变换,我们可以改变矩阵的性质,比如行列式、秩,同时也可以解决某些线性方程组的求解问题。

矩阵初等变换有哪些基本形式?根据变换的形式,矩阵初等变换
可以分为三类:交换两行(列)、将某一行(列)中的元素乘以一个数、将某一行(列)加上另一行(列)的k倍。

需要注意的是,矩阵
初等变换对应的变换矩阵是方阵,也就是说,如果我们进行一次矩阵
初等变换,那么原矩阵的行列式和秩都不会改变。

矩阵初等变换的应用有哪些?矩阵初等变换在线性代数和数学计
算中有着广泛的应用。

我们可以通过矩阵初等变换解决线性方程组的
求解问题,可以判断矩阵的线性相关性,可以求取矩阵的逆矩阵,还
可以将高斯-约旦消元法的过程表示成矩阵初等变换的形式,方便进行
计算。

在机器学习中,矩阵初等变换也有着重要的应用。

比如,我们
可以通过初等变换将数据标准化为均值为零、方差为一的正态分布,
也可以进行特征值分解和奇异值分解等,从而进行降维和信息提取。

总结:矩阵初等变换是线性代数中的重要内容,在数学计算和机器学习领域都有着广泛的应用。

我们应该深入了解矩阵初等变换的各种形式和应用,从而更好地掌握线性代数和机器学习的相关知识。

矩阵的初等变换及应用(吴礼斌)

矩阵的初等变换及应用(吴礼斌)

对 B 进一步化为行简化矩阵
3. 求逆矩阵
版权所有,安徽财经大学统计与应用数学学院吴礼斌,13955236046
2
线性代数
0 1 1 设矩阵 A = 1 1 2 ,求 A −1 。 2 −1 0
解:A 是 3 阶矩阵,在 A 的右边写上 3 阶单位矩阵,并对其施行初等行变换,得
版权所有,安徽财经大学统计与应用数学学院吴礼斌,13955236046 5
线性代数
其中 c1 , c 2 为任意常数。 (2)求解齐次线性方程组
x1 + x2 + x3 + x4 + x5 = 0, 3x + 2 x + x + x − 3x = 0, 1 2 3 4 5 5 x1 + 4 x2 + 3x3 + 3x4 − x5 = 0, x2 + 2 x3 + 2 x4 + x5 = 0.
再由行简化形矩阵写出原方程组的同解方程组为
x1 − 2 x2 − 2 x4 = −4 +1 x =5 2 4 2 x3
移项得
x1 = −4 + 2 x 2 + 2 x 4 5 −1 x3 = 2 2 x4
令 x2 = c1 , x4 = c2 ,代入上面同解方程组得原方程组的通解(一般表示形式)为
线性代数
矩阵的初等行变换及应用
一、矩阵的初等行变换概念
定义。 初等行 定义。对矩阵进行下列三种变换,称为矩阵的初等 初等行变换。 变换 (1)交换矩阵某两行的位置; (2)用一个非零数乘以矩阵某一行的每一个元; (3)将矩阵某一行的元都乘以数 λ 后对应加到另一行上. 并称(1)为换法行变换,称(2)为倍法行变换,称(3)为倍加行变换. 若把对矩阵施行的三种“行”变换改为对“列”的三种变换,称为矩阵的初等列 变换。矩阵的初等行变换和初等列变换统称为矩阵的初等变换 初等变换。 初等变换。 为了表示的方便,我们引入如下的一组变换运算符号: ri ↔ rk 表示交换矩阵的第 i 行与第 k 行的位置;

初等变换及其应用

初等变换及其应用

• 例9
用高斯消元法解线性方程组
2 x1 − 3x2 + x3 − x4 = 3 3x + x + x + x = 0 1 2 3 4 4 x1 − x2 − x3 − x4 = 7 − 2 x1 − x2 + x3 + x4 = −5
• 一般地,线性方程组中未知数的个数与方 程的个数不一定相等。对于方程的个数与 未知数的个数不相等的方程组,高斯消元 法也同样适用。
1 2 3 1 3 2 1 A = 2 2 1 , B = 5 3 , C = 2 0 3 4 3 3 1
• 三 用初等变换求矩阵的秩 • 定义 如果一个矩阵,从第二行起每个非 零行的第一个非零元素出现在上一行第一 个非零元素的右边,同时,没有一个非零 行出现在零行之下,则称该矩阵为阶梯形 矩阵。
• 例1
对矩阵
2 4 0 3 5 2 1 0 3
的行作初等变
• 换,使之成为单位阵
• 二 用初等变换求逆矩阵 • 方法:
( A I ) →( I A )
行初等变换
−1
• 例2
用初等变换求矩阵
1 −1 − 2 A = 0 2 1 2 0 −1
• 的逆矩阵
• 用初等变换求逆矩阵时,不必先考虑逆矩 阵是否存在,只要注意在初等变换过程中, 如果发现直线左边某一行的元素都是零, 则逆矩阵就不存在。
• 例3
用逆矩阵法求方程组的解:
x1 2 x 1

x2 2 x2
− 2 x3 + − x3 x3
= 1 = 2 = 4
• 注: 用逆矩阵法可解更为一般的矩阵方 −1 −1 X = A CB 程。如由A X B=C得 • (只要右端有意义). 4 例4 解矩阵方程 AXB=C 。其中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


矩阵的初等变换及应用
内容摘要:
矩阵是线性代数的重要研究对象。

矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。

一矩阵的概念
定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵
二矩阵初等变换的概念
定义:矩阵的初等行变换与初等列变换,统称为初等变换

1.初等行变换
矩阵的下列三种变换称为矩阵的初等行变换:
(1) 交换矩阵的两行(交换两行,记作);
(2) 以一个非零的数乘矩阵的某一行(第行乘数,记作
);
(3) 把矩阵的某一行的倍加到另一行(第行乘加到行,记为).
1.初等列变换
把上述中“行”变为“列”即得矩阵的初等列变换
3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B

矩阵之间的等价关系具有下列基本性质:
(1) 反身性;
(2) 对称性若,则;
(3) 传递性若,,则.
三矩阵初等变换的应用
1.\
2.利用初等变换化矩阵为标准形
定理:任意一个m× n矩阵A,总可以经过初等变换把它化为标准形
3.利用初等变换求逆矩阵
求n阶方阵的逆矩阵:即对n×2n矩阵(A¦E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1)
即(A|E)经过初等变换得到(E|A^(-1))

这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时,
若其中的非零行的个数等于n时,则A可逆,否则A不可逆。

设矩阵可逆,则求解矩阵方程等价于求矩阵

为此,可采用类似初等行变换求矩阵的逆的方法,构造矩
阵,对其施以初等行变换将矩阵化为单位矩阵,则上述初等行变换同时也将其中的单位矩阵化为,即
.
这样就给出了用初等行变换求解矩阵方程的方法.

同理, 求解矩阵方程等价于计算矩阵亦可利用初等列变换求矩阵. 即
.
3.利用矩阵初等变换求矩阵的秩
矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具. 从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.
定理:矩阵的初等变换不改变矩阵的秩,即若A~B则R(A)=R(B)

为求矩阵的秩,只要把矩阵用初等行变换变成阶梯矩阵解体矩阵中非零行的行数即是该矩阵的秩
利用矩阵值得概念,能够讨论线性方程组有解的条件,然后通过研究向量组的线性相关性,向量组的秩等重要概念,讨论线性方程组的结构。

4.行列式的计算
一般格式:经过将行列式等行变换化为上三角形
5.求线性方程组的解
一般格式:
(1)齐次线性方程组AX=0,A是m×n矩阵
1°对系数矩阵A进行初等行变换,将其化为行阶梯矩阵,求出r(A)。

$
若r(A)=n,则AX=0,只有零解;若r(A)<n,则AX=0有非零解,转入2°
2°对阶梯阵继续施行初等行变换将其化为行最简形矩阵,写出其对应的
线性方程组,以非零行首个非零元对应的k个未知量为基本未知量,其余的n-k个
未知量为自由未知量,将自由未知量移到等式右端得到一般
解,在一般解中分别令
自由未知量中一个为1,其余全为0,求得AX=0的基础解系:X1,X2,…,Xn-k
3°n-k个解向量的线性组合:C1X1+C2X2+…+Cn-kXn-k(C 1,C2,…,Cn-k为任意常数)就是AX=0的通解。

(2)非齐次线性方程组AX=B,A是m×n矩阵
1°对增广矩阵(AB)进行初等行变换,将其化为行阶梯矩阵,求出r(A)与r(AB),若r(A)<r(AB),则AX=B无解;若r(A)=r(AB) 则AX=B有解,转入2°
2°对行阶梯阵继续施行初等行变换,将其化为行最简形矩阵,写出其对应的线性方程组,此时若r(A)=r(AB)=n,则AX=B有唯一解,行最简形矩阵所对应的线性方程组就是这唯一解的表达式;若r(A)=r(AB)=k<n,则AX=B有无穷多解,转入3°
3°以非零行的首个非零元对应的k个未知量为基本未知量,其余n-k个未知元为自由未知量,将自由未知量移到等式右端,得到AX=B的一般解,令所有的自由未知量为0,求得AX=B的一个特解X0
4°在AX=B的一般解中去掉常数项,就得到导出组AX=0的一般解,分别令一个自由未知量为1其余自由未知量都为0,求出导出组AX=0的基础解系,X1,X2,…,Xn-k与通解C1X1+C2X2+…+C n-kXn-k
5°AX=B 的一个特解加导出组AX=0的通解C 1X1+C 2X2+…+Cn -kXn-k+X0(C 1,…,Cn-k 为任意常数) 就是AX=B 的通解。

6. 确定向量组的线性相关性
一般格式:设向量组为α1α2……αm ,以α1α2……αm 为列构成矩阵A ,对A 施行
}
初等行变换,将它化成行阶梯形矩阵,求出其秩r (A ),若r (A )=m ,
则α1α2……αm 线性无关,若r (A )<m ,则α1α2……αm 线性相关。

7.确定一向量能否由另一向量线性表出
一般格式:以向量组α1α2……αm 与向量β为列构成矩阵A ,然后对A 施行初等行变换,化为行最简形矩阵B
8.
求向量组的秩与极大无关组
! 一般格式:设向量组α1α2……αm ,以它们为列构成矩阵A
B 的非零行的首个元素所在的列向量对应的α1α2……αm 中的
向量αi1 (i)
()B m 行最简形矩阵初等行变换−−−→−=ααα 21A ()B
m 行阶梯形矩阵初等行变换−−−→−=ααα 21A
构成一个极大无关组,其向量的个数即为向量组α1α2……αm 的秩。

结论
矩阵初等变换在解决线性代数的计算问题中有很多应用,这些计算格式有不少类似之处。

但是由于这些计算格式有不同的原理,所以,它们也有一些明显的区别。

计算格式1既可以用初等行变换也可以用初等列变换,施行这些变换时要注意使行列式保值。

计算格式3既可以用初等行变换也可以用初等列变换,但是我们一般只用初等行变换。

其余计算格式只能使用初等行变换。

相关文档
最新文档