锅炉液位控制系统的设计

合集下载

锅炉液位PID控制系统的设计思路与实现

锅炉液位PID控制系统的设计思路与实现

锅炉液位PID控制系统的设计思路与实现孙晓晴【摘要】要想基于理论的指导,准确设计PID调节器,必须针对被控对象构建一个准确模型,对于工业生产而言,这具有非常大的难度系数,加之系统控制参数与结构均不是恒定的,会随着时间的改变而变化.因此,构建所得模型只能被称为近似模型,以近似模型为基础,对控制机进行最优设计,也无法确保其在实际应用中可以实现最优.所以,工程实际应用中,普遍择取工程整定法对PID参数进行有效明确.论文以过程控制平台对锅炉液位控制系统进行在线监控,并利用现场凑试法明确PID参数,不仅阐述了锅炉液位控制系统的具体设计方案以及关键技术,还促使控制系统更具精准性,具有良好的参考价值.【期刊名称】《机电产品开发与创新》【年(卷),期】2015(028)006【总页数】3页(P130-132)【关键词】锅炉液位;PID控制系统;设计思路【作者】孙晓晴【作者单位】山西省农业科学院畜牧兽医研究所,山西太原030032【正文语种】中文【中图分类】TB47在工业生产过程中,锅炉作为一种动力设备,具有不可或缺性。

锅炉的应用不仅可以促使燃料内部所包含的化学能向热能转换,还可以利用相关设备,将热能转化为某种能量形式,从而满足实际生活与生产活动的需求。

随着我国工业化建设进程地不断发展,工业生产规模越来越大,生产过程日趋强化,生产设备更是不断创新与发展,锅炉特性也逐渐发展为高效率、高参数以及大容量。

锅炉含有多个调节系统,其中作为主要的便是液位控制系统,其实确保锅炉正常运作的基础条件,是其良好安全性的根本保证。

因此,对锅炉液位PID控制系统的设计进行研究具有一定的必要性以及重要性。

该系统择取的控制实验装置型号为SAC/JGK/II,主要实验对象为热水锅炉,配套装置有调节装置、执行机构、检测仪表、循环水泵、液位水槽以及高位水箱等。

控制系统共有两个环节,分别为控制环节、执行环节。

首先,在控制环节方面,该系统处理器是型号为MICROLOGIX1500、具有编程能效的控制器,主要构成模块有3个,分别为编程设备电源模块、输入输出模块以及CPU模块。

锅炉汽包水位的模糊控制系统的设计

锅炉汽包水位的模糊控制系统的设计

诚信申明本人申明:我所呈交的本科毕业设计(论文)是本人在导师指导下对四年专业知识而进行的研究工作及全面的总结。

尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中创新处不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其它教育机构的学位或证书而已经使用过的材料。

与我一同完成毕业设计(论文)的同学对本课题所做的任何贡献均已在文中做了明确的说明并表示了谢意。

若有不实之处,本人承担一切相关责任。

本人签名:年月日锅炉汽包水位的模糊控制系统设计摘要汽包水位是锅炉运行的重要指标。

保持水位在一定范围内是保证锅炉安全运行的首要条件。

水位的过高、过低都会给锅炉及蒸汽用户的安全操作带来不得的影响。

过高,饱和水蒸气将会带水过多,导致过热器管壁结垢并损坏,进而进入汽轮机的蒸汽带液损坏汽轮机叶片,产生安全事故;反之,水位过低,汽化过快,锅炉供水不足,致使水冷壁烧坏,甚至引起爆炸。

锅炉汽包水位的控制又比较复杂,其中存在的虚假液位、滞后性、不易检测性等等又使传统控制很难达到较为完善的控制要求。

针对锅炉汽包水位存在虚假水位、控制系统复杂、具有滞后性、难以检测等特性,及采用传统PID控制时,效果不佳,如果控制不及时,甚至会产生安全事故的情况。

同时对比模糊控制的发展现状,可发现其适应性好、鲁棒性强、控制精度高等优势,所以本文设想在传统PID控制中引入模糊控制,改善汽包水位控制系统的静态和动态特性,使汽包水位恒定在一定范围之内,杜绝安全隐患,实现锅炉汽包水位的更精确、更有效的智能控制。

关键词:锅炉汽包水位模糊控制 Matlab仿真设计 PIDThe Suzzy Control Design about Boilder Drum Water LevelSystemAbstractThe drum water level is an important index of boiler operation. Keep the water level in certain scope is to ensure the safe operation of the boiler in the workplace. The low water level higher, and will give boiler and steam the safety of users may not bring the influence of the operation. Too high, saturated steam will bring too much water, resulting in superheater tube wall scaling and damage, and then into the steam turbine with liquid damage turbine blade, produce safety accident; Conversely, low water, vaporizing too fast, boiler water supply shortage, the water wall burn out, and even cause an explosion.The boiler drum water level control and more complex, the existing false liquid level, lagging, easily tested, and so on and that traditional control of it is difficult to reach a perfect control requirements.For boiler drum water level has false water level and control system with delay and complex, difficult to testing and other characteristics, and adopts the traditional PID control, the effect not beautiful, if not in time control, even can produce safety accidents. At the same time compared to current situation of the development of the fuzzy control, find the good adaptability, and robust, control precision higher advantage, so this paper in the traditional PID control idea introducing fuzzy control, improve the drum water level control system static and dynamic characteristics of the drum water level constant in certain limits, eliminate hidden dangers, realize the boiler drum water level of more accurate, more effective intelligent control.Key words:Boiler Drum Water Level Fuzzy Control Design Matlab PID目录前言 (1)第1章锅炉相关控制与前景 (2)第1.1节概述 (2)第1.2节锅炉设备的控制任务 (2)第1.3节研究状况 (3)第2章锅炉汽包水位的控制 (5)第2.1节汽包水位的动态特性 (5)第2.2节汽包水位的几种常规控制方法 (7)第3章模糊控制原理 (12)第3.1节模糊控制的形成与提出 (12)第3.2节模糊控制的优缺点 (13)第3.3节模糊控制的基本原理 (14)第4章锅炉汽包水位的模糊控制系统设计与仿真 (23)第4.1节输入输出变量的选择 (23)第4.2节隶属函数的选择 (25)第4.3节模糊规则表的建立 (26)第4.4节合成推理算法 (29)第4.5节模糊控制表 (32)第4.6节控制参数的自整定 (34)第5章模糊PID控制的MATLAB仿真 (35)第5.1节仿真流程图 (35)第5.2节模糊控制器模块的建立 (36)第5.3节仿真模型的建立 (37)第5.4节模糊PID控制与常规PID控制仿真的比较 (39)结论 (43)参考文献 (44)致谢 (45)前言锅炉是工业过程中不可缺少的动力设备为确保安全稳定生产对锅炉的自动控制十分重要其中汽水位是一个非常重要的被控变量由于锅炉的水位调节过程难以建立数学模型具有非线性不稳定性时滞等特点传统的锅炉水位三冲量控制系统大都采用PID控制其控制效果还可以进一步提高而模糊控制不要求知道被控对象的精确数学模型只需要操作人员的经验知识及操作数据鲁棒性强非常适合用于非线性滞后系统的控制但其静态性能不能令人满意限制了它的应用为消除模糊控制的稳态误差采用Fuzzy-PID控制是常用的一种方式,所以本论题具有一定的现实意义。

dcs锅炉液位控制系统课程设计

dcs锅炉液位控制系统课程设计

dcs锅炉液位控制系统课程设计一、引言DCS锅炉液位控制系统是一种自动化控制系统,用于监测和调节锅炉中的液位。

在现代工业生产中,锅炉是不可或缺的设备之一,因此对锅炉液位控制系统的设计和优化显得尤为重要。

本文将从以下几个方面对DCS锅炉液位控制系统进行课程设计。

二、系统概述1. 系统结构:DCS锅炉液位控制系统由传感器、执行器、控制器和监视器等组成。

2. 系统功能:该系统主要实现对锅炉中水位的监测和调节,确保锅炉在安全运行的同时提高工作效率。

三、传感器设计1. 传感器原理:利用压力传感器检测水面高度,并将检测结果转换成电信号输出。

2. 传感器选型:选择精度高、稳定性好、抗干扰能力强的压力传感器。

3. 传感器安装:将传感器安装在锅炉侧面,保证与水面垂直,并采用密封结构防止蒸汽泄漏。

四、执行器设计1. 执行器原理:利用电机驱动阀门,控制水的流动。

2. 执行器选型:选择响应速度快、精度高、耐腐蚀性好的电动阀门。

3. 执行器安装:将执行器安装在锅炉出水管道处,保证与水流方向一致,并采用密封结构防止漏水。

五、控制器设计1. 控制器原理:利用PID算法对传感器输出信号进行处理,并输出控制信号给执行器。

2. 控制器选型:选择具有高性能处理能力、可编程性强、稳定性好的PLC作为控制器。

3. 控制算法:采用PID算法对液位进行调节,根据实际情况调整Kp、Ki和Kd参数。

六、监视系统设计1. 监视系统原理:实时监测锅炉液位变化,并将监测结果显示在监视屏幕上。

2. 监视系统选型:选择具有高分辨率、反应速度快、稳定性好的液晶显示屏。

3. 监视界面设计:设计直观明了的监视界面,包括液位曲线图和实时数值显示等。

七、总结DCS锅炉液位控制系统是一种重要的自动化控制系统,其设计和优化对于锅炉运行的安全和效率具有重要意义。

本文从传感器、执行器、控制器和监视系统等方面进行课程设计,对该系统的实现和应用提供了一定的参考。

锅炉液位PID控制系统的设计

锅炉液位PID控制系统的设计
由上水箱控 制整个系统 的入水 , 同时上水 箱 的出水 阀门完全关 闭 , 仅 打 开下 水箱 的 出水 阀门 , 仅 由下
水 箱 的 出水 阀 门 出水 。 系 统 不 但 是 一 个 含 有 积 分
环节 的过 程 , 且 由于 两水 箱 串联 而 存 在 容 量 滞 而 后, 上水箱 的进 水 流量 由 电动调 节 阀控 制 , 因而 还 存 在从 电动 调节阀到上水箱 的纯滞后 。 3 3 双容水 箱液 位 的串级 控制 . 与单 回路方 案 相 比, 串级 控 制 系统 具 有 明显
68 9


自 动
化 及
仪 表
第3 8卷
锅 炉 液 位 P 制 系 统 的 设 计 I D控
张立众 马 永 翔
( 西 理工 学 院 电 气 工程 系 ,陕 西 汉 中 7 30 ) 陕 2 0 3

要 以 R c w l 实验 室的 过 程 控 制 实验 装 置 为 实验 平 台 , 用 R c w l 公 司 的 Mi o o il0 ok e l 使 o k el c L g 5 0可 r x
关 键 词 锅 炉 液 位控 制 P D MirL gx 5 0 RS oi5 0 I co o i1 0 L gx 0
中图 分 类 号
T 23 5 P 7 .
文 献 标 识 码 A
文 章 编 号 1 0 —9 2 2 1 ) 60 9 -4 0 0 3 3 ( 0 1 0 -6 8 0
系统选 用 10 S 6 S C变 频 器H 来 控 制 电机 的启 动和停止 ; 用 S R D O固态继 电器 。若 条 件允 选 S —I
许 , 系 统 的执 行 机 构 可 选 用 P w rl 4 本 o eFe 0变 频 器 x

锅炉液位控制系统

锅炉液位控制系统

锅炉液位控制系统一.锅炉液位控制系统原理概述锅炉是电厂和化工厂里常见的生产蒸汽的设备。

为了保证锅炉的正常运行,需要维持锅炉液位为正常标准值。

锅炉液位过低,易烧干锅而发生严重事故;锅炉液位过高,则易使蒸汽带水并有溢出危险。

因此,必须通过调节器严格控制锅炉液位的高低,以保证锅炉正常安全的运行。

常见的锅炉液位控制系统示意图如图1-1所示。

图1-1锅炉液位控制系统示意图当蒸汽的耗气量与锅炉进水量相等时,液位保持为正常标准值。

当锅炉的给水量不变,而蒸汽负荷突然增加或减少时,引起锅炉液位发生变化。

不论出现哪种情况,只要实际液位高度与正常给定液位之间出现了偏差,调节器均应立即进行控制,去开打或关小给水阀门,使液位恢复到给定值。

二.一阶单回路控制系统分析单回路系统是由四个基本环节组成,即被控对象(或被控过程)、测量变送装置、调节器和执行机构(本系统为调节阀)。

有时为了分析方便起见,往往把执行机构、被控对象和测量变送装置合在一起,称之为广义对象。

这样系统就归结为调节器和广义对象两部分。

然而,一般来说,还是把系统看成上述四个基本环节所组成。

假定有如3-3图所示的水槽,流入量和流出量分别为q1和q2,我们的任务是维持水槽的液位不变。

为了控制液位,就要选择相应的变送器、控制器、和控制阀,并按图3-4所示的原理图构成单回路控制系统。

图3-3 水槽示意图图3-4水槽液位控制系统上图中表示变送器,LC表示液位控制器,sp代表控制器的给定值。

由图3-4我们可以得出单回路控制系统方块图(原理图)如图3-5所示:图3-5单回路控制系统方块图图3-5是锅炉液位控制系统的方框图。

图中,锅炉为被控对象,其输出为被控参数液位,作用于锅炉上的扰动是指给水压力变化的产生的内外扰动;测量变送器为差压变送器,用来测量锅炉液位,并转变为一定的信号输至调节器;调节器是锅炉液位控制系统中的调节器,有电动,气动等形式,在调节器内将测量液位与给定液位进行比较,得出偏差值,然后根据偏差情况按一定的控制律[如比例(P),比例-积分(PI),比例-积分-微分(PID)等]发出相应的输出信号去推动调节阀动作;调节阀在控制系统中执行元件作用,根据控制信号对锅炉的进水量进行调节,阀门的运动取决于阀门的特性,有的阀门与输入信号成正比关系,有的阀门与输入信号成某种曲线关系变化。

过程控制基于衰减曲线法的锅炉汽包液位控制系统设计总结

过程控制基于衰减曲线法的锅炉汽包液位控制系统设计总结

过程控制基于衰减曲线法的锅炉汽包液位控制系统设计总结
基于衰减曲线法的锅炉汽包液位控制系统设计是一种常见的控制方法,下面是对该设计总结的一些要点:
1. 控制目标:锅炉汽包液位控制的目标是保持液位在设定范围内稳定运行,避免液位过高或过低的情况发生。

2. 控制原理:基于衰减曲线法的液位控制系统是通过测量液位信号,并根据一定的衰减曲线计算出控制量的变化,从而实现对液位的调节。

衰减曲线法的关键在于合理选择衰减时间常数和比例系数,以达到系统稳态性能和动态性能的要求。

3. 控制策略:液位控制系统设计中常采用PID控制策略,即比例-积分-微分控制。

其中,比例控制项根据液位偏差的大小输出调节量,积分控制项用于消除系统偏差,微分控制项则用于预测系统未来的变化趋势。

4. 参数调整:在设计过程中,需要对PID控制器的参数进行调整。

这一过程可以通过试错法、经验法或基于系统理论的自整定方法来进行。

参数调整的目标是使得液位系统响应速度快、稳态误差小,并且抗干扰、抗负载扰动的能力较强。

5. 安全保护:液位控制系统应考虑安全保护措施,例如设置液位报警、限位器、自动关断装置等,以确保在异常情况下及时采取措施,防止液位超出设定范围造成事故。

总的来说,基于衰减曲线法的锅炉汽包液位控制系统设计主要考虑控制目标、控制原理、控制策略、参数调整以及安全保护等方面,以实现液位的稳定运行和安全性能。

锅炉液位控制系统课程设计报告

锅炉液位控制系统课程设计报告

摘要集散控制系统(Distributed control system)是以微处理器为基础的对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统,简称DCS系统。

该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人-机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。

DCS系统在现代化生产过程控制中起着重要的作用。

关键字:集散控制系统;微处理器;最优化控制目录1. 概述 (1)2.通用版及嵌入版MCGS组态软件 (5)2.1锅炉液位控制工程文件建立 (5)2.2锅炉液位控制画面设计 (11)3.被控对象设计 (17)3.1实验装置简介 (17)3.2被控对象特性说明(过程工艺分析) (18)3.3被控对象的结构设计 (18)3.4被控对象工艺流程图 (19)4.控制系统设计 (19)4.1控制系统原理分析及控制方案设计 (19)4.2一次仪表选型设计 (21)4.3 DCS选型设计 (25)5.DCS组态设计 (26)5.1 DCS硬件组态设计 (26)5.2 DCS软件组态设计 (28)5.3 DCS系统闭环运行调试结果分析与说明 (32)5.设计总结与体会 (34)6.参考文献 (35)1. 概述集散控制系统(Distributed control system)是以微处理器为基础的对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统,简称DCS系统。

该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人-机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。

锅炉液位串级控制系统

锅炉液位串级控制系统

4.启动水泵,等高水位水箱溢流后, (恒压状态)开始做实验。调整 P.I.D 参数使系统达 到最佳效果,记录 P、I、D 数值;将主调节器仪表设定为自整定状态,观察系统的调节过程, 记录 P、I、D 参数。 5.待系统稳定后,加 5%的扰动,重复步骤 4,观察主动、从动量变化情况
五、实验报告要求 观察系统的调节过程,按照 5s 的时间间隔,记录 20 组数据,描绘出液位随时间变化的曲 线。
2)副(流量)调节器参数设置: 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 符号 SL0 SL1 SL2 SL3 DE BT F1 F2 F3 IN2 PIDL PIDH OUTL OUH SVL SVH FU0 FU1 FPB FUL FUH 设定值 14 0 1 2 1 5 1 1 0 2 0 100 0 300 0 300 3 0 0 0 300 作用 输入分度号,14=(1~5)V 显示无小数点 第一报警为下限报警 第二报警为上限报警 设备号(通讯用) 通讯波特率=9600 PID 反作用方式 PID 为电压、电流输出 SV 显示控制目标值 双路输入外给定控制 PID 输出下限幅值(%) PID 输出上限幅值(%) 设定变送输出的下限量程 设定变送输出的上限量程 输入信号的测量下限量程 输入信号的测量上限量程 SV 输入分度号(1~5V) SV 显示无小数点 SV 显示输入零点迁移 SV 测量量程的下限 SV 测量量程的上限
实验题目 实验室 实验类别 一、实验目的 实验时间
锅炉液位串级控制系统 同组人数
1.掌握以流量为副参数以锅炉液位为主参数串级控制系统构成参数整定方法; 2.进一步熟练智能调节仪表的基本操作与参数设定方法; 3.研究串级控制系统对扰动的调节作用及克服二次扰动能力。 二、实验设备 1.过程控制对象:1 套 2.控制系统操作台:1 套 3.PID 自整定数字调节仪:2 块 框图如图 3.1 所示,系统由一个定值控制的主参数回路和一个跟随主参数变化 的随动控制回路组成。

锅炉液位控制完整系统原理概述

锅炉液位控制完整系统原理概述

锅炉液位控制完整系统原理概述一、引言锅炉液位控制是锅炉运行中非常重要的一个环节,液位控制的稳定与否直接影响到锅炉的安全运行和能效。

本文将对锅炉液位控制的完整系统原理进行概述,包括液位测量、液位控制、液位保护等方面的内容。

二、液位测量液位测量是锅炉液位控制的基础,常用的液位测量方法有以下几种:1. 磁翻板液位计:通过浮子的上下浮动来实现液位的测量,浮子上的磁性翻板会随着液位的变化而翻转,通过磁力作用在指示器上显示液位高低。

2. 高频电容液位计:利用电容的原理来测量液位,通过电容传感器和电容变送器将液位信号转化为标准的电流或电压信号。

3. 微波液位计:采用微波的传输特性来测量液位,通过发射器和接收器之间的微波信号的传播时间来确定液位高低。

三、液位控制液位控制是为了保持锅炉液位在设定范围内,常用的液位控制方法有以下几种:1. 水位比例控制:根据锅炉负荷的变化,通过调节给水阀的开度来控制锅炉液位,使其保持在设定的比例范围内。

2. 水位偏差控制:通过调节给水阀的开度,使锅炉液位与设定值之间的偏差保持在一定范围内,以实现液位的控制。

3. 水位PID控制:采用PID控制算法,通过对液位偏差、变化率和积分值进行综合调节,实现锅炉液位的精确控制。

四、液位保护液位保护是为了防止锅炉液位过低或过高而导致的安全事故,常用的液位保护方法有以下几种:1. 低液位保护:当锅炉液位低于设定值时,自动停止给水,避免锅炉缺水运行,同时发出警报信号。

2. 高液位保护:当锅炉液位高于设定值时,自动停止给水,避免锅炉溢水运行,同时发出警报信号。

3. 过低液位保护:当锅炉液位过低时,自动停止燃烧器的工作,避免燃烧器在缺水状态下继续燃烧,造成锅炉事故。

4. 过高液位保护:当锅炉液位过高时,自动停止给水和燃烧器的工作,避免锅炉溢水和燃烧器在过高液位下继续燃烧,造成锅炉事故。

五、总结锅炉液位控制完整系统的原理概述了液位测量、液位控制和液位保护等方面的内容。

锅炉汽包液位控制系统matlab设计

锅炉汽包液位控制系统matlab设计

锅炉汽包液位控制系统matlab设计一、引言锅炉汽包液位控制是锅炉控制系统中的重要组成部分,其作用是保证锅炉运行安全稳定。

本文将介绍如何使用MATLAB设计锅炉汽包液位控制系统。

二、锅炉汽包液位控制系统的基本原理锅炉汽包液位控制系统的基本原理是通过对水泵、给水阀、汽阀等设备进行控制,使得锅炉内部的水位保持在一定范围内。

具体来说,当锅炉内部水位过低时,需要通过水泵将水加入到锅炉中;当锅炉内部水位过高时,则需要通过给水阀和汽阀来调节蒸汽排放量和给水量。

三、MATLAB设计锅炉汽包液位控制系统的步骤1. 建立模型在MATLAB中,我们可以使用Simulink工具箱来建立模型。

首先,我们需要确定模型所需的输入和输出信号。

在这里,我们需要输入给水流量和蒸汽流量,并输出液位信号。

2. 设计PID控制器PID控制器是一种常用的控制器类型,在这里也可以使用该类型的控制器来进行设计。

在MATLAB中,我们可以使用Simulink中的PID 控制器模块来进行设计。

需要注意的是,在设计PID控制器时,需要根据实际情况进行参数调整。

3. 进行仿真在完成模型和控制器的设计后,可以进行仿真以验证系统的性能。

在MATLAB中,我们可以使用Simulink中的仿真功能来进行仿真。

4. 调整参数根据仿真结果,可以对模型和控制器参数进行调整以优化系统性能。

5. 实现控制最后,在完成模型和控制器参数调整后,我们可以将其应用到实际系统中进行控制。

四、总结本文介绍了如何使用MATLAB设计锅炉汽包液位控制系统,包括建立模型、设计PID控制器、进行仿真、调整参数和实现控制等步骤。

通过该方法,我们可以有效地提高锅炉运行安全稳定性。

基于MATLAB的锅炉液位控制系统的设计与仿真

基于MATLAB的锅炉液位控制系统的设计与仿真

基于MATLAB的锅炉液位控制系统的设计与仿真锅炉液位控制是工业生产过程中非常重要的一环,它直接涉及到锅炉的安全运行以及生产效率的提高。

本文将基于MATLAB软件对锅炉液位控制系统进行设计与仿真,并详细介绍设计和仿真过程。

首先,我们需要了解锅炉液位控制系统的基本原理。

在锅炉运行过程中,燃烧产生的热量将水加热为蒸汽,并转化为动能。

为了保证锅炉的安全运行,必须确保水的液位在合适的范围内。

如果液位过高将导致溢出,而液位过低则会引起管道干燥,从而破坏锅炉结构。

因此,液位控制的目标是使液位保持在一个稳定的值。

锅炉液位控制系统的主要组成部分包括水位传感器、执行器和控制器。

传感器用于检测液位,执行器用于调节水位,而控制器用于根据传感器的反馈信号控制执行器的动作。

设计锅炉液位控制系统的第一步是建立数学模型。

在本文中,我们采用经典的PID控制器。

PID控制器的输出可以表示为:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt。

其中,e(t)为控制器输入信号,其定义为e(t) = SP(t) - PV(t), SP(t)为设定值,PV(t)为过程变量,Kp、Ki和Kd分别为比例、积分和微分增益。

锅炉液位系统的数学模型可以表示为:τ * dp(t)/dt = m * a(t) - m * b(t) * u(t)。

其中,dp(t)/dt为液位变化速率,a(t)为进水流量,b(t)为蒸发流量,u(t)为执行器动作信号,τ和m为系统参数。

接下来,我们使用MATLAB软件进行系统设计和仿真。

首先,我们需要定义系统参数和初始条件。

然后,我们可以利用MATLAB的控制系统工具箱中的函数进行系统建模。

通过选择适当的PID控制器增益,我们可以通过系统仿真来评估系统的性能。

在MATLAB中,可以使用simulink模块来搭建系统模型,并通过运行模型来获取系统的响应曲线。

在仿真过程中,我们可以通过修改控制器增益来优化系统的性能,例如快速响应、抑制振荡和减小超调量。

锅炉水位控制方案

锅炉水位控制方案

锅炉水位控制方案一、背景锅炉是工业生产中广泛使用的设备,用于产生蒸汽或加热水。

在锅炉运行过程中,水位的控制至关重要。

控制不当可能导致水位过高或过低,从而影响锅炉的安全性和正常运行。

因此,设计一个可靠有效的锅炉水位控制方案是十分重要的。

二、目标三、方案1. 电极式水位控制电极式水位控制是常见的一种控制方法。

它通过使用电极探头检测锅炉内的水位,并根据检测到的水位信号控制水位的调节阀。

该方案的优点是简单易行,可靠性高。

但需要定期检查电极的工作状态,并及时对电极进行清洗和维护,以确保准确的水位检测。

2. 超声波水位控制超声波水位控制是一种非接触式的水位检测和控制方法。

通过发送超声波信号,并利用超声波的反射或传播时间来测量水位的高度。

根据测量结果,可以控制水位调节阀以实现水位的自动控制。

该方案适用于高温、高压工况下的锅炉,具有精准度高、安装方便等优点。

3. 压力差水位控制压力差水位控制是一种使用压力传感器测量锅炉内外的压力差,并根据压力差的变化来控制水位的方法。

该方案简单可靠,适用于存在压力差的情况下。

然而,在压力差变化较大的情况下,可能会导致水位控制的不稳定性,需要进行适当的调整和校准。

4. 液位控制系统液位控制系统是一种使用液位传感器来测量锅炉的水位,并通过信号传输和处理来实现自动控制的系统。

该方案具有准确性高、稳定性好的优点,适用于对水位控制要求较高的场景。

但需要注意液位传感器的选择和维护,以确保准确的测量结果。

四、总结锅炉水位控制方案的选取应根据具体的应用场景和要求进行评估和选择。

不同的方法各有优缺点,需要根据实际情况进行权衡取舍。

在实施方案时,需要注意定期检查和维护相关设备,以确保水位控制的准确性和可靠性。

此外,合理的操作和维护锅炉设备也是保证水位控制有效的重要因素。

锅炉液位控制系统设计

锅炉液位控制系统设计

《自动控制原理课程设计》课题:锅炉液位控制系统系别: 电气与控制工程学院专业:自动化姓名:学号:指导教师:电控学院2011年1月6日1、设计目的:通过课程设计使学生掌握如何应用微型计算机结合自动控制理论中的各种控制算法构成一个完整的闭环控制系统的原理和方法;掌握工业控制中典型闭环控制系统的硬件部分的构成的工作原理和设计及其使用方法;掌握控制系统中典型算法的程序设计方法;掌握测控对象参数检测方法、变送器的功能、执行器和调节阀的功能、过程控制仪表的PID 控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高解决实际工程问题的能力。

2、设计要求设计一个单回路液位控制系统,合理选择PID 控制规律,掌握测控对象参数检测方法、变送器的功能、执行器和调节阀的功能、过程控制仪表的PID 控制参数整定方法,进一步加强对课堂理论知识的理解与综合应用能力,进而提高解决实际工程问题的能力。

3、总体设计锅炉液位控制系统是以液位测量信号作为唯一的控制信号,即水位测量信号经变送器送到水位调节器,调节器根据测量值与设定值的偏差去控制给水调节阀,从而改变给水量以保持水位保持在允许的±5%误差范围之内。

锅炉液位控制系统是由锅炉内胆、变送器、调节器(控制器)、给水调节阀及相关电路组成,其工作原理如图所示.(一)、课题任务(1)确定总体方案:总体方案是只针对所设计的任务、要求和条件,根据已给定值图2 锅炉液位过程控制示意图经掌握的知识和资料从全局着眼,将总体功能要求合理地发、分配给若干单元电路,并画出一个能够表示各单元功能和总体工作原理的框图。

在分析比较各种资料的基础上,发挥自己的创造力,设想几种系统方案,从设计的合理性、技术的先进性、运行的可靠性和制作的经济性等方面,分别进行技术论证和经济效益的比较,最后确定总体方案。

(2)选择元器件:控制系统设计的关键之一是选择合适的元器件并组合成系统.因此,在设计过程中,不但要考虑传感变送器的选择,也要考虑执行期的选择,以及他们在控制系统中的作用。

锅炉汽包水位控制系统的设计毕业论文

锅炉汽包水位控制系统的设计毕业论文

过程控制系统实验报告专业 xxxxxx班级 xxxxxxxxx学生姓名 xxxxxx学号 xxxxxxxx锅炉汽包水位控制系统设计一、控制要求设计一个汽包水位控制系统;使汽包水位维持在90CM;稳态误差±0;5CM;以满足生产要求..二、完成的主要任务1.掌控锅炉生产蒸汽工及其工作流程2.对被控对象进行特性分析;画出汽包水位控制系统方框图和流程图3.选择被控参数和被控变量;说明其选择依据4.设计控制系统方案;如何选择检测仪表;说明其选择原则和仪表性能指标5.说明单回路控制系统4个环节的工作形式对控制过程6.对控制进行PID控制说明其参数整定理论7.对锅炉汽包水位进行simulink仿真;对参数进行整定;其仿真图要满足动态性能指标8.总结实验课程设计的经验和收获过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 -1.1 概述............................................ - 3 -1.2 锅炉生产蒸汽工艺简述 ............................ - 4 -1.3 锅炉生产蒸汽工作流程 ............................ - 4 - 第二章锅炉汽包水位控制系统的方案设计............... - 5 -2.1 对被控对象进行特性分析 ............................ - 5 -2.2汽包水位控制系统方框图和流程图..................... - 5 -2.2.1 液位控制系统的方框图.................................. - 5 -2.2.2 液位控制系统的方案图.................................. - 6 -2.3选择被控参数和被控变量............................. - 7 -2.4选择检测仪表;说明其选择原则和仪表性能指标 .......... - 7 -2.4.1传感器、变送器选择 ..................................... - 8 -2.4.2执行器的选择........................................... - 8 -2.4.3关于给水调节阀的气开气关的选择.. ....................... - 8 -2.4.4 关于给水调节阀型号的选择.. ............................. - 9 -2.4.5 给水流量蒸汽流量..................................... - 9 -2.5 四个环节的工作形式对控制过程............................... - 9 -第三章PID控制.................................... - 10 -3.1对控制进行PID控制.......................................... - 10 -3.2整定PID理论参数............................................ - 11 -第四章仿真...................................... - 12 -4.1对锅炉汽包水位进行simulink仿真................... - 12 -4.2对系统参数进行整定................................ - 14 -第四章结束语...................................... - 10 -第一章锅炉汽包水位控制系统的组成原理1.1概述随着电子产品的降价及自动化生产线工艺控制连续稳定优势的凸现;越来越多的企业准备将自己的核心生产线改成全自动化生产线或者对个别关键工艺参数采用自动控制..工业应用自控技术在中国的推广使用较晚;但近年来发展较快..国内现在做汽包水位自动控制系统方面的设计公司很多;但由于能够集工艺要求、自动化技术和电气技术三者于一体的设计不多;所以人们清楚地认识到自动控制技术在工业应用中的重要地位和作用..从传统的控制方式来看;结构简单成本低的方案不能有效的控制锅炉汽包“虚假水位”现象;而能够在一定程度上控制“虚假现象”;系统却过于复杂;成本较高..故三种基本结构应运而生:单冲量调节系统结构;单级三冲量调节系统结构;串级三冲量调节系统结构..低负荷阶段;由于疏水和排污等因素的影响;给水和蒸汽流量存在着严重的不平衡;而且流量太小时;测量误差大;故在低负荷阶段;一般采用单冲量调节方式..单冲量水位控制系统是以汽包水位作为唯一的控制信号;冲量即变量..单冲量水位控制系统由汽包、变送器、调节器、执行器及调节阀等组成;系统框图如下所示:图1.1 液位控制系统方框图1.2锅炉生产蒸汽工艺简述水位控制系统的任务是使给水量与锅炉蒸汽量相适应;维持汽包水位在工艺规定的范围内..汽包水位反映了锅炉蒸汽流量与给水量之间的平衡关系;是锅炉运行中非常重要的监控参数..汽包水位过高;会影响汽水分离的效果;使蒸汽带液;过热器结垢;影响过热器的效率;如果使带液蒸汽进入汽轮机;会损坏汽轮机叶片..如果水位过低;会破坏水循坏而损坏锅炉;尤其是大型锅炉;一旦停止给水;汽包存水会在很短时间内完全汽化而造成重大事故;甚至引起爆炸..因此汽包水位需要严格控制..1.3锅炉生产蒸汽工作流程锅炉是工业过程中不可缺少的动力设备;锅炉的任务是根据外界负荷的变化;输送一定质量气压;气温和相应数量的蒸汽..锅炉是由“锅”和“炉”俩部分组成..“锅”就是锅炉的汽水系统;如图所示..由省煤器3、汽包4、下降管8、过热器5、上升管7、给水调节阀2、给水母管1及蒸汽母管6等组成..锅炉的给水用给水泵打入省煤器;在省煤器中;水吸收烟气的热量;使温度升高到本身压力下的沸点;成为饱和水然后引入汽包..汽包中的水经下降管进入锅炉底部的下联箱;又经炉膛四周的水冷壁进入上联箱;随即又回入汽包..水在水冷壁管中吸收炉内火焰直接辐射的热;在温度不变的情况下;一部分蒸发成蒸汽;成为汽水混合物..汽水混合物在汽包中分离成水和汽;水和给水一起在进入下降管参加循环;汽则由汽包顶部的管子引往过热器;蒸汽在过热器中吸热、升温到规定温度;成为合格蒸汽送入蒸汽母管..“炉”就是锅炉的燃烧系统;由炉膜、烟道、吸燃器、空气预热器等组成..锅炉燃料燃烧所需的空气由送风机送入;通过空气预热机;在空气预热机中吸收烟气热量;成为热空气后;与燃料按一定的比例进入炉膛燃烧;生成的热量传递给蒸汽发生系统;产生饱和蒸汽..然后经过过热器;形成一定的过热蒸汽;汇集到蒸汽母管..具有一定的压力的过热蒸汽;经过负荷设备调节阀供负荷设备使用..与此同时;燃烧过程中产生的烟气;其中含有大量余热;除了将饱和蒸汽变成过热蒸汽外;还预热锅炉给水和空气;最后经烟囱排入大气..第二章锅炉汽包水位控制系统的方案设计2.1 对被控对象进行特性分析在设计锅炉汽包水位控制的过程中首先从汽包锅炉入手;汽包锅炉有自然循环方式和强制循环方式两种;汽包锅炉自动控制的任务与直流锅炉几乎一样;也是主要包括四个方面:1保证系统安全运行;2保持燃烧的经济性;3保持炉膛负压在一定范围内;4运行中保证气轮机所需的蒸汽量;过热蒸汽压力和蒸汽温度的恒定..无论上一自然循环还是强制循环锅炉;其给水控制的任务都是为了保证锅炉负荷和给水的平衡关系..但是;汽包锅炉由于有了汽包的存在;使锅炉的运行方式、锅炉的结构、工作原理与直流锅炉不同;这就使实现控制的方式;采用被调量都有所区别..2.2汽包水位控制系统方框图和流程图2.2.1液位控制系统的方框图单冲量水位控制系统以汽包水位作为唯一的控制信号;冲量即变量..水位测量信号H的偏差;通过执行器去控经变送器送到水位调节器;调节器根据汽包水位测量值H与0制给水调节阀以改变给水量;保持汽包水位在允许的范围内..系统方框图如下所示..图2.1 液位控制系统方框图这种控制系统结构简单;是典型的单回路控制系统..采用单冲量控制系统;进行PID调节一般就能满足生产要求..2.2.2液位控制系统的方案图以汽包水位为被控参数;给水量作为控制变量可构成如图所示的单回路水位控制系统;工程上也称为单冲量控制系统..这种系统的优点是所用设备少;结构简单;参数整定和使用维护方便..在如图所示的单冲量控制系统中;当锅炉蒸汽负荷流量突然大幅度增加时;由于假水位现象;调节器不但不及时开大给水阀来增加给水量;反而去关小调节阀的开度;减小给水量..这样由于蒸汽量增加、给水量减少使汽包存水量减少..等到假水位消失后;汽包水位会严重下降;甚至会使汽包水位降到危险的程度;以至发生事故..对于负荷变动较大的大、中型锅炉;单冲量控制系统不能保证水位稳定;难以满足水位控制要求和生产安全..而对小型锅炉;由于蒸汽负荷变化时假水位的现象并不明显;如果在配上相应的一些联锁报警装置;这种单冲量控制系统也能满足生产的要求;并保证安全生产..图2.2 液位控制系统方案图 2.3选择被控参数和被控变量被控参数:能在生产过程中借助自动控制保持恒定值或按一定规律变化的变量.. 控制变量:用来克服干扰对被控参数的影响;实现控制作用的变量..又称为操纵变量..最常见的操纵变量是介质的流量;也有以转速、电压等作为操纵变量的..本次实验设计的控制变量为出口流体的流量..控制变量的确定被控变量选定以后;应对工艺进行分析;找出所有影响被控变量的因素..在这些变量中;有些是可控的;有些是不可控的..1、在诸多影响被控变量的因素中选择一个对被控变量影响显著且便于控制的变量;作为控制变量;2、其它未被选中的因素则视为系统的干扰..2.4选择检测仪表;说明其选择原则和仪表性能指标调节器的选型与调节规律的选择对过程控制系统的控制品质有至关重要的影响;也是过程控制系统设计的核心内容之一..调节器的输出决定于被控参数的测量值与设定值之差;被控参数的测量值与设定值变化;对输出的作用方向是相反的..过程控制中;对于调节器的正反作用的定义为:当设定值不变时;随着测量值的增加;调节器的输出也增加;则称为“正作用”方式;同样;当测量值不变;设定值减小时;调节器输出增加;称为“正作用”方式..调节阀正、反作用方式的选择是在调节阀气开、气关方式确定之后进行的;其确定原则是使整个单回路构成负反馈系统..图2.2 液位控制系统流程图2.4.1传感器、变送器选择传感器、变送器完成对被控参数的检测;并将测量信号传送至控制器..测量信号是调节器进行控制的依据;被控参数迅速、准确地测量是实现高性能控制的重要条件..测量不准确或不及时;会产生失调、误调或调节不及时..因此;传感器、变送器的选择是过控系统设计中重要的一环..2.4.2执行器的选择过程控制使用最多的是由执行机构和调节阀组成的执行器..A 、调节阀工作区间的选择B 、调节阀的流量特性选择C 、调节阀的气开、气关作用方式选择2.4.3关于给水调节阀的气开气关的选择关于给水调节阀的气开气关的选择;一般都是从安全角度考虑的..如果高压蒸汽供给蒸汽透平压缩机的重要负荷;为保护这些设备以选用气开F .C 阀为宜..如果蒸汽作为工艺生产中的热源时;为保护锅炉;以选用气关F .O 阀为宜..综合起来考虑;一般选带保”+”-位装置F.IJ的给水阀;即事故状态该阀停在原位..2.4.4 关于给水调节阀型号的选择关于给水调节阀型号的选择..由于流经给水阀的除氧水压力为6.0MPa 温度为104℃ ;极宜产生汽蚀现象..对于轻度汽蚀;一般给水阀的阀芯阀座选用司钛莱合金堆焊即可..对于重度汽蚀;一般给水阀选用多级高压调节阀;使高压除氧水在流过调节阀多级节流孔后逐渐降压;而每级阀芯上只承担一部分压差;使节流后的压力在阀的部分恢复不到流体的饱和蒸汽压力;可以有效的避免汽蚀现象;也有效的防止了汽蚀引起的噪声振动和对阀芯阀座的侵蚀..2.4.5 给水流量蒸汽流量给水流量蒸汽流量的一次元件如果选用节流装置;则差压变送器输出的信号需经开方器后再输入到加法器进行信号叠加..这样可以减少非线性对系统调节品质的影响..若是选用流量变送器则不必加开方器..它们的显示仪表的量程应选择的相同;其范围应比额定蒸汽负荷大一些;以保证锅炉在额定负荷下的给水流量有波动的余地..2.5 四个环节的工作形式对控制过程确定调节系统的方案时;要根据对象的特性和工艺要求;选择合适的调节规律;使组成的调节系统满足预期的品质指标..调节器的调节规律;即它的输出量与输入量偏差值之间的函数关系..P = f e调节器的作用是根据偏差;按规定的调节规律产生输出信号;推动执行机构;对生产过程进行调节..1、比例控制P适用于控制通道滞后较小、负荷变化不大、工艺上没有提出无差要求的系统;2、比例积分控制PI适用于控制通道滞后较小、负荷变化不大、工艺参数不允许有余差的系统..3、比例微分控制PD适用于控制通道滞后较大的系统..例如加热较慢的温度控制系统..4、比例积分微分控制PID适用于容量滞后较大、负荷变化大、控制质量要求较高的系统;应用最普遍的是温度控制系统与成分控制系统..第三章PID控制3.1对控制进行PID控制求出系统的传递函数;画出液位控制系统方框图..在稳定状态下;水位测量信号等于给定值;水位调节器的输出;蒸汽流量及给水流量等三个信号;通过加法器得到的输出电流为:I0= K1 I1-K2 I2+ K3 I3式中;I1 为液位调节器的输出电流;I2 为蒸汽流量变送器的电流;I3 为给水流量变送器的电流;K1 、K2 、K3 分别为加法器各通道的衰减系数..设计K2 I2= K3 I3此时I0 正是调节阀处于正常开度时所需要的电流信号为了安全调节阀必须用气关阀 ..假定在某一时刻;蒸汽负荷突然增加;蒸汽流量变送器的输出电流I2 相应增加;加法器的输出电流I0 就减少; 从而开大给水调节阀..但是与此同时出现了假水位现象;水位调节器输出电流I1 将增大..由于进入加法器的两个信号相反; 蒸汽流量变送器的输出电流I2 会抵消一部分假水位输出电流I1 ; 所以; 假水位所带来的影响将局部或全部被克服..待假水位过去;水位开始下降;水位调节器输出电流I1 开始减小; 此时; 它与蒸流量信号变化的方向相反; 因此加法器的输出电流I0 减小; 意味着要求增加给水量; 以适应新的负荷需要并补充水位的不足..图3.1 液位控制系统方框图3.2整定PID理论参数调节器参数的工程整定方法在控制系统设计或安装完毕后;被控对象、测量变送器和执行器这三部分的特性就完全确定了;不能任意改变..只能通过控制器参数的工程整定;来调整控制系统的稳定性和控制质量..控制器参数的整定;就是按照已定的控制方案;求取使控制质量最好的控制器参数值..具体来说;就是确定最合适的控制器比例度P、积分时间TI;和微分时间TD..1稳定边界法临界比例度法属于闭环整定方法;根据纯比例控制系统临界振荡试验所得数据临界比例度Pm和振荡周期Tm;按经验公式求出调节器的整定参数..1 若置调节器Ti→∞;Td=0;比例度P →较大值;将系统投入运行..2 逐渐减小P ;加干扰观察;直到出现等幅减振荡为止..记录此时的临界值Pm和Tm..yT图3.2 液位控制系统图根据Pm 和Tm;按经验公式计算出控制器的参数整定值第四章仿真4.1对锅炉汽包水位进行simulink仿真稳定边界法:图4.1比例控制图图4.4 比例控制 simulink仿真结果图4.3系统PID仿真图图4.4 PID控制simulink仿真结果4.2对系统参数进行整定1 置调节器Ti→∞; Td=0;比例度P →较大值;将系统投入运行..2 逐渐减小P ;加干扰观察;直到出现等幅减振荡为止..记录此时的临界值Pm和Tm..3根据Pm和Tm;按经验公式计算出控制器的参数整定值..在控制系统设计或安装完毕后;被控对象、测量变送器和执行器这三部分的特性就完全确定了;不能任意改变..只能通过控制器参数的工程整定;来调整控制系统的稳定性和控制质量..控制器参数的整定;就是按照已定的控制方案;求取使控制质量最好的控制器参数值..具体来说;就是确定最合适的控制器比例度P、积分时间TI;和微分时间TD..1稳定边界法临界比例度法属于闭环整定方法;根据纯比例控制系统临界振荡试验所得数据临界比例度Pm和振荡周期Tm;按经验公式求出调节器的整定参数..1 若置调节器Ti→∞;Td=0;比例度P →较大值;将系统投入运行..2 逐渐减小P ;加干扰观察;直到出现等幅减振荡为止..记录此时的临界值Pm和Tm..第五章结束语这次的锅炉汽包水位控制系统设计;把课堂上学到的东西用了出来;因为每台锅炉都不一样;不能全部说清楚..这次课程设计是使用常规仪表对锅炉汽包水位进行自动控制的典型的方案;让我从中体会到了过程控制的内涵..也为接下来的考试打下了基础..同时感谢老师的精心指导;让我能顺利完成这次课程设计..。

锅炉汽包水位控制系统的设计讲解

锅炉汽包水位控制系统的设计讲解

过程控制系统实验报告专业 xxxxxx班级 xxxxxxxxx学生姓名 xxxxxx学号 xxxxxxxx锅炉汽包水位控制系统设计一、控制要求设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。

二、完成的主要任务1.掌控锅炉生产蒸汽工及其工作流程2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图3.选择被控参数和被控变量,说明其选择依据4.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标5.说明单回路控制系统4个环节的工作形式对控制过程6.对控制进行PID控制说明其参数整定理论7.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动态性能指标8.总结实验课程设计的经验和收获过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 -1.1概述............................................ - 3 -1.2锅炉生产蒸汽工艺简述 ............................ - 3 -1.3锅炉生产蒸汽工作流程 ............................ - 4 -............... - 5 -2.1 对被控对象进行特性分析 ............................ - 5 -2.2汽包水位控制系统方框图和流程图..................... - 5 -2.2.1液位控制系统的方框图.................................. - 5 -2.2.2液位控制系统的方案图.................................. - 6 -2.3选择被控参数和被控变量............................. - 6 -2.4选择检测仪表,说明其选择原则和仪表性能指标 ......... - 7 -2.4.1传感器、变送器选择 ..................................... - 7 -2.4.2执行器的选择........................................... - 8 -2.4.3关于给水调节阀的气开气关的选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串行口:SCON,SBUF,PΒιβλιοθήκη ON。3.其引脚功能说明如下:
Vcc:+5V电源线。
VSS:接地线。
XTAL1和XTAL2:片内振荡电路输入线。这两个端子用来外接石英晶体和微调电容,在石英晶体的两个管脚加交变电场时,它将会产生一定频率的机械变形,而这种机械振动又会产生交变电场,上述物理现象称为压电效应。一般情况下,无论是机械振动的振幅,还是交变电场的振幅都非常小。但是,当交变电场的频率为某一特定值时,振幅骤然增大,产生共振,称之为压电振荡。这一特定频率就是石英晶体的固有频率,也称谐振频率。即用来连接8051片内OSC的定时反馈回路,石英晶振起振后要能在XTAL2线上输出一个3V左右的正弦波,以便使MCS-51片内的OSC电路按石英晶振相同频率自激振荡。通常,OSC的输出时钟频率fOSC为0.5MHz-16MHz,典型值为12MHz或者11.0592MHz。电容C1和C2可以帮助起振,典型值为30pF,调节它们可以达到微调fOSC的目的。
关键词;锅炉液位;单片机;传感器;干簧管;报警
0引言
锅炉的液位监控是锅炉运行过程中的一个重要环节。在锅炉运行中,要同时控制锅炉的液位、流量按一定规律变化,才能保证锅炉的正常运行。
目前常用的液位传感器有:旋转编码浮子式传感器(机械式和光电式)、非接触式超声波传感器、压力式传感器、磁浮子接点式传感器(连续式和液位开关式)等。其分辨率从毫米级到厘米级不等,测量范围从几十厘米到几十米。除磁浮子接点式传感器外,其余传感器均比较适合测量范较宽的应用场合。一般压力式和超声波传感器均带有变送部分,即将液位信号转换成标准电流信号(4~20mA)。旋转编码浮子式传感器分为机械式和光电式两种,光电式又分为绝对型和增量型。除智能型一体化传感器外(压力式或超声波),其他传感器一般没有就地显示和数字通信功能,控制和使用都很不方便。
图3-2 锅炉液位测量原理
锅炉允许液位波动范围小于20cm,要求传感器测量精度为1cm,在安全与非安全界限处要求传感器的测量精度为0.5cm.所以设计传感器时,使最高安全液位界限处的干簧管与上、下相邻的干簧管中心距为0.5cm;使最低安全液位界限处的干簧管与上、下相邻的干簧管中心距为0.5cm.根据以上要求需要22个干簧管,液位值为-75cm处表示最低安全界限,那么表示液位值为-70cm和-80cm的干簧管与表示液位值为-75cm的干簧管中心距为0.5cm;同理,表示液位值为75cm处表示最高安全界限,那么表示液位值为70cm和80cm的干簧管与表示液位值为75的干簧管中心距为0.5cm.其余的干簧管间距1cm.
数字式锅炉液位的测量机理与原模拟系统相似,其差别是用微处理器来读取干簧管的工作状态,与浮子正对的干簧管吸合,则CPU读取该位的数据为“0 ”,否则为“1”,不同的液位必对应不同的干簧管状态,那么,微处理器读到的数据也不同,由软件对数据进行一系列处理,最后,取得表征液位的编码,通过微处理器的串口与上位机相连,这样就达到了数字化的要求,由于每一个干簧管与CPU的P1,P2,P0端口相连,每一个端口对应一段液位,测量液位就是读取P1,P2,P0口的数据[1],将这些数据组合表征了液位的高低。
(6)5个中断源,2个中断优先级;
(7)全双工串行接口。
2.8051系列单片机的内部结构
8051系列的内部结构可以划分为CPU、存储器、并行口、串行口、定时器/计数器、中断逻辑几部分。
并行口:P0,P1,P2,P3;
中断口:IE,IP;
定时器/计数器:TMOD,TCON,T0,T1(分别由两个8位寄存器TL0和THO,TL1和TH1组成);
图3-1 系统硬件原理图
2.2控制核心—
1.8051是MCS51系列单片机的一个产品。MCS51系列单片机是Intel公司推出的通用型单片机,其结构特点如下:
(1)8位CPU;
(2)片内震荡及时钟电路;
(3)32根I/O线;
(4)外部存储器寻址范围ROM、RAM各64K;
(5)2个16位的定时器/计数器;
1.2系统测量特点
一般的检测方法是采用电阻分压方式,其输出电压Vo是第i个闭合干簧管的分压值。这种测量方法需精确稳定的电源Ve和分压电阻R,通过适当的变换电路(V/I),可获得4~20mA标准电流输出。但是,如果多个干簧管同时接通,就会影响其分压电阻比,产生较大的测量误差。若在测量中产生一个或多个干簧管永久性导通(干簧管失效),则测量无法正常进行。
锅炉液位控制系统的设计
摘要:设计了一种数字式锅炉液位控制系统,并给出了硬件原理图和软件流程图。该控制系统主要由8051单片机、传感器、LED显示、声光报警、电机驱动、键盘输入等相关硬件来实现,利用传感器(干簧管阵列)监测锅炉液位、CPU循环检测传感器的输出状态,并用光柱和数码管LED指示液位高度。当液位达到设定值时,系统自动关闭水泵停止上水。当水位处于危险高水位和危险低水位时,单片机发出信号,触发蜂鸣器报警装置,蜂鸣器发出响声。同时,和它并联的发光二极管发光,提醒工作人员采取相应措施,进而避免危险事故发生。该系统结构简单,性能可靠、具有很好的容错能力,简化了系统安装和维护,具有较高的性价比,能很好地完成锅炉液位控制的要求。
为此,设计了一种数字式锅炉液位控制系统,该系统采用干簧管阵列作为传感器,利用单片机循环检测其输出状态,从而控制锅炉液位达到用户预先设定的高度。当水位超过最高水位或低于最低水位时,系统报警,同时控制停炉。
1
1.1系统结构及测量原理
用单片机实现的锅炉液位测量是基于干簧管和浮子,该浮子(即磁钢浮子)是一种特制的不锈钢圆筒,圆筒内附有磁铁,像原来浮子测量液位一样,是通过水位计与锅筒汽水连管结合处的专用连接三通,将锅炉汽水引至传感器外套筒内,使磁钢浮子在套筒内与锅炉水位同步升降,浮子的磁场力作用在套筒外的磁控开关阵上,当液位高时,浮子上移,与浮子磁铁对应处的干簧管吸合,其他的干簧管则处于断开状态,CPU循环检测干簧管阵列中某一个或几个干簧管触点闭合状态来表示浮子位置,即液面位置,从而控制液位高度,其测量原理如图3-2所示。
2数字式锅炉液位控制系统
2.1控制系统
系统由数据采集、显示报警、电机驱动、键盘输入几个模块组成。结构如图3-1所示。该系统采用传感器(干簧管阵列)测量锅炉液位值,由单片机循环检测干簧管阵列中某一个或几个干簧管触点闭合状态来表示浮子位置,即液面位置,从而控制液位高度,然后分别在LED上显示;根据当前的液位值和用户设定的水位决定是否进行开、关水泵,以及是否到达危险高、低水位报警,同时关闭加热用的鼓风机。
相关文档
最新文档