含参一元二次方程的解法讲义

合集下载

含参一元二次方程的解法

含参一元二次方程的解法

含参一元二次方程的解法1. 一元二次方程的基本概念好嘞,咱们今天就来聊聊含参的一元二次方程。

说到这个,很多同学可能会皱眉,心想:“这又是什么东东?”其实啊,含参一元二次方程就是那种形如 ( ax^2 + bx + c = 0 ) 的方程,其中的 ( a, b, c ) 里有可能藏着参数。

这就像是一个神秘的盒子,里面可能装着你想要的答案,但你得找到钥匙才能打开它。

那么,为什么它们那么重要呢?想象一下,生活中遇到各种各样的问题,比如说,你想知道某个物体的落地时间,或者你想计算一下投篮的最佳角度,这时候,这个方程就像是你的小助手,帮你解决难题。

简直就像是数学界的小超人,听起来是不是很酷?2. 解方程的步骤2.1 代入参数首先,我们得明白,含参一元二次方程解起来可不是一件轻松的事儿。

咱们得先把参数代入到方程中去。

比方说,如果参数 ( a ) 是个数值,或者是某个变量的函数,记得要好好处理这些参数哦!一不小心,就可能把方程弄得一团糟,像个麻烦的小妖精一样。

2.2 使用求根公式接下来,真正的功夫来了!解一元二次方程常用的办法就是求根公式,公式是这样的: ( x = frac{b pm sqrt{b^2 4ac{2a )。

看起来复杂,但没关系,咱们可以一步一步来。

首先,得计算 ( b^2 4ac ) 这个东西,听起来像是个外星人,但其实就是一个判别式,告诉你方程有没有实数解。

要是判别式大于零,那就有两个不同的实数解;如果等于零,那就只有一个解;要是小于零,那就恭喜你,方程没有实数解,像是失去了约会对象一样,心里那个失落啊。

3. 举个例子3.1 参数的具体应用咱们来举个简单的例子吧!假设你有一个方程 ( 2x^2 + 3kx + k^2 = 0 )。

在这个方程中,( k ) 就是我们的参数。

为了找到解,我们得先看看 ( k ) 的值对解有什么影响。

就像调味料,放多了或者少了,味道都不一样。

3.2 分析不同情况如果 ( k = 1 ),那么方程就变成了 ( 2x^2 + 3x + 1 = 0 )。

一元二次不等式的解法含参不等式恒成立问题及根的分布

一元二次不等式的解法含参不等式恒成立问题及根的分布

范围是
.
第7页/共27页
题型与解法
(四)一元二次方程根的分布问题
例3 分别求使方程x2-mx-m+3=0的两根满足下列条
件的m值的集合:
(1)两根都大于0;
x=m/2
(2)一个根大于0,另一个根小于0;
(3)两根都小于1.
x1
x2
解:令f(x)=x2-mx-m+3且图像与x轴相交
则△=m2-4(-m+3)=(m+6)(m-2)≥0
.
3.已知关于 x 的方程 x2 (m 2)x 1 0 无正根,
求 m 的取值范围.
第16页/共27页
题型与解法
(三)逆向问题
例2.已知不等式 ax2 bx 2 0 的解集为 ( 1 , 1), 求a-b 的值.
23
[思路分析] 由不等式 ax2 bx 2 0 对应的方程 ax2 bx 2 0 的两根为 1 , 1 , 可利用二次方程
两个根都在(k1 , k2 )内
x1<k1 < k2 <x2
y
y
k1 o k2 x
ok1 k2
x
0
k1
b 2a
k2
f
(k1 )
0
f (k2 ) 0
f f
(k1 ) (k2 )
0 0
第15页/共27页
题型与解法
(四)一元二次方程根的分布问题 1.已知方程 x2 2mx m 12 0 .
(A) x 3a或x 4a (B) 3a x 4a
(C) 4a x 3a (D) 3a x 4a
第22页/共27页
课堂练习
3.(1)不等式ax2+bx+2>0的解集是

一元二次含参不等式的解法ppt课件

一元二次含参不等式的解法ppt课件


2、解不等式
x2
(a
1)x 1 a
0
(a
0)
分析:此不等式可以分解为:x
a(
x
1 a
)
0
,故对应的方程必有
两解。又 1>0,所以本题只需讨论两根的大小即可。
解:原不等式可化为:x
a(x
1) a
0 ,令 a
1 a
,可得:a
1
∴当 a
1或
0<a<1
时, a
1 a

故原不等式的解集为
x
|
a
x
1 a
解含参数的一元二次不等式,通常情况下,均需分类讨论, 那么如何讨论呢?首先,必需弄清楚,它的解集与哪些因 素有关。一般地,一元二次不等式的解集(以 ax2+bx+c>0 为例)常与以下因素有关 (1)a; (2)Δ; (3)两根 x1,x2 的大小。 其中系数 a 影响着解集最后的形式,Δ关系到不等式对应 的方程是否有解,而两根 x1,x2 的大小关系到解集最后的次 序;其次再根据具体情况,合理分类,确保不重不漏。
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
例1、 解不等式 x2+ax+4>0
分析:本题中由于 x2 的系数大于 0,故只需考虑后两个因素。
解:∵Δ=a2-16
∴当 a 4,4时,Δ<0,解集为 R;
典例导悟一
若不等式 2 x 1> m x2 1 对一切 m2, 2 都成立,求实数 x 的取值范围。
【解析】令 f (m) =( x2 1)m -2 x +1,则上述问题即可转化为关于 m 的

含参一元二次方程的解法-讲义

含参一元二次方程的解法-讲义

学科:数学专题:含参一元二次方程的解法重难点易错点解析当系数中含有字母时,注意有实解的判断。

题一题面:(x -m )2=n .(n 为正数)金题精讲题一题面:解关于x 的一元二次方程1. x 2+2mx =n .(n +m 2≥0).2. x 2-2mx +m 2-n 2=0.3. .04222=-+-b a ax x 4. abx 2-(a 2+b 2)x +ab =0.(ab ≠0)解含参的一元二次方程:配方法、因式分解满分冲刺题一题面:解关于x 的一元二次方程1. ()()()b a a c x c b x b a ≠=-+-+-022. ()()()01222≠--=-b a x b a x 3. ()()()0222222≠+-=-++b a b a bx a b ax解含参的一元二次方程:因式分解题二题面:解关于x 的方程kx 2-(k +1)x +1=0.解含参的方程,分类讨论。

题三题面:已知关于x 的方程x 2-2ax -a +2b =0,其中a ,b 为实数.(1)若此方程有一个根为2a (a <0),判断a 与b 的大小关系并说明理由;(2)若对于任何实数a ,此方程都有实数根,求b 的取值范围.一元二次方程的解,判别式。

讲义参考答案重难点易错点解析题一 答案:.,21m n x m n x +-=+=金题精讲题一答案:1. .,2221n m m x n m m x +--=++-= 2. x 1=m +n ,x 2=m -n .3. .2,221b a x b a x +=-= 4. ⋅==ba x ab x 21, 满分冲刺题一答案:(1)121,c a x x a b -==- (2) 12,1a ab x a x b+==- (3)当b=0时,120x x ==;当b ≠0时,无实根。

题二答案:k =0时,x =1;k ≠0时,.1,121==x kx 题三答案:解:(1)∵方程x 2-2ax -a +2b =0有一个根为2a ,∴4a 2-4a 2-a +2b =0. 整理,得2a b =. ∵0<a ,∴2a a <,即b a < (2)△=4a 2-4(-a +2b )=4a 2+4a -8b .∵对于任何实数a ,此方程都有实数根,∴对于任何实数a ,都有4a 2+4a -8b ≥0,即a 2+a -2b ≥0.∴对于任何实数a ,都有⋅+≤22a a b∵,81)21(21222-+=+a a a 当21-=a 时,22a a +有最小值81-. ∴b 的取值范围是81-≤b。

一元二次方程解法讲义(全4讲)

一元二次方程解法讲义(全4讲)

一元二次方程解法讲义(全四讲)第一讲 直接开平一、学习目标了解形如()()20x h k k +=≥的一元二次方程的解法——直接开平方法;能够熟练而准确的运用开平方法求一元二次方程的解.二、知识回顾1.什么叫做平方根?平方根有哪些性质?平方根的定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根.用式子表示:若x 2=a ,则x 叫做a 的平方根.记作x=如:9的平方根是3±;425的平方根是25±.平方根的性质:(1)一个正数有两个平方根,这两个平方根是互为相反数的; (2)0的平方根是0; (3)负数没有平方根.2.x 2=4,则x=±2.想一想:求x 2=4的解的过程,就相当于求什么的过程?三、新知讲解四、典例探究1.用直接开平方法求一元二次方程的解【例1】解方程:(1)2x 2﹣8=0;(2)(2x ﹣3)2=25.分析:(1)先变形得到x 2=4,然后利用直接开平方法求解;(2)首先两边直接开平方可得2x ﹣3=±5,再解一元一次方程即可.解答:解:(1)x 2=4,两边直接开平方,得x1=2,x2=﹣2.(2)两边直接开平方,得2x﹣3=±5,则2x﹣3=5,2x﹣3=﹣5,所以x=4,x=﹣1.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法求解.总结:运用直接开平方法解一元二次方程,首先要将一元二次方程的左边化为含有未知数的完全平方式,右边化为非负数的形式,然后直接用开平方的方法求解.练1.(2015•东西湖区校级模拟)解方程:(2x+3)2﹣25=0分析:先移项,写成(x+a)2=b的形式,然后利用数的开方解答.解答:解:移项得,(2x+3)2=25,开方得,2x+3=±5,解得x1=1,x2=﹣4.点评:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.练2.(2014秋•昆明校级期中)解方程:9(x+1)2=4(x﹣2)2.分析:两边开方,即可得出两个一元一次方程,求出方程的解即可.解答:解:两边开方得:3(x+1)=±2(x﹣2),即3(x+1)=2(x﹣2),3(x+1)=﹣2(x﹣2),解得:x1=﹣7,x2=.点评:本题考查了解一元二次方程和解一元一次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.2.用直接开平方法判断方程中字母参数的取值范围【例2】(2015春•南长区期末)若关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0分析:根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.解答:解:∵x2﹣k=0,∴x2=k,∵一元二次方程x2﹣k=0有实数根,∴k≥0,故选:C..点评:此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a (a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”总结:先把方程化为“左平方,右常数”的形式,且把系数化为1,再根据一元二次方程有无解来求方程中字母参数的取值范围.练3.(2015春•利辛县校级月考)已知一元二次方程mx2+n=0(m≠0,n≠0),若方程有解,则必须()A.n=0 B.m,n同号 C.n是m的整数倍 D.m,n异号分析:首先求出x2的值为﹣,再根据x2≥0确定m、n的符号即可.解答:解:mx2+n=0,x2=﹣,∵x2≥0,∴﹣≥0,∴≤0,∵n≠0,∴mn异号,故选:D.点评:此题主要考查了直接开平方法解一元二次方程,关键是表示出x2的值,根据x2的取值范围确定m、n的符号.练4.(2015•岳阳模拟)如果关于x的方程mx2=3有两个实数根,那么m的取值范围是.解:∵关于x的方程mx2=3有两个实数根,∴m>0.故答案为:m>0.五、课后小测一、选择题1.(2015•石城县模拟)方程x2﹣9=0的解是()A.x=3 B.x=9 C.x=±3 D.x=±92.(2015•河北模拟)已知一元二次方程x2﹣4=0,则该方程的解为()A.x1=x2=2 B.x1=x2=﹣2 C.x1=﹣4,x2=4 D.x1=﹣2,x2=23.(2015•杭州模拟)关于x的方程a(x+m)2+n=0(a,m,n均为常数,m≠0)的解是x1=﹣2,x2=3,则方程a(x+m﹣5)2+n=0的解是()A.x1=﹣2,x2=3 B.x1=﹣7,x2=﹣2 C.x1=3,x2=﹣2 D.x1=3,x2=84.(2015•江岸区校级模拟)如果x=﹣3是一元二次方程ax2=c的一个根,那么该方程的另一个根是()A.3 B.﹣3 C.0 D.15.(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间 D.x1,x2都小于36.(2014春•淮阴区校级月考)方程(1﹣x)2=2的根是()A.﹣1,3 B.1,﹣3 C., D.,7.(2012秋•内江期末)已知a2﹣2ab+b2=6,则a﹣b的值是()A. B.或 C.3 D.8.方程x2=0的实数根有()A.1个 B.2个 C.无数个 D.0个9.方程5y2﹣3=y2+3的实数根的个数是()A.0个 B.1个 C.2个 D.3个二、填空题10.(2015•泉州)方程x2=2的解是.11.(2014•怀化模拟)方程8x2﹣72=0解为.三、解答题12.(2014•祁阳县校级模拟)解方程:(x ﹣2)2﹣16=0.13.(2014秋•青海校级月考)解方程:.14.已知一元二次方程x 2﹣4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程.(1)你选的m 的值是 ;(2)解这个方程.第二讲 配方法一、 学习目标1.掌握用配方法解一元二次方程的一般步骤; 2.学会利用配方法解一元二次方程. 二、知识回顾1.形如2()x m n +=(n ≥0)的一元二次方程,利用求平方根的方法,立即可得而解出方程的根,这种解一元二次方程的方法叫“直接开平方法”.2.如果方程能化成x 2=p 或(mx +n )2=p (p ≥0)的形式,那么利用直接开平方法可得xmx+n三、新知讲解 1.配方法的依据配方法解一元二次方程的依据是完全平方公式2222()a ab b a b ±+=±及直接开平方法.2.配方法的步骤(1)化—— 化二次项系数为1如果一元二次方程的二次项系数不是1,那么在方程的两边同时除以二次项系数,把二次项系数化为1. (2)移——移项通过移项使方程左边为 二次项 和 一次项 ,右边为 常数项 . (3)配——配方1.形如2()x m n +=(n ≥0)的一元二次方程,利用求平方根的方法,立即可得而解出方程的根,这种解一元二次方程的方法叫“直接开平方法”.在方程两边都加上 一次项系数一半的平方 ,根据完全平方公式把原方程变为2()x m n +=(n ≥0)的形式.(4)解——用直接开平方法解方程. 四、典例探究1.配方法解一元二次方程 【例1】(2015•科左中旗校级一模)用配方法解下列方程时,配方有错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25 C .2t 2﹣7t ﹣4=0化为(t﹣)2=D .3x 2﹣4x ﹣2=0化为(x ﹣)2=【解析】配方法的一般步骤: (1)把常数项移到等号的右边; (2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.根据以上步骤进行变形即可.解:A 、∵x 2﹣2x ﹣99=0,∴x 2﹣2x=99,∴x 2﹣2x+1=99+1,∴(x ﹣1)2=100,故A 选项正确.B 、∵x 2+8x+9=0,∴x 2+8x=﹣9,∴x 2+8x+16=﹣9+16,∴(x+4)2=7,故B 选项错误. C 、∵2t 2﹣7t ﹣4=0,∴2t 2﹣7t=4,∴t 2﹣t=2,∴t 2﹣t+=2+,∴(t ﹣)2=,故C 选项正确. D 、∵3x 2﹣4x ﹣2=0,∴3x 2﹣4x=2,∴x 2﹣x=,∴x 2﹣x+=+,∴(x ﹣)2=.故D 选项正确.故选:B .点评:此题考查了配方法解一元二次方程,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.练1用配方法解方程: x 2﹣2x ﹣24=0;(2)3x 2+8x-3=0;(3)x (x+2)=120.【解析】(1)移项,得x 2﹣2x=24,配方,得:x 2﹣2x+1=24+1,即:(x ﹣1)2=25, 开方,得:x ﹣1=±5, ∴x 1=6,x 2=﹣4.(2)两边除以3,得: 28103x x +-=, 移项,得:2813x x +=, 配方,得:222844()1()333x x ++=+,即:2245(x )()33+=,开方,得:4533x +=± ∴121,33x x ==- (3)整理,得:22120x x +=, 配方,得:2211201x x ++=+,即:2(1)121x +=,开方,得:111x +=±∴1210,12x x ==-点评:本题考查了解一元二次方程﹣﹣配方法.2.用配方法求多项式的最值【例2】(2015春•龙泉驿区校级月考)当x ,y 取何值时,多项式x 2+4x+4y 2﹣4y+1取得最小值,并求出最小值. 【解析】把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数,从而确定最小值.解:x 2+4x+4y 2﹣4y+1=x 2+4x+4+4y 2﹣4y+1﹣4=(x+2)2+(2y ﹣1)2﹣4,又∵(x+2)2+(2y ﹣1)2的最小值是0,∴x 2+4x+4y 2﹣4y+1的最小值为﹣4. ∴当x=﹣2,y=时有最小值为﹣4.点评:本题考查配方法的应用;根据﹣4y ,4x 把所给代数式整理为两个完全平方式子的和是解决本题的关键.总结:配方法是求代数式的最值问题中最常用的方法.基本思路是:把代数式配方成完全平方式与常数项的和,根据完全平方式的非负性求代数式的最值.练2(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.【解析】将﹣8x 2+12x ﹣5配方,先把二次项系数化为1,然后再加上一次项系数一半的平方,然后根据配方后的形式,再根据a 2≥0这一性质即可证得.解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5=﹣8[x 2﹣x+()2]﹣5+8×()2=﹣8(x ﹣)2﹣, ∵(x ﹣)2≥0, ∴﹣8(x ﹣)2≤0, ∴﹣8(x ﹣)2﹣<0,即﹣8x 2+12﹣5的值一定小于0. 点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.练3(2014秋•崇州市期末)已知a 、b 、c 为△ABC 三边的长.(1)求证:a2﹣b2+c2﹣2ac<0.(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.【解析】(1)将不等式的左边因式分解后根据三角形三边关系判断代数式的符号即可;(2)将等式右边的项移至左边,然后配方即可.解:(1)a2﹣b2+c2﹣2ac=(a﹣c)2﹣b2=(a﹣c+b)(a﹣c﹣b)∵a、b、c为△ABC三边的长,∴(a﹣c+b)>0,(a﹣c﹣b)<0,∴a2﹣b2+c2﹣2ac<0.(2)由a2+2b2+c2=2b(a+c)得:a2﹣2ab+b2+b2﹣2bc+c2=0配方得:(a﹣b)2+(b﹣c)2=0∴a=b=c∴△ABC为等边三角形.点评:本题考查了配方法的应用,解题的关键是对原式正确的配方.五、课后小测一、选择题1.(2015•延庆县一模)若把代数式x2﹣2x+3化为(x﹣m)2+k形式,其中m,k为常数,结果为()A.(x+1)2+4 B.(x﹣1)2+2C.(x﹣1)2+4 D.(x+1)2+22.(2015•东西湖区校级模拟)一元二次方程x2﹣8x﹣1=0配方后为()A.(x﹣4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x﹣4)2=17或(x+4)2=17二、填空题3.(2015春•盐城校级期中)一元二次方程x2﹣6x+a=0,配方后为(x﹣3)2=1,则a= .4.(2014秋•营山县校级月考)当x= 时,代数式3x2﹣6x的值等于12.三、解答题5.(2015•东西湖区校级模拟)用配方法解方程:x2﹣2x﹣4=0.6.(2013秋•安龙县校级期末)试说明:不论x,y取何值,代数式x2+4y2﹣2x+4y+5的值总是正数.你能求出当x,y取何值时,这个代数式的值最小吗?7.(2014秋•蓟县期末)阅读下面的材料并解答后面的问题:小李:能求出x2+4x﹣3的最小值吗?如果能,其最小值是多少?小华:能.求解过程如下:因为x2+4x﹣3=x2+4x+4﹣4﹣3=(x2+4x+4)﹣(4+3)=(x+2)2﹣7而(x+2)2≥0,所以x2+4x﹣3的最小值是﹣7.问题:(1)小华的求解过程正确吗?(2)你能否求出x2﹣3x+4的最小值?如果能,写出你的求解过程.8.(2014秋•安陆市期末)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4﹣(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值为4仿照上面的解答过程,求m2+m+4的最小值和4﹣2x﹣x2的最大值.9.(2014春•乳山市期末)已知代数式x2﹣2mx﹣m2+5m﹣5的最小值是﹣23,求m的值.10.(2014秋•江阴市期中)配方法可以用来解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此时a=0;同样,因为﹣3(a+1)2≤0,所以﹣3(a+1)2+6≤6,即﹣3(a+1)2+6有最大值6,此时 a=﹣1.①当x= 时,代数式﹣2(x﹣1)2+3有最(填写大或小)值为.②当x= 时,代数式﹣x2+4x+3有最(填写大或小)值为.③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?第三讲公式法一、学习目标了解掌握一元二次方程根的判别式,不解方程能判定一元二次方程根的情况;理解一元二次方程求根公式的推导过程;掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况;学会利用求根公式解简单数字系数的一元二次方程.二、知识回顾1.什么是配方法?配方法解一元二次方程的一般步骤是什么?配方法:通过配方,先把方程的左边配成一个含有未知数的完全平方式,右边是一个非负数,然后运用直接开平方法求解,这种解一元二次方程的方法叫做配方法.配方法解一元二次方程的一般步骤:(1)移常数项到方程右边; (2)化二次项系数为1;(3)方程两边同时加上一次项系数一半的平方; (4)化方程左边为完全平方式;(5)若方程右边为非负数,则利用直接开平方法解得方程的根.2.怎样用配方法解形如一般形式ax 2+bx +c =0(a ≠0)的一元二次方程? 解:移项,得2,ax bx c +=-二次项系数化为1,得2,b c x x a a +=-配方,得222()(),22b b c bx x a a a a++=-+ 即:222424b b ac x a a -⎛⎫+= ⎪⎝⎭, 因为0,a ≠所以当240b ac ->时,2b x a-=;当240;2b b ac a -==-12时,x =x240b ac -=当时,原方程无解.三、新知讲解一元二次方程根的判别式24b ac -叫做一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,通常用希腊字母∆表示它,即24b ac ∆=-.一元二次方程根的情况与判别式的关系(1)240b ac ∆=->⇔方程有两个不相等的实数根; (2)240b ac ∆=-=⇔方程有两个相等的实数根; (3)240b ac ∆=-<⇔方程没有实数根. 公式法解一元二次方程一般地,对于一般形式的一元二次方程ax 2+bx +c =0(a ≠0),当240b ac -≥时,它的两个根分别是1x =,2x =,这里,()2402b x b ac a-±=-≥叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.公式法解一元二次方程的一般步骤把方程化成一般形式:ax 2+bx +c =0(a ≠0);确定a ,b ,c 的值;求出24b ac -的值,并判断方程根的情况:当240b ac ->时,方程有两个不相等的实数根; 当240b ac -=时,方程有两个相等的实数根; 当240b ac -<时,方程没有实数根.当240b ac -≥时,将a ,b ,c 和24b ac -的值代入公式2b x a-=(注意符号).四、典例探究1.根据根的判别式判断一元二次方程根的情况【例1】(2015•重庆)已知一元二次方程2x 2﹣5x+3=0,则该方程根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 两个根都是自然数 D .无实数根分析:判断方程的根的情况,只要看根的判别式△=b 2﹣4ac 的值的符号就可以了. 解答:解:∵a=2,b=﹣5,c=3,∴△=b 2﹣4ac=(﹣5)2﹣4×2×3=1>0, ∴方程有两个不相等的实数根. 故选:A .点评:此题主要考查了一元二次方程根的判别式,要熟练掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.总结:求根的判别式时,应该先将方程化为一般形式,正确找出a ,b ,c 的值.根的判别式与一元二次方程根的情况的关系如下:当240b ac ->时,方程有两个不相等的实数根;当240b ac -=时,方程有两个相等的实数根;当240b ac -<时,方程没有实数根.练1.(2015•铜仁市)已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法不正确的是( ) A .方程有两个相等的实数根 B .方程有两个不相等的实数根 C .没有实数根 D .无法确定 分析:先求出△的值,再判断出其符号即可.解答:解:∵△=42﹣4×3×(﹣5)=76>0, ∴方程有两个不相等的实数根. 故选B .点评:本题考查的是根的判别式,熟知一元二次方程ax 2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.练2.(2015•泰州)已知:关于x 的方程x 2+2mx+m 2﹣1=0 (1)不解方程,判别方程根的情况; (2)若方程有一个根为3,求m 的值. 分析:(1)找出方程a ,b 及c 的值,计算出根的判别式的值,根据其值的正负即可作出判断; (2)将x=3代入已知方程中,列出关于系数m 的新方程,通过解新方程即可求得m 的值.解答:解:(1)∵a=1,b=2m ,c=m 2﹣1,∵△=b 2﹣4ac=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.点评:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用这个数代替未知数所得式子仍然成立.2.根据一元二次方程根的情况求参数的值或取值范围【例2】(2015•温州)若关于x的一元二次方程4x2﹣4x+c=0有两个相等实数根,则c的值是()A.﹣1 B.1 C.﹣4 D.4分析:根据方程根的情况与判别式的关系知△=42﹣4×4c=0,然后解一次方程即可.解答:解:∵一元二次方程4x2﹣4x+c=0有两个相等实数根,∴△=42﹣4×4c=0,∴c=1,故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.总结:已知方程根的情况求字母的值或取值范围时:先计算根的判别式;再根据方程根的情况列出关于根的判别式的等式或不等式求解;若二次项系数出现了字母,应注意“二次项系数不为0”.练3.(2015•凉山州)关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到m-2≠0且△≥0,即22-4×(m-2)×1≥0,然后解不等式组即可得到m的取值范围.解答:解:∵关于x的一元二次方程(m-2)x2+2x+1=0有实数根,∴m-2≠0且△≥0,即22-4×(m-2)×1≥0,解得m≤3,∴m的取值范围是 m≤3且m≠2.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.用公式法解一元二次方程【例3】用公式法解下列方程:(1)x2+2x﹣2=0;(2)y2﹣3y+1=0;(3)x2+3=2x.分析:(1)求出b2﹣4ac的值,代入公式x=求出即可;(2)求出b2﹣4ac的值,代入公式y=求出即可;(3)求出b2﹣4ac的值是负数,即可得出原方程无解.解答:解:(1)这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;(2)这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,y=,∴y1=,y2=;(3)移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根.点评:本题主要考查学生运用公式法正确解方程的能力,前提是先判断判别式的符号,再根据情况代入求根公式求解.总结:公式法的实质是配方法,只不过省去了配方的过程,而直接利用了配方的结论;运用公式法求解一元二次方程要注意两个前提:(1)先将一元二次方程化为一般形式,即确定a,b,c的值;(2)必须保证b2-4ac≥0.练4.(2014•锦江区模拟)解方程:x(x﹣2)=3x+1.分析:整理后求出b2﹣4ac的值,再代入公式求出即可.解答:解:x(x﹣2)=3x+1,整理得:x2﹣5x﹣1=0,b2﹣4ac=(﹣5)2﹣4×1×(﹣1)=29,x=,x1=,x2=.点评:本题考查了解一元二次方程的应用,能正确运用公式法解一元二次方程是解此题的关键,难度适中.练5.当x是何值时,3x2+4x﹣8的值和2x2﹣1的值相等?分析:根据3x2+4x﹣8的值和2x2﹣1的值相等,即可列出方程,然后利用公式法即可求解.解答:解:根据题意得:3x2+4x﹣8=2x2﹣1,即x2+4x﹣7=0,a=1,b=4,c=﹣7,△=b2﹣4ac=16+28=44>0,则x==﹣2.点评:本题考查了公式法解一元二次方程,注意公式运用的条件:判别式△≥0.五、课后小测一、选择题1.(2015•云南)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=02.(2015•贵港)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.﹣1 B.0 C.1 D.23.(2015•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或104.(2015•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=15.(2013•日照)已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣2<x1<﹣1 B.﹣3<x1<﹣2 C.2<x1<3 D.﹣1<x1<0二、填空题6.(2011秋•册亨县校级月考)用公式法解方程2x2﹣7x+1=0,其中b2﹣4ac= ,x1= ,x2= .三、解答题7.(2014秋•通山县期中)用公式法解方程:2x2﹣4x=5.8.(2014秋•金溪县校级月考)解方程:2x2﹣2x﹣5=0.9.(2013春•石景山区期末)用公式法解方程:x(x)=4.10.(2015•梅州)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.11.(2015•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.12.(2015•昆山市一模)已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若x1、x2是原方程的两根,且|x1﹣x2|=2,求m的值.13.(2015•南充一模)已知关于x的一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)(1)小明考查后说,它总有两个不相等的实数根.(2)小华补充说,其中一个根与k无关.请你说说其中的道理.第四讲因式分解法一、学习目标1.会用因式分解法解一元二次方程;2.会用换元法解一元二次方程;3.灵活选用简便的方法解一元二次方程.二、知识回顾1.分解因式的常用方法有哪些?(1)提取公因式法:am+bm+cm= m(a+b+c)(2)公式法:22()()-2(-)++=+222a ab b a b+=,a b a b a ba ab b a b-=+-,2222()(3)十字相乘法:2()()()+++=++x a b x ab x a x b三、新知讲解1.因式分解法把一个多项式分解成几个整式乘积的形式叫做分解因式.当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们可以使两个一次式分别等于0,从而实现降次. 这种解一元二次方程的方法称为因式分解法.2.因式分解法解一元二次方程的步骤:①把方程的右边化为0;②用提公因式法、公式法(这里指因式分解中的公式法)或十字相乘法把方程左边化成两个一次因式乘积的形式;③令每一个因式分别等于0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.3.因式分解法的条件、理论依据因式分解法解一元二次方程的条件是:方程右边等于0,而左边易于分解;理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零.四、典例探究1.用因式分解法解一元二次方程【例1】用因式分解法解方程:(1)2(2x -1)2=(1-2x );(2)4(y +2)2=(y -3)2. 【解析】(1)移项,提取公因式;(2)移项并利用平方差公式分解因式求解.解:(1)2(2x -1)2=(1-2x )移项,得2(2x -1)2-(1-2x )=0,即:2(2x -1)2+(2x -1)=0,因式分解,得(2x-1)[2(2x-1)+1]=0, 整理,得(2x-1)(4x-1)=0, 解得x 1=12,x 2=14;(2)4(y +2)2=(y -3)2移项,得4(y +2)2-(y -3)2=0因式分解,得[2(y+2)+(y-3)][2(y+2)-(y-3)]=0 整理,得(3y+1)(y+7)=0 解得y 1=-13,y 2=-7.总结:用因式分解法解一元二次方程,是利用了“当ab=0时,必有a=0或者b=0”的结论. 因式分解法解一元二次方程的步骤: (1)把方程的右边化为0;(2)用提公因式法、公式法(这里指因式分解中的公式法)或十字相乘法把方程左边化成两个一次因式乘积的形式;(3)令每一个因式分别等于0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.练1(2014秋•赵县期末)用因式分解法解方程:x 2﹣6x+9=(5﹣2x )2解:x 2﹣6x+9=(5﹣2x )2,(x ﹣3)2﹣(5﹣2x )2=0, 因式分解得:(x ﹣3+5﹣2x )(x ﹣3﹣5+2x )=0, 整理得:(2﹣x )(3x ﹣8)=0, 解得:x 1=2,x 2=.点评:此题主要考查了因式分解法解一元二次方程,正确分解因式是解题关键.2.用换元法解一元二次方程【例2】(2014•山西校级模拟)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y+4=0,解得y 1=1,y 2=4.当y=1时,即x ﹣1=1,解得x=2;当y=4时,即x ﹣1=4,解得x=5,所以原方程的解为x 1=2,x 2=5.利用这种方法求方程(2x+5)2﹣4(2x+5)+3=0的解.【解析】先设2x+5=y ,则方程即可变形为y 2﹣4y+3=0,解方程即可求得y (即2x+5)的值,进一步可求出x 的值.解:设x ﹣1=y ,则原方程可化为y 2﹣4y+3=0, 所以(y ﹣1)(y ﹣3)=0 解得y 1=1,y 2=3.当y=1时,即2x+5=1, 解得x=﹣2;当y=3时,即2x+5=3, 解得x=﹣1,所以原方程的解为:x1=﹣2,x2=﹣1.点评:本题运用换元法解一元二次方程.总结:换元法在解特殊一元二次方程的时候用的较多,运用了整体思想.在一元二次方程中,某个代数式几次出现,用一个字母来代替它可以简化问题时,我们可以考虑用换元法来解.解高次方程时,通过换元的方法达到降次的目的.练2(2015•呼和浩特)若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=_______.【解析】设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x(即a+b)的值.解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得(2x+1)(x﹣1)=0,解得x1=﹣,x2=1.则a+b 的值是﹣或1.故答案是:﹣或1.点评:本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.练3解方程:(x2-3)2-5(3-x2)+4=0.【解析】设x2-3=y,则原方程转化为关于y的一元二次方程,通过解该一元二次方程来求y(即x2-3)的值.解:设x2-3=y,则原方程可化为y2-5(-y)+4=0,即:y2+5y+4=0,因式分解得:(y+1)(y+4)=0,解得y1=-1,y2=-4.当y1=-1时,x2-3=-1,即x2=2,解得x=当y2=-4时,x2-3=-4,即x2-3=-1,方程无实数根.综上,x=3.灵活选用方法解一元二次方程【例3】(2014秋•漳县校级期中)选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2);(3)2x2﹣2x﹣5=0;(4)(y+2)2=(3y﹣1)2.【解析】(1)利用配方法得到(x ﹣)2=,然后根据直接开平方法求解;(2)先变形得到3(x﹣2)2﹣x(x﹣2)=0,然后利用因式分解法解方程;(3)先计算判别式的值,然后利用求根公式法求解;(4)先变形得到(y+2)2﹣(3y﹣1)2=0,然后利用因式分解法解方程.解:(1)x2﹣5x=﹣1,x2﹣5x+()2=﹣1+()2,(x﹣)2=,x﹣=±,所以x1=,x2=;(2)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,所以x1=2,x2=3;(3)△=(﹣2)2﹣4×2×(﹣5)=48x===,所以x1=,x2=;(4)(y+2)2﹣(3y﹣1)2=0,(y+2+3y﹣1)(y+2﹣3y+1)=0,y+2+3y﹣1=0或y+2﹣3y+1=0,所以y1=﹣,y2=.点评:本题考查了一元二次方程的四种常见解法.总结:解一元二次方程常用的方法有直接开平方法、配方法、公式法和因式分解法,根据一元二次方程的特征,灵活选用解方程的方法,可以起到事半功倍的作用.(1)一般地,当一元二次方程一次项系数为0时,即形如ax2+c=0形式的一元二次方程,应选用直接开平方法.(2)若常数项为0,即形如ax2+bx=0的形式,应选用因式分解法.(3)若一次项系数和常数项都不为0,即形如ax2+bx+c=0的形式,看左边的整式是否能够因式分解,如果能,则宜选用因式分解法;不然选用公式法;不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单.(4)公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的. 因此在解方程时,我们首先考虑能否应用直接开平方法、因式分解法等简单方法,若不行,则再考虑公式法(适当也可考虑配方法).练4(2015春•无锡校级期中)选择合适的方法解下列方程.(1)x2﹣5x﹣6=0;(2)3x2﹣4x﹣1=0;(3)x(x﹣1)=3﹣3x;【解析】(1)根据因式分解法,可得方程的解;(2)根据公式法,可得方程的解;(3)根据因式分解法,可得方程的解;(4)根据公式法,可得方程的解.解:(1)因式分解,得 (x ﹣1)(x ﹣6)=0,解得x 1=6,x 2=﹣1; (2)a=3,b=﹣4,c=﹣1,x 1=,x 2=;(3)方程化简得x 2+2x ﹣3=0, 因式分解,得(x+3)(x ﹣1)=0, 解得x 1=1,x 2=﹣3;(4)a=1,b=﹣2,c=1,x 1=1+,x 2=﹣1+.点评:本题考查了解一元二次方程,根据方程的特点选择适当的方法是解题关键.五、课后小测 一、选择题1.方程(x-16)(x+8)=0的根是( )A. x 1=-16,x 2=8B. x 1=16,x 2=-8C. x 1=16,x 2=8D. x 1=-16,x 2=-8 2. 方程5x(x+3)=3(x+3)的解为( ) A.123,35x x == B.35x = C.123,35x x =-=- D.123,35x x ==-3.(2015•滕州市校级模拟)方程x 2﹣2x=3可以化简为( )A .(x ﹣3)(x+1)=0B .(x+3)(x ﹣1)=0C .(x ﹣1)2=2D .(x ﹣1)2+4=0 二、填空题4.(2015•丽水)解一元二次方程x 2+2x ﹣3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程 . 5.(2014•杭州模拟)方程x (x+1)=2(x+1)的解是 .6.(2013秋•苏州期末)已知(x 2+y 2+1)(x 2+y 2+2)=6,则x 2+y 2的值为 . 三、解答题 7.(2014秋•静宁县期末)解下列方程:(1)x 2﹣2x+1=0(2)x 2﹣2x ﹣2=0(3)(x ﹣3)2+2(x ﹣3)=0. 8.(2014秋•沧浪区校级期末)解下列方程:(1)x 2﹣4x ﹣3=0(2)(x ﹣2)2=3(x ﹣2) (3)2(﹣x )2﹣(x ﹣)﹣1=0.9.(2014秋•宛城区校级期中)为了解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1看作一个整体,然后设x 2﹣1=y ,则(x 2﹣1)2=y 2,那么原方程可化为y 2﹣5y+4=0,解得y 1=1,y 2=4.当y=1时,x 2﹣1=1,x 2=2,x=±.。

(完整版)含参数的一元二次不等式的解法以和含参不等式恒成立问题(专题)

(完整版)含参数的一元二次不等式的解法以和含参不等式恒成立问题(专题)

含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。

解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式()00652≠>+-a a ax ax分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。

解 ()()032)65(2>--=+-x x a x x a Θ∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆; 例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。

解:∵162-=∆a∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >,∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122解 因,012>+m ()()2223414)4(m m -=+--=∆所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按$x$项的系数$a$的符号分类,即$a>0$,$a=0$,$a<0$。

例1:解不等式$ax+(a+2)x+1>2$分析:本题二次项系数含有参数,$\Delta=(a+2)^2-4a=a+4>0$,故只需对二次项系数进行分类讨论。

解:当$a>0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2+\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2-\sqrt{a+4}}{2a}$,因为$a>0$,所以$x_1x_2$或$x<x_1$,即$x\in\left(-\infty,\frac{a+2-\sqrt{a+4}}{2a}\right)\cup\left(\frac{a+2+\sqrt{a+4}}{2a},+\infty\right)$。

当$a=0$时,不等式为$2x+1>2$,解得$x>\frac{1}{2}$,即解集为$x>\frac{1}{2}$。

当$a<0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2-\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2+\sqrt{a+4}}{2a}$,因为$a<0$,所以$x_1<x_2$。

所以解集为$x_1<x<x_2$,即$x\in\left(\frac{a+2-\sqrt{a+4}}{2a},\frac{a+2+\sqrt{a+4}}{2a}\right)$。

例2:解不等式$ax-5ax+6a>(a\neq0)^2$分析:因为$a\neq0$,$\Delta>0$,所以我们只需讨论二次项系数的正负。

解:当$a>0$时,解得方程$ax-5ax+6a=0$的两根$x_1=2$,$x_2=3$,因为$a>0$,所以$x_13$,即$x\in\left(-\infty,2\right)\cup\left(3,+\infty\right)$。

含参数的一元二次方程整数解

含参数的一元二次方程整数解

含参数的一元二次方程整数解知识定位对于一元二次方程ax 2+bx +c=0(a≠0)的实根情况,可以用判别式Δ=b 2-4ac 来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质。

知识梳理1、一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0)2、根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数. 3、设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么③ ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);④ x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0);⑤ 韦达定理:x 1+x 2= a b -, x 1x 2=ac(a ≠0, b 2-4ac ≥0). 4、方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0⇔x 1=0 ,a+b+c=0⇔x 1=1 ,a -b+c=0⇔x 1=-1.例题精讲【试题来源】【题目】b 为何值时, 方程x 2 - bx - 2 = 0 和x 2 - 2x - b (b - 1) = 0有相同的整数根?并且求出它们相同的整数根..【答案】1;2【解析】解:设相同的整数根为x 0, 由根的定义, 知x20- bx0 - 2 = 0, ①x20- 2x0-b(b - 1) = 0. ②① - ②并整理, 得(2 - b)[x0-(1 + b)]=0,②∴b = 2 或x0 = b + 1.当b = 2 时, 两方程均为x2-2x-2 = 0, 但无整数根;当x0 = b + 1 时, 代入①或②, 解之得b = 1, 于是公共根x0 =b + 1 = 2.【知识点】含参数的一元二次方程整数解【适用场合】当堂例题【难度系数】3【试题来源】【题目】设二次方程ax2+bx+c=0的两根为x1、x2,记S1=x1+1993x2,S2=x12+1993x22,…,Sn=x1n+1993x2n,则aS1993+bS1992+cS1991=【答案】0【解析】解:∵x1、x2是方程ax2+bx+c=0的两根,∴ax12+bx1+c=0, ax22+bx2+c=0。

含参数的一元二次方程整数解

含参数的一元二次方程整数解

含参数的一元二次方程整数解知识定位对于一元二次方程ax 2+bx +c=0(a≠0)的实根情况,可以用判别式Δ=b 2-4ac 来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质。

知识梳理1、一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0)2、根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数. 3、设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么③ ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);④ x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0);⑤ 韦达定理:x 1+x 2= a b -, x 1x 2=ac(a ≠0, b 2-4ac ≥0). 4、方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0⇔x 1=0 ,a+b+c=0⇔x 1=1 ,a -b+c=0⇔x 1=-1.例题精讲【试题来源】【题目】b 为何值时, 方程x 2 - bx - 2 = 0 和x 2 - 2x - b (b - 1) = 0有相同的整数根?并且求出它们相同的整数根..【答案】1;2【解析】解:设相同的整数根为x 0, 由根的定义, 知x20- bx0 - 2 = 0, ①x20- 2x0-b(b - 1) = 0. ②① - ②并整理, 得(2 - b)[x0-(1 + b)]=0,②∴b = 2 或x0 = b + 1.当b = 2 时, 两方程均为x2-2x-2 = 0, 但无整数根;当x0 = b + 1 时, 代入①或②, 解之得b = 1, 于是公共根x0 =b + 1 = 2.【知识点】含参数的一元二次方程整数解【适用场合】当堂例题【难度系数】3【试题来源】【题目】设二次方程ax2+bx+c=0的两根为x1、x2,记S1=x1+1993x2,S2=x12+1993x22,…,Sn=x1n+1993x2n,则aS1993+bS1992+cS1991=【答案】0【解析】解:∵x1、x2是方程ax2+bx+c=0的两根,∴ax12+bx1+c=0, ax22+bx2+c=0。

一元二次方程解法讲义

一元二次方程解法讲义

专 题一元二次方程的解法教学目标1. 理解一元二次方程及其有关概念2. 会解一元二次方程,并能熟练运用四种方法去解重点、难点1. 一元二次方程的判定,求根公式2. 一元二次方程的解法与应用考点及考试要求1. 一元二次方程的定义,一般形式,配方式2. 熟练一元二次方程的解法能灵活运用:直接开平法,配方法.,因式分解,公式法去3. 一元二次方程在实际问题中的综合应用教学内容考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax注:当b=0时可化为02=+c ax 这是一元二次方程的配方式(3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:02=++c bx ax 时,应满足(a≠0)(4)难点:如何理解 “未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为。

考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为。

含参数的一元二次不等式的解法微课课件

含参数的一元二次不等式的解法微课课件

原不等式解集为
xk4k28kxk
k28k
4
k 8
(3)当 (4)当
xk4k28kxk4k28k
k 8时,不等式解集为
x x 2
时,不等式解集为
(2)当
时8,不k等式0解集为
综上所述, (1)当
k0
时,不等式解集为
x x 0
(5)当
k 时 ,0不等式解集为
xk4k28kxk4k28k
a
(2)当 a0 时,有:
(a)当 (b)当 (c)当
1 1 a
即 a 1
时,原不等式的解集为:
{x | 1 x 1} a
1 1 即 a 1 时,原不等式的解集为:
a
1 1 即 0a1 时,原不等式的解集为: {x | 1 x 1}
a
a
ቤተ መጻሕፍቲ ባይዱ
x
01
a2x(a1)x10.
02
综上所述,
例3:解关于 的不等式:
人教版高中数学必修五第三章
含 参 数 的 一 解元 法二 次 不 等 式 的
授课人:广东省阳东广雅中学
杨学武
温故知新
a x 2 + b x + c > 0 或 a x 2 + b x + c < 0 (a > 0 )
根据二次函数的图
象以及不等号的方
向,写出不等式的
0
(2)求对应方程的根:
1 一.
因式分解求方程的根,
m m 0 时 , 不 等 式 的 解 集 为 { x |x 2 或 x 2 }
m
课堂小结
对含参数的一元二次不 等式解法,其分类讨论 的依据

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

含参数的一元二次不等式的解法课件

含参数的一元二次不等式的解法课件
含参数的一元二次不 等式的解法课件
目录
CONTENTS
• 引言 • 一元二次不等式的概念和性质 • 含参数的一元二次不等式 • 含参数一元二次不等式的解法实例 • 课程总结与展望
01 引言
课程背景
01
一元二次不等式是中学数学的重要内容,也是高等 数学的基础。
02
含参数的一元二次不等式在解决实际问题中具有广 泛的应用。
解集为$1 < x < a$。当$a < 1$时,解集为 $a < x < 1$。
实例三:求解含参数的一元二次不等式
要点一
题目
要点二
解答
求解不等式$x^2 + (a - 3)x + a > 0$
首先,将不等式化为标准形式。然后,对参数$a$进行分 类讨论。当$a = 1$时,不等式变为$(x + 2)^2 > 0$,解 集为全体实数除了$-2$。当$a < 1$时,利用因式分解法 $(x + a)(x + 2) > 0$,解集为全体实数除了$-a$和$-2$。 当$a > 1$时,解集为全体实数。
它包含一个未知数 x 的最高次数为2的不等式。
一元二次不等式的解法
01
解一元二次不等式的基本步骤是:首先求出不等式的根, 然后根据不等式的符号确定解集。
02
对于形如 ax^2 + bx + c > 0 的不等式,如果 a > 0,则解集为 两根之外的所有实数;如果 a < 0,则解集为两根之间的所有实数
两个实根。最后,根据二次函数的性质,判断不等式的解集为两根之间的区间。
实例二:求解含参数的一元二次不等式

含参的一元二次不等式的解法

含参的一元二次不等式的解法

含参的一元二次不等式的解法一元二次不等式是指形如ax^2 + bx + c > 0(或< 0)的二次函数的不等式,其中a, b, c是实数,且a ≠ 0。

解一元二次不等式的方法与解一元二次方程类似,但是需要注意的是,不等式的解是满足不等式条件的解集。

下面将介绍一元二次不等式的解法,包括图像法、开方法、配方法、代数法等。

一、图像法:对于一元二次不等式ax^2 + bx + c > 0(或< 0),我们可以首先绘制二次函数y = ax^2 + bx + c的图像,并找出函数图像在x轴上方(或下方)的区间。

例如,对于不等式x^2 - 4x + 3 > 0,我们可以绘制出y = x^2 - 4x + 3的图像。

首先,找到抛物线的顶点,顶点就是不等式解的中心点。

顶点的横坐标为x = -b/(2a),纵坐标为y = f(-b/(2a))。

在这个例子中,a = 1,b = -4,c = 3,所以顶点的横坐标为x = -(-4)/(2*1) = 2,纵坐标为y = f(-4/(2*1)) = f(2) = 2^2 - 4*2 + 3= -1。

然后,可以找到函数图像在x轴上方的区间,即函数图像在x < 1和x > 3时,都在x轴上方。

根据图像可知,在x < 1和x > 3时,x^2 - 4x + 3 > 0。

所以,不等式x^2 - 4x + 3 > 0的解为x < 1或x > 3。

二、开方法:对于一元二次不等式ax^2 + bx + c > 0(或< 0),我们可以考虑将不等式转化为以x为未知数的一元二次方程,并求解方程的根,在不等式的根之间的区间满足不等式。

例如,对于不等式x^2 - 4x + 3 > 0,我们可以通过因式分解或配方法得到方程(x - 1)(x - 3) > 0。

根据求解一元二次方程的方法,可以得到方程的两个根为x = 1和x = 3。

九年级上册含参的一元二次方程讲义

九年级上册含参的一元二次方程讲义

含参的一元二次方程讲义含参的一元二次方程知识精讲一、含参数的一元二次方程含参数的一元二次方程是指未知数系数或者常数项含有参数的一元二次方程,解此类方程时要依照参数值和判别式的取值进行分类讨论,另外,利用方程解的情况来求解参数的取值范围或者是由参数的取值范围判断方程根的情况、二、一元二次方程的整数根关于一元二次方程的实根情况,能够用判别式来判别,然而关于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质。

方程有整数根的条件:假如一元二次方程有整数根,那么必定同时满足以下条件:1。

为完全平方数;2、或,其中为整数、以上两个条件必须同时满足,缺一不可。

另外,假如只满足判别式为完全平方数,则只能保证方程有有理根(其中、、均为有理数)、例题讲解判别式与解的关系例1。

1。

1已知,,为正数,若二次方程有两个实数根,那么方程的根的情况是( )A。

有两个不相等的正实数根B、有两个异号的实数根C。

有两个不相等的负实数根D、不一定有实数根【答案】C【解析】的,∵二次方程有两个实数根,∴,∴,∴方程有两个不相等的实数根,而两根之和为负,两根之积为正、故有两个负根、故选C。

例1、1、2解关于的方程:【答案】,【解析】分类讨论,当时,原方程无解;当时,原方程是一元二次方程,解得,例1、1。

3设方程只有个不相等的实数根,求的取值和相应的个根、【答案】,相应求得方程根为,;,、【解析】方程等价于以下两个方程:①, ②,两方程无相同的根,由于原方程只有3个不相等的实根,故必有且只有方程①或②有重根,,,由于,故只估计是,即,相应求得方程根为,;,、特别解问题例1。

2、1已知关于x的方程(m≠0)(1)求证:方程总有两个不相等的实数根;(2)假如方程的两个实数根都是整数,求整数m的值、【答案】(1)见解析(2)或【解析】(1)证明:∵m≠0,∴是关于x的一元二次方程、∵,……………………………………………1分=9>0。

含参一元二次方程的解法--讲义

含参一元二次方程的解法--讲义

学科:数学
专题:含参一元二次方程的解法 主讲教师:黄炜 北京四中数学教师
重难点易错点解析
当系数中含有字母时,注意有实解的判断。

题一
题面:(x -m )2=n .(n 为正数)
金题精讲
题一
题面:解关于x 的一元二次方程
1. 2a 2x 2-5ax +2=0.(a ≠0)
2. ax a x 32222=+
3. x 2+mx +2=mx 2+3x .(其中m ≠1)
4. mx 2-(m 2+2)x +2m =0
解含参的一元二次方程:因式分解。

题二
题面:解关于x 的一元二次方程
1. x 2+2mx =n .(n +m 2≥0).
2. x 2-2mx +m 2-n 2=0.
3. abx 2-(a 2+b 2)x +ab =0.(ab ≠0)
解含参的一元二次方程:配方法、因式分解 题三
题面:解关于x 的方程kx 2-(k +1)x +1=0. 解含参的方程,分类讨论。

讲义参考答案
重难点易错点解析
题一 答案:.,21m n x m n x +-=+=
金题精讲
题一
答案:1. ⋅==a x a x 2,2121 2. a 2,a 22 3. m x x -==12,121 4. 122,x m x m == 题二
答案:1. .,2221n m m x n m m x +--=++-=
2. x 1=m +n ,x 2=m -n .
3. .2
,221b a x b a x +=-= 4. ⋅==b
a x a
b x 21, 题三 答案:k =0时,x =1;k ≠0时,.1,121==
x k x。

一元二次含参方程有多个实数解的解题方法

一元二次含参方程有多个实数解的解题方法

一元二次含参方程有多个实数解的解题方法(原创实用版2篇)篇1 目录一、一元二次含参方程的概述二、一元二次含参方程的求解方法1.判别式的意义2.判别式的求解3.解的情况分析4.具体解题步骤三、总结与展望篇1正文一、一元二次含参方程的概述一元二次方程是指形如 ax+bx+c=0 的方程,其中 a、b、c 为常数,且 a≠0。

若该方程中含有一个或多个参数,则称为一元二次含参方程。

例如,对于方程 x+2px+p-4=0(p 为参数),它就是一个一元二次含参方程。

求解这类方程的方法与普通一元二次方程类似,但需要考虑参数的影响。

二、一元二次含参方程的求解方法1.判别式的意义在一元二次含参方程 ax+bx+c=0(a≠0)中,判别式Δ=b-4ac 用于判断方程的解的情况。

Δ的意义可以概括为:- 当Δ>0 时,方程有两个不相等的实数解;- 当Δ=0 时,方程有两个相等的实数解;- 当Δ<0 时,方程无实数解。

2.判别式的求解对于一元二次含参方程 ax+bx+c=0,判别式Δ=b-4ac。

在计算过程中,需要将参数和常数代入公式,得到Δ的值。

3.解的情况分析根据Δ的值,可以对一元二次含参方程的解进行分类讨论:- 当Δ>0 时,方程有两个不相等的实数解,分别为 x1=(-b+√Δ)/(2a) 和 x2=(-b-√Δ)/(2a)。

其中,x1 和 x2 为实数,且 x1≠x2;- 当Δ=0 时,方程有两个相等的实数解,即 x1=x2=-b/2a。

此时,方程的解为重根;- 当Δ<0 时,方程无实数解,即方程的解为虚数。

4.具体解题步骤以方程 x+2px+p-4=0(p 为参数)为例,求解该方程的实数解:Step 1:计算判别式Δ=b-4ac,代入系数得Δ=4p-4(p-4)=16;Step 2:根据Δ>0,得知方程有两个不相等的实数解;Step 3:代入公式 x1=(-b+√Δ)/(2a) 和 x2=(-b-√Δ)/(2a),得到 x1=2 和 x2=2-p;Step 4:得出方程的解为 x1=2,x2=2-p。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科:数学 专题:含参一元二次方程的解法
主讲教师:黄炜 北京四中数学教师
重难点易错点解析
当系数中含有字母时,注意有实解的判断。

题一
题面:(x -m )2=n .(n 为正数)
金题精讲
题一
题面:解关于x 的一元二次方程
1. 2a 2x 2-5ax +2=0.(a ≠0)
2. ax a x 32222=+
3. x 2+mx +2=mx 2+3x .(其中m ≠1)
4. mx 2-(m 2+2)x +2m =0
解含参的一元二次方程:因式分解。

题二
题面:解关于x 的一元二次方程
1. x 2+2mx =n .(n +m 2≥0).
2. x 2-2mx +m 2-n 2=0.
3. abx 2-(a 2+b 2)x +ab =0.(ab ≠0)
解含参的一元二次方程:配方法、因式分解
题三
题面:解关于x 的方程kx 2-(k +1)x +1=0.
解含参的方程,分类讨论。

讲义参考答案
重难点易错点解析
题一 答案:.,21m n x m n x +-=+=
金题精讲
题一
答案:1. ⋅==a x a x 2,2121 2. a 2,a 22 3. m x x -==12,121 4. 122,x m x m == 题二
答案:1. .,2221n m m x n m m x +--=++-=
2. x 1=m +n ,x 2=m -n .
3. .2
,221b a x b a x +=-= 4. ⋅==b
a x a
b x 21, 题三 答案:k =0时,x =1;k ≠0时,.1,121==x k x。

相关文档
最新文档