第三章框架结构设计集荷载计算教学资料
土木工程毕业设计-荷载计算
第3章荷载计算结构上的荷载可分为三类:永久荷载、可变荷载和偶然荷载。
永久荷载包括结构自重、土压力、预应力等;可变荷载有楼面活荷载、屋面活荷载和积灰荷载、风荷载、雪荷载等;偶然荷载包括爆炸力、撞击力等。
荷载有四种代表值,即标准值、组合值、频遇值和准永久值。
对永久荷载应采用标准值作为代表值,对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值。
标准值是荷载的基本代表值,是结构在使用期间,在正常情况下可能出现的具有一定保证率的偏大荷载值,其他三种代表值由标准值乘以相应的系数得出。
组合值由可变荷载的组合值系数乘以可变荷载的标准值得到,采用荷载组合值是使组合后的荷载效应在设计基准期内的超越概率与该荷载单独出现时的相应概率趋于一致。
频遇值由可变荷载的频遇值系数乘以可变荷载的标准值得到,荷载频遇值是在设计基准期内可变荷载超越的总时间为规定的较小比率或超越频率为规定频率的荷载值。
准永久值由可变荷载的准永久值系数乘以可变荷载的标准值得到,荷载准永久值是在设计基准期内,可变荷载超越的总时间约为设计基准期一半的荷载值。
作用在多层框架结构上的荷载,通常由永久荷载中的结构自重、可变荷载中的活荷载、风荷载和雪荷载组成,对于抗震设防的建筑,还需要考虑地震作用。
1.1永久荷载计算作用在多层框架上的永久荷载,通常包括结构构件、围护构件、面层及装饰、固定设备、长期储物的自重。
结构自重标准值等于构件的体积乘以材料单位体积的自重,或等于构件面积乘以材料的单位面积自重。
对于自重变异较大的材料和构件(如现场制作的保温材料、混凝土薄壁构件等),自重的标准值应根据对结构的不利状态,取上限值或下限值。
常用材料单位体积(面积)自重如表3-1所示1注:更多材料和构件自重见现行国家标准《建筑结构荷载规范》附录A1.2可变荷载计算作用在多层框架结构上的可变荷载,通常包括活荷载、雪荷载和风荷载,本节和下节分别介绍它们的计算方法。
3.2.1民用建筑楼面均布活荷载1)民用建筑楼面均布活荷载取值民用建筑楼面均布活荷载的标准值及其组合值、频遇值、准永久值系数的最小值,应按表3.2的规定取用民用■疑楼面均布活荷载标准值及其组含值%独遇值和准永久值系敷>>2注:1.本表所给各项活荷载适用于一般使用条件,当使用荷载较大、情况特殊或有专门要求时,成按实际情况采用。
水平荷载作用下框架内力的计算——D值法资料讲解
水平荷载作用下框架内力的计算——D值法资料讲解D值法是一种常用于计算框架结构在水平荷载作用下的内力的方法。
下面是对D值法进行详细讲解的资料。
一、D值法的基本概念D值法是一种近似计算框架结构内力的方法,其基本思想是通过估算框架结构在水平荷载作用下的刚度来计算内力。
具体而言,D值法通过假设结构刚度的变化与结构的变形呈线性正比关系,将结构的刚度表示为一个D值,再通过对结构的初始刚度和变形的估计,计算出结构在水平荷载作用下的内力。
二、D值的计算步骤(一)计算结构的初始刚度1.根据结构的几何形状和材料特性,计算出结构在初始状态下的刚度矩阵。
2.对刚度矩阵进行变换,得到初始刚度矩阵。
(二)估算结构的变形1.假设结构受到线性弹性变形的影响。
2.估计结构的位移和转角。
(三)计算D值1.根据估算的位移和转角,计算出结构的变形矩阵。
2.根据初始刚度矩阵和变形矩阵,计算出结构的刚度矩阵。
3.将刚度矩阵转化为D值,即刚度指数。
(四)计算内力1.根据D值和水平荷载的大小,计算出结构的内力。
2.对结构的各个部位进行内力平衡计算,得到各个构件的内力。
三、D值法的优缺点D值法在计算框架结构内力时具有一定的优势和局限性。
(一)优点1.简洁易行:D值法不需要进行繁琐的矩阵计算,计算步骤相对简单。
2.适用范围广:D值法适用于一般的框架结构,包括多层和复杂形状的结构。
3.结果可靠:在合理的假设和估计前提下,D值法可以得到较为准确的内力计算结果。
(二)缺点1.假设过于理想化:D值法假设结构的变形与刚度呈线性正比关系,这在实际情况下不一定成立。
2.忽略非线性效应:D值法无法考虑结构中的非线性效应,如材料的非线性和连接件的滑动、屈曲等。
3.精度受限:由于D值法是一种近似计算方法,其精度相对有限,不适用于对结构内力要求较高的情况。
四、D值法的应用领域D值法在实际工程中被广泛应用,特别是在简化计算和快速评估结构内力的情况下。
1.结构抗震设计:D值法常用于抗震设计中,通过快速计算内力,进行结构的抗震性能评估。
框架结构在水平荷载下的计算反弯点法和D值法
4
1.反弯点法的假定及适用范围 ①假定框架横梁抗弯刚度为无穷大。 如果框架横梁刚度为无穷大,在水平力的作用
下,框架节点将只有侧移而没有转角。实际上,框 架横梁刚度不会是无穷大,在水平力下,节点既有 侧移又有转角。但是,当梁、柱的线刚度之比大于 3时,柱子端部的转角就很小,此时忽略节点转角 的存在,对框架内力计算影响不大。
6(ic
ic
)
u hj
j
0
B:
4(i1 i2 ic
ic )
2(i1 i2 ic
ic )
6(ic
ic
)
u hj
j
0
2
u j 2 u j
2
1 2ic
(i1
i2
i3
i4 )
hj
2 K hj
K ib 2ic
38
V 6ia 6ib 12i a b V 12i 12i
l
l
l2
l
l2
将
2 2K
l
代入上式, 可得 V
K 2K
12i l2
A B 则
D jk
V
12ic hj2
K 2K
,
K 2K
,
K
ib 2ic
A
a
a
b
D jk
12ic hj2
l
框架梁的线刚度无穷大时 同理可推导底层柱 D 值
,
1,
第三节-框架结构的计算简图
第三节框架结构的计算简图4.3.1 梁、柱截面尺寸框架梁、柱截面尺寸应根据承载力、刚度及延性等要求确定。
初步设计时,通常由经验或估算先选定截面尺寸,以后进行承载力、变形等验算,检查所选尺寸是否合适。
1、梁截面尺寸确定2、柱截面尺寸柱截面尺寸可直接凭经验确定,也可先根据其所受轴力按轴心受压构件估算,再乘以适当的放大系数以考虑弯矩的影响。
即框架柱的截面宽度和高度均不宜小于300mm,圆柱截面直经不宜小于350mm,柱截面高宽比不宜大于3。
为避免柱产生剪切破坏,柱净高与截面长边之比宜大于4,或柱的剪跨比宜大于2。
3、梁截面惯性矩在结构内力与位移计算中,与梁一起现浇的楼板可作为框架梁的翼缘,每一侧翼缘的有效宽度可取至板厚的6倍;装配整体式楼面视其整体性可取等于或小于6倍;无现浇面层的装配式楼面,楼板的作用不予考虑。
设计中,为简化计算,也可按下式近似确定梁截面惯性矩I:4.3.2 框架结构的计算简图1、计算单元框架结构房屋是空间结构体系,一般应按三维空间结构进行分析。
但对于平面布置较规则的框架结构房屋,为了简化计算,通常将实际的空间结构简化为若干个横向或纵向平面框架进行分析,每榀平面框架为一计算单元。
就承受竖向荷载而言,当横向(纵向)框架承重,且在截取横向(纵向)框架计算时,全部竖向荷载由横向(纵向)框架承担,不考虑纵向(横向)框架的作用。
当纵、横向框架混合承重时,应根据结构的不同特点进行分析,并对竖向荷载按楼盖的实际支承情况进行传递,这时竖向荷载通常由纵、横向框架共用承担。
2、计算简图在框架结构的计算简图中,梁、柱用其轴线表示,梁与柱之间的连接用节点表示,梁或柱的长度用节点间的距离表示,框架柱轴线之间的距离即为框架梁的计算跨度;框架柱的计算高度应为各横梁形心轴线间的距离,当各层梁截面尺寸相同时,除底层外,柱的计算高度即为各层层高。
对于梁、柱、板均为现浇的情况,梁截面的形心线可近似取至板底。
对于底层柱的下端,一般取至基础顶面;当设有整体刚度很大的地下室;且地下室结构的楼层侧向刚度不小于相邻上部结构楼层侧向刚度的2倍时,可取至地下室结构的顶板处。
框架结构设计集荷载计算样本
3 框架构造设计与荷载计算3.1 构造布置3.1.1 柱网与层高民用建筑柱网和层高依照建筑使用功能拟定。
柱网布置应当规整,由内廊式和跨度组合式,这里采用跨度组合式(如图)。
层高宜取同一种尺寸,这里采用层高3.6m,对于底层由于市内外地面高差加急出埋深影响为4.7m。
框架构造总高度在8度抗震设防时,高度不应不不大于45m,而此建筑总高度也才22.7m。
图3.1 柱网布置图3.1.2 框架承重方案依照楼盖平面布置和竖向荷载传递途径,框架承重方案可以分为向承重方案。
横向,纵向及纵横向承重三种方案。
此工程采用纵横向承重方案,现浇楼面为双向板(纵向承重时因横向刚度较小普通很少采用)。
3.1.3 变形缝设立考虑变形缝有温度伸缩缝,沉降缝,和防震缝三种。
伸缩缝是为了避免温度变化和混凝土收缩产生赚钱是构造产生裂缝,在构造一定长度范畴内设立伸缩缝。
在伸缩缝处,基本顶面以上构造及建筑构造完全断开,伸缩缝最大间距见下表3.1。
表3.1 伸缩缝最大间距(m)伸缩缝方案,而是采用构造和施工办法,如在顶层,底层和山墙等温度变化大部位提高配筋率。
沉降缝是为了避免地基不均匀沉降使构造产生裂缝,在构造易产生不均匀沉降部位设缝,将构造完全分开。
此建筑中间某些是6层,两边为4层,房屋高度有一定变化,但考虑到变化不大,可以不设沉降缝。
防震缝,是为了防止在地震作用下,特别不规则构造薄弱部位容易导致震害而可用防震缝将构造分为若干独立抗震单元,使各构造规则,但当前设计更倾向于不设,而采用加强构造整体性办法。
3.1.4 材料选取柱采用C35,梁采用C30混凝土。
梁纵筋用HRB335,柱纵筋用HRB400,箍筋均用HPB235。
3.1.5 截面尺寸初步选取 梁截面:梁高 h=(1/12-1/8)L(单跨用较大值,多跨用较小值或负荷较大时用 上限值)且净跨与h 比不适当不大于4; AB 跨h=1/12*7200=600mm梁宽 b=(1/3-1/2)h,抗震构造b≥200mm,h/b≤4; b=300mm别的尺寸见后梁截面表。
框架结构设计计算书
第一章绪论第一节工程概况一、工程设计总概况:1.规模:本工程是一栋四层钢筋混凝土框架结构教学楼,使用年限为50年, 抗震设防烈度为8度;建筑面积约3000㎡,建筑平面的横轴轴距为6.5m和2.5m,纵轴轴距为4.5m;框架梁、柱、板为现浇;内、外墙体材料为混凝土空心砌块,外墙装修使用乳白色涂料仿石材外墙涂料,内墙装修喷涂乳胶漆,教室内地面房间采用水磨石地面,教室房间墙面主要采用石棉吸音板,门窗采用塑钢窗和装饰木门。
全楼设楼梯两部。
2.结构形式:钢筋混凝土四层框架结构。
3.气象、水文、地质资料:1)气象资料A.基本风压值:0.35kN/㎡,B.基本雪压值:0.25kN/㎡。
C.冻土深度:最大冻土深度为1.2m;D.室外气温:年平均气温最底-10℃,年平均气温最高40℃;2)水文地质条件A.土层分布见图1-1,地表下黄土分布约15m,垂直水平分布较均匀,可塑状态,中等压缩性,弱湿陷性,属Ⅰ级非自重湿陷性黄土地基。
地基承载力特征值fak=120kN/㎡。
B.抗震设防等级8度,设计基本地震加速度值为0.20g,地震设计分组为第一组,场地类别为Ⅱ类。
C.常年地下水位位于地表下8m,地质对水泥具有硫酸盐侵蚀性。
D.采用独立基础,考虑到经济方面的因素,在地质条件允许的条件下,独立基础的挖土方量是最为经济的,而且基础本身的用钢量及人工费用也是最低的,整体性好,抗不均匀沉降的能力强。
因此独立基础在很多中低层的建筑中应用较多。
二、设计参数:(一)根据《建筑结构设计统一标准》本工程为一般的建筑物,破坏后果严重,故建筑结构的安全等级为二级。
(二)建筑结构设计使用年限为50年,耐久等级二级(年),耐火等级二级,屋面防水Ⅱ级。
(三)建筑抗震烈度为8度,应进行必要的抗震措施。
(四)设防类别丙类。
(五)本工程高度为15.3m,框架抗震等级根据 GB 50223-2008《建筑工程抗震设防分类标准》,幼儿园、小学、中学教学楼建筑结构高度不超过24m的混凝土框架的抗震等级为二级。
框架结构在水平荷载下的计算反弯点法和D值法资料
框架结构在水平荷载下的计算反弯点法和D值法资料在设计建筑结构时,考虑到水平荷载对结构的影响是必不可少的。
在这方面,反弯点方法和D值方法是两种常用的计算方法,用来评估结构的抗水平力能力。
以下是关于反弯点方法和D值方法的详细介绍和计算过程。
一、反弯点方法:反弯点方法主要用于根据结构的初始刚度和变形来计算结构的抗震性能。
它是根据结构的能量耗散特性进行设计的一种方法。
1.计算反弯点:反弯点是指结构能耗散能力较好的位置。
通常是选取结构中变形较大的地方。
计算反弯点的步骤如下:(1)计算结构的间距比:间距比可以用来确定结构变形的程度,即结构的柔性程度。
计算公式为间距比=(L1+L2)/(L1×L2),其中L1和L2是连续两个支点的间距。
(2)设计抗震体系:根据建筑物所在区域的地震烈度和结构类型,选择相应的抗震体系,如剪力墙、框架等。
(3)计算形位系数:形位系数是根据结构所在的地震烈度区域和抗震体系的性能要求确定的。
它可以用来计算反弯点的位置。
2.计算抗水平力:根据结构的刚度和变形,计算结构能够承受的最大水平力。
计算公式为:抗水平力=抗震能力系数×初始刚度×底面剪力。
3.设计结构:根据计算得到的抗水平力,选择合适的结构材料和截面尺寸,进行详细设计。
二、D值法:D值法是一种比较简单的计算方法,它是根据结构的刚度、质量和周期来评估结构的抗水平力能力的。
1.计算刚度:根据结构的材料和截面尺寸,计算结构的刚度。
刚度可以通过计算结构的弹性刚度来得到。
2.计算周期:根据结构的自振频率来计算结构的周期。
结构的周期是结构的重要参数,通常用于反应结构的动力特性。
3.计算质量:根据结构的质量和材料密度,计算结构的质量。
4.计算D值:D值是结构的抗震性能指标,可以用来评估结构的抗水平力能力。
计算公式为:D值=刚度×周期/质量。
D值越大,结构的抗水平力能力越强。
5.设计结构:根据计算得到的D值,选择合适的结构材料和截面尺寸,进行详细设计。
3-1框架内力计算
q=2.8kN/m (10.21) (1.79) q=3.4kN/m
H
(4.21)
I
3.80m
D
(9.53) (7.11) (4.84)
E
(12.77) (3.64)
F
4.40m
(括号内数字为线刚度相对值)
A
(i=EI/l) 7.50m
B
5.60m
C
解:
上层各柱线刚度×0.9,然后计算各节点的弯矩分配系数
多层与高层建筑结构设计
第三章 框架结构内力与位移计算
土木工程系
框架结构内力与位移计算
• 框架结构的布置与计算简图
• 竖向荷载作用下的近似计算——分层计算法 • 水平荷载作用下的近似计算——反弯点法 • 水平荷载作用下的改进反弯点法——D值法
• 水平荷载作用下侧移的近似计算
框架结构的布置与计算简图
装配整体式楼面
框架柱的截面尺寸估算
框架柱的截面尺寸一般根据柱的轴压比限值按下列公式估算:
N=βAGn
N Ac≤ [ N ] f c
框架柱轴压比限值,对 一级、二级和三级抗震 等级,分别取0.7, 0.8和 0.9。
其中β——考虑地震作用组合后柱轴压力增大系数,边 柱取1.3,不等跨内柱取1.25,等跨内柱取1.2; A——按简支状态计算的柱的负载面积; G——折算在单位建筑面积上的重力荷载代表值, 可根据实际荷载计算,也可近似取12~16 kN/m2; n——验算截面以上楼层层数;
-0.200 0.133
-0.267 0.231
-4.836
0.668
15.045
0.353 0.175
-13.585
0.472
0.733
毕业设计指导书(框架结构设计)-结构选型及荷载计算
第一章结构选型与布置结构设计的主要内容包括:结构选型、结构布置、确定计算简图、选择合理简单的计算方法进行各种荷载作用下的内力计算、荷载效应组合、截面配筋设计(计算、构造)、绘施工图。
1.1结构选型结构选型是一个综合性问题,应选择合理的结构形式。
根据结构受力特点,常用的建筑结构形式有:混合结构、框架结构、框架-剪力墙结构、剪力墙结构(一般剪力墙结构、筒体剪力墙结构、筒中筒剪力墙结构)等。
混和结构主要是墙体承重,由于取材方便,造价低,施工方便,我国广泛地应用于多层民用建筑中,但砌体结构强度低、自重大、抗震性能较差,一般用于7层及7层以下的建筑。
框架结构是由梁、柱构件通过节点连接形成的骨架结构,框架结构的特点是由梁、柱承受竖向和水平荷载,墙体起维护作用,其整体性和抗震性均好于混合结构,且平面布置灵活,可提供较大的使用空间,也可构成丰富多变的立面造型,但随着层数和高度的增加,构件截面面积和钢筋用量增多,侧向刚度越来越难以满足设计要求,一般不宜用于过高的建筑,现浇框架结构适用最大高度见表1-1。
框架-剪力墙结构是在框架中设置一些剪力墙,既能满足平面布置灵活,又能满足结构抗侧力要求,一般常用于10~25层的建筑中。
剪力墙结构是依靠剪力墙承受竖向及水平荷载,整体性好、刚度大、抗震性能好,常用于20~50层的高层建筑。
现浇钢筋混凝土房屋适用的最大高度(m) 表1-1结构选型时需充分了解各类结构型式的优缺点、应用范围、结构布置原则和大致的构造尺寸等,根据建筑物高度及使用要求,结合具体建设条件,进行综合分析,从而做出最终的决定。
结构设计中,选择合理科学的建筑结构体系非常重要,是达到既安全可靠又经济合理的重要前提。
实际工程中,多层与小高层常采用框架结构体系。
在我国,由于经济水平及其它条件的限制,混凝土框架结构比钢框架结构应用要广,因此本书以现浇钢筋混凝土框架结构作为分析实例。
1.2结构布置进行混凝土框架结构布置的主要工作是合理地确定梁、柱的位置及跨度。
贺州市某学校教学楼结构设计第③轴-土木工程管理
题目贺州市某学校教学楼结构设计第③轴摘要本工程结构设计采用多层钢筋混凝土框架结构,其主要步骤为:结构平面布置及截面尺寸估算;结构荷载及内力计算;弯矩调幅和内力调整及内力组合;结构计算包括梁、板的配筋计算。
结构计算部分应用PkPM系列软件,主要用到CAD,并完成结构施工图的绘制。
结构设计部分包括结构方案设计、结构计算和施工图设计,结构设计是在建筑物初步设计的基础上确定结构方案,选择合理的结构体系,从而进行结构布置,并初步估算,确定结构构件尺寸。
在构件截面估算后,选取一榀框架进行计算荷载,用分层法算出内力,并对内力进行组合选出最不利内力进行分析,从而进行配筋计算,整个方案设计符合设计和结构要求,具有一定的合理性。
关键词:框架结构结构设计荷载计算A Guilin Hospital Inpatient Department Building StructureDesign Of The First ⑨ AxisABSTRACTThe structure design of the project adopts a multi-layer reinforced concrete frame structure. The main steps are: structure layout and section size estimation; Calculation of structural loads and internal forces; Moment modulation and internal force adjustment and internal force combination; The structural calculation includes the calculation of the reinforcement of the beam and plate. The structural calculation part uses Pk PM series software, mainly using CAD, and completes the drawing of structural construction drawings.The structural design part includes the structural scheme design, structural calculation and construction drawing design. The structural design is to determine the structural plan on the basis of the initial design of the building, select a reasonable structural system, and thus carry out the structural layout, and initially estimate and determine the size of the structural components. After estimating the section of the member, a frame is selected to calculate the load, the internal force is calculated by stratification method, and the internal force is combined to select the most unfavorable internal force for analysis, so that the reinforcement calculation is carried out. The entire design conforms to the design and structure requirements. It has a certain rationality.Key words: calculation of structural design load of frame目录第一章设计说明 (1)1.1 工程项目简介 (1)1.2 建筑设计概况 (1)1.3 建筑设计 (2)第二章结构平面布置 (3)2.1 结构设计的步骤 (3)2.2 构建截面尺寸初步确定 (3)2.3 梁柱线刚度及其简图 (5)第三章荷载计算 (7)3.1 屋、楼面荷载计算 (7)3.2 活荷载标准值计算 (10)3.3 屋面横竖向梁荷载标准值 (10)3.4 恒载计算 (11)3.5 恒载作用下梁柱偏心距计算 (16)3.6 框架荷载计算简图 (17)3.7 风荷载计算 (19)第四章内力计算 (30)4.1 计算方法 (30)4.2 等效均布荷载计算 (30)4.3 梁跨中弯矩计算 (44)4.4 梁柱剪力与轴力计算 (48)4.5 框架在竖向荷载作用下的内力图 (52)第五章内力组合 (61)5.1 弯矩调幅 (61)5.2 内力换算 (62)5.3 框架梁及框架柱内力组合 (64)第六章截面设计与配筋 (78)6.1 框架柱截面设计与配筋 (78)6.2 框架梁截面设计与配筋 (82)第七章板配筋 (90)7.1 双向板荷载计算 (90)7.2 双向板内力计算 (91)7.3 双向板配筋计算 (93)第一章设计说明1.1 工程项目简介(1)工程项目名称:贺州市某学校教学楼(2)工程设计资料:总建筑面积952.2m2,建筑楼层 3层,各层层高均为3.8m,室内外高差 0.45 m,基础顶面距室外地坪0.9 m。
某学校六层框架教学楼设计计算书
某学校六层框架教学楼设计m,拟建建筑物共六层,摘要:本设计为XX 市XX学校教学楼设计。
建筑面积约为100002各层层高均为4.2m。
本设计分为两部分:第一部分是建筑设计,建筑设计本着“功能适用,经济合理,造型美观,环境相宜”的原则,以国家相应规范、标准为依据,完成了设计任务书所要求的建筑平面设计,并在此基础上进行了立面、剖面、建筑详图设计以及建筑构造做法和材料的选用。
第二部分为结构设计,本设计的结构采用框架结构,结构设计本着“安全,适用,耐久”的原则,进行了竖向荷载汇集,水平荷载汇集,内力计算,内力组合,包括框架梁、板、柱、楼梯、及基础的截面设计等。
关键词:框架结构教学楼抗震设计Some school six level frame teaching building designAbstract:This is a teaching building design for Qiqihaer city professional technology institute.m, a total of the proposed six-storey buildings, each building store The building area is 10,0002height is 4.2m. This design divides into two parts: The first part is the architectural design, the architectural design “is suitable in line with the function, t he economy is reasonable, the modelling is artistic, the environment is suitable” the principle, take the national corresponding standard, the standard as the basis, has completed the construction plane design which the design project description requests, and carried on in this foundation has set up the surface, the section plane, the building detail design as well as the construction structure procedure and material selection.The second part is the structural design, this design structure uses the portal frame construction.Structural design in line with “safe, suitable, durable” the principle, has carried on the vertical load collection, horizontal load collection, endogenic force computation, endogenic force combination, including frame beams, board, column, staircase, and foundation section design and so on.Key words:frame structure teaching building aseismatic design目录摘要 (I)Abstract (I)第1章绪论 (1)1.1题目背景 (1)1.2工程概况 (1)1.3设计内容与方法 (1)1.3.1建筑设计 (1)1.3.2结构设计 (2)第2章建筑设计 (3)2.1建筑的总平面设计 (3)2.2建筑平面设计 (3)2.2.1使用部分 (3)2.2.2交通联系部分 (5)2.3建筑立面设计 (5)2.4建筑剖面设计 (6)2.5防火设计 (8)2.6建筑细部设计 (8)2.6.1砌筑工程 (8)2.6.2地面工程 (8)2.6.3屋面工程 (9)2.6.4装修工程 (9)2.6.5门窗工程 (9)2.6.6其他工程 (9)2.7节能设计 (8)第3章结构设计 (11)3.1结构方案设计 (11)3.2结构布置及计算简图 (9)3.3重力荷载计算 (11)3.3.1屋面及楼面的永久荷载标准值 (11)3.3.2屋面及楼面可变荷载标准值 (12)3.3.3梁、柱、墙、窗、门重力荷载计算 (12)3.3.4重力荷载代表值计算 (18)3.4横向框架侧移刚度计算 (19)3.5横向水平荷载作用下框架结构的内力和侧移计算 (21)3.5.1横向水平地震作用下框架结构的内力和侧移计算 (25)3.5.2横向水平风荷载作用下框架结构内力和侧移计算 (28)3.6竖向荷载作用下框架结构的内力计算 (31)3.6.1计算单元 (31)3.6.2荷载计算 (31)3.6.3内力计算 (37)3.7横向框架内力组合 (41)3.8框架截面设计 (49)3.8.1框架梁截面设计 (49)3.8.2框架柱截面设计 (51)3.8.3框架柱节点核芯区截面抗震验算 (55)3.9板设计 (56)3.9.1板类型的选择 (56)3.9.2计算参数 (56)3.9.3弯矩计算 (56)3.10楼梯设计 (60)3.10.1 LT-1 (60)3.10.2 LT-2 (63)3.11基础设计 (65)3.11.1 B柱柱下独立基础设计 (65)3.11.2 A柱柱下独立基础设计 (69)致谢 (78)参考文献 (79)第1章 绪 论1.1 题目背景本工程为XX 市XX 学校教学楼,近年来学校规模不断壮大,学生数量增多,原有的教学空间日益紧张,学校教务处排课也十分困难,给师生的学习工作带来不便。
竖向荷载作用下框架结构的内力计算计算书3:正文6-11章
第6章竖向荷载作用下框架结构的内力计算6.1计算单元的确定取7轴线横向框架进行计算,计算单元宽度为2.75m,如图6.1所示。
传给该框架的楼面荷载如图中的水平阴影线所示,计算单元范围内的其余楼面荷载则通过次梁和纵向框架梁以集中力的形式传给横向框架,作用于各节点上。
由于纵向框架的中心线与柱的中心线不重合,因此在框架节点上还作用有集中力矩。
图6.1 计算单元6.2 竖向荷载计算6.2.1恒荷计算1.1-5层荷载计算:梁自重:梁AB=2.1kN/m梁BD=2.1kN/m梁DE=2.1kN/m挑梁=0.525kN/m板传递给梁的梯形及三角形荷载:板AB(左)=3.742kN/m×1.35m=5.05kN/m板AB(右)=3.742kN/m×1.5m=5.61kN/m板BD(左)=3.742kN/m×1.95m=7.29kN/m板BD(右)=3.742kN/m×2.1m=7.85kN/m板DE(左)=3.742kN/m×1.35m=5.05kN/m板DE(右)=3.742kN/m×1.4m=5.24kN/m悬挑部分的板为单向板,所以直接传递给梁的恒荷载为零墙自重:墙AB =2.12×2.4=5.09kN/m墙BD =2.12×2.4=5.09kN/m墙DE =2.12×2.4=5.09kN/m墙悬挑=2.12×2.6=5.51kN/m恒载:梁自重+板传荷载+墙自重挑梁=梁自重+墙自重柱的集中力:A 3.740.50.5 2.71.350.531.5 2.850.525 2.375 2.6 2.8526.78kNP=⨯⨯⨯⨯+⨯⨯⨯⨯⨯=()++B 3.740.50.5 2.7 1.350.53 1.5 2.850.5250.5 3.743.150.750.50.5 1.95 1.950.5 2.1 3.9 2.12 2.6 2.8538.31k NP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯=()++() D 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.743.150.750.50.5 1.951.950.5 2.1 3.5 2.12 2.6 2.7536.31kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯=()++() E 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.740.65 5.52.375 2.6 2.8532.8kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯+⨯⨯=()++E 0.5 3.740.65 5.5 2.750.525 2.375110.5kN P -=⨯⨯⨯⨯+⨯=+柱所受集中力产生的弯矩:A 26.78(0.450.2)/2 3.35kN m M =⨯-=⋅B 0kN m M =⋅D 36.31(0.450.2)/2 4.45kN m M =⨯-=⋅E 32.8(0.450.2)/2 4.1kN m M =⨯-=⋅ 2.6层荷载计算:梁自重:梁AB=2.1kN/m梁BD=2.1 kN/m 梁DE=2.1kN/m挑梁=0.525 kN/m板传递给梁的梯形及三角形荷载: 板AB (左)=3.742kN/m ×1.35m=5.05kN/m 板AB (右)=3.742kN/m ×1.5m=5.61kN/m 板BD (左)=3.742kN/m ×1.95m=7.29kN/m 板BD (右)=3.742kN/m ×2.1m=7.85kN/m 板DE (左)=3.742kN/m ×1.35m=5.05kN/m 板DE (右)=3.742kN/m ×1.4m=5.24kN/m 悬挑部分的板为单向板,所以直接传递给梁的恒荷载为零 墙自重: 墙AB =2.12×1.925=4.081kN/m墙BD =2.12×3.36=7.12kN/m 墙DE =2.12×1.725=3.657kN/m恒载:梁自重+板传荷载+墙自重挑梁=梁自重 柱的集中力 A 3.740.50.5 2.71.350.531.5 2.850.525 2.3750.6 2.8513.17kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯=()++ B 3.740.50.5 2.71.350.531.5 2.850.5250.5 3.74 3.150.750.50.51.951.950.5 2.1 3.922.6kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() D 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.74 3.150.750.50.51.951.950.5 2.1 3.521.15kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() E 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.740.65 5.5 2.375 0.6 2.8519.26 kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯+⨯⨯=()++-E 0.5 3.740.65 5.5 2.750.5258.13kN P =⨯⨯⨯⨯=+柱所受集中力产生的弯矩:A 13.17(0.450.2)/2 1.65kN m M =⨯-=⋅B 0kN m M =⋅D 21.15(0.450.2)/2 2.64kN m M =⨯-=⋅E 19.26(0.450.2)/2 2.41kN m M =⨯-=⋅ 3.顶层荷载计算:梁自重:梁AB=2.35 kN/m 梁BD=2.35 kN/m 梁DE=2.35 kN/m板传递给梁的梯形及三角形荷载: 板AB (左)=5.192kN/m ×1.35m=7.01kN/m 板AB (右)=5.192kN/m ×1.5m=7.79kN/m 板BD (左)= 5.192kN/m ×1.95m=7.29kN/m 板BD (右)= 5.192kN/m ×2.1m=10.9kN/m 板DE (左)= 5.192kN/m ×1.35m=7.01kN/m 板DE (右)= 5.192kN/m ×1.4m=7.27kN/m 悬挑部分的板为单向板,所以直接传递给梁的恒荷载为零柱的集中力: A 5.190.50.5 2.71.350.531.5 2.850.5251.1212.24kN P =⨯⨯⨯⨯+⨯⨯⨯⨯=()+ B 5.190.50.5 2.7 1.350.53 1.5 2.850.525 1.120.55.19 3.15 0.750.50.51.951.950.5 2.1 3.915.83kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() D 5.190.50.5 2.71.350.5 2.81.4 2.750.5251.120.5 5.19 3.150.750.50.51.951.950.5 2.1 3.528.97kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() E 5.190.50.5 2.7 1.350.5 2.8 1.49.82k NP =⨯⨯⨯⨯+⨯⨯=()柱所受集中力产生的弯矩:A 12.24(0.450.2)/2 1.53kN m M =⨯-=⋅B 0kN m M =⋅ D 28.97(0.450.2)/2 3.62kN m M =⨯-=⋅ E 9.82(0.450.2)/2 1.23kN m M =⨯-=⋅6.2.2 活荷载计算活荷载作用下各层框架梁上活载为板传递给梁的荷载。
(整理)第三章计算简图
第三章 计算简图3.1、确定计算简图本工程横向框架计算单元取图2-2中所示范围,框架的计算简图假定底层柱下端固定于基础,按工程地质资料提供的数据,地质条件较好,初步确定本工程基础采用柱下独立基础,挖去所有杂填土,基础置于第二层粉质粘土上,基底标高为设计标高-2.100m (图2-2)。
柱子的高度底层为:1h = 4.5+2.1-0.5 = 6.1m (初步假设基础高度0.5m ),二~四层柱高为2h ~4h = 3.5m 。
柱节点刚接,横梁的计算跨度取柱中心至中心间距离,三跨分别为:l =7500、2500、7500。
计算简图见图3-1。
图3-1 计算简图3.2、梁柱截面尺寸3.2.1 框架柱:∵本工程的高度h =16.2m ﹤30m ,而且其抗震设防烈度为7度,根据《建筑抗震设计规范》,可确认笨建筑的抗震等级为二级的框架结构。
∴μ=0.8 N 取132/kN m S ⋅ 边柱:1C c N A f μ≥⋅=1.2137.5/2440.816.2⨯⨯⨯⨯⨯=427.210mm ⨯ 边柱:422 1.1135448.8100.816.2A mm ⨯⨯⨯⨯≥=⨯⨯∴边柱、中柱均取400400mm mm3.2.2梁:横向框架柱AB跨、CD跨:250mm×600mm,BC跨:250mm×400mm,纵向连系梁:250mm×500mm。
3.3、材料强度等级混凝土:均采用C30级。
钢筋直径≥12mm的采用HRB335,其余采用HPB235钢筋。
3.4、荷载计算以④轴线横向框架为计算分析对象。
3.4.1 屋面横梁竖向线荷载标准值1、恒载(图3-2a)恒载图(D-L.T)活载图(L-L.T)(a)(b)图3-2荷载计算简图(a)恒载作用下结构计算简图;(b)活载作用下结构计算简图屋面恒载标准值:35厚架空隔热板 0.035×25=0.875kN/㎡ 防水层 0.4 kN/㎡ 20厚1:3水泥砂浆找平层 0.02×20=0.4 kN/㎡ 120(100)厚钢筋砼现浇板 0.12×25=3 kN/㎡ (AB 、CD 跨板厚取120, BC 跨取100) (0.10×25=2.5 kN/㎡) 12厚纸筋石灰粉平顶 0.012×16=0.192 kN/㎡ 屋面恒载标准值: 4.87 kN/㎡ (4.37 kN/㎡) 梁自重边跨AB 、CD 跨: 0.25×0.6×25=3.75 kN/m 梁侧粉刷: 2×(0.6-0.12)×0.02×17=0.33 kN/m 4.08 kN/m 中间跨BC 跨: 0.250.425⨯⨯=2.5/kN m 梁侧粉刷: ()20.40.10.0217⨯-⨯⨯=0.19/kN m2.69/kN m作用在顶层框架梁上的线恒载标准值为:梁自重: 41AB g =41CD g =4.08/kN m ,41BC g =2.69/kN m 板传来的荷载: 42AB g =42CD g =4.874⨯=19.48/kN m42BC g =4.37×2.5=10.93/kN m2、活载(图3-2b )作用在顶层框架梁上的线活荷载标准值为:4AB q =4CD q =0.74⨯=2.8/kN m4BC q =0.7×2.5=1.75/kN m3.4.2 楼面横梁竖向线荷载标准值 1、恒载(图3-2a )25厚水泥砂浆面层 20.025200.50/kN m ⨯=120(100)厚钢筋砼现浇板 20.12253/kN m ⨯=2(0.1025 2.5/)kN m ⨯=12厚板底粉刷 20.012160.192/kN m ⨯= 楼面恒载标准值: 23.692/kN m2(3.192/)kN m边跨(AB 、CD 跨)框架梁自重: 4.08/k N m 中跨(BC 跨)梁自重: 2.69/k N m 作用在楼面层框架梁上的线恒载标准值为:梁自重: 11 4.08/AB CD g g kN m ==1 2.69/BC g kN m =板传来的荷载: 22 3.692414.768/AB CD g g kN m ==⨯=2 3.192 2.57.98/BC g kN m =⨯=填充墙: (3.50.6) 3.811.02/kN m -⨯= 粉刷: (3.50.6)20.0217 1.97/kN m -⨯⨯⨯= 墙传来的荷载: 3313/AB CD g g kN m == 2、活载(图3-2b )楼面活载: 248/AB CD q q kN m ==⨯=2.5 2.5 6.25/BC q kN m =⨯=3.4.3 屋面框架节点集中荷载标准值(图3-3)图3-3 恒载顶层集中力1、恒载边跨连系梁自重: 0.250.5042512.5kN ⨯⨯⨯= 粉刷: 2(0.500.12)0.02417 1.04kN ⨯-⨯⨯⨯= 1.2m 高女儿墙: 1.24 4.5621.89kN ⨯⨯= 粉刷: 1.220.02417 3.26kN ⨯⨯⨯⨯= 连系梁传来屋面自重: 0.540.54 4.8719.48kN ⨯⨯⨯⨯= 顶层边节点集中荷载: 4458.17A D G G kN == 中柱连系梁自重: 0.250.5042512.5kN ⨯⨯⨯= 粉刷: [(0.50.12)(0.500.10)]0.02417 1.06kN -+-⨯⨯⨯= 连系梁传来屋面自重: 0.540.54 4.8719.48kN ⨯⨯⨯⨯=0.5(44 2.5) 2.5/2 4.3715.02kN ⨯+-⨯⨯=顶层中节点集中荷载: 4448.06B C G G kN == 2、活载440.540.540.7 2.86A D Q Q kN ==⨯⨯⨯⨯=440.540.540.70.5(44 2.5) 2.5/20.7 5.21B C Q Q kN ==⨯⨯⨯⨯+⨯+-⨯⨯=3.4.4 楼面框架节点集中荷载标准值(图3-4)图3-4 恒载中间层节点集中力1、恒载边柱连系梁自重: 12.5kN 粉刷: 1.04kN填充墙: (3.50.5) 4.560.7522kN -⨯⨯⨯= 粉刷: (3.50.5)20.750.0217kN -⨯⨯⨯⨯= 连系梁传来楼面自重: 0.540.54 3.69214kN ⨯⨯⨯⨯= 50.36kN中间层边节点集中荷载:50.36A D G G kN ==框架柱自重:''0.40.4 3.52514AD G G kN ==⨯⨯⨯= 中柱连系梁自重: 12.5kN 粉刷: 1.06kN 填充墙: 0.8(3.50.5) 3.8(40.4)32.83kN ⨯-⨯⨯-= 粉刷: (3.50.5) 3.60.0217kN -⨯⨯⨯=连系梁传来楼面自重: 0.540.54 3.69214kN ⨯⨯⨯⨯= 0.5(44 2.5) 2.50.5 3.19210.97kN ⨯+-⨯⨯⨯=75.76kN中间层中节点集中荷载: 83.97B C G G kN == 柱传来集中荷载:''14BC G G kN == 2、活载 0.540.542.08.0A D Q Q kN ==⨯⨯⨯⨯= 80.5(44 2.5) 2.50.5 2.516.59BC Q Q kN ==+⨯+-⨯⨯⨯=3.4.5 地震作用1、建筑物总重力荷载代表值i G 的计算(1) 集中于屋盖处的质点重力荷载代表值4G :50%雪载: 0.50.6550.217.528kN ⨯⨯⨯= 屋面恒载: 4.8750.27.52 4.3750.2 2.5kN ⨯⨯⨯+⨯⨯=横梁: (4.087.52 2.69 2.5)138kN ⨯⨯+⨯⨯= 纵梁: (12.5 1.04)122(12.5 1.06)12kN +⨯⨯++⨯⨯=女儿墙: 1.2 4.56(50.217.5)27kN ⨯⨯+⨯= 柱重: 0.40.425 1.751343kN ⨯⨯⨯⨯⨯= 横墙: 4.56(7.1 1.154 2.1 1.352 1.80.852 1.20.852)151.53kN ⨯⨯⨯+⨯⨯-⨯⨯-⨯⨯=3.87.1 1.1519589.51kN ⨯⨯⨯=纵墙: 4.56[(100.4 6.60.424) 1.25(322.117 1.8 1.520.85]299.71kN ⨯--⨯⨯-⨯+⨯++⨯⨯= 3.8[(100.4 3.3 1.840.424) 1.259.76 1.7(0.9170.75 2.430.85)]377.6kN ⨯--⨯-⨯⨯+⨯-⨯⨯+⨯⨯=钢窗: (17 2.10.752 1.80.852 1.50.85)0kN ⨯⨯+⨯⨯+⨯⨯⨯= 48419.18G kN =(2) 集中于三、四层处的质点重力荷载代表值32~G G :50%楼面活载: 0.5(2.07.550.22 2.5 2.550.2)909.88kN ⨯⨯⨯⨯⨯+⨯⨯= 楼面恒载: 3.69250.27.52 3.19250.2 2.5kN ⨯⨯⨯+⨯⨯= 横梁: 883.03kN 纵梁: 650.4kN 柱重: 364272kN ⨯= 横墙: 4.56(7.12.942.13.121.81.8kN ⨯⨯⨯+⨯⨯-⨯⨯-⨯⨯=3.8 2.97.1191486.60kN ⨯⨯⨯=纵墙: 4.56[50.226.6(321.521.82.174kN ⨯⨯--⨯+⨯++⨯-⨯⨯=3.8[(100.4 3.3 1.840.424)39.76 3.380.9217 2.4 2.13]867.04kN ⨯--⨯-⨯⨯+⨯-⨯⨯-⨯⨯=钢窗: (172.11.821.81.821.5kN ⨯⨯+⨯⨯+⨯⨯⨯= 329637.5G G kN ==(3) 集中于二层处的质点重力荷载代表值1G :50%楼面活载: 909.88kN 楼面恒载: 3180.67kN 横梁: 883.03kN 纵梁: 650.4kN柱重: 0.40.425(1.753.05)kN ⨯⨯⨯+⨯⨯= 横墙: 4.56(7.144.42.14.621.822kN ⨯⨯+⨯⨯-⨯⨯-⨯⨯= 3.8(1.757.119 2.457.110)1558.1kN ⨯⨯⨯+⨯⨯=纵墙: 515.744.3/3kN ⨯=867.04 4.3/31242.78kN ⨯=钢窗: 30.464.334kN ⨯⨯= 110815.91G kN =2、地震作用计算(1) 框架柱的抗侧移刚度:在计算梁柱线刚度时,应考虑楼盖对框架柱的影响,在现浇楼盖中,中框架梁的抗弯惯性矩取02I I =;边框架梁取01.5I I =,0I 为框架梁按矩形截面计算的界面惯性矩。
计算范例完整混凝土框架结构设计计算书
砖自重为 15 KN / m3 ,其计算如表 3 所示:(此处门窗暂不考虑,
为预留洞考虑)
墙体为 240mm厚粘土空心砖,外墙面贴瓷砖(
0.5KN / m2 ),内墙面
为 20mm厚抹灰,则外墙单位墙面重力荷载为:
0.5 15 0.24 17 0.02 4.44KN / m2
内墙为 240mm粘土空心砖,两侧均为 20mm厚抹灰,在内墙单
b = ( 1/3 ~ 1/2 )× 600 ㎜ =200 ~ 300 ㎜
则边跨梁宽度: b= 300 ㎜
( 2).纵梁
a:
截面的高度: 1/12 ~ 1/8 的跨度(为满足承载力、刚度及延
性要求)
h=
( 1/12 ~ 1/8 )× 4500 ㎜= 375~ 565 ㎜,
即截面高度: 375 ㎜~ 565 ㎜
20mm厚抹灰,则女儿墙重力
10.2.5 门窗的自重
根据建筑结构荷载规范 GB50009-2001 ,木门按 0.2 KN / m2 考虑, 塑
钢窗按 0.4 KN / m2 考虑,计算结果如表 10-5 所示:
表 10-5 门窗自重
Ac N / N f c
式中: N —柱的组合的轴压力设计值;
F —按简支状态计算的柱的负载面积;
gE —折算在单位建筑面积上的重力荷载代表值,可根据实际 荷载计算,也可近似取 12~ 15kN/ ㎡;
—考虑地震作用组合后柱轴压力增大系数, 等跨内柱取 1.25 ,等跨内柱取 1.2 ;
边柱取 1.3 ,不
性要求)
h = ( 1/12 ~ 1/8 )× 6600 ㎜= 550 ~ 825 ㎜,
h = ( 1/12 ~ 1/8 )× 3000 ㎜= 250 ~ 375 ㎜,
框架结构设计步骤教学教材
砼框架结构设计手算步骤一.确定结构方案与结构布置1.结构选型是否选用框架结构应先进行比较。
根据何广乾的模糊评判法,砼结构8~18层首选框剪结构,住宅、旅馆则首选剪力墙。
对于不需要电梯的多层采用框架较多。
2.平面布置注意L,l,l’,B的关系。
3.竖向布置注意高宽比、最大高度(分A、B两大类,B类计算和构造有更严格的要求),力求规则,侧向刚度沿竖向均匀变化。
4.三缝的设置按规范要求设置,尽量做到免缝或三缝合一。
5.基础选型对于高层不宜选用独立基础。
但根据国勤兄的经验,对于小高层当地基承载力标准值300kpa 以上时可以考虑用独基。
6.楼屋盖选型高层最好选用现浇楼盖1)梁板式最多的一种形式。
有时门厅,会议厅可布置成井式楼盖,其平面长宽比不宜大于 1.5,井式梁间距为 2.5~3.3m,且周边梁的刚度强度应加强。
采用扁梁高度宜为1/15~1/18跨度,宽度不超过柱宽50,最好不超过柱宽。
2)密肋梁方形柱网或接近方形,跨度大且梁高受限时常采用。
肋梁间距1~1.5m,肋高为跨度的1/30~1/20,肋宽150~200mm。
3)无梁楼盖地震区不宜单独使用,如使用应注意可靠的抗震措施,如增加剪力墙或支撑。
4)无粘结预应力现浇楼板一般跨度大于6m,板厚减薄降低层高,在高层中应用有一定技术经济优势。
在地震区应注意防止钢筋端头锚固失效。
5)其他二.初步确定梁柱截面尺寸及材料强度等级1.柱截面初定分抗震和非抗震两种情况。
对于非抗震,按照轴心受压初定截面。
对于抗震,Ac=N/(a*fc) N=B*F*Ge*n B=1.3(边柱),1.2(等跨中柱),1.25(不等跨中柱)Ge=12~15kN/m2 a为轴压比fc为砼抗压强度设计值F为每层从属面积n为层数。
框架柱上下截面高度不同时,每次缩小100~150为宜。
为方便尺寸标注修改,边柱一般以墙中心线为轴线收缩,中柱两边收缩。
柱截面与标号的变化宜错开。
2.梁截面初定梁高为跨度的1/8~1/14,梁宽通常为1/2~1/3梁高。
框架结构设计计算书.
第一章绪论第一节工程概况一、工程设计总概况:1. 规模:本工程是一栋四层钢筋混凝土框架结构教学楼,使用年限为 50年 , 抗震设防烈度为 8度; 建筑面积约 3000㎡, 建筑平面的横轴轴距为 6.5m 和2.5m , 纵轴轴距为 4.5m ;框架梁、柱、板为现浇;内、外墙体材料为混凝土空心砌块, 外墙装修使用乳白色涂料仿石材外墙涂料, 内墙装修喷涂乳胶漆, 教室内地面房间采用水磨石地面, 教室房间墙面主要采用石棉吸音板, 门窗采用塑钢窗和装饰木门。
全楼设楼梯两部。
2. 结构形式:钢筋混凝土四层框架结构。
3.气象、水文、地质资料:1气象资料A. 基本风压值:0.35kN/㎡,B.基本雪压值:0.25kN/㎡。
C.冻土深度:最大冻土深度为 1.2m;D.室外气温:年平均气温最底 -10℃,年平均气温最高 40℃ ;2水文地质条件A.土层分布见图 1-1,地表下黄土分布约 15m ,垂直水平分布较均匀,可塑状态,中等压缩性,弱湿陷性,属Ⅰ级非自重湿陷性黄土地基。
地基承载力特征值fak=120kN/㎡。
B.抗震设防等级 8度,设计基本地震加速度值为 0.20g ,地震设计分组为第一组,场地类别为Ⅱ类。
C.常年地下水位位于地表下 8m ,地质对水泥具有硫酸盐侵蚀性。
D.采用独立基础, 考虑到经济方面的因素, 在地质条件允许的条件下, 独立基础的挖土方量是最为经济的,而且基础本身的用钢量及人工费用也是最低的, 整体性好, 抗不均匀沉降的能力强。
因此独立基础在很多中低层的建筑中应用较多。
二、设计参数:(一根据《建筑结构设计统一标准》本工程为一般的建筑物,破坏后果严重,故建筑结构的安全等级为二级。
(二建筑结构设计使用年限为 50年, 耐久等级二级 (年 , 耐火等级二级,屋面防水Ⅱ级。
(三建筑抗震烈度为 8度,应进行必要的抗震措施。
(四设防类别丙类。
(五本工程高度为 15.3m ,框架抗震等级根据 GB 50223-2008《建筑工程抗震设防分类标准》,幼儿园、小学、中学教学楼建筑结构高度不超过 24m 的混凝土框架的抗震等级为二级。
毕业设计指导书(框架结构设计)_内力计算和组合
第三章框架内力计算3.1计算方法框架结构一般承担的荷载主要有恒载、使用活荷载、风荷载、地震作用,其中恒载、活荷载一般为竖向作用,风荷载、地震则为水平方向作用,手算多层多跨框架结构的内力(M、N、V)及侧移时,一般采用近似方法。
如求竖向荷载作用下的内力时,有分层法、弯矩分配法、迭代法等;求水平荷载作用下的内力时,有反弯点法、改进反弯点法(D值法)、迭代法等。
这些方法采用的假设不同,计算结果有所差异,但一般都能满足工程设计要求的精度。
本章主要介绍竖向荷载作用下无侧移框架的弯矩分配法和水平荷载作用下D值法的计算。
在计算各项荷载作用效应时,一般按标准值进行计算,以便于后面荷载效应的组合。
3.1.1竖向荷载作用下框架内力计算1.弯矩分配法在竖向荷载作用下较规则的框架产生的侧向位移很小,可忽略不计。
框架的内力采用无侧移的弯矩分配法进行简化计算。
具体方法是对整体框架按照结构力学的—般方法,计算出各节点的弯矩分配系数、计算各节点的不平衡弯矩,然用进行分配、传递,在工程设计中,每节点只分配两至三次即可满足精度要求。
相交于同一点的多个杆件中的某一杆件,其在该节点的弯矩分配系数的计算过程为:(1)确定各杆件在该节点的转动刚度杆件的转动刚度与杆件远端的约束形式有关,如图3-1:(a)杆件在节点A处的转动刚度(b )某节点各杆件弯矩分配系数图 3-1 A 节点弯矩分配系数(图中lEI i =)(2)计算弯矩分配系数μ∑∑∑∑===++=AAD AD AAC AC AAB ABADAC AABSS S S S S S S SS μμμ,,1=++=∑AD AC ABAμμμμ(3)相交于一点杆件间的弯矩分配弯矩分配之前,还需先要求出节点的固端弯矩,这可查阅相关静力计算手册得到。
表3-1为常见荷载作用下杆件的固端弯矩。
在弯矩分配的过程中,一个循环可同时放松和固定多个节点(各个放松节点和固定节点间间隔布置,如图3-2),以加快收敛速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章框架结构设计集荷载计算3 框架结构设计与荷载计算3.1 结构布置3.1.1 柱网与层高民用建筑的柱网和层高根据建筑的使用功能确定。
柱网布置应该规整,由内廊式和跨度组合式,这里采用跨度组合式(如图)。
层高宜取同一个尺寸,这里采用层高3.6m,对于底层由于市内外地面高差加急出埋深影响为4.7m。
框架结构总高度在8度抗震设防时,高度不应大于45m,而此建筑总高度也才22.7m。
图3.1 柱网布置图3.1.2 框架的承重方案根据楼盖的平面布置和竖向荷载的传递途径,框架的承重方案可以分为向承重方案。
横向,纵向及纵横向承重三种方案。
此工程采用纵横向承重方案,现浇楼面为双向板(纵向承重时因横向刚度较小一般很少采用)。
3.1.3 变形缝设置的考虑变形缝有温度伸缩缝,沉降缝,和防震缝三种。
伸缩缝是为了避免温度变化和混凝土的收缩产生的盈利是结构产生裂缝,在结构一定长度范围内设置伸缩缝。
在伸缩缝处,基础顶面以上的结构及建筑构造完全断开,伸缩缝最大间距见下表3.1。
表3.1 伸缩缝的最大间距(m)伸缩缝方案,而是采用构造和施工措施,如在顶层,底层和山墙等温度变化大的部位提高配筋率。
沉降缝是为了避免地基不均匀沉降使结构产生裂缝,在结构易产生不均匀沉降的部位设缝,将结构完全分开。
此建筑中间部分是6层,两边为4层,房屋高度有一定变化,但考虑到变化不大,可以不设沉降缝。
防震缝,是为了防止在地震作用下,特别不规则结构的薄弱部位容易造成震害而可用防震缝将结构分为若干独立抗震单元,使各结构规则,但目前设计更倾向于不设,而采取加强结构整体性的措施。
3.1.4 材料选择柱采用C35, 梁采用C30混凝土。
梁纵筋用HRB335,柱纵筋用HRB400,箍筋均用HPB235。
3.1.5 截面尺寸初步选择 梁截面:梁高 h=(1/12-1/8)L(单跨用较大值,多跨用较小值或负荷较大时用 上限值)且净跨与h 比不宜小于4; AB 跨h=1/12*7200=600mm梁宽 b=(1/3-1/2)h,抗震结构b≥200mm,h/b≤4; b=300mm其余尺寸见后梁截面表。
柱截面:N=β*F*g E *n Ac≥N/[μN ]fc柱截面的宽与高一般取1/20-1/15层高,需满足h≥1/25净高,b≥ 1/30净高。
且柱子b*h≥250*250,抗震结构b 不宜小于300mm,柱的 净高于界面高度之比宜大于4,按轴压比限值估算:估算时,楼层荷载按11∽14kN/m 2计算,本工程边柱按13kN/m2计, 中柱12kN/m 2计。
二级抗震时轴压比限值[μN ]取0.8,考虑地震作用 组合后柱的轴压力增大系数。
边柱取1.3,不等跨内柱取1.25,等 跨内柱取1.2。
边柱Z 1 Ac ≥21878487.16*8.06*1000*13*3.3*5.7*3.1mm =边柱Z 2 Ac ≥22425157.16*8.06*1000*12*8.4*5.7*25.1mm = 边柱Z 3 Ac ≥2853857.16*8..06*1000*13*5.1*5.7*3.1mm =若取柱截面为正方形,得截面高度为:h1=433mmh2=492mmh3=292mm最后初步确定尺寸:1层中柱截面取为550mm*550mm ,,边柱截面取为450mm*450mm,2层中柱500*500,其余中柱取为450*450,短跨边柱取为400*400。
详细尺寸见后柱截面表。
3.2计算简图3.2.1 基本假定①平面结构假定:该工程为正交布置,可以认为每一方向的水平力只由该方向的抗侧力结构承担,垂直于该方向的抗侧力结构不承担。
②楼板在自身平面内的刚性假定:各个平面抗侧力结构之间,通过楼板联系而成为整体。
楼板假定在自身平面内刚度无限大,在平面外刚度很小可以不予考虑。
建筑结构在水平荷载下侧移时,楼板只有刚性位移,即平动和转动,不考虑其变形。
③不计扭转假定:结构体型规整,并简化计算,不考虑结构的扭转效应。
3.2.2计算简图计算简图用两梁柱的轴线表示,分别取各自的形心线;对钢筋混凝土楼盖整体浇筑的框架梁,一般可以取楼板底面作为梁轴线。
对底层柱的下端一般取至基础顶面;当各层柱的截面尺寸不同且形心线不重合时,一般去顶层柱的形心线作为柱子的轴线。
图3.2 计算简图3.2.3框架梁柱的线刚度计算结构计算见图如图3-1所示。
在求梁截面惯性矩时考虑到现浇楼板的作用,对于第一榀和最后一榀及变形风两侧的框架,取I=1.5Ir;中框架取I=2Ir(Ir为不考虑楼板翼缘作用的梁截面惯性矩)。
梁的线刚度ib=EcIb/l。
其中,Ec为混凝土的弹性模量,Ec35=3.15*104N/mm2;Ec30=3.0*104N/mm2;l为梁的计算跨度;Ib为梁截面惯性矩,对装配式楼面,Ib按梁的实际截面计算,对现浇楼面及装配整体式楼面,Ib按下表采用,其中Io为梁截面矩形部分截面的惯性矩。
表3.2 梁截面惯性矩取值楼面做法 中框架梁 边框架梁现浇楼面 Io Ib 0.2= Io Ib 5.1= 装配整体式楼面Io Ib 5.1=Io Ib 2.1=柱的线刚度为ic=EcIc/h, 其中Ic 为截面的惯性矩,h 为框架柱的计算高度。
表 3.3 横梁线刚度ib 计算表类 别 Ec /104mm2b*h /mm*m m Ir /109mm 4 L /mm 1.5l EcIr / /N/mm 22.0l EcIr / /N/mm 2 边横梁3.0 300*600 5.4 6600 3.682*10104.909*1010 走道梁 3.0 200*400 1.267 3000 1.901*1010 2.534*1010 边横梁3.0300*6005.47200 3.375*10104.500*1010表3.4 柱的线刚度计算表层次 hc/mm Ec/(N/mm2) b*h/mm*mm Ic/mm EcIc/hc/N*mm 1 4700 3.15*104 500*500 5.208*109 3.49*1010 1 4700 3.15*104 450*450 3.417*109 2.29*1010 2-6 3600 3.15*104 450*450 3.417*109 2.99*1010 2-6 36003.15*104400*4002.133*1091.87*10103.3 荷载的汇集3.3.1竖向荷载(1)屋面及楼面均布永久荷载标准值 屋面(上人):30厚细石混凝土保护层 22*0.08=0.66kN/m 2三毡四油防水层 0.4kN/m 220厚水泥砂浆找平层 20*0.02=0.4kN/m2150厚水泥蛭石保温层 5*0.15=0.75kN/m2100厚钢筋混凝土板 25*0.1=2.5kN/m2粉底 0.5kN/m2合计 5.21kN/m2楼面:水磨石地面 0.65kN/m2100厚钢筋混凝土板 25*0.1=2.5kN/m2粉底 0.5kN/m2合计 3.65kN/m21-3层楼面恒载标准值[(9.3*3+3.3+0.25)*(3+7.2+0.25)*2+11.2*9.3*2+7.5*4*(6.6+3)+(6+5.6+6)*(3.3+0.25)*2+(8+1.7+0.25)*(6*2+3.3*2+3.9*6+0.25)]*3.65=6093.31kN4层楼(屋)面恒载标准值[(9.3+3.3+0.25)*(3+7.2+0.25)*2+11.2*9.3*2+7.5*4*(6.6+3)]*3.65+[(9.3*2+3.3)*(3+7.2+0.25)*2+(6+5.6+6)*(3.3+0.25)*2+(8+1.7+0.25)*(6*2+3.3*2+3.9*6+0.25)]*5.21=8101.55kN5层楼面恒载标准值[(9.3+3.3+0.25)*(3+7.2+0.25)*2+11.2*9.3*2+7.5*4*(6.6+3)]*3.65=2758.98kN6层屋面恒载标准值[(9.3+3.3+0.25)*(3+7.2+0.25)*2+11.2*9.3*2+7.5*4*(6.6+3)]*3.65=3938.16kN(2)屋面与楼面活荷载标准值按荷载规范规定,教室活载取2.0kN/m2,厕所走廊楼梯间活荷载取2.5kN/m2,为简化计算,并偏于安全考虑,统一取2.5kN/m2上人屋面的均布活荷载标准值 2.0kN/m2楼面活荷载标准值 2.5kN/m2屋面雪荷载标准值 s k=μr*s0=1.0*0.4=0.4kN/m2(注:无论是否为上人屋面,其屋面上的可变荷载均取雪荷载。
)1-3层楼面活载标准值[(9.3*3+3.3+0.25)*(3+7.2+0.25)*2+11.2*9.3*2+7.5*4*(6.6+3)+(6+5.6+6)*(3.3+0.25)*2+(8+1.7+0.25)*(6*2+3.3*2+3.9*6+0.25)]*2.5=4173.5kN4层楼(屋)面活载标准值楼面[(9.3+3.3+0.25)*(3+7.2+0.25)*2+11.2*9.3*2+7.5*4*(6.6+3)]*2.5 =1889.71kN屋面[(9.3*2+3.3)*(3+7.2+0.25)*2+(6+5.6+6)*(3.3+0.25)*2+(8+1.7+0.25)*(6*2+3.3*2+3.9*6+0.25)]*0.4=410.178kN5层楼面活载标准值[(9.3+3.3+0.25)*(3+7.2+0.25)*2+11.2*9.3*2+7.5*4*(6.6+3)]*2.5 =1889.71kN6层屋面活载标准值[(9.3+3.3+0.25)*(3+7.2+0.25)*2+11.2*9.3*2+7.5*4*(6.6+3)]*0.4= 302.36kN(3)梁柱自重荷载标准值(其中γ=25kN/m 2) 表3.5 梁柱重力荷载标准值注:表中的β为考虑梁柱的粉刷层荷载而对其重力荷载的增大系数;g 表示单位 长度构件重力荷载;n 为构件的数量;梁长度取净长;柱长度取层高。
(4)墙窗门重力荷载标准值墙体为250厚混凝土空心砌块,外墙面贴瓷砖(0.5kN/m 2),内墙面为20厚抹灰,则外墙单位墙面重力荷0.5+10.3*0.25+17*0.02=3.415kN/m 2内墙两侧抹灰均为200厚,则内墙单位面积重力荷载为 10.3*0.25+17*0.02*2=3.255kN/m 2木门窗单位面积重力荷载为0.2kN/m 2;铝合金窗户单位面积重力荷载取0.4kN/m 2构件 bhβgLn Gi ΣGi L1(横梁) 300 600 1.05 4.725 6.5 7 30.71 214.99 L2(走道梁) 200 4501.052.100 2.9176.09103.53L3 300 600 1.05 4.725 7.1 16 33.55 536.76 L4(纵梁) 300 700 1.05 5.512 7.4 12 40.79 489.47 Z1 550 550 1.1 7.564.75 35.5 177.7 Z2 500 500 1.1 6.875 4.7 71 31.32 2455.75 Z3 450 450 1.1 5.569 4.7 16 26.17 418.79 Z4 450 450 1.1 5.569 3.6 76 20.05 1523.8 Z5400 4001.14.400 3.61615.84253.44(5)荷载分层总汇及重力荷载代表值集中于各楼层高处的重力荷载代表值Gi可以计算得到:重力荷载代表值是指结构和构配件自重标准值和各可变荷载组合值之和,是表示地震发生是根据遇合概率确定的有效重力。