填料塔的计算
第3章吸收5节填料吸收塔的计算
当气速增大到 C点时,液体充满了整个空隙,气体 的压强降几乎是垂直上升。同时填料层顶部开始出 现泡沫层,进而充满整个塔,气体以气泡状通过液 体,这种现象称为液泛现象。把开始出现此现象的 点称为泛点。
泛点对应的气速称为液泛速度。要使塔的操作正常及 压强降不致过大,气速必须低于液泛速度,但要高于 载点气速。由于,从低持液量到载点的转变不十分明 显,无法目测,即载点及载点气速难以明确定出。而 液泛现象十分明显,可以目测,即液泛点及液泛气速 可明确定出。液泛速度较易确定,通常以液泛速度v f 为基础来确定操作的空塔气速 v 。 影响液泛速度 的因素很多——填料的形状、大 小,气、液相的物理性质,气、液相的相对流量等 常用的液泛速度关联式如下:
§5 填料吸收塔的计算
本节重点讨论气液逆流操作时填料 塔的有关计算。
、
Y 具体内容主要包括对于给定的生产任务( Y1 、 2
V 、 X 2 已知),计算吸收剂用量 L 、塔底完成 液浓度 X 1 、塔高、塔径。
5.1 吸收塔的物料衡算
在进行物料衡算时,以不变的惰性组分 流量和吸收剂流量作为计算基准,并用摩尔 比表示气相和液相的组成将很方便。
L 1.2 LM 1.2 0.74625 50 44. (Y1 Y2 ) 50 (0.0134 6.7 10 ) X1 0.0149 L 44.775
Y mX 1 0.75 0.0149 0.0112
N OG 只与体系的相平衡及气体进出口的浓度有关,它反
映了吸收过程的难易程度。分离要求高或吸收剂性 能差,过程的平均推动力小,则表明吸收过程难度 大,相应传质单元数就多。
H OG 与设备的型式及操作条件有关,是吸收设备效能 高低的反映。吸收过程的传质阻力大,填料层的 有效比表面积小,则一个传质单元所相当的填料 层高度就大。
填料塔的计算
一、填料塔的计算(一) 操作条件的确定1.1吸取剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃常压(二)填料吸取塔的工艺尺寸的运算2.1基础物性数据①液相物性数据关于低浓度吸取过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔依照上式运算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h 3②气相物性数据混合气体的平均摩尔质量为 M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347混合气体的平均密度ρvm = =⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m3混合气体粘度近似取空气粘度,手册28℃空气粘度为μV =1.78×10-5Pa ·s=0.064kg/(m •h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2/h 由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa相平稳常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s•⨯=⨯⨯=-ρ2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h该吸取过程为低浓度吸取,平稳关系为直线,最小液气比按下式运算,即2121min /X m Y Y Y )V L(--=关于纯溶剂吸取过程,进塔液组成为X2=02121min /X m Y Y Y )V L(--==(0.153403-0.00767)/(0.1534/1.78)=1.78取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581①塔径运算采纳Eckert 通用关联图运算泛点气速 气相质量流量为 W V =13.74kg/s=49464kg/h 液相质量流量运算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/h Eckert 通用关联图横坐标为0.011799查埃克特通用关联图得226.02.0=••L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φ s m g u LV F LF /552.21338.112602.99881.9226.0226.02.02.0=⨯⨯⨯⨯⨯==μϕρφρUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s 由=1.839191m圆整塔径,取D=1.9m 泛点率校核 u=s m /12.26.0785.03600/15002=⨯ = 4.724397m/s100522.212.2⨯=F u u ﹪=84.18%(在承诺范畴内) =3.352964272/ 4.724397=70.9% 填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h 查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3 U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。
填料塔的计算.doc
一、设计方案的确定(一) 操作条件的确定1.1吸收剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃常压(二)填料吸收塔的工艺尺寸的计算2.1基础物性数据①液相物性数据对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔根据上式计算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h 3②气相物性数据混合气体的平均摩尔质量为 M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347混合气体的平均密度ρvm ==⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m3混合气体粘度近似取空气粘度,手册28℃空气粘度为μV =1.78×10-5Pa ·s=0.064kg/(m •h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2/h 由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa相平衡常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s•⨯=⨯⨯=-ρ2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即2121min /X m Y Y Y )V L(--=对于纯溶剂吸收过程,进塔液组成为X2=02121min /X m Y Y Y )V L(--==(0.153403-0.00767)/(0.1534/1.78)=1.78取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581①塔径计算采用Eckert 通用关联图计算泛点气速 气相质量流量为 W V =13.74kg/s=49464kg/h 液相质量流量计算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/h Eckert 通用关联图横坐标为0.011799查埃克特通用关联图得226.02.0=••L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φ s m g u LV F LF /552.21338.112602.99881.9226.0226.02.02.0=⨯⨯⨯⨯⨯==μϕρφρUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s 由=1.839191m圆整塔径,取D=1.9m 泛点率校核 u=s m /12.26.0785.03600/15002=⨯ = 4.724397m/s100522.212.2⨯=F u u ﹪=84.18%(在允许范围内) =3.352964272/ 4.724397=70.9% 填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h 查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3 U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。
填料塔的计算
一、 设计方案的确定 (一) 操作条件的确定1.1吸收剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃ 常压(二)填料吸收塔的工艺尺寸的计算2.1基础物性数据①液相物性数据对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔 根据上式计算如下:混合密度是:1013.865KG/M3混合粘度0.001288 Pa ·s暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h 3②气相物性数据混合气体的平均摩尔质量为M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347混合气体的平均密度ρvm = =⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3混合气体粘度近似取空气粘度,手册28℃空气粘度为μV =1.78×10-5Pa ·s=0.064kg/(m?h)查手册得CO2在空气中的扩散系数为D V =1.8×10-5m 2/s=0.065m 2/h由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa 相平衡常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s ∙⨯=⨯⨯=-ρ 2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403出塔气相摩尔比为Y2= 0.153403×0.05=0.00767进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即 2121min /X m Y Y Y )V L (--=对于纯溶剂吸收过程,进塔液组成为X2=0 2121min /X m Y Y Y )V L (--==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67L=2.67×275.58=735.7986kmol/h∵V(Y1-Y2)=L(X1-X2)∴X1=0.054581①塔径计算采用Eckert 通用关联图计算泛点气速气相质量流量为 W V =13.74kg/s=49464kg/h液相质量流量计算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/hEckert 通用关联图横坐标为0.011799 查埃克特通用关联图得226.02.0=∙∙L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s由=1.839191m圆整塔径,取D=1.9m泛点率校核 u=s m /12.26.0785.03600/15002=⨯ = 4.724397m/s 100522.212.2⨯=F u u ﹪=84.18%(在允许范围内) = 4.724397=70.9%填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。
填料塔的计算范文
填料塔的计算范文料塔是一种常见的工程结构,用于储存和输送颗粒状物料。
其设计过程中需要进行一系列计算,以确保料塔具有足够的强度和稳定性,能够安全承载预计的荷载。
本文将介绍料塔的计算方法和步骤,并给出一个具体的例子,展示如何进行料塔的计算。
一、料塔的计算方法和步骤1.确定设计参数:包括预计储存物料的密度、颗粒大小和湿度;预计料塔高度和直径;料塔所处环境的温度、湿度和风速等。
2.计算所需容量:根据预计储存物料的总重量和密度,计算料塔的总容量。
3.确定料塔的结构形式:包括筒形、锥形、碗形等,根据具体情况选择合适的结构形式。
4.计算料塔的自重和荷载:根据料塔的几何形状和预计物料的重量,计算料塔的自重;同时考虑其他荷载,如风荷载、地震荷载等。
5.计算料塔的强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;同时根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。
6.进行结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求;同时尽可能减小材料的使用量和成本。
二、料塔计算范例假设我们需要设计一个筒形料塔,用于储存密度为1.2t/m³的玉米,预计储存量为2000t,料塔的高度为20m,直径为8m。
现在我们按照上述步骤进行料塔的计算。
1.设计参数:玉米的密度为1.2t/m³,预计料塔高度为20m,直径为8m,环境温度为25℃,相对湿度为60%,风速为15m/s。
2.计算所需容量:预计储存量为2000t,根据玉米的密度计算料塔的总容量为2000t/1.2t/m³=1666.7m³。
3.结构形式:选择筒形料塔。
5.强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。
6.结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求,同时尽可能减小材料的使用量和成本。
三、结论料塔的计算是一个复杂而重要的工程问题,涉及材料力学、结构力学、流体力学等多个学科。
填料塔工艺尺寸的计算
填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段塔径的计算1. 空塔气速的确定——泛点气速法 对于散装填料,其泛点率的经验值u/u f =~贝恩(Bain )—霍根(Hougen )关联式 ,即:2213lg V F L L u a gρμερ⎡⎤⎛⎫⎛⎫⎢⎥⎪ ⎪⎝⎭⎝⎭⎣⎦=A-K 1418V L V L w w ρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ (3-1) 即:112480.23100 1.18363202.59 1.1836lg[()1]0.0942 1.759.810.917998.24734.4998.2Fu ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以:2F u /(100/3)()=UF=3.974574742m/s其中:f u ——泛点气速,m/s;g ——重力加速度,9.81m/s 2 23t m /m α--填料总比表面积,33m /m ε--填料层空隙率33V 998.2/1.1836kg /m l kg m ρρ==液相密度。
气相密度W L =㎏/h W V =7056.6kg/h A=; K=;取u= F u =2.78220m/s0.7631D === (3-2)圆整塔径后 D=0.8m 1. 泛点速率校核:260003.31740.7850.83600u ==⨯⨯ m/s3.31740.83463.9746F u u ==则Fuu 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核:(1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。
(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。
对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ⋅为。
()32min min 0.081008/w t U L m m h α==⨯=⋅ (3-3)225358.895710.6858min 0.75998.20.7850.8L L w U D ρ===>=⨯⨯⨯⨯ (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理。
填料塔设计详细计算过程
第一章设计任务依据和要求一、设计任务及操作条件:1、混合气体(空气中含SO2气体的混合气)处理量为:106Kmol/h2、混合气组成:SO2含量为6.7% (mol% ),空气为:93.3 %(mol%)3、要求出塔净化气含SO2为:0.148 %(mol%),H2O为:1.172 kmol/h4、吸收剂为水,不含SO25、常压,气体入塔温度为25℃,水入塔温度为20℃。
二、设计内容:1、设计方案的确定。
2、填料吸收塔的塔径、填料层高度及填料层压降的计算。
3、填料塔附属结构的选型与设计。
4、填料塔工艺条件图。
三、H2O-SO2在常压20℃下的平衡数据X Y X Y0.00281 0.0776 0.000423 0.007630.001965 0.00513 0.000281 0.00420.001405 0.0342 0.0001405 0.001580.000845 0.0185 0.0000564 0.000660.000564 0.0112四、气体及液体的物性数据1、气体的物性:气体粘度()0.0652/G u kg m h =⋅气体扩散系数20.0393/G D m s = 气体密度31.383/G kg m ρ=2、液体的物性:液体粘度µL =3.6 kg /(m ·h); 液体扩散系数D L =5.3×10-6m 2/s; 密度ρL =998.2 kg /m 3;液体表面张力 4273/92.7110/L dyn cm kg h σ==× 五、 设计要求1、设计计算说明书一份2、填料塔图(2号图)一张第二章 SO 2净化技术和设备 一、SO 2的来源、性质及其危害二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。
主要有自然来源和人为来源两大类:自然来源主要是火山活动,喷出的火山气体中含有大量的二氧化硫气体,地质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫,随火山灰一起喷射到大气中。
填料塔计算和设计
填料塔计算和设计填料塔计算和设计Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】填料塔设计2012-11-20一、填料塔结构填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。
填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。
在填料的上方安装填料压板,以限制填料随上升气流的运动。
液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。
填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。
二、填料的类型及性能评价填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。
填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。
散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料;填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。
1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优;2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。
三、填料塔设计基本步骤1.根据给定的设计条件,合理地选择填料;2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸;3.计算填料层的压降;4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。
四、填料塔设计1.填料的选择填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。
填料塔计算公式
填料塔计算公式填料塔是化工、环保等领域中常用的气液传质设备,要想设计和操作好填料塔,掌握相关的计算公式那可是相当重要!先来说说填料塔的塔径计算公式。
这就好比给塔选一件合适的“衣服”,太大了浪费材料,太小了又影响工作效率。
塔径的计算主要考虑气体的体积流量、空塔气速等因素。
计算公式大致是:D = √(4Vs / πu),这里的 D 表示塔径,Vs 是气体体积流量,u 是空塔气速。
咱就拿一个实际例子来说吧,之前我在一个化工厂实习的时候,就碰到了填料塔塔径计算的问题。
当时厂里要对一个旧的填料塔进行改造,以提高生产效率。
我们首先得确定气体的流量,这可不是个简单的事儿,得通过各种测量仪表,像流量计啥的,获取准确的数据。
然后再根据工艺要求和经验,确定合适的空塔气速。
这个空塔气速的选择可不能马虎,选高了,气体阻力增大,能耗增加;选低了,塔的处理能力又不够。
我们那时候是反复讨论、计算,才最终确定了一个比较理想的塔径。
再来说说填料层高度的计算公式。
这就像是给塔盖房子,得盖多高才能让气液充分接触,完成传质任务呢?常用的计算公式有传质单元数法和等板高度法。
传质单元数法呢,需要先计算出传质单元数,然后乘以传质单元高度,就得到了填料层高度。
等板高度法呢,是先确定理论板数,再乘以等板高度。
我记得有一次,在设计一个新的填料塔时,为了确定填料层高度,我们可是费了好大的劲儿。
先是在实验室里做小试,模拟实际的操作条件,测量各种数据。
然后根据实验结果进行计算和分析,不断调整参数,优化设计方案。
那几天,我们办公室的灯常常亮到很晚,大家都在为了这个项目努力。
还有填料的压降计算也不能忽视。
压降大了,会增加能耗;压降小了,又可能影响传质效果。
总之,填料塔的计算公式虽然看起来有点复杂,但只要我们认真研究,结合实际情况,多做实验和计算,就一定能设计出性能优良的填料塔,为生产和环保事业做出贡献。
希望我讲的这些能让您对填料塔的计算公式有更清楚的了解,在实际应用中少走弯路,提高工作效率和质量!。
关于填料吸收塔的计算
X2 0
(L V
)m
in
0.0526 0.00263 0.00526/ 35.04 0
33.29
⑹ 取操作液气比为:
L V
1.4( L V
)
m
in
L 1.4 33.29 46.61 V
L 46.6193.25 4346.38kmol/ h
V (Y1 Y2 ) L( X1 X 2 )
⑴ 密度: L 998 .2kg / m3
⑵ 粘度: L 0.01Pa s 3.6kg /(m h) ⑶ 表面张力: L 72.6dyn / cm 940896 kg / h2
⑷ SO2在水中的扩散系数:
DL 1.47 105cm2 / s 5.29 106 m2 / h
(3)图解法 此方法适用于平衡线为曲线时的情况。
此例采用“脱吸因素法”求解
Y1* mX 1 35.04 0.0011 0.0385
YY22**mmXX2 20 0
脱吸因素为:
S mV 35.04 93.25 0.752
L
4346.38
气相总传质单元数为:
D/d的推荐值 ≥20~30 ≥15 ≥10~15 >8 >8
(3)液体喷淋密度校核
填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的 喷淋量,其计算式为:
U
Lh 0.785D2
式中:U——液体喷淋密度,m3/(m2·h); Lh——液体喷淋量,m3/h; D——填料塔直径,m
为使填料能获得良好的润湿,塔内液体喷淋量应不低于 某一极限值,此极限值称为最小喷淋密度,以Umin表示
填料塔计算和设计
填料塔设计2012-11-20一、填料塔结构填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。
填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。
在填料的上方安装填料压板,以限制填料随上升气流的运动。
液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。
填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。
二、填料的类型及性能评价填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。
填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。
散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料;填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。
1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优;2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。
三、填料塔设计基本步骤1.根据给定的设计条件,合理地选择填料;2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸;3.计算填料层的压降;4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。
四、填料塔设计1.填料的选择填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。
应尽量选用技术资料齐备,适用性能成熟的新型填料。
对性能相近的填料,应根据它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。
填料塔塔径和阻力的计算
对数坐标:该图中的横坐标轴(x轴)是对数坐标。在此
轴上,某点与原点的实际距离为该点对应数的对数值, 但是在该点标出的值是真数。为了说明作图的原理,作 一条平行于横坐标轴的对数数值线.
填料塔内的流体力学特性
如图,曲线1、2、3表示不同液体喷淋量下,
填料层的ΔP~u关系,称为填料操作压降线。
在一定的喷淋量下,压降随空塔气速的变化曲线分为三段: 1.当气速低于A点时,气体流动对液膜的曳力很小,液体流 动不受气流的影响,填料表面上覆盖的液膜厚度基本不变, 因而填料层的持液量不变,该区域称为恒持液量区。此时
填料塔塔径和阻力的计算填料塔塔径的计算压强降的计算填料塔塔径和阻力的计算由于所以其中r831焦耳摩尔为普适气体常数或者摩尔气体常数典型的吸收净化流程吸收剂的冷却新吸收剂的加入吸收液取出去再生加工或经处理后排放吸收净化法工艺配置
填料塔塔径和阻力的计算
填料塔内的流体力学特性
填料层的压降
•在逆流操作的填料塔中,从塔顶喷淋下来的液体,依靠重力 在填料表面成膜状向下流动,上升气体与下降液膜的摩擦阻力 形成了填料层的压降。 •填料层压降与液体喷淋量L及气速u有关,在一定的气速下, 液体喷淋量越大,压降越大;在一定的液体喷淋量下,气速越 大,压降也越大。
由于 所以
压强降的计算
(1) (2)
理想气体状态方程是 PV=nRT 。 其中 R=8.31 焦耳 / (摩尔 ·开) 为普适气体常数或者摩尔气体常数
吸收净化法工艺配置
典型的吸收净化流程
¾吸收剂的冷却 ¾新吸收剂的加入 ¾吸收液取出去再生加工或经处理后排放
ΔP~u为一直线,位于干填料压降线的左侧,且基本上与干
填料压降线平行。 2.当气速超过A点时,气体对液膜的曳力较大,对液膜流动 产生阻滞作用,使液膜增厚,填料层的持液量随气速的增加 而增大,此现象称为拦液。开始发生拦液现象时的空塔气速 称为载点气速,曲线上的折点A,称为载点。
填料塔塔径计算
对于易气泡 的物系,空 塔气速取泛 点气速的 45%
D 4Vs u
初估塔径后 需要根据国 内压力容器 公称直径标 准 (JB115373)进行圆 整
直径1m一 下,间隔为 100mm;直径 1m以上,间 隔为200mm, 实际空塔气 速可 按圆整后的 塔径进行计 算
对于直径不 超过75mm的 拉西环及其 它填料,可 取最小润湿 率(Lw)min 为0.08m³ /(m.h) 对于直径大 于75mm的环 形填料,应 取最小润湿 率(Lw)min 为0.12m³ /(m.h)
输入: φ: μ L: ψ:
72 m-1 0.8 mpa.s 1.05
填料因子
液体粘度 液体校正密 度
ψ=ρ 水/ ρL
输入: u max:
1.770938393 m/s
取空塔气速 为为泛点气 速的40%, 即
泛点率:
0.4
u:
0.708375357 m/s
0 对于一般不 易发泡物 系,空塔气 速取泛点气 速的60%~ 80%
操作条件下
的喷淋密度
U:
56.7575637 m³/(㎡.h)
kg/m³ kg/m³ kg/h kg/h
a 3
g L
L0.2)
A
1.75(L)1/4 G
(g )1/8 L
m/s2 干填料因子 气相密度 kg/m³ 液相密度 kg/m³ 液相粘度CP 液相流量 kg/h 气相流量 kg/h
常数,见附 表
气相密度 液相质量流 量
取空塔气速 为为泛点气 速的75%, 即
BainHougen关联 式
输入: ρ L:
ρ v: w L: w v:
720 32
3500 8060
填料塔计算部分
填料吸收塔设计任务书一、设计题目填料吸收塔设计二、设计任务及操作条件1、原料气处理量:5000m3/h。
2、原料气组成:98%空气+2.5%的氨气。
3、操作温度:20℃。
4、氢氟酸回收率:98%。
5、操作压强:常压。
6、吸收剂:清水。
7、填料选择:拉西环。
三、设计内容1.设计方案的确定及流程说明。
2.填料吸收塔的塔径,填料层的高度,填料层的压降的计算。
3.填料吸收塔的附属机构及辅助设备的选型与设计计算。
4.吸收塔的工艺流程图。
5.填料吸收塔的工艺条件图。
目录第一章设计方案的简介 (4)第一节塔设备的选型 (4)第二节填料吸收塔方案的确定 (6)第三节吸收剂的选择 (6)第四节操作温度与压力的确定 (7)第二章填料的类型与选择 (7)第一节填料的类型 (7)第二节填料的选择 (9)第三章填料塔工艺尺寸 (10)第一节基础物性数据 (10)第二节物料衡算 (11)第三节填料塔的工艺尺寸的计算 (12)第四节填料层压降的计算 (16)第四章辅助设备的设计与计算 (16)第一节液体分布器的简要设计 (16)第二节支承板的选用 (17)第三节管子、泵及风机的选用 (18)第五章塔体附件设计 (20)第一节塔的支座 (20)第二节其他附件 (20)第一章设计方案的简介第一节塔设备的选型塔设备是化工、石油化工、生物化工制药等生产过程中广泛采用的气液传质设备。
根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。
1、板式塔板式塔为逐级接触式气液传质设备,是最常用的气液传质设备之一。
传质机理如下所述:塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。
溢流堰的作用是使塔板上保持一定厚度的液层。
气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩、筛孔或浮阀等),分散成小股气流,鼓泡通过各层塔板的液层。
在塔板上,气液两相密切接触,进行热量和质量的交换。
填料塔持液量计算
填料塔持液量计算填料塔持液量计算是在化工工艺中常见的一种计算方法,它用于确定填料塔内液体的持液量,从而帮助工程师设计和优化工艺。
本文将从基本原理、计算方法和应用案例等方面进行介绍。
一、基本原理填料塔是一种常见的化工设备,广泛应用于各种物质的分离、萃取和反应过程中。
其基本构造是将填料装置在塔内,使流体与填料进行充分的接触和混合,从而实现传质、传热和反应等目的。
而填料塔持液量计算就是为了确定填料塔内液体的持液量,以保证塔内流体的稳定性和工艺效果的达到。
填料塔内的液体持液量是指填料塔内液体的体积或质量,通常用液体高度或液体重量来表示。
持液量的大小直接影响到填料塔的工作效果和设备的运行稳定性。
因此,准确计算填料塔持液量是设计和操作填料塔的重要前提之一。
二、计算方法填料塔持液量的计算方法有多种,常见的有重力平衡法和压力平衡法两种。
下面将分别介绍这两种方法。
1. 重力平衡法重力平衡法是通过平衡填料塔内液体的重力和塔内气体的向上流动所需的力来计算持液量。
根据阿基米德原理,塔内液体的重力可以用液体的体积和密度来表示。
而塔内气体的流动所需的力可以通过流体力学的基本原理来计算。
通过平衡这两个力,可以得到填料塔的持液量。
2. 压力平衡法压力平衡法是通过平衡填料塔内液体的静压力和塔内气体的动压力来计算持液量。
根据流体静力学的基本原理,液体静压力可以通过液体的密度、液体高度和重力加速度来计算。
而塔内气体的动压力可以通过气体的密度、气体流速和气体速度来计算。
通过平衡这两个压力,可以得到填料塔的持液量。
三、应用案例填料塔持液量计算在化工工艺中有着广泛的应用。
下面以一个分离过程为例,介绍填料塔持液量计算的应用过程。
假设有一个二元混合物,需要通过填料塔进行分离。
根据物质的性质和分离要求,确定了填料塔的高度、填料种类和操作条件等参数。
首先,根据工艺要求和设备的尺寸,确定了填料塔的直径和高度。
然后,根据填料种类和操作条件,选择了合适的填料,并计算了填料的体积和密度。
不等直径填料塔高度计算
不等直径填料塔高度计算(实用版)目录1.填料塔的基本概念2.不等直径填料塔的特点3.填料塔高度计算的方法4.不等直径填料塔高度计算的注意事项5.实际应用案例正文一、填料塔的基本概念填料塔是一种常用的气液接触设备,主要用于进行物质的吸收、解吸、吸附、分离等过程。
它主要由塔体、填料和支持结构组成,其中塔体内充满了填料,而气体和液体分别从塔顶和塔底进入,通过填料层进行接触和反应。
二、不等直径填料塔的特点不等直径填料塔是指塔内填料的直径大小不一,这样的设计可以使得气体和液体在填料层中的流动状态更为复杂,从而提高物质传递的效果。
与等直径填料塔相比,不等直径填料塔具有更高的效率和更好的操作性能。
三、填料塔高度计算的方法填料塔的高度计算主要依据的是塔内物质的平衡关系,即塔内气体的压力、液体的流量和填料的物理性质等因素。
计算方法主要有两种,一种是理论计算法,另一种是实验测定法。
理论计算法主要依据的是填料塔的物理模型和数学模拟,而实验测定法则是通过实际操作和测量来确定填料塔的高度。
四、不等直径填料塔高度计算的注意事项在进行不等直径填料塔高度计算时,需要注意以下几点:首先,填料的选择应根据具体的工艺要求和操作条件进行;其次,计算时需要考虑到填料的密度和流动性;最后,需要考虑到塔内气体和液体的分布情况,以及填料层的压降等因素。
五、实际应用案例在某化工厂的吸收塔设计中,采用了不等直径填料塔。
通过理论计算和实验测定,确定了填料塔的高度,并在实际操作中取得了良好的效果。
不仅提高了吸收效率,降低了能耗,而且减少了操作复杂度,提高了生产效率。
总的来说,不等直径填料塔在理论和实践中都表现出了优越的性能,值得在相关领域进行推广和应用。
丙酮与水填料塔塔径的计算
丙酮与水填料塔塔径的计算摘要:一、填料塔概述二、丙酮与水填料塔塔径的计算方法1.设计基本参数2.计算公式及步骤3.影响塔径的因素三、填料塔塔高的计算1.塔高与塔径的关系2.计算公式及步骤3.影响塔高的因素四、填料塔标准塔径系列五、总结与展望正文:一、填料塔概述填料塔是一种常见的化工设备,广泛应用于化工、石油、环保等行业。
它主要用于气液相的传质和传热过程,如丙酮与水的分离。
填料塔的设计涉及多个参数,其中塔径和塔高是关键的尺寸参数。
二、丙酮与水填料塔塔径的计算方法1.设计基本参数在计算填料塔塔径之前,需要先确定一些基本参数,如操作压力、操作温度、液相流量、气相流量等。
这些参数可以根据工艺要求和使用条件进行选择。
2.计算公式及步骤填料塔塔径的计算公式为:D = (Ql / (π * ρl * g * N))^(1/3)其中,D为塔径,Ql为液相流量,ρl为液相密度,g为重力加速度,N为填料层数。
3.影响塔径的因素填料塔的塔径受多种因素影响,如操作条件、工艺要求、设备材料等。
在实际设计中,需要根据具体情况进行调整。
三、填料塔塔高的计算1.塔高与塔径的关系填料塔的塔高与塔径之间存在一定的关系。
在设计时,可以根据塔径和填料层数来确定塔高。
2.计算公式及步骤填料塔塔高的计算公式为:H = (N * L) + H0其中,H为塔高,N为填料层数,L为每层填料的高度,H0为塔底高度。
3.影响塔高的因素填料塔的塔高受多种因素影响,如填料层数、填料高度、操作压力等。
在实际设计中,需要根据具体情况进行调整。
四、填料塔标准塔径系列根据我国相关标准和规范,填料塔的标准塔径系列分为若干个档次。
设计时,可以根据工艺要求和使用条件选择合适的塔径。
五、总结与展望本文详细介绍了丙酮与水填料塔塔径和塔高的计算方法,以及影响塔径和塔高的因素。
在实际设计中,可以根据这些方法和因素进行填料塔的尺寸计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 设计方案的确定(一) 操作条件的确定1.1吸收剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃ 常压(二)填料吸收塔的工艺尺寸的计算2.1基础物性数据①液相物性数据对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔根据上式计算如下:混合密度是:1013.865KG/M3混合粘度0.001288 Pa ·s暂取CO2在水中的扩散系数 表面张力б=72.6dyn/cm=940896kg/h3 ②气相物性数据混合气体的平均摩尔质量为M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347混合气体的平均密度ρvm = =⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3混合气体粘度近似取空气粘度,手册28℃空气粘度为μV =1.78×10-5Pa ·s=0.064kg/(m?h)查手册得CO2在空气中的扩散系数为D V =1.8×10-5m 2/s=0.065m 2/h由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa 相平衡常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s ∙⨯=⨯⨯=-ρ 2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403出塔气相摩尔比为Y2= 0.153403×0.05=0.00767进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即 2121min /X m Y Y Y )V L (--=对于纯溶剂吸收过程,进塔液组成为X2=0 2121min /X m Y Y Y )V L (--==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67L=2.67×275.58=735.7986kmol/h∵V(Y1-Y2)=L(X1-X2)∴X1=0.054581①塔径计算采用Eckert 通用关联图计算泛点气速气相质量流量为 W V =13.74kg/s=49464kg/h液相质量流量计算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/hEckert 通用关联图横坐标为0.011799 查埃克特通用关联图得226.02.0=∙∙L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s由=1.839191m圆整塔径,取D=1.9m泛点率校核 u=s m /12.26.0785.03600/15002=⨯ = 4.724397m/s 100522.212.2⨯=F u u ﹪=84.18%(在允许范围内) = 4.724397=70.9%填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。
<=⨯ 7.375 经校核可知,塔径D=600mm 不合理经反复校核仍得不出合理的D 值经综合考虑,取操作液气比为 55.2677.115)(15min =⨯==VL V L 15*1.78=26.7 L=26.5×117.22=3112.2kmol/h=26.7*735.7986=19645.82262X 1=0004.02.3112)10662.10277.0(32444=⨯-⨯-。
X1=0.00204此时气相质量流量为W V =1500×1.338=2007kg/hW V =13.74kg/s=49464kg/h此时液相质量流量为W L =3112.2×18.02=56081.8kg/h即W L =19645.82262×(0.7*18+0.3*54)=565799.6915kg/hEckert 通用关联图横坐标为0.3150查埃克特通用关联图得035.02.0=∙∙L LV F F g u μρρϕφ 0.04 改选型号为D38的阶梯环查表(散装填料泛点填料因子平均值)得1170-=m F φs m g u L V F LF /228.11338.111702.99881.9035.0035.02.02.0=⨯⨯⨯⨯⨯==μϕρφρ 1.7435m/s 取u=0.8u F =0.8×1.228=0.982m/s 1.3948m/s由=⨯⨯==982.014.33600/150044u V D S π0.74m 2.55m 圆整塔径,取D=0.8m 2.6m泛点率校核 u=s m /83.08.0785.03600/15002=⨯ 1.34 100982.083.0⨯=F u u ﹪=84.52%(在允许范围内)96.07% 填料规格校核:82125800>==d D 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h查塑料阶梯环特性数据表得:型号为DN38的阶梯环的比表面积a t =132.5m 2/m 3U min =(L W )min a t =0.08×132.5=10.6m 3/m 2·h U=min 28.1118.0785.02.998/8.56081U >=⨯ U=105.16经以上校核可知,填料塔直径先用D=800mm 合理若选择丙烯鲍尔环50*50*1.5其比表面积为93 m2/m3U min =(L W )min a t =0.08×93=7.44填料因子为127m-1 Uf= 4.794993m/s取u=0.8u F =0.8×4.794993=3.835=2.436取2.5mU= 113.74>Umin②填料层高度计算Y *1=mX 1=1.78×0.0004=0.000712Y *2=mX 2=0脱因系数为 S=0254.02.311234.4478.1=⨯=L mV气相总传质单元数N OG =()S Y Y Y Y S S +⎥⎦⎤⎢⎣⎡----***22211ln 11 =0254.00106662.100277.0)0254.01(ln 0254.0114+⎥⎦⎤⎢⎣⎡-⨯-⨯--- =5.223气相总传质单元高度采用修正的恩田关联式计算查常见材质的临界表面张力值表得σc =33dyn/cm=427680kg/h 2液体质量通量为)/(79.1116278.0785.08.5608122h m kg U L ∙=⨯=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛⨯⨯⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛--=-2.0205.08221.075.05.1329408962.99879.1116271072.12.9985.13279.1116270.35.13279.11162794089642768045.1exp 1t w a a =0.502吸收系数由下式计算质量通量为()h m kg U V ∙=⨯⨯=22/82.39948.0785.0338.11500 = 0.237×73.53×0.894×0.004= 0.0623kmol/(m 3·h ·kPa)吸收系数由下式计算 3/182/163/22.9981027.10.310372.62.9980.30.35.132564.079.1116270095.0⎪⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛⨯⨯=--L K =1.189m/h1.1ϕW G G a K a K = 查常见填料的形状系数表得u/u F =66.17%>50﹪ 得()[]()kPa h m kmol a K G ∙∙=⨯-⨯+='34.1/141.12973.65.06617.05.91 得()[]h a K L/96.107092.1035.06617.06.212.2=⨯-⨯+=' H OG =m aP K V a K V G Y 083.08.0785.03.10153.1034.442=⨯⨯⨯=Ω=Ω Z=H OG N OG =0.083×5.223=0.434m得Z ′=1.5×0.434=0.6503m取填料层高度为Z ′=2m查散装填料分段高度推荐值表 对于阶梯环填料15~8=Dh h max ≤6m取h/D=8 则h=8×800=6400mm计算得填料层高度为2000mm,故不需分段。