PV操作的例题
有关pv操作类的题目
有关pv操作类的题目1、假定系统有三个并发进程read, move和print共享缓冲器B1和B2。
进程read负责从输入设备上读信息,每读出一个记录后把它存放到缓冲器B1中。
进程move从缓冲器B1中取出一记录,加工后存入缓冲器B2。
进程print将B2中的记录取出打印输出。
缓冲器B1和B2每次只能存放一个记录。
要求三个进程协调完成任务,使打印出来的与读入的记录的个数,次序完全一样。
请用PV操作,写出它们的并发程序。
解:beginemptyB1 , fullB1, emptyB2, fullB2 : semaphoreB1,B2 : recordemptyB1 := 1,fullB1:=0,emptyB2:=1,fullB2:=0cobegin process readX : record;begin R: 接收来自输入设备上一个记录X:=接收的一个记录;P(emptyB1);B1:=X;V(fullB1);goto R;end;Process moveY:record;beginM:P(fullB1);Y:=B1;V(emptyB1)加工YP(emptyB2);B2:=Y;V(fullB2);goto M;end;Process printZ:record;beginP:P(fullB2);Z:=B2;V(emptyB2)打印Zgoto P;end;coend;end;2、用PV操作解决读者写者问题的正确程序如下:begin S, Sr: Semaphore; rc: integer;S:=1; Sr:=1; rc:=0;cobegin PROCESS Reader i ( i=1,2…)begin ( P(S5))P(Sr)rc:=rc+1;if rc=1 then P(S);V(Sr);read file;P(Sr);rc:=rc-1if rc=0 thenV(S);V(Sr);( V(S5) )end ;PROCESS Writer j (j=1,2…)begin P(S);Write file;V(S)end;coend ;end;请回答:(1)信号量Sr的作用;(2)程序中什么语句用于读写互斥,写写互斥;(3)若规定仅允许5个进程同时读怎样修改程序?解:(1)Sr用于读者计数变量rc的互斥信号量;(2)if rc=1 then P(S)中的P(S)用于读写互斥;写者进程中的P(S)用于写写互斥,读写互斥。
PV操作的例题
PV操作的例题PV操作的例题一、线程是进程的一个组成部分,一个进程可以有多个线程,而且至少有一个可执行线程。
进程的多个线程都在进程的地址空间内活动。
资源是分给进程的,而不是分给线程的,线程需要资源时,系统从进程的资源配额中扣除并分配给它。
处理机调度的基本单位是线程,线程之间竞争处理机,真正在处理机上运行的是线程。
线程在执行过程中,需要同步。
二、在计算机操作系统中,PV操作是进程管理中的难点。
首先应弄清PV操作的含义:PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下:P(S):①将信号量S的值减1,即S=S-1;②如果S>=0,则该进程继续执行;否则该进程置为等待状态,排入等待队列。
V(S):①将信号量S的值加1,即S=S+1;②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。
PV操作的意义:我们用信号量及PV操作来实现进程的同步和互斥。
PV操作属于进程的低级通信。
什么是信号量?信号量(semaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。
信号量的值与相应资源的使用情况有关。
当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。
注意,信号量的值仅能由PV操作来改变。
一般来说,信号量S>=0时,S表示可用资源的数量。
执行一次P 操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。
而执行一个V操作意味着释放一个单位资源,因此S 的值加1;若S?0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。
利用信号量和PV操作实现进程互斥的一般模型是:进程P1 进程P2 ……进程Pn………………P(S);P(S);P(S);临界区;临界区;临界区;V(S);V(S);V(S);……………………其中信号量S用于互斥,初值为1。
计算机操作系统PV操作例题
问题1 一个司机与售票员的例子在公共汽车上,为保证乘客的安全,司机和售票员应协调工作:停车后才能开门,关车门后才能行车。
用PV操作来实现他们之间的协调。
S1:是否允许司机启动汽车的变量S2:是否允许售票员开门的变量driver()//司机进程{while (1)//不停地循环{P(S1);//请求启动汽车启动汽车;正常行车;到站停车;V(S2); //释放开门变量,相当于通知售票员可以开门}}busman()//售票员进程{while(1){关车门;V(S1);//释放开车变量,相当于通知司机可以开车售票P(S2);//请求开门开车门;上下乘客;}}注意:busman() driver() 两个不停循环的函数问题2 图书馆有100个座位,每位进入图书馆的读者要在登记表上登记,退出时要在登记表上注销。
要几个程序?有多少个进程?(答:一个程序;为每个读者设一个进程)(1)当图书馆中没有座位时,后到的读者在图书馆为等待(阻塞)(2)当图书馆中没有座位时,后到的读者不等待,立即回家。
解(1 )设信号量:S=100; MUTEX=1P(S)P(MUTEX)登记V(MUTEX)阅读P(MUTEX)注销V(MUTEX)V(S)解(2)设整型变量COUNT=100;信号量:MUTEX=1;P(MUTEX);IF (COUNT==0){ V(MUTEX);RETURN;}COUNT=COUNT-1;登记V(MUTEX);阅读P(MUTEX);COUNT=COUNT+1;V(MUTEX);RETURN;问题3 有一座东西方向的独木桥;用P,V操作实现:(1)每次只允许一个人过桥;(2)当独木桥上有行人时,同方向的行人可以同时过桥,相反方向的人必须等待。
(3)当独木桥上有自东向西的行人时,同方向的行人可以同时过桥,从西向东的方向,只允许一个人单独过桥。
(此问题和读者与写者问题相同,东向西的为读者,西向东的为写者)。
(1)解设信号量MUTEX=1P (MUTEX)过桥V (MUTEX)(2)解设信号量:MUTEX=1 (东西方互斥)MD=1 (东向西使用计数变量互斥)MX=1 (西向东使用计数变量互斥)设整型变量:CD=0 (东向西的已上桥人数)CX=0 (西向东的已上桥人数)从东向西:P (MD)IF (CD=0){P (MUTEX) }CD=CD+1V (MD)过桥P (MD)CD=CD-1IF (CD=0){V (MUTEX) }V (MD)从西向东:P (MX)IF (CX=0){P (MUTEX) }CX=CX+1V (MX)过桥P (MX)CX=CX-1IF (CX=0){V (MUTEX) }V (MX)(3) 解:从东向西的,和(2)相同;从西向东的和(1)相同。
pv操作例题详细解释
pv操作例题详细解释【最新版】目录1.PV 操作简介2.PV 操作例题3.例题详细解释正文一、PV 操作简介PV 操作,全称为过程 - 变量操作,是一种在计算机程序设计中用于处理过程和变量之间关系的操作方法。
PV 操作广泛应用于各种编程语言中,如 C、C++、Java 等。
通过 PV 操作,程序员可以实现对变量的读取、修改、锁定等操作,以确保程序在多线程环境下的正确性和可靠性。
二、PV 操作例题假设有一个简单的程序,需要实现一个功能:当一个整数变量 x 的值在 0 到 100 之间时,输出“x 的值在 0 到 100 之间”。
如果 x 的值小于 0 或大于 100,则输出“x 的值不在 0 到 100 之间”。
请使用 PV 操作实现这个功能。
三、例题详细解释为了实现这个功能,我们可以使用 C 语言中的 PV 操作。
具体实现如下:```c#include <stdio.h>#include <pthread.h>int x = 0;int flag = 0;void thread_function(){pthread_mutex_lock(&mutex); // 加锁if (x < 0 || x > 100) { // 判断 x 的值是否在 0 到 100 之间flag = 1; // 设置标志位}pthread_mutex_unlock(&mutex); // 解锁}int main(){pthread_t thread;pthread_mutex_init(&mutex, NULL); // 初始化互斥锁pthread_create(&thread, NULL, thread_function, NULL); // 创建线程pthread_join(thread, NULL); // 等待线程结束if (flag == 1) {printf("x 的值不在 0 到 100 之间");} else {printf("x 的值在 0 到 100 之间");}pthread_mutex_destroy(&mutex); // 销毁互斥锁return 0;}```在这个例子中,我们使用了一个互斥锁(mutex)来保护对变量 x 的访问。
PV操作例题
S2:表示R2是否已向缓冲器存入从磁盘上读入的一个数,初始值为0.
Begin
S,S1,S2:semaphore;
S:=1;S1:=S2:=0;
Cobegin
process R1
xl:integer
begin
L1:从键盘读一个数;
x1:=读入的数;
儿子
V(SM)
P(SA)
拿苹果
V(SE)
吃苹果
女儿
V(SF)
P(SB)
拿香蕉
V(SE)
吃香蕉
问题6有一个超市,最多可容纳N个人进入购物,当N个顾客满员时,后到的顾客在超市外等待;超市中只有一个收银员。可以把顾客和收银员看作两类进程,两类进程间存在同步关系。写出用P;V操作实现的两类进程的算法(2003年系统设计员考试的题目)
答:这四个进程实际上是两个生产者R1,R2和两个消费者W1,W2.各自生成不同的产品中各自的消费对象去消费,他们共享一个的缓冲器。由于缓冲器只能存放一个数,所以,R1和R2在存放数时必须互斥。而R1和W1、R2和W2之间存在同步。为了协调它们的工作可定义三个信号量:
S:表示能否把数存人缓冲器B,初始值为1.
(3)解:从东向西的,和(2)相同;从西向东的和(1)相同。
问题4有一个俱乐部,有甲乙两个服务员,当顾客有请求时,甲负责送烟,乙负责送火,无顾客请求时,服务员睡眠。顾客自己不能带烟和火,当顾客要抽烟时,可请求服务员送烟和火,烟和火还未送到时,顾客必须等待。
设信号量:SY, SH,CY,CH:初值都为0
(1)解
设信号量MUTEX=1
P (MUTEX)
过桥
V (MUTEX)
pv操作例题
pv操作例题(原创实用版)目录1.PV 操作概述2.PV 操作的实例3.PV 操作的解题技巧4.总结正文一、PV 操作概述PV 操作是计算机编程中的一种操作,主要用于处理并发读写问题。
PV 操作是基于 C 语言的线程操作,通过 PV 操作,可以实现线程之间的同步和互斥。
PV 操作主要包括 P 操作和 V 操作两个方面。
P 操作用于线程申请资源,如果资源已经被其他线程占用,则线程需要等待。
V 操作用于线程释放资源,当有其他线程正在等待该资源时,V 操作会唤醒等待的线程。
二、PV 操作的实例下面通过一个简单的实例来介绍 PV 操作的使用方法。
假设有两个线程,线程 A 负责生产产品,线程 B 负责消费产品。
由于产品库存有限,需要通过 PV 操作来实现线程之间的同步和互斥。
1.定义一个 PV 结构体,包括 P 操作和 V 操作的 sem_t 结构体。
```ctypedef struct {sem_t p;sem_t v;} PV;```2.初始化 PV 结构体。
```cPV pv = {0};```3.线程 A 执行 P 操作申请资源。
```cpv.p = sem_wait(&pv.p);```4.线程 A 执行生产操作。
```c// 生产产品操作```5.线程 A 执行 V 操作释放资源。
```csem_post(&pv.v);```6.线程 B 执行 P 操作申请资源。
```cpv.p = sem_wait(&pv.p);```7.线程 B 执行消费操作。
```c// 消费产品操作```8.线程 B 执行 V 操作释放资源。
```csem_post(&pv.v);```三、PV 操作的解题技巧在实际编程过程中,PV 操作的解题技巧主要包括以下几点:1.根据实际需求,合理地设置 PV 操作的资源。
2.确保 PV 操作的同步和互斥性,避免死锁现象的发生。
3.在编写 PV 操作时,要注意线程之间的切换和调度。
pv操作例题
pv操作例题
以下是一个关于PV(Present Value)操作的例题:
假设你有一个投资机会,可以在今天投资1000美元,并在五年后获得1500美元的回报。
如果使用贴现率为10%,你将如何计算这个投资的PV(现值)?
PV可以用以下公式计算:
PV = CF / (1 + r)^n
其中,CF表示现金流量(回报),r表示折现率(贴现率),n表示时间期限。
根据这个公式,在这个例子中,CF = 1500美元,r = 10%,n = 5年。
将这些值代入公式中,我们可以计算出PV:
PV = 1500 / (1 + 0.10)^5
PV = 1500 / (1.10)^5
PV ≈ 1500 / 1.61
PV ≈ 930.43美元
因此,根据给定的贴现率,该投资的PV约为930.43美元。
这表示,如果你在今天投资1000美元,五年后的回报以目前的贴现率计算的现值为930.43美元。
操作系统PV操作经典例题与答案
操作系统PV操作经典例题与答案1. 推广例子中的消息缓冲问题。
消息缓冲区为k个,有1个发送进程,n个接收进程,每个接收进程对发送来的消息都必须取一次若有m个发送进程呢?Send:SB=k; //信号量,标记当前空余缓冲区资源。
i = 0; //标记存放消息的缓冲区位置while (true) {P(SB);往Buffer [i]放消息;V(SM);i = (i+1) % k;};Receive:j = 0; //标记取产品的缓存区位置SM=0;//信号量,标记初始没有消息ReadCount=0;//读进程计数器Mutex =1;//读进程互斥信号量SW=0; //信号量,读进程在此信号量等待while (true) {P(SM);从Buffer[j]取消息;ReadCount++If(ReadCount<n){< p="">V(SM);P(SW)}else{V(SB);j = (j+1) % k;for(int g=1; g< ReadCount;g++)V(SW);ReadCount=0;}};2.第二类读者写者问题:写者优先条件:1)多个读者可以同时进行读2)写者必须互斥(只允许一个写者写,也不能读者写者同时进行)3)写者优先于读者(一旦有写者,则后续读者必须等待,唤醒时优先考虑写者)rc=0, //正在读者计数器wc, //写计数器rw, //读等计数器R //等待读信号量W //等待写信号量读者:while (true) {P(mutex);if (wc >0){rw++P (R);}rc++;If(rw>0&&wc=0){V(R)rw--}V(mutex);读P(mutex);rc --;if (rc==0){If(wc>0)V(w)}V(mutex);};写者:while (true) {P(mutex);wc ++;if((wc >1)||(rc>0)){P(W)}V(mutex);写P(mutex);Wc --;if(wc>0)V(W);Else if(rw>0)V(R)rw--V(mutex);};3.理发师睡觉问题理发店里有一位理发师,一把理发椅和N把供等候理发的顾客坐的椅子如果没有顾客,则理发师便在理发椅上睡觉。
pv操作例题详细解释
pv操作例题详细解释摘要:1.PV 操作概述2.PV 操作的例子3.PV 操作的详细解释4.总结正文:一、PV 操作概述PV 操作,全称为“过程变量操作”,是一种在计算机程序设计中用于处理过程(函数、方法等)的输入和输出的技巧。
通过PV 操作,程序员可以在不改变过程本身的代码的情况下,灵活地控制过程的输入和输出,从而实现对程序流程的控制。
二、PV 操作的例子假设有一个计算平方的函数`square`,其代码如下:```def square(x):return x * x```我们可以通过PV 操作,对这个函数进行输入和输出的控制。
三、PV 操作的详细解释1.定义PV 操作在Python 中,可以通过`pv`函数来实现PV 操作。
`pv`函数接受两个参数,分别是过程的名称和操作符。
操作符可以是“+”(输入)、“-”(输出)或“*”(执行)。
例如,对`square`函数进行PV 操作,可以定义如下:```pv("square", "+")```这表示对`square`函数进行输入操作,即将输入值传递给`square`函数。
2.执行PV 操作定义了PV 操作后,可以通过`execute`函数来执行PV 操作。
`execute`函数的参数是待执行的过程和操作符定义的元组。
例如,对`square`函数执行输入操作,可以执行如下:```execute(("square", "+"), 3)```这表示将输入值3 传递给`square`函数,执行其输入操作。
3.获取PV 操作的结果执行PV 操作后,可以通过`get`函数来获取操作的结果。
`get`函数的参数是待获取结果的过程和操作符定义的元组。
例如,对`square`函数执行输入操作后,可以获取其结果如下:```result = get(("square", "+"), 3)print(result) # 输出9```这表示获取`square`函数执行输入操作后的结果,即将输入值3 平方后的值9。
pv操作例题
pv操作例题
摘要:
1.PV 操作概述
2.PV 操作例题解析
3.PV 操作在实际工程中的应用
正文:
一、PV 操作概述
PV 操作是指在过程控制系统中,通过设定值和反馈信号的比较,计算出偏差,然后根据偏差大小和方向,对控制量进行调整,以达到控制系统目标值的一种控制方法。
PV 操作是过程控制系统中最常见的控制方式,广泛应用于各种工业生产过程中。
二、PV 操作例题解析
假设有一个储罐,需要控制其液位在100m至120m之间。
我们可以通过PV 操作来实现这个目标。
1.设定值:设定液位目标值为110m。
2.反馈信号:液位计测量的实际液位。
3.计算偏差:将实际液位与设定值进行比较,得到偏差。
4.调整控制量:根据偏差的大小和方向,调整进液阀门的开度,使液位上升或下降,直到达到设定值。
三、PV 操作在实际工程中的应用
在实际工程中,PV 操作通常与其他控制策略相结合,如PID 控制、自适
应控制等,以提高控制系统的稳定性和精度。
例如,在锅炉燃烧控制系统中,可以通过PV 操作控制燃料的供给,以维持锅炉的温度在设定值范围内。
同时,根据锅炉的负荷变化,可以通过PID 控制调整PV 操作的参数,以提高控制系统的响应速度和稳定性。
总之,PV 操作作为过程控制系统的基本控制方法,在实际工程中发挥着重要作用。
操作系统PV操作习题.
一、用P、V操作描述前趋关系。
P1、P2、P3、P4、P5、P6为一组合作进程,其前趋图如图2.3所示,试用P、V 操作描述这6个进程的同步。
p23图2.3说明任务启动后P1先执行,当它结束后P2、P3可以开始执行,P2完成后P4、P5可以开始执行,仅当P3、P4、P5都执行完后,P6才能开始执行。
为了确保这一执行顺序,设置5个同步信号量n、摄、f3、f4、g分别表示进程P1、P2、P3、P4、P5是否执行完成,其初值均为0。
这6个进程的同步描述如下:图2.3 描述进程执行先后次序的前趋图int f1=0; /*表示进程P1是否执行完成*/int f2=0; /*表示进程P2是否执行完成*/int f3=0; /*表示进程P3是否执行完成*/int f4=0; /*表示进程P4是否执行完成*/int f5=0; /*表示进程P5是否执行完成*/main(){cobeginP1( );P2( );P3( );P4( );P5( );P6( );coend}P1 ( ){┇v(f1);v(f1):}P2 ( ){p(f1);┇v(f2);v(f2);)P3 ( ){p(f1);┇v(f3);}P4( ){p(f2);┇v(f4);}P5 ( ){p(f2);┇v(f5);}P6( ){p(f3);p(f4);p(f5);┇}二、生产者-消费者问题p25生产者-消费者问题是最著名的进程同步问题。
它描述了一组生产者向一组消费者提供产品,它们共享一个有界缓冲区,生产者向其中投放产品,消费者从中取得产品。
生产者-消费者问题是许多相互合作进程的一种抽象。
例如,在输入时,输入进程是生产者,计算进程是消费者;在输出时,计算进程是生产者,打印进程是消费者。
因此,该问题具有很大实用价值。
我们把一个长度为n的有界缓冲区(n>0)与一群生产者进程P1、P2、…、Pm和一群消费者进程C1、C2、…、Ck 联系起来,如图2.4所示。
pv例题详解
pv例题详解
PV操作是操作系统中的一种常见概念,P表示进程请求资源,V表示进程
释放资源。
在PV操作中,通常使用信号量(semaphore)来实现进程间的同步和互斥。
以下是一个PV操作的示例,解决的是“过独木桥”问题:
假设有两个方向的行人需要过同一座独木桥,当某一方向的行人过桥时,另一方向的行人必须等待。
当某一方向无人过桥时,另一方向的行人可以过桥。
首先,定义两个信号量s1和s2,分别表示是否允许某一方向的行人过桥。
初始时,s1和s2都为0。
然后,定义两个进程,一个是代表东行方向行人的进程,另一个是代表西行方向行人的进程。
东行方向的进程执行以下操作:
1. P(s1):如果s1小于0,表示西行方向的行人正在过桥,东行方向的行人需要等待;否则,继续执行下一步。
2. 过桥:表示东行方向的行人正在过桥。
3. V(s2):释放西行方向的行人的过桥权限,将s2加1。
西行方向的进程执行以下操作:
1. P(s2):如果s2小于0,表示东行方向的行人正在过桥,西行方向的行人需要等待;否则,继续执行下一步。
2. 过桥:表示西行方向的行人正在过桥。
3. V(s1):释放东行方向的行人的过桥权限,将s1加1。
通过以上操作,可以保证同一方向的行人连续过桥,当某一方向有人过桥时,另一方向的行人必须等待;当某一方向无人过桥时,另一方向的行人可以过桥。
以上是一个简单的PV操作示例,实际应用中需要根据具体问题进行分析和设计。
pv操作例题
cobegin process producer
begin L1:produce a product; B[k]:=product; k:=(k+1)mod n; V(sg); goto L1 coend; process consumer begin L2:P(sg); Tack a product from B[t]; t:=(t+1)mod n; V(sp); consume; goto:= L2 end coend
例 12 考虑下述页面走向: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6
当内存块数量分别为 3 时,试问 FIFO、LRU、OPT 这三种置换算法的缺页次数各是多少? 答:缺页定义为所有内存块最初都是空的,所以第一次用到的页面都产生一次缺页。 当内存块数量为 3 时:
count: Integer; S: semaphore; count:=0; S:=1; cobegin process Pin
R1: Integer; begin P (S); R1:=count; R1:=R1+1; count:=R1; V(S); end;
Process Pout R2: Integer;
father (); mother ();
son (); daughter ();
coend } father () { P(dish); … 放苹果 … V(apple); } mother() { P(dish);
…
放桔子 …
V(orange); } son () { P(orange);
… 取桔子
sp:=1;sg:=0; cobegin process producer (生产者进程)
pv经典例题详解
pv经典例题详解PV 操作是操作系统中的进程管理原语,用于进程调度和资源分配。
PV 操作包括 P 和 V 两个原语,P 原语用于进程插入,将待调度进程插入到就绪队列中;V 原语用于进程删除,将已调度进程从就绪队列中删除。
以下是 PV 经典例题的详解。
例题 1:假设有一个操作系统,有两个进程 P1 和 P2,它们的优先级分别为 10 和 20。
现在需要对这两个进程进行调度,请问哪个进程应该先运行?解答:PV 操作是用于进程调度和资源分配的原语,其中 P 原语用于进程插入,将待调度进程插入到就绪队列中;V 原语用于进程删除,将已调度进程从就绪队列中删除。
在这个问题中,进程 P1 的优先级比进程 P2 高,因此 P1 应该先运行。
例题 2:假设有两个进程 P1 和 P2,它们的优先级分别为 10 和 20。
现在 P1 已经运行了一段时间后,需要将进程 P2 切换到执行,请问应该使用哪种原语?解答:在这个问题中,P1 已经运行了一段时间,因此它的进程状态可能已经被保存在内存中。
如果想将进程 P2 切换到执行,可以使用 V 原语将 P2 从就绪队列中删除,然后将 P1 的优先级设置为 P2 的优先级,即将 P1 的优先级提高到与 P2 相同。
这样 P2 就会重新进入就绪队列,并执行。
例题 3:假设有一个操作系统,有两个进程 P1 和 P2,它们的优先级分别为 10 和 20。
现在 P1 已经处于就绪队列的前端,并且 P2 正在运行。
现在需要将 P2 暂停一段时间,请问应该使用哪种原语?解答:在这个问题中,P2 正在运行,因此不能使用 P 原语将 P2 插入到就绪队列中。
如果想要暂停 P2 的进程,可以使用 V 原语将 P2 从就绪队列中删除,然后使用 S 原语将 P1 的进程状态保存在内存中,即将 P1 的优先级设置为 P2 的优先级,并将 P2 的进程状态设置为暂停状态。
这样 P2 就会被暂停,直到 P1 再次执行。
(完整word版)计算机操作系统PV操作例题
问题1 一个司机与售票员的例子在公共汽车上,为保证乘客的安全,司机和售票员应协调工作:停车后才能开门,关车门后才能行车。
用PV操作来实现他们之间的协调.S1:是否允许司机启动汽车的变量S2:是否允许售票员开门的变量driver()//司机进程{while (1)//不停地循环{P(S1);//请求启动汽车启动汽车;正常行车;到站停车;V(S2); //释放开门变量,相当于通知售票员可以开门}}busman()//售票员进程{while(1){关车门;V(S1);//释放开车变量,相当于通知司机可以开车售票P(S2);//请求开门开车门;上下乘客;}}注意:busman()driver()两个不停循环的函数问题2 图书馆有100个座位,每位进入图书馆的读者要在登记表上登记,退出时要在登记表上注销。
要几个程序?有多少个进程?(答:一个程序;为每个读者设一个进程)(1)当图书馆中没有座位时,后到的读者在图书馆为等待(阻塞)(2)当图书馆中没有座位时,后到的读者不等待,立即回家。
解(1 )设信号量:S=100;MUTEX=1P(S)P(MUTEX)登记V(MUTEX)阅读P(MUTEX)注销解(2)设整型变量COUNT=100;信号量:MUTEX=1;P(MUTEX);IF (COUNT==0){V(MUTEX);RETURN;}COUNT=COUNT—1;登记V(MUTEX);阅读P(MUTEX);COUNT=COUNT+1;V(MUTEX);RETURN;问题3 有一座东西方向的独木桥;用P,V操作实现:(1)每次只允许一个人过桥;(2)当独木桥上有行人时,同方向的行人可以同时过桥,相反方向的人必须等待。
(3)当独木桥上有自东向西的行人时,同方向的行人可以同时过桥,从西向东的方向,只允许一个人设信号量MUTEX=1P (MUTEX)过桥V (MUTEX)(2)解设信号量: MUTEX=1 (东西方互斥)MD=1 (东向西使用计数变量互斥)MX=1 (西向东使用计数变量互斥)设整型变量:CD=0 (东向西的已上桥人数)CX=0 (西向东的已上桥人数)从东向西:P (MD)IF (CD=0){P (MUTEX) }CD=CD+1V (MD)过桥P (MD)CD=CD—1IF (CD=0){V (MUTEX) }从西向东:P (MX)IF (CX=0){P (MUTEX) }CX=CX+1V (MX)过桥P (MX)CX=CX—1IF (CX=0){V (MUTEX) }V (MX)(3)解:从东向西的,和(2)相同;从西向东的和(1)相同。
pv操作例题
Type def semaphore; Semaphore s1=s2=s3=s4=0; PROC P1 执行P1的操作; V(S1); V(S2);
process p2 begin repeat p(s2); read A; v(s1); until false end
coend end
设P1为司机进程,它的任务是:启动、行驶、停车; P2为售票员进程,它的任务是:关门、售票、开门。用 P,V操作写出保证P1,P2安全运行的同步算法。
begin close,stop:semaphore; close:=0; stop:=0; cobegin
PROC P2 P(S1); 执行P2的操作; V(S3);
PROC P3 P(S2); 执行P3的操作; V(S4);
PROC P4 P(S3); P(S4); 执行P4的操作
P1、P2、P3、P4为具有合作关系的四个进程,P1执行 三个计算操作并将结果分别存入X、Y、Z变量,P1运行 结束后,P2、P3和P4分别计算X、Y、Z变量的平方值 并将结果存入原变量。利用P、V操作实现上述进程间 的同步关系。
process P2 begin P(S1); 执行工序2; V(S2); end;
process P3 begin P(S2); 执行工序3; end; Coend end
设P1、P2、P3为3个相互合作的进程,P1和P2各自从 外部设备读取数据分别存入X变量和Y变量,P3进程将X、 Y的值相加并将结果存入Z变量。试用P、V操作实现上 述同步关系。
pv操作例题
有一个仓库,可以存放A和B两种产品,但要求:
(1)每次只能存放一种产品(A或B);
(2)-N<A产品数量-B产品数量<M;
其中N和M是正整数。
试用p、v操作描述产品A和产品B的入库过程。
答:
信号量的定义如下:
Var mutex,SA,SB:semphore=1,M-1,N-1;(M,N为题目中给出的整数值)。
这里mutex用来做为互斥的信号量,保证每次只能存放一种产品(A或B);SA用来保证<A 产品数量-B产品数量<M,SB用来保证-N< A产品数量-B产品数量即B产品数量-A产品数量<N。
对这两个信号量的具体操作是,每当放入一个A产品,SA的值就减1,SB 的值就加1;,每当放入一个B产品,SA的值就加1,SB的值就减1;当然这些操作都是由pv操作来完成的。
具体程序如下:(用C或者类C来写都可以)
Begin
Prabegin
PA: (表示A产品放置动作对应的进程)
Begin
Repeat
P(SA)
P(mutex)
放入一个A产品;
V(mutex);
V(SB);
Until false;
End
PB: (表示B产品放置动作对应的进程)
Begin
Repeat
P(SB)
P(mutex)
放入一个B产品;
V(mutex);
V(SA);
Until false;。
P.V操作(典型例题)
有个寺庙,庙中有个小和尚和老和尚若干人,有一只水缸,由小和尚提水入缸给老和尚饮用。
水缸可容10桶水,水取自同一口水井中。
水井径窄,每次仅能容一只水桶取水,水桶总数为3个。
若每次只能入缸一桶水和取缸中一桶水,而且还不可以同时进行。
试用一种同步工具写出小和尚和老和尚入水、取水的活动过程。
4.答:本题为两个进程共享两个缓冲区的问题。
首先考虑本题有几个进程:从井中取水后向缸中倒水此为连续动作,为一个进程;从缸中取水为另一个进程。
其次考虑信号量,有关互斥的有:水井和水缸。
水井一次仅能一个水桶进出,水缸一次入、取水为一桶。
分别设互斥信号量为:mutex1和mutex2控制互斥。
有关同步问题为:三个水桶无论从井中取水还是入出水缸都是一次一个,应为它设信号量count,抢不到水桶的进程只好等待。
水缸满时不可入水,设信号量为empty,控制水量,水缸空时不可出水,设信号量full,控制出水量。
设置信号量初值:mutex1:=mutex2:=1;count:=3;empty:=10;full:=0;Parbegin﹛小和尚打水进程:BeginP(empty);P(count);P(mutex1);从井中打水;V(mutex1);P(mutex2);倒水入缸;V(mutex2);V(count);V(full);End老和尚取水进程:BeginP(full);P(count);P(mutex2);从缸中取水;V(mutex2);V(count);V(empty);End}Parend.2. 假定一个阅览室可供50个人同时阅读。
读者进入和离开阅览室时都必须在阅览室入口处的一个登记表上登记,阅览室有50个座位,规定每次只允许一个人登记或注销登记。
要求:(1)用PV操作描述读者进程的实现算法(可用流程图表示,登记、注销可用自然语言描述);(2)指出算法中所用信号量的名称、作用及初值。
解S1:阅览室可供使用的空座位,其初值为50S: 是否可通过阅览室,其初值为1Process READ_in(i=1…50){到达阅览室入口处;P(S1);P(S);在入口处登记座位号;V(s);进入座位并阅读;}Process READ_out(j=1…50){结束阅读到达阅览室入口处;P(S);在入口处注销座位号;V(S1);V(S)离开入口处;}●N个并发进程公用一个公共变量Q,信号灯进程:main(){begins=1;cobeginp1();p2();…pn();coend}Pi(){P(s)…V(s)}其中i=1、2…n●用户A、B、C打印进程(间接相互制约关系):s初值为1,假设打印机占用1时间片。
操作系统第二章pv操作典型问题PPT课件
P2: begin repeat
P(S2); 拣黑子; V(S1); until false end coend end
典型生产者问题1
• 有一材料保管员,他保管纸和笔假设干。 有A 、B 两组学生,A 组学生每人都备 有纸,B 组学生每人都备有笔.任一学 生只要能得到其他一种材料就可以写信。 有一个可以放一张纸或一支笔的小盒, 当小盒中无物品时,保管员就可任意放 一张纸或一支笔供学生取用,每次允许 一个学生从中取出自己所需的材料,当 学生从盒中取走材料后允许保管员再存
V(mutex); V(empty); until false end coend end;
哲学家进餐 解决方法1
至多只允许有四位哲学家同时去拿左边的筷 子,最终能保证至少有一位哲学家能够进 餐,并在用毕时能释放出他用过的两只筷 子,从而使更多的哲学家能够进餐。
semaphore seat=4; chopstick[5]={1,1,1,1,1}; process i {while(ture)
semaphore s, Sa , Sb, mutexa , mutexb ; s =1;mutexa =1;mutexb=1; sa =0; sb= 0 ; box ( PaPer , pen ) ;
cobegin { process 保管员 begin repeat P(S); take a material intobox ; if ( box ) = Paper then V ( Sa ) ; else V( Sb ) ; untile false ; end
• 有三个并发进程:R 负责从输入设备读入 信息块,M 负责对信息块加工处理;P 负 责打印输出信息块。今提供;
• 1〕一个缓冲区,可放置K 个信息块; • 2 〕二个缓冲区,每个可放置K 个信息块;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PV操作的例题一、线程是进程的一个组成部分,一个进程可以有多个线程,而且至少有一个可执行线程。
进程的多个线程都在进程的地址空间内活动。
资源是分给进程的,而不是分给线程的,线程需要资源时,系统从进程的资源配额中扣除并分配给它。
处理机调度的基本单位是线程,线程之间竞争处理机,真正在处理机上运行的是线程。
线程在执行过程中,需要同步。
二、在计算机操作系统中,PV操作是进程管理中的难点。
首先应弄清PV操作的含义:PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下:P(S):①将信号量S的值减1,即S=S-1;②如果S>=0,则该进程继续执行;否则该进程置为等待状态,排入等待队列。
V(S):①将信号量S的值加1,即S=S+1;②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。
PV操作的意义:我们用信号量及PV操作来实现进程的同步和互斥。
PV操作属于进程的低级通信。
什么是信号量?信号量(semaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。
信号量的值与相应资源的使用情况有关。
当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。
注意,信号量的值仅能由PV操作来改变。
一般来说,信号量S>=0时,S表示可用资源的数量。
执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。
而执行一个V操作意味着释放一个单位资源,因此S 的值加1;若S?0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。
利用信号量和PV操作实现进程互斥的一般模型是:进程P1 进程P2 ……进程Pn………………P(S);P(S);P(S);临界区;临界区;临界区;V(S);V(S);V(S);……………………其中信号量S用于互斥,初值为1。
使用PV操作实现进程互斥时应该注意的是:(1)每个程序中用户实现互斥的P、V操作必须成对出现,先做P操作,进临界区,后做V操作,出临界区。
若有多个分支,要认真检查其成对性。
(2)P、V操作应分别紧靠临界区的头尾部,临界区的代码应尽可能短,不能有死循环。
(3)互斥信号量的初值一般为1。
利用信号量和PV操作实现进程同步PV操作是典型的同步机制之一。
用一个信号量与一个消息联系起来,当信号量的值为0时,表示期望的消息尚未产生;当信号量的值非0时,表示期望的消息已经存在。
用PV操作实现进程同步时,调用P操作测试消息是否到达,调用V操作发送消息。
使用PV操作实现进程同步时应该注意的是:(1)分析进程间的制约关系,确定信号量种类。
在保持进程间有正确的同步关系情况下,哪个进程先执行,哪些进程后执行,彼此间通过什么资源(信号量)进行协调,从而明确要设置哪些信号量。
(2)信号量的初值与相应资源的数量有关,也与P、V操作在程序代码中出现的位置有关。
(3)同一信号量的P、V操作要成对出现,但它们分别在不同的进程代码中。
例题一:过桥问题解:设信号量初值S=1汽车进程Pi(i=1,2,3,…)到达桥头P(s)桥行驶到达桥另一端V(s)例题二若有一售票厅只能容纳300人,当少于300人时,可以进入。
否则,需在外等候,若将每一个购票者作为一个进程,请用P、V操作编程。
解:信号量初值S=300购票者进程Pi(i=1,2,3,…)P(s)进入售票厅购票退出售票厅V(s)例题三有一只铁笼子,每次只能放入一只动物,猎手向笼中放入老虎,农民向笼中放入猪,动物园等待取笼中的老虎,饭店等待取笼中的猪,试用P、V操作写出能同步执行的程序。
解:两个生产者和两个消费者共享了一个仅能存放一件产品的缓冲器,生产者各自生产不同的产品,消费者各自取自己需要的产品,P、V操作编程为:猎手进程农民进程动物园进程饭店进程P(s) P(s) P(s1) P(s2)放入虎放入猪买老虎买猪V(s1) V(s2) V(s) V(s)其中S初值=1,S1=S2=0例题四桌上有一只盘子,每次只能放入一个水果。
爸爸专向盘中放苹果,妈妈专向盘中放桔子,女儿专等吃盘中的苹果,儿子专等吃盘中的桔子。
用P、V操作写出它们能正确同步的程序。
(同例六详解)解:信号量初值S1=0,S2=0,S=1爸爸进程妈妈进程女儿进程儿子进程repeat repeat repeat repeatP(s) P(s) P(s1) P(s2)放苹果放桔子取苹果取桔子V(s1) V(s2) V(s) V(s)until false until false until false until false例题五设有两个优先级相同的进程P1和P2如下,S1和S2初值均为0,求:P1,P2并发执行结束后,x,y,z分别是多少?进程P1 进程P2y:=1; x:=1;y:=y+2; x:=x+1;V(s1); P(s1);z:=y+1; x:=x+y;P(s2); V(s2)y:=z+y; z:=x+z;解:因为P1、P2是并发进程,所以P1和P2调度顺序不确定。
假设P1先执行,当P1执行到P(s2)时,s2=-1,P1阻塞,此时y=3,z=4;当调度程序调度到P2时,由于进程P1巳执行到了V(s1),P2在执行P(s1)时,不阻塞而继续执行,当执行到V(s2)时,将P1唤醒,然后执行到最后一个语句,此时x=5,z=9;当P1再次被唤醒、调度时,继续执行P1的最后一处语句,此时y=12.所以最后结果是:x=5,y=12,z=9.如果P2先执行,结果同上【例题五】生产者-消费者问题在多道程序环境下,进程同步是一个十分重要又令人感兴趣的问题,而生产者-消费者问题是其中一个有代表性的进程同步问题。
下面我们给出了各种情况下的生产者-消费者问题,深入地分析和透彻地理解这个例子,对于全面解决操作系统内的同步、互斥问题将有很大帮助。
(1)一个生产者,一个消费者,公用一个缓冲区。
定义两个同步信号量:empty——表示缓冲区是否为空,初值为1。
full——表示缓冲区中是否为满,初值为0。
生产者进程while(TRUE){生产一个产品;P(empty);产品送往Buffer;V(full);}消费者进程while(True){P(full);从Buffer取出一个产品;V(empty);消费该产品;}(2)一个生产者,一个消费者,公用n个环形缓冲区。
定义两个同步信号量:empty——表示缓冲区是否为空,初值为n。
full——表示缓冲区中是否为满,初值为0。
设缓冲区的编号为1~n-1,定义两个指针in和out,分别是生产者进程和消费者进程使用的指,指向下一个可用的缓冲区。
生产者进程while(TRUE){生产一个产品;P(empty);产品送往buffer(in);in=(in+1)mod n;V(full);}消费者进程while(TRUE){P(full);从buffer(out)中取出产品;out=(out+1)mod n;V(empty);消费该产品;}(3)一组生产者,一组消费者,公用n个环形缓冲区在这个问题中,不仅生产者与消费者之间要同步,而且各个生产者之间、各个消费者之间还必须互斥地访问缓冲区。
定义四个信号量:empty——表示缓冲区是否为空,初值为n。
full——表示缓冲区中是否为满,初值为0。
mutex1——生产者之间的互斥信号量,初值为1。
mutex2——消费者之间的互斥信号量,初值为1。
设缓冲区的编号为1~n-1,定义两个指针in和out,分别是生产者进程和消费者进程使用的指针,指向下一个可用的缓冲区。
生产者进程while(TRUE){生产一个产品;P(empty);P(mutex1);产品送往buffer(in);in=(in+1)mod n;V(mutex1);V(full);}消费者进程while(TRUE){P(full)P(mutex2);从buffer(out)中取出产品;out=(out+1)mod n;V(mutex2);V(empty);消费该产品;}需要注意的是无论在生产者进程中还是在消费者进程中,两个P操作的次序不能颠倒。
应先执行同步信号量的P操作,然后再执行互斥信号量的P操作,否则可能造成进程死锁。
【例题六】桌上有一空盘,允许存放一只水果。
爸爸可向盘中放苹果,也可向盘中放桔子,儿子专等吃盘中的桔子,女儿专等吃盘中的苹果。
规定当盘空时一次只能放一只水果供吃者取用,请用P、V原语实现爸爸、儿子、女儿三个并发进程的同步。
分析在本题中,爸爸、儿子、女儿共用一个盘子,盘中一次只能放一个水果。
当盘子为空时,爸爸可将一个水果放入果盘中。
若放入果盘中的是桔子,则允许儿子吃,女儿必须等待;若放入果盘中的是苹果,则允许女儿吃,儿子必须等待。
本题实际上是生产者-消费者问题的一种变形。
这里,生产者放入缓冲区的产品有两类,消费者也有两类,每类消费者只消费其中固定的一类产品。
解:在本题中,应设置三个信号量S、So、Sa,信号量S表示盘子是否为空,其初值为l;信号量So表示盘中是否有桔子,其初值为0;信号量Sa表示盘中是否有苹果,其初值为0。
同步描述如下:int S=1;int Sa=0;int So=0;main(){cobeginfather();son();daughter();coend}father(){while(1){P(S);将水果放入盘中;if(放入的是桔子)V(So);else V(Sa);}}son(){while(1){P(So);从盘中取出桔子;V(S);吃桔子;}}daughter(){while(1){P(Sa);从盘中取出苹果;V(S);吃苹果;}}思考题:四个进程A、B、C、D都要读一个共享文件F,系统允许多个进程同时读文件F。
但限制是进程A和进程C不能同时读文件F,进程B和进程D也不能同时读文件F。
为了使这四个进程并发执行时能按系统要求使用文件,现用PV操作进行管理,请回答下面的问题:(1)应定义的信号量及初值:。
(2)在下列的程序中填上适当的P、V操作,以保证它们能正确并发工作:A() B() C() D(){ { { {[1]; [3]; [5]; [7];read F; read F; read F; read F;[2]; [4]; [6]; [8];} } } }思考题解答:(1)定义二个信号量S1、S2,初值均为1,即:S1=1,S2=1。
其中进程A和C使用信号量S1,进程B和D使用信号量S2。
(2)从[1]到[8]分别为:P(S1) V(S1) P(S2) V(S2) P(S1) V(S1) P(S2) V(S2)习题1:有三个并发进程使用同一个缓冲区,进程P1负责读数据到缓冲区,P2负责加工缓冲区中的数据,进程P3负责将缓冲区中加工后的数据输出.在进程P3没有输完之前,进程P1不能读入新的数据到缓冲区中.请用P、V操作编程.解:信号量初值:S1=0,S2=0,S3=0进程P1 进程P2 进程P3读数据到P(S1) P(S2)缓冲区加工输出V(S1) V(S2) V(S3)P(S3)习题2:设有六个进程P1、P2、P3、P4、P5、P6,它们并发执行。