石英晶体微天平

合集下载

石英晶体微天平电化学

石英晶体微天平电化学

石英晶体微天平电化学引言:石英晶体微天平电化学是一种基于石英晶体微天平技术的电化学研究方法,通过测量电化学反应过程中的质量变化,可以获得与电化学反应相关的信息。

本文将介绍石英晶体微天平电化学的原理、应用和发展前景。

一、石英晶体微天平的原理石英晶体微天平是一种常用的质量测量仪器,其基本原理是利用石英晶体的压电效应,将质量变化转化为频率变化。

当质量增加时,石英晶体的频率降低;当质量减少时,石英晶体的频率增加。

通过测量频率的变化,可以得到质量的变化信息。

二、石英晶体微天平电化学的原理石英晶体微天平电化学是将石英晶体微天平与电化学技术相结合,用于研究电化学反应。

在电化学反应中,电极表面的质量会发生变化,通过将电极放置在石英晶体微天平上,可以通过测量频率的变化来获得电极表面质量的变化信息。

三、石英晶体微天平电化学的应用1. 电化学催化剂研究:石英晶体微天平电化学可以用于研究电化学催化剂的活性和稳定性。

通过测量催化剂表面的质量变化,可以评估催化剂的活性和稳定性,并研究催化剂在各种条件下的性能变化。

2. 电化学腐蚀研究:石英晶体微天平电化学可以用于研究材料的电化学腐蚀行为。

通过测量材料表面的质量变化,可以评估材料的耐蚀性,并研究腐蚀过程中的质量变化规律。

3. 电化学生物传感器:石英晶体微天平电化学可以用于生物传感器的研究和开发。

通过将生物分子固定在电极表面,测量生物分子与物质相互作用引起的质量变化,可以实现对生物分子的灵敏检测。

4. 电化学药物筛选:石英晶体微天平电化学可以用于药物筛选和评价。

通过将药物固定在电极表面,测量药物与靶分子相互作用引起的质量变化,可以评估药物的活性和选择性。

四、石英晶体微天平电化学的发展前景石英晶体微天平电化学作为一种新兴的研究技术,具有广阔的应用前景。

随着纳米材料、催化剂和生物传感器等领域的发展,对于电化学反应过程的研究需求越来越高。

石英晶体微天平电化学作为一种高灵敏度、高分辨率的研究方法,将在这些领域发挥重要作用。

石英微晶天平

石英微晶天平

一、石英晶体微天平的基本原理:石英晶体微天平最基本的原理是利用了石英晶体的压电效应:石英晶体内部每个晶格在不受外力作用时呈正六边形,若在晶片的两侧施加机械压力,会使晶格的电荷中心发生偏移而极化,则在晶片相应的方向上将产生电场;反之,若在石英晶体的两个电极上加一电场,晶片就会产生机械变形,这种物理现象称为压电效应。

如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。

在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,这种现象称为压电谐振。

它其实与LC回路的谐振现象十分相似:当晶体不振动时,可把它看成一个平板电容器称为静电电容C,一般约几个PF到几十PF;当晶体振荡时,机械振动的惯性可用电感L 来等效,一般L 的值为几十mH到几百mH。

由此就构成了石英晶体微天平的振荡器,电路的振荡频率等于石英晶体振荡片的谐振频率,再通过主机将测的得谐振频率转化为电信号输出。

由于晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。

二、石英晶体微天平的主要构造:QCM主要由石英晶体传感器、信号检测和数据处理等部分组成。

石英晶体传感器的基本构成大致是:从一块石英晶体上沿着与石英晶体主光轴成35015'切割(AT—CUT)得到石英晶体振荡片,在它的两个对应面上涂敷银层作为电极,石英晶体夹在两片电极中间形成三明治结构。

在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

石英晶体微天平的其他组成结构在不同型号和规格的仪器中也不尽相同,可根据测量需要选用或联用。

一般附属结构还包括振荡线路、频率计数器、计算机系统等;电化学石英晶体微天平在此基础上还包括恒电位仪、电化学池、辅助电极、参比电极等;三、石英晶体微天平的分析化学应用QCM最早应用于气相组分、有毒易爆气体的检测。

石英晶体微天平原理

石英晶体微天平原理

石英晶体微天平原理石英晶体微天平(Quartz Crystal Microbalance,简称QCM)是一种利用石英晶体的振荡频率变化来测量微量物质质量的分析仪器。

其工作原理是基于石英晶体微振器在质量变化时引起谐振频率的变化。

石英晶体是一种具有垂直电极和涂有一层金属电极的薄膜石英技术器件。

在标准条件下,石英晶体具有特定的谐振频率,当质量发生变化时,石英晶体的谐振频率也会发生相应的变化。

这个质量的变化可以是溶质吸附、膜生长、能量转换等引起的。

石英晶体微天平的主要部分包括石英晶体和振荡电路。

石英晶体被放置在真空或气体环境中,通过电极与振荡电路相连。

当外加交流电场施加到石英晶体上时,晶体将发生机械振荡,并产生电荷分布,从而使晶体表面产生一定的驱动力。

这种驱动力可以通过检测电路检测出来,并转换成电信号。

石英晶体微天平利用石英晶体的材料特性和电极结构,通过测量振荡频率的变化来定量分析溶液中微量物质的吸附、反应和生长过程。

当溶液中存在微量物质时,这些物质会在石英晶体的表面上吸附或反应,并改变晶体的质量。

质量的变化将引起石英晶体的共振频率的改变,这个频率的变化与溶液中微量物质的质量变化成正比。

QCM主要分为自由振动和受控振动两种模式。

在自由振动模式下,石英晶体将自由振动,而在受控振动模式下,通过将交流电场施加到电极上,通过调节频率和振幅来控制石英晶体的振荡。

这样可以通过控制石英晶体的振荡来监测微量物质的吸附和反应过程。

石英晶体微天平在生物医学、环境监测、材料科学等领域具有广泛的应用。

例如,它可以用于研究蛋白质的吸附、细胞的生长、药物的吸附和释放等过程。

由于其高灵敏度、快速响应和无需标记的特点,石英晶体微天平已经成为一种非常重要的表征和分析技术。

总之,石英晶体微天平利用石英晶体的振荡频率变化来测量微量物质质量的分析技术。

它的工作原理是基于石英晶体在质量发生变化时引起谐振频率的变化。

通过测定谐振频率的变化,可以定量分析溶液中微量物质的吸附、反应和生长过程。

石英晶体微天平物质结构

石英晶体微天平物质结构
39
40
• Quartz crystal • 2. Electrode material
ΔF= - 2 F02ΔM/A(q q)1/2
ΔF: Frequency Change of Quartz Crystal; ΔM: Mass Change of the Substance on Electrode
石英晶体微天平(quartz crystal microbalance)是一种非常灵敏的质量检 测器,能够快速、简便和实时检测反应过 程中的质量变化,检测限可达到纳克级 水平,已被广泛应用于基因学、诊断学等 各方面,成为分子生物学和微量化学领域 最有效的手段之一。
1
QCM crystal. Grey=quartz, yellow=metallic electrodes.
26
当晶体被浸入到溶液中,振荡频率取决于 所使用的溶剂。当覆盖层比较厚时,频率 f 和质量变化 Dm 之间是非线性的,需要 修正。
27
当石英晶体振荡与流体接触时,晶体表面 对流体的耦合极大地改变振荡频率,并在 晶体与流体接触面附近产生一剪切振动。 振动表面在流体中产生平流层,它导致 频率与(h)1/2成比例降低,这里和h分别 是流体的密度和粘度。
9
而当石英晶体受到电场作用时,在它的某些 方向出现应变,而且电场强度与应变之间 存在线性关系,这种现象称为逆压电效 应。逆压电效应是在电场的作用下,在电 偶极距发生变化的同时产生形变.
10
三、石英谐振器的振动模式
石英谐振器是由石英 晶片、电极、支架及 外壳等部分构成。
11
1、伸缩振动模式 2、弯曲振动模式 3、面切变振动模式 4、厚度切变振动模式
2、光双晶:同时存在左旋和右旋两个部分连 生在一起。

QCM

QCM
QCM:Quartz crystal microbalance 石英晶体微天平
石英晶体微天平是一种新型的高精度谐振式测量仪器,测量精度 可以达到纳克级,由于具备测量精度高,结构简单,成本低廉等 优点,越来越被科研工作者关注和重视。
1.基本原理 2.结 构
3.相关应用
基本原理
相关概念:
晶体的各向异性: 沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此 导致晶体在不同方向的物理化学特性也不同。 压电效应: 对某些电介质施加机械力从而引起它们内部的正负电荷中心发生相 对位移,产生极化,进而导致介质两端表面内出现符号相反的束缚 电荷的现象。 牛顿流体: 指在受力后极易变形,且切应力与变形速率成正比的低粘性流体。 切应力: 物体由于外因而变形时,在物体内部各部分之间所产生的用于抵抗 这种外因的作用,并力图使物体从变形后状态回复到变形前状态的 内力。
基本原理
在上世纪六十年代初,压电石英晶体作为质量传感器的应用一直局限在 气相中。无合适的液相定量方程是其中的原因之一,但更主要的原因是 其在液相中的振荡一直未获得成功。因为晶体在液相中振荡导致的能量 损耗远大于气相中的损耗。直至八十年代,Nomura和Konash等实现了 石英晶体在溶液中的振荡,从而开拓压电传感器应用的全新领域。随后 Kanazawa等提出了著名的Kanazawa-Gordon方程,即在牛顿流体中晶 体的谐振频率变化满足:
基本原理
QCM定量基础:
德国物理学家Sauerbrey通过大量的研究发现厚度剪切压电石英晶体 的谐振频率变化Δf与在晶体表面均匀吸附的刚性物的质量Δm之间 存在着比例关系, 他在1959年给出了Sauerbrey 方程:
式中f为晶体的固有谐振频率,又叫基频率, ( Hz), m 为晶体表面涂层 质量(g), △ f 为晶体谐振频率的变化量,A为涂层面积(cm2)。 该方程的适用前提是晶体表面的吸附层必须为刚性吸附层,既在晶体 发生谐振时该吸附层可随晶体本体发生无形变无相对位移的同步振动。 以此为理论依据,QCM最早只能应用与真空或气相环境中。

石英晶体微天平原理

石英晶体微天平原理

石英晶体微天平原理石英晶体微天平是一种高精度的质量测量仪器,它的原理是利用石英晶体的压电效应来测量物体的质量。

石英晶体是一种具有压电效应的晶体,当施加外力时,会产生电荷,这种电荷的大小与施加的力成正比。

因此,通过测量石英晶体的电荷变化,就可以得到物体的质量。

石英晶体微天平的结构非常简单,它由一个石英晶体片和一个电极组成。

石英晶体片通常是一个长方形的薄片,厚度只有几毫米,宽度和长度分别为几毫米到几厘米不等。

电极则是两个金属片,分别固定在石英晶体片的两端。

当物体放在石英晶体片上时,物体的重力会使石英晶体片产生微小的弯曲,从而改变石英晶体片的压电效应,产生电荷。

这些电荷被电极收集起来,通过放大器放大后,就可以得到物体的质量。

石英晶体微天平的精度非常高,可以达到微克级别。

这是因为石英晶体具有非常好的稳定性和重复性,可以在长时间内保持稳定的压电效应。

此外,石英晶体的压电效应与温度、湿度等环境因素的影响非常小,因此可以在各种环境下进行精确的质量测量。

石英晶体微天平广泛应用于化学、生物、医学等领域的研究中。

例如,在化学实验中,可以用石英晶体微天平来测量化学反应中物质的质量变化,从而研究反应的动力学和热力学性质。

在生物学和医学中,石英晶体微天平可以用来测量细胞、蛋白质等生物分子的质量,从而研究它们的结构和功能。

除了石英晶体微天平,还有其他类型的微天平,如电容微天平、磁悬浮微天平等。

这些微天平的原理和应用都有所不同,但它们都具有高精度、高灵敏度的特点,可以用于各种精密测量和研究。

石英晶体微天平是一种非常重要的质量测量仪器,它的原理简单、精度高,应用广泛。

随着科技的不断发展,微天平的精度和应用范围还将不断扩大,为科学研究和工业生产带来更多的便利和发展机遇。

电化学石英晶体微天平 用途

电化学石英晶体微天平 用途

电化学石英晶体微天平的用途电化学石英晶体微天平(EQCM)是一种高精度的电化学分析仪器,它可以用于研究电化学反应的动力学和热力学性质、表面化学反应动力学和机理、生物分子的相互作用等。

本文将从以下几个方面介绍EQCM的用途。

一、电化学反应动力学和热力学性质研究EQCM可以通过测量电极表面的质量变化来研究电化学反应的动力学和热力学性质。

例如,可以用EQCM来研究金属电极表面的氧化还原反应、电解质在电极表面的吸附和脱附等。

EQCM可以提供高精度的质量变化数据,从而可以确定反应速率、反应机理、反应热力学性质等。

二、表面化学反应动力学和机理研究EQCM可以用于研究表面化学反应的动力学和机理。

例如,可以用EQCM来研究表面的吸附和脱附反应、表面重构和形貌变化等。

EQCM可以提供高精度的质量变化数据和频率变化数据,从而可以确定表面反应速率、反应机理、表面能等。

三、生物分子相互作用研究EQCM可以用于研究生物分子的相互作用。

例如,可以用EQCM来研究蛋白质和DNA的结合、细胞膜的吸附和脱附等。

EQCM可以提供高精度的质量变化数据和频率变化数据,从而可以确定生物分子的互作机制、互作强度等。

EQCM的优点EQCM具有以下几个优点:1.高精度:EQCM可以提供高精度的质量变化数据和频率变化数据,从而可以确定反应速率、反应机理、反应热力学性质等。

2.灵敏度高:EQCM可以检测微量物质的质量变化和频率变化,从而可以研究微量物质的反应动力学和热力学性质。

3.实时监测:EQCM可以实时监测表面化学反应和生物分子相互作用的过程,从而可以研究反应动力学和机理。

EQCM的应用举例EQCM已经被广泛应用于电化学、表面化学、生物化学等领域。

以下是EQCM的一些应用举例:1.研究金属电极表面的氧化还原反应。

2.研究电解质在电极表面的吸附和脱附。

3.研究表面的吸附和脱附反应。

4.研究表面重构和形貌变化。

5.研究蛋白质和DNA的结合。

6.研究细胞膜的吸附和脱附。

qcm原理

qcm原理

石英晶体微天平的原理和应用一、石英晶体微天平的基本原理:石英晶体微天平最基本的原理是利用了石英晶体的压电效应:石英晶体内部每个晶格在不受外力作用时呈正六边形,若在晶片的两侧施加机械压力,会使晶格的电荷中心发生偏移而极化,则在晶片相应的方向上将产生电场;反之,若在石英晶体的两个电极上加一电场,晶片就会产生机械变形,这种物理现象称为压电效应。

如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。

在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,这种现象称为压电谐振。

它其实与LC回路的谐振现象十分相似:当晶体不振动时,可把它看成一个平板电容器称为静电电容C,一般约几个PF到几十PF;当晶体振荡时,机械振动的惯性可用电感L 来等效,一般L 的值为几十mH到几百mH。

由此就构成了石英晶体微天平的振荡器,电路的振荡频率等于石英晶体振荡片的谐振频率,再通过主机将测的得谐振频率转化为电信号输出。

由于晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。

二、石英晶体微天平的主要构造:QCM主要由石英晶体传感器、信号检测和数据处理等部分组成。

石英晶体传感器的基本构成大致是:从一块石英晶体上沿着与石英晶体主光轴成35度15'切割(AT—CUT)得到石英晶体振荡片,在它的两个对应面上涂敷银层作为电极,石英晶体夹在两片电极中间形成三明治结构。

在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

石英晶体微天平的其他组成结构在不同型号和规格的仪器中也不尽相同,可根据测量需要选用或联用。

一般附属结构还包括振荡线路、频率计数器、计算机系统等;电化学石英晶体微天平在此基础上还包括恒电位仪、电化学池、辅助电极、参比电极等;\三、石英晶体微天平的分析化学应用QCM最早应用于气相组分、有毒易爆气体的检测。

耗散型石英晶体微天平δd和δf的关系

耗散型石英晶体微天平δd和δf的关系

石英晶体微天平δd和δf的关系是一个非常重要的研究课题,对于石英晶体的性能和应用具有深远的影响。

本文将从以下几个方面对这一主题展开详细的分析和讨论。

一、背景介绍1. 石英晶体微天平的原理及应用石英晶体微天平是一种用于测量微量质量变化的装置,通过检测石英晶体振动频率的变化来实现对质量变化的测量,因其灵敏度高、测量精度高等优点,在许多领域得到了广泛的应用,如生物医学、化学分析、环境监测等。

2. δd和δf的定义与意义在石英晶体微天平中,δd和δf分别代表着频率变化和阻尼变化,它们是评价石英晶体微天平性能的重要参数,对于了解样品的质量变化、性质变化等具有重要意义。

二、δd和δf的关系及影响因素1. δd和δf的数学关系在石英晶体微天平中,δd和δf之间存在着一定的数学关系,通常情况下,随着频率变化的增加,阻尼变化也会随之增加,但二者之间的关系并非简单的线性关系,而是受到多种因素影响的复杂关系。

2. 影响δd和δf的因素影响δd和δf的因素有很多,如温度、压力、湿度、样品的质量等,这些因素会直接影响石英晶体的振动频率和阻尼特性,从而间接影响δd和δf的数值。

三、研究现状与挑战1. 研究现状目前,关于石英晶体微天平δd和δf的关系的研究已经取得了一定的进展,不仅在理论方面有了较为深入的认识,而且在实验验证方面也取得了一些成功。

然而,这一领域仍然存在一些尚未解决的问题,需要更深入的研究和探索。

2. 挑战与展望石英晶体微天平δd和δf的关系研究面临着一些挑战,如如何准确测量和描述δd和δf的数值,如何解析影响因素对δd和δf的影响机制等。

未来的研究应该着重解决这些问题,以推动该领域的发展和进步。

四、应用前景与意义1. 应用前景石英晶体微天平δd和δf的关系研究对于提高石英晶体微天平的测量精度、扩大应用范围具有重要意义。

在生物医学、化学分析、环境监测等领域,这一研究成果的应用前景广阔。

2. 意义石英晶体微天平δd和δf的关系研究不仅有助于推动石英晶体微天平的技术进步,而且对于促进相关领域的发展和应用具有重要意义。

qcm的基本原理及应用对象

qcm的基本原理及应用对象

qcm的基本原理及应用对象1. qcm基本原理Quartz Crystal Microbalance(QCM),即石英晶体微天平,是一种用于测量微小质量和表面过程的技术。

它基于石英晶体的振荡频率与质量之间的关系,通过测量晶体的频率变化来获取被测物体的质量变化。

其基本原理如下:•使用仪器将石英晶体定位在一个封闭的装置中,装置中有液体或气体。

•石英晶体上电极施加一个交变电压,使其发生振荡。

•当物质吸附到石英晶体的表面时,会导致晶体的振荡频率发生变化。

•通过测量频率变化,可以得到吸附物质的质量变化。

2. qcm的应用对象QCM的测量范围非常广泛,适用于以下应用对象:2.1. 薄膜厚度测量QCM可以用于测量薄膜的厚度变化,通过监测晶体表面的质量变化来确定薄膜的生长速率。

这在材料科学研究、薄膜涂覆等领域具有重要应用。

•实例应用:利用QCM测量金属氧化物薄膜的生长速率,以优化材料制备工艺。

2.2. 生物分子相互作用研究QCM可以用于研究生物分子之间的相互作用,例如蛋白质与配体、受体与配体等的结合过程。

通过监测晶体表面质量变化的动态过程,可以了解分子间的结合情况和结合强度。

•实例应用:利用QCM研究药物与受体的结合过程,以评估药物的效力。

2.3. 界面吸附研究QCM可以用于研究物质在液体或气体界面上的吸附行为。

通过测量晶体频率的变化,可以探测到材料的吸附行为和吸附动力学。

•实例应用:利用QCM研究油水界面上聚合物的吸附行为,以优化油水分离过程。

2.4. 生物传感器开发基于QCM原理,可以开发出一种高灵敏度、快速响应的生物传感器。

利用生物分子与目标物质的特异性相互作用,可以实现对目标物质的高效检测。

•实例应用:利用QCM开发血糖传感器,实现快速、准确的血糖监测。

3. 总结QCM作为一种高灵敏度、快速响应的测量技术,其基本原理已被广泛应用于材料科学、生物医学和化学等领域。

通过测量石英晶体的频率变化,可以实现对微小质量的准确测量,并获得相应的质量变化信息。

石英晶体微天平原理

石英晶体微天平原理

石英晶体微天平原理石英晶体微天平是一种精密质量测量仪器,主要用于测量非常小的物质质量。

这种仪器的原理基于石英晶体的固有振动频率与晶体上物质加质量后振动频率的变化成正比例关系。

下面,我们将详细介绍石英晶体微天平的原理。

在石英晶体微天平中,石英晶体被用作传感器。

石英晶体在电场作用下可以产生共振,这种共振由石英片的弹性和质量参数决定。

石英晶体通常用于高频振动上,其谐振频率在10kHz到150MHz之间。

当石英晶体被电压激发,它的边界会在一定频率范围内振动,这种振动称为表面声波(resonant acoustic wave)。

这些声波的频率和振幅随着石英晶体的尺寸、形状和材料特性而变化。

当粘附到晶体表面的材料的质量改变时,声波的频率产生偏移。

这个频率偏差与物质的质量成正比例。

石英晶体微天平中,晶体表面覆盖着一层被测材料(样品),它与晶体表面成为共振耦合,被共振耦合的样品使晶体表面发生微小变形,这导致共振频率发生变化。

这种变化被测量,并与标准测试电路中的参考频率偏差匹配,从而确定被测量材料的质量。

实际上,在石英晶体微天平中,共振频率的测量是很复杂的,需要高精度的电子学设备来实现。

测量的系统频率在微波范围内,并以高速稳定的方式测量,从而实现对非常小的质量变化的高分辨率测量。

石英晶体微天平原理是一项先进的技术,可用于测量非常小的质量变化。

它广泛应用于化学、物理、生物学和医学等领域,以及微机电系统(MEMS)、纳米材料和生物分子的表征等方面。

在实际应用中,石英晶体微天平是一种可靠的仪器,其原理具有很高的精度和准确性,因此在实验室中被广泛使用。

石英晶体微天平在化学科学中的应用石英晶体微天平在化学领域的主要应用是测量质量变化,从而研究化学反应、表征催化剂和其他化学材料的特性。

在化学反应中,可以通过测量反应物质量的变化,来推断反应的速率、平衡常数和反应机理等信息。

石英晶体微天平还可以用于表征催化剂,测量催化剂的质量变化可以推断其活性、选择性和稳定性等性质。

石英晶体微天平原理

石英晶体微天平原理

石英晶体微天平是一种精密的称重仪器。

它的工作原理主要基于石英晶体的特殊性质和微机电系统(MEMS)技术。

石英晶体微天平的核心部件是石英晶体,它是一种具有压电效应的材料。

压电效应是指在施加外力或电场时,晶体会产生电荷或电势差的现象。

石英晶体的压电效应非常稳定和灵敏,因此被广泛应用于天平中。

石英晶体微天平的工作原理基于质量和频率之间的关系。

石英晶体的频率与其质量成正比,即频率越高,晶体质量越大。

在称重时,待称物体被放置在石英晶体上,晶体会受到质量的增加而频率降低。

通过测量晶体频率的变化,可以间接计算出待称物体的质量。

为了提高石英晶体微天平的灵敏度和稳定性,常常使用MEMS技术制造微小的石英晶体天平。

MEMS技术是将微型电子元件和机械结构集成到芯片上的一种方法。

通过精密加工和微细组装,可以制造出高度精密的微天平。

石英晶体微天平的工作过程可以概括为以下几个步骤:1.初始状态:石英晶体天平处于自由悬挂的状态,即未受到任何外力的作用。

2.放置待称物体:待称物体被放置在石英晶体上,使之产生质量的增加。

3.晶体振动:通过施加激励电场,晶体被激发成振动状态。

振动频率与晶体的质量成正比。

4.频率测量:利用频率计或计数器等设备测量振动晶体的频率。

由于质量的增加,频率降低。

5.质量计算:根据频率的变化,利用预先测定的标定曲线,可以计算出待称物体的质量。

石英晶体微天平具有很高的精度和稳定性,可以用于测量微量物质的质量。

它具有灵敏度高、响应速度快、重复性好等优点。

因此,被广泛应用于化学分析、生物医学、材料研究等领域。

除了石英晶体微天平的工作原理,还有一些相关的内容需要考虑。

例如,如何进行标定和校准,以确保测量结果的准确性;如何对称重过程中的环境干扰进行抑制和补偿;如何设计和制造高性能的石英晶体和微天平结构等等。

这些内容在实际应用中都是非常重要的,可以通过不同的技术和方法来解决。

总结起来,石英晶体微天平是一种基于石英晶体压电效应和MEMS技术的精密称重仪器。

石英晶体微天平原理

石英晶体微天平原理

石英晶体微天平原理石英晶体微天平是一种利用石英晶体自振的频率变化来测量微小质量变化的仪器。

石英晶体是一种具有特殊振动特性的晶体,其晶格结构稳定、机械强度高、表面平整,并且具有强烈的谐振现象。

因此,石英晶体被广泛应用于计时、频率控制、传感器等领域。

利用石英晶体微天平可以实现对微量物质的检测和分析,具有高灵敏度、高分辨率、高精度等优点。

石英晶体微天平原理基于质量和频率之间的关系。

石英晶体在电场作用下会发生谐振振动,其频率和振幅取决于晶体的尺寸和弹性常数。

当晶体上附着物质使其质量发生微小变化时,晶体振动频率会发生变化。

根据爱因斯坦质能方程,质量和能量是等价的,因此质量变化会导致振动频率的变化。

将石英晶体作为微天平的敏感元件,利用电子衍射、电子束蒸发、溅射沉积等技术在其表面制备一层薄膜,当薄膜表面有生物分子与它相互作用时,其质量就会发生变化,导致晶体振动频率的变化,进而测量出样品的质量。

石英晶体微天平可以应用于生物学、化学、生物医学、环境保护等领域的研究。

其应用范围包括:生物传感、分子识别、药物筛选、蛋白质互作等。

在生物传感领域中,石英晶体微天平可以对细胞膜、酶、抗体等生物大分子进行检测;在分子识别领域中,可以对蛋白质、DNA、RNA等分子进行识别;在药物筛选领域中,可以对药物分子的作用和效果进行评估;在蛋白质互作领域中,可以对蛋白质的相互作用进行研究。

石英晶体微天平的优点还包括操作简单、仪器成本低、样品需求少等。

但是,石英晶体微天平也存在一些问题。

例如,其灵敏度受到环境和温度的影响,需要进行定期校准。

此外,石英晶体微天平也存在着一定的误差和不确定性,需要在实际应用中进行验证和校准。

总之,石英晶体微天平是一种优秀的微量质量检测仪器,其原理是基于石英晶体自振频率与质量之间的关系,利用表面制备的薄膜与生物分子的相互作用实现对样品的检测和分析。

虽然石英晶体微天平存在着一些问题,但其优点远远超过缺点,具有广泛的应用前景。

QCM

QCM
首先将DNA的单链固定于 QCM的电极表面,当待 测试剂中含有与其对应的 另一条DNA单链时,两者 就会结合在一起,引起Q CM表面电极质量的变化, 并通过QCM谐振频率的 变化反映出来。这样通过 谐振频率的变化就可定量 测得待测试剂中含有的特 定DNA单:

将两种相互反应的蛋白质,一种固定于QCM电极表面,另 一种则存在于待测试剂中,通过连续检测QCM输出的变化 即可得到试剂中待测蛋白质的含量或两种蛋白质的相互反 应的活性。 此外当蛋白质在QCM表面存在的结构不同时,蛋白质吸附 层的致密程度不同,QCM的振动情况也会有所不同。因此 通过 QCM的振动情况不但可推测蛋白质在QCM表面的结 构,还可实时分析各种因素对蛋白质结构的影响。
压电效应: 对某些电介质施加机械力,从而引起它们内部的正负电荷中 心发生相对位移,产生极化,进而导致介质两端表面内出现符 号相反的束缚电荷的现象。 牛顿流体: 指在受力后极易变形,且切应力与变形速率成正比的低粘性 流体。 切应力: 物体由于外因而变形时,在物体内部各部分之间所产生的用 于抵抗这种外因的作用,并力图使物体从变形后状态回复到变 形前状态的内力。

电化学传感器:

当QCM用作电化学传感器时,其表面的电极具有QCM工作 电极和电化学工作电极双重身份。即QCM可以同时追踪电 化学反应中的质量变化和电荷变化。 QCM电化学传感器可以用于研究电极表面的各种氧化还原 反应,监测电极物质的淀积和溶解,还可用于分析导电聚 合物在QCM电极表面的反应情况等。

QCM结构简图


QCM晶片结构简图

晶片是从高纯度石英晶体上按一定的方位角(AT)切下的薄片, 然后在晶片的两面镀金,并对金电极进行严格的光学抛光处理。 晶片两面的金电极尺寸不等,A为工作电极与液体接触并吸附 薄膜,B为激励电极与空气接触并保持高度清洁,将AB两电极 接线点引致一侧。 B电极之所以要小于A电极是为了消除边缘效应。

石英晶体微天平

石英晶体微天平

科大张广照小组
16
HS-PNIPAM 短链 在6300min金表面饱和,接枝停止 。1快速;2减慢;3急剧降低,构 象转变,分别对应薄饼,蘑菇,刷 子构象 1,快速接枝到裸露的金表面 2,已接枝,阻止了进一步接枝 3,构象转变,可以容纳新的链。
HS-PNIPAM 长链 1快速接枝2稳定薄饼状
科大张广照小组
46
石英晶体微天平传感器的优点与缺点
石英晶体微天平传感器的主要优点: (1)稳定性好,检测信噪比高; (2)灵敏度高; (3)响应速度快; (4)容易操作,有利于在线实时检测和远程监控; (5)石英晶片价格适当,利于大规模生产。
石英晶体微天平传感器的主要缺点: (1)由于石英晶体微天平传感器的检测机理是物质在石英晶片表
17
5. Adsorption kinetic 吸附过程 Formation of Lipid Bilayer
Richter et al1.8
5. Adsorption kinetic 吸附过程 Formation of Lipid Bilayer
Richter et al1.9
5. Adsorption kinetic 吸附过程 Formation of Lipid Bilayer
科大张广照小组
15
5. Adsorption kinetic 吸附过程 Poly(N-isopropylacrylamide) brush 的构象转变
DTM-PNIPAM不与金表面有化学作用,链段强 烈吸附于金表面,清洗后仍有较大的频率变化, 说明链段-界面作用对接枝动力学的影响。清洗结
果说明短链形成的厚实的刷子状结构,由于 链段-链段排斥,难以插入新链,只是少量吸 附,洗去后频率变化很小。

石英晶体微天平原理

石英晶体微天平原理

石英晶体微天平原理# 石英晶体微天平原理石英晶体微天平(Quartz Crystal Microbalance,QCM)是一种常用的质量测量仪器,广泛应用于物理、化学、生物和材料科学等领域。

QCM基于石英晶体的共振频率变化与其上质量变化之间的关系,可用于测量微量物质的吸附、膜的形成、表面的自组装以及液体的粘度等。

## 原理概述石英晶体微天平由一块厚度约为0.3-3 mm的石英晶体组成,其表面覆盖有金属电极。

晶体通常为圆形或矩形,尺寸在1-10 mm之间。

电极上施加交流电压,将晶体带入共振状态。

当外界有质量吸附在晶体表面时,这会导致晶体质量的微小增加,同时引起共振频率的变化。

通过测量频率变化的大小,我们可以推断出质量变化的大小。

## 共振频率与质量变化的关系晶体的共振频率与其质量和弹性系数有关。

晶体的共振频率与质量成反比,与弹性系数成正比。

当外界质量吸附在晶体表面时,晶体质量增加,导致共振频率下降。

因此,通过测量频率变化的大小,可以确定质量变化的量级。

## 实验操作在进行QCM实验时,首先将清洁的石英晶体放置在实验盒中。

然后,涂覆待测物质的样品溶液或气体在晶体表面,使其吸附。

当样品吸附在晶体表面时,通过电极施加交流电压,使晶体进入共振状态。

由于吸附物质的质量变化,导致晶体质量增加,共振频率下降。

频率变化可以通过专用的频率计或示波器进行测量和记录。

## 应用领域石英晶体微天平在各个领域得到了广泛的应用,如下所示:- 物理学:用于研究表面粗糙度、材料的弹性性质等。

- 化学:用于研究溶液中物质的吸附、反应等。

- 生物学:用于研究生物膜的形成、蛋白质的结构变化等。

- 材料科学:用于研究材料表面的涂层、薄膜的形成等。

## 优势与局限性石英晶体微天平具有以下优势:- 高精度:能够测量微量的质量变化。

- 高灵敏度:能够检测到纳克级的质量变化。

- 实时性:可以实时监测质量的变化。

- 非破坏性:无需破坏样品,可反复使用。

电化学石英晶体微天平

电化学石英晶体微天平

由于仪器集成了多种常用的电化学测量技术,使 得仪器可用作通用电化学测量,也可单独用作石 英晶体微天平的测量(不同时进行电化学测量)。
仪器的使用
• 开机:按下开关,听到仪器风扇声后,双击桌面软件图标, 弹出软件的界面。 • 硬件测试:Setup→Hardware Test
检测正常后会弹出右边对话框 点OK进行实验技术选择
↓Байду номын сангаас
选定实验技术和参数后,便可进行实验。 实验结束后保存数据即可
• 数据处理: DataProc里有很多数据处 理方法,可根据需要进行 选择 Analysis 可以分析数据

关机:先关闭软件再将仪器关闭
注意事项
• 电极夹千万不能接触高于10V的高压电,否 则容易造成仪器的损坏。
感受电极用于四电极体系用时不工作电极的夹头夹在一起四电极对于大电流100ma以上或低阻抗电解池1欧姆例如电池十分重要可消除由于电缆和接触电阻引起的测量误差当用于三电极体系时感受电极应荡空丌用
电化学石英晶体微天平原理及使用
原理及应用
• 电化学石英晶体微天平(electrochemical quartzcrystal microbalance)简称EQCM,是压电传感与电化学方法相结 合发展起来的技术。 • 其原理是基于石英晶体振荡片上吸附或沉积时,晶体振荡 频率发生变化,它与晶片上沉积物的质量变化有简单的线 性关系。 • 它能在电化学反应过程中同时获得质量变化的信息,检测 灵敏度可达ng级。是研究液/固界面最有效的工具之一, 可用于金属电沉积与腐蚀、吸附与脱附、成核与晶体成长、 电化学聚合与溶剂效应、膜的掺杂与去掺杂等基本电化学 行为的研究。
• 含石英晶体振荡器,频率计数器,快速数字信号发生器, 高分辨高速数据采集系统,电位电流信号滤波器,信号增 益,iR降补偿电路,以及恒电位仪/恒电流仪 。 • 仪器可工作于二,三,或四电极的方式。四电极对于大电 流或低阻抗电解池(例如电池)十分重要,可消除由于电 缆和接触电阻引起的测量误差。

石英晶体微天平

石英晶体微天平

国外:相当成熟、商品化、美国的QCM.Research公司的 产品用于NASA火星探测车“Sojourner”的太阳能电池板的 灰尘厚度,从而及时清理灰尘以免影响太阳能电池板的效率; 也有用于检查太空舱的气密性,宇宙射线强度等的产品。 国内外现状分析 国内外状况分析
选题依据
美国生产的QCM对于基频为5MHz的QCM芯片而言, 产生1Hz的响应需要的质量为20ng, 即它的理论质 量灵敏度>20ng。而对于基频为27MHz的芯片,产生 1Hz 的响应需要的质量为 0.7ng。显而易见,27MHz 比5MHz具有更高的灵敏度,提高了29倍。其前提条 件是芯片厚度变得更薄。 虽然“降低芯片的厚度, 提高芯片的基频”是提高QCM灵敏度的方法之一, 但这对芯片的制备工艺要求极高, 目前仅有日本 Okahata小组在使用。主流还是基频为5MHz的QCM 芯片。
作品简介 石英晶体微天平
4
样 品 Q C M 的 微 质 量 和 温 度 测 试
石英空间结构 符合要求的振荡波形 7.99M Hz QCM样品
国创答辩 前期基础
选题依据
创新点、关键技术
作品简介
研究方案
预期目标
课题背景 选题依据
国内: 起步阶段 跟踪成果 研究分散 稳定性不好
PowerPoit 2003
修改输入 文件 修改电路 元件及参 数值
结果是否正 确? 分析结 束
研究方案 研究方案
15
选题依据
创新点、关键技术
作品简介
研究方案
预期目标
国创答辩 创新点、关键技术
.避开了降低石英晶体厚度来提高测量灵敏 度的方法,另辟蹊径,通过计算机技术进行 电路调整,实现晶体电路自适应控制来提高 石英晶体微天平的灵敏度,为实际产品的开 发降低成本。 2.从QCM工作基本原理入手,使研究过程 精细、全面,保证系统的、可行性、测量的 可靠性,有效防止了沿用其他人研究成果导 致的理论知识不扎实,测量精度不够也无从 改进的结果。

石英晶体微天平电化学

石英晶体微天平电化学

新高考下高中选课走班制实践研究随着新高考的推出,高中学生的选课方式也发生了变化。

传统的固定课程表在新高考下已经不再适用,取而代之的是走班制选课。

走班制选课是指学生可以根据自己的兴趣和发展需求,自由选择学习内容和学习方式,使其能够更好地发展个性化的学习模式。

本文将对新高考下的高中选课走班制进行实践研究,探讨其优缺点及应用方法。

高中选课走班制的优点之一是能够满足学生个性化发展的需求。

传统的固定课程表无法满足每个学生的兴趣和发展需求,而走班制可以让学生根据自己的兴趣和特长选择课程,从而更好地发展自己的优势。

学生可以选择自己感兴趣的科目进行深入学习,培养自己的兴趣爱好,提高学习积极性和主动性。

走班制也可以满足学生未来发展的需求,比如某些学生可能希望将来进入艺术、体育、科技等领域,他们可以选择相关的学科进行学习和实践。

高中选课走班制也可以提高教学质量。

传统的固定课程表对学生的学习进度和需求都很难进行个性化的调整,而走班制可以根据学生的学习能力和需求进行差异化教学。

学生可以根据自己的学习情况选择适合自己的学习进程和学习方式,使教学更加有针对性,提高学生的学习效果。

走班制也可以引入更多外部教育资源,比如请专业的教师来进行特殊课程的授课,提供更全面、专业的教学内容和方式。

高中选课走班制也存在一些挑战和不足之处。

走班制会给学校教学管理带来一定的困难。

传统的固定课程表可以通过固定的教学安排来进行管理,而走班制则需要学校设计更加复杂的课程规划和教学管理方案,增加了学校管理的难度和工作量。

走班制也会增加学生选课的难度,需要学生在众多课程中进行选择,需要一定的自主学习和判断能力。

对于一些学习能力较弱或者缺乏自主学习能力的学生来说,选择适合自己的课程可能会存在困难。

针对高中选课走班制的应用方法,可以采取以下措施。

学校应该建立一个完善的选课指导系统,为学生提供选课的指导和帮助,包括提供详细的课程介绍和课程设置信息,给予学生选择的建议和意见。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提高样机的灵敏度。
国创答辩 研究内容
1. 设计电路,达到电路对石英晶体稳定的自 适应控制降低对 QCM晶体厚度的高要求。 2. 搭载使QCM产生稳定频率的电路,根据工 作原理逐步提高 QCM 的测量精度。 3.做出实现低成本的同时提高石英晶体微天平 控制精度的 QCM样机。
研究方案 研究目标
14
建立电路输入文件确 定分析类型
石物 理英 学晶 体院 微 国天 平创 项 (QCM) 原目 理 及参 赛样 作机 设品 计
小组成员介绍
武晓佳
段璎宸
董丽君 国创答辩
刘静
董振余
展示内容
选题依据
创新点、关键技术
作品简介 研究方案
预期目标
国作创品答简辩介
石英晶体微天平( Quartz crystal microbalance ) 是一种非常灵敏的质量检测仪器,其测量精度可达纳 克级,比灵敏度在微克级的电子微天平高 100 倍,理 论上可以测到的质量变化相当于单分子层或原子层的 几分之一。
如果可以降低芯片的厚度 同时提高QCM的灵敏度将会 在学术领域产生巨大的影响。
主要是用来进行微质量的测量,精度 可以达到纳克级,具有灵敏度高 ,稳定性好、 通用性高、工作温度范围宽、尺寸小、耐 振动性能强等优点。目前,随着研究的不 断深入,QCM 已经被广泛应用于液相、固 相、气相中进行各种物质成分的研究和分 析。在生物医学,化学,环境监测,航天 航空等领域有着广泛的应用和广阔的前景 和较高的科研价值。
创新点、特色
1.精确构建数学模型和电子线路仿真模型, 不忽略任何影响产品精确度的微小因素, 使样机的设计制作变得容易,为实际产品 的开发提供可靠的理论依据。 2.做出可以测量微小质量的QCM样机,。 3.电路设计,实现晶体电路的自适应控制。
关键技术
1.本小组为此次科研活动准备了充足的资料,包括国内重点院校的研究成果, 本校专业老师的指导和耐心讲解,以及本项目的研究生学长的介绍和样机展示。 对石英晶体微天平的工作原理及结构设计有了一定的了解,对研究方向、步骤 都有了很好的把握。 2.指导老师在电路研究方面有多年的经验,是本学院电子电气专业带头人、具 有较强的专业性,曾指导过的许多科研国创小组都取得了优秀的科研成果,作 为第一作者发表了许多专业的学术论文并编写过电子线路等大学物理专业课教 材。 3.我们已经通过实验测得了粉尘质量和振荡频率的关系,为接下来的研究奠定 了良好的基础。
执行PSPICE仿真程 序
结果是否正 确?
分析结 束
修改输入 文件
修改电路 元件及参
数值
研究方案 研究方案
15
选题依据
创新点、关键技术
作品简介
研究方案
预期目标
创国新创点答、辩关键技术
1.避开了降低石英晶体厚度来提高测量灵敏 度的方法,另辟蹊径,通过计算机技术进行 电路调整,实现晶体电路自适应控制来提高 石英晶体微天平的灵敏度,为实际产品的开 发降低成本。 2. 从QCM 工作基本原理入手,使研究过程 精细、全面,保证系统的、可行性、测量的 可靠性,有效防止了沿用其他人研究成果导 致的理论知识不扎实,测量精度不够也无从 改进的结果。
选题依据 应用价值
10
选题依据
创新点、关键技术
作品简介 研究方案 国研创究答方辩案
预期成果
从石英晶体内部结构,压电效应,频率特性, QCM的原理和应用,晶体的振荡电路等进行研 究,全面扎实地掌握石英晶体特质对QCM工作 的影响。
研究方案 研究内容
12
研 究 方 案
型 进 论 研 进及 行 。 究 行压 Q的 面 对C构电 实 电 石电 振 扎QM建C路 验 路 英效 荡 实从M的数仿 验 结 晶应 电 地石原工学真证构体, 路 掌英理作模模同,微频等握晶和的型型时搭天率进石体应影()寻载平特行英内用响构进找电样性研晶部,。建行并路机,究体结晶理丰并设,特Q构体C论富进计全质,M仿原行,工真有试逐作。理验步模,
可行性分析
选题依据
创新点、关键技术
项目简介 研究方案 预期目标
预期目标
1.本小组为此次科研活动准备了充足的资料,包括国内重点院校的研究成果, 本校专业老师的指导和耐心讲解,以及本项目的研究生学长的介绍和样机展示。 对石英晶体微天平的工作原理及结构设计有了一定的了解,对研究方向、步骤 都有了很好的把握。 2.指导老师在电路研究方面有多年的经验,是本学院电子电气专业带头人、具 有较强的专业性,曾指导过的许多科研国创小组都取得了优秀的科研成果,作 为第一作者发表了许多专业的学术论文并编写过电子线路等大学物理专业课教 材。 3.我们已经通过实验测得了粉尘质量和振荡频率的关系,为接下来的研究奠定 了良好的基础。
创新点、关键技术
作品简介
研究方案
预期目标
课 选题背依景据
国内: 起步阶段 跟踪成果
研究分散 稳定性不好
PowerPoit 2003
国外:相当成熟、商品化、美国的QCM.Research 公司的 产品用于NASA 火星探测车“Sojourner ”的太阳能电池板的 灰尘厚度,从而及时清理灰尘以免影响太阳能电池板的效率; 也有用于检查太空舱的气密性,宇宙射线强度等的产品。
国选内题外依现据状分国析内外状况分析
美国生产的QCM对于基频为5MHz的QCM芯片而言, 产生1Hz的响应需要的质量为20ng, 即它的理论质 量灵敏度>20ng。而对于基频为27MHz的芯片,产生 1Hz 的响应需要的质量为 0.7ng。显而易见,27MHz 比5MHz具有更高的灵敏度,提高了29倍。其前提条 件是芯片厚度变得更薄。 虽然“降低芯片的厚度, 提高芯片的基频”是提高QCM灵敏度的方法之一, 但这对芯片的制备工艺要求极高, 目前仅有日本 Okahata小组在使用。主流还是基频为5MHz的QCM 芯片。
选题依据 国内外现状分析
选题依据 学术价值
QCM 作为一种新型的介
微称重技术,能够用于高压等 极端实验条件,如果可以降低 芯片的厚度同时提高QCM的 灵敏度将会在学术领域产生巨 大的影响。
对于快速测量化合物在 高压流体中的静态和动态行 为过程、大气与环境污染物 的监测、金属腐蚀与防护、 高分子相变、气相反应动力 学的研究等都具有重要意义。
石英晶体微天平利用了石英晶体谐振器的压电 特性,将石英晶振电极表面质量变化转化为石英晶体 振荡电路输出电信号的频率变化,进而通过计算机等 其他辅助设备获得高精度的数据。
作品简介 石英晶体微天平
4


Q

M








符7石.合9英9要M空求H间的z 结Q振C构荡M波样形品

国创答辩 前期基础
选题依据
相关文档
最新文档