工程光学课后答案(郁道银版)

合集下载

郁道银 工程光学-物理光学答案整理

郁道银 工程光学-物理光学答案整理

第一章 光的电磁理论基础1.一平面电磁波可表示为 x E = 0 ,y E = 2cos[2π×1014(c z-t )+2π] ,z E = 0,求: (1)该电磁波的频率、波长、振幅和原点的初相位? (2)波的传播方向和电矢量的振动方向? (3)相应的磁场B 的表达式?解:(1)由y E = 2cos[2π×1014(c z-t )+2π]知: 频率:f=1014(Hz )λ=ct=c/f =ss m 114810103⨯=6103⨯(m) )(3m μ= A=2(m v ) 0ϕ=2π (2)传播方向Z , 振动方向Y 。

(3)相应磁矢量B 的大小εμ1=B E C = 881067.01032-⨯=⨯=B ()⎪⎪⎪⎩⎪⎪⎪⎨⎧==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯⨯-=-002102cos 1067.0148z y x B B T t c z B ππ2.在玻璃中传播的一个线偏振光可以表示为21510cos 10(),0,00.65x y z zE t E E cπ=-==,求:(1)光的频率、波长、振幅;(2)玻璃的折射率;(3)光波的传播方向和电矢量的振动方向。

解:(1)由21510cos 10()0.65x zE t cπ=-可知: 15141051022f ωπππ===⨯15220.39100.65um kcππλπ=== A=2(m v )xz(v)0Z H E =⨯y(E)(H)(2) 1.53c c n v fλ=== (3)传播方向Z , 振动方向X 。

3. 已知:h=0.01mm 5.1=μnm 500=λ 插入前后所引起的光程位相变化求光程的位相变化 解:)(10501.05.001.0101.05.13mm l -⨯=⨯=⨯-⨯=∆ )(202rad lππλϕ=⨯∆=∆4.已知: ()t a E ωα-=111cos ,()t a E ωα-=222cosHz 15102⨯=πω ,m v a 61= ,m v a 82= ,01=α,22πα=求:合成波表达式解:()()t a t a E E E ωαωα-+-=+=221121cos cos()t A ωα-=cos)cos(2212122212αα-++=a a a a Am v 100c o s 86264362=⨯⨯++=π3406806cos cos sin sin 22112211=++⨯=++=αααααa a a a tg)(927.01801.531.53)34(rad arctg o =⨯===πα ())(102927.0cos 105m v t E ⨯-=π5. 已知:()t A x E c zx -=ωcos 0 ,()[]450cos πωω+-=t A y E c z y求:所成正交分量的光波的偏振态 解:由已知得 A a a ==21,454512πωπωαα=⋅-+⋅=-c z c z 代入椭圆方程:()()1221221222212sin cos 2αααα-=--+a a E E a E a E y x y x2122222222=-+A E E A E A E y x y x ()2245sinsin 12-==-παα <0 ∴右旋椭圆光1λ椭圆长轴与x 轴夹角ψ ∞=-=ψδcos 22222121a a a a tg oo 902702==ψ∴或 又2345ππδπ<=< 的解舍去o 902=ψ∴o 2702=ψ∴ o135=ψ 第二章光的干涉和干涉系统1。

工程光学_郁道银_光学习题解答

工程光学_郁道银_光学习题解答
解:
6.希望得到一个对无限远成像的长焦距物镜,焦距f′=1200mm,由物镜顶点到像面的距离(筒长)L=700 mm,由系统最后一面到像平面的距离(工作距)为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。
解:
7.一短焦距物镜,已知其焦距为35 mm,筒长L=65 mm,工作距 lk′,按最简单结构的薄透镜系统考虑,求系统结构。
4.用焦距=450mm的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm的玻璃平板,若拍摄倍率 ,试求物镜后主面到平板玻璃第一面的距离。
解:
此为平板平移后的像。
5.棱镜折射角 ,C光的最小偏向角 ,试求棱镜光学材料的折射率。
解:
6.白光经过顶角 的色散棱镜,n=1.51的色光处于最小偏向角,试求其最小偏向角值及n=1.52的色光相对于n=1.51的色光间的交角。
4。垂直入射的平面波通过折射率为n的玻璃板,透射光经透镜会聚到焦点上。玻璃板的厚度沿着C点且垂直于图面的直线发生光波波长量级的突变d,问d为多少时焦点光强是玻璃板无突变时光强的一半。
解:将通过玻璃板左右两部分的光强设为 ,当没有突变d时,
当有突变d时
6。若光波的波长为 ,波长宽度为 ,相应的频率和频率宽度记为 和 ,证明: ,对于 =632.8nm氦氖激光,波长宽度 ,求频率宽度和相干
解:
3.一光学系统由一透镜和平面镜组成,如图3-29所示,平面镜MM与透镜光轴垂直交于D点,透镜前方离平面镜600 mm有一物体AB,经透镜和平面镜后,所成虚像 至平面镜的距离为150 mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
解:平面镜成β=1的像,且分别在镜子两侧,物像虚实相反。

大学工程光学_郁道银_光学习题很全的解答

大学工程光学_郁道银_光学习题很全的解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

第一章习题1 、已知真空中的光速c =3 m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、 火石玻璃(n=1.65)、加拿大树胶( n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333 时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99 m/s, 当光在火石玻璃中,n =1.65 时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97 m/s , 当光在金刚石中,n=2.417 时,v=1.24 m/s 。

2 、一物体经针孔相机在 屏上成一 60mm 大小的像,若将屏拉远 50mm ,则像的 大小变为 70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不 变,令屏到针孔的初始距离为 x ,则可以根据三角形相似得出:所以 x=300mm即屏到针孔的初始距离为 300mm 。

3 、一厚度为200mm 的平行平板玻璃(设 n=1.5),下面放一直径为 1mm 的金 属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为 x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反 射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到 金属片。

而全反射临界角求取方法为:(1)其中 n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界 角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径 x=179.385mm , 所以纸片最 小直径为 358.77mm 。

4 、光纤芯的折射率为n纤的数值孔径(即 n1、包层的折射率为n2,光纤所在介质的折射率为n 0,求光 I 0sinI1,其中1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

工程光学郁道银第二版习题解答

工程光学郁道银第二版习题解答

工程光学习题解答 CH11、 生活中有很多光学现象,例如,两个手电筒的发出的光在空气中相遇后又独自的直线转播,平面镜成像,水底的鱼看起来比实际浅等都符合光学基本定律。

2、 根据公式v=c/n 可得:光在水中的传播速度为:v=2.25×108m/s 光在冕牌玻璃中的传播速度为:v=1.987×108m/s 光在火石玻璃中的传播速度为:v=1.82×108m/s 光在加拿大树胶中的传播速度为:v=1.96×108m/s 光在金刚石中的传播速度为:v=1.241×108m/s3、 根据题意可得,可以设x 为屏到孔的距离,根据几何关系有如下式子成立:=+50x x 7060,可以解得x=300mm 4、 见图,本题涉及到全反射现象。

金属片边缘点发出光线照射到玻璃另一面是光密介质传入光疏介质,符合全反射条件,=θ∠ACB,有公式:,15.1sin 90sin =θ32sin =θ, D=2L CD +1=358.77mm图1.1习题45、①光从光密介质射到它与光疏介质的界面上,②入射角等于或大于临界角.这两个条件都是必要条件,两个条件都满足就组成了发生全反射的充要条件。

6、只要证明入射角和出射角相等就可以。

7、见下图,可知,光线通过光学原件后偏角为:δ=αθ-,有1s i n s i n n=∂θ,由于∂,θ都很小,可知,∂=∂=sin ,sin θθ,得δ=αθ-=)1(-∂n图1.2 题78、见课本图1.6所示,数值孔径一般代表光纤传播光的能力。

记为NA 。

根据三角函数关系及其全反射临界条件有:=Im sin 90sin 21n n ,,01Im)90sin(1sin n n I =-解得NA=n 0sin I 1=2221n n -.9、光在冕牌玻璃中的折射率为n=1.51,由全反射临界条件:∂sin 90sin =n,由图可以知道,β=45o -∂,将n=1.51代人,可以解得θ=5o 40'。

郁道银老师主编工程光学3课后答案

郁道银老师主编工程光学3课后答案

=
1−
sin 2 φ n2
1 =n
n 2 − sin 2 φ
d'
=
d
cos
I
' 1
(sin
I1
cos
I
' 1
− cos I1 sin
I
' 1
)
d
=
sin
I1

d
cos I1 sin
cos
I
' 1
I
' 1
d
=
sin
I1 (1 −
cos I1
n
cos
I
' 1
)
d sin φ (1 − cosφ )
=
n2 − sin 2 φ
解:该题可以应用单个折射面的高斯公式来解决,
设凸面为第一面,凹面为第二面。 ( 1 ) 首 先考 虑 光束 射 入 玻璃 球 第 一面 时 的 状态 , 使用 高 斯 公式 :
会聚点位于第二面后15mm 处。
(2 )
将第 一面镀 膜,就 相当于 凸面镜
像位于第一面的右侧,只是延长 线的交点,因此是虚像。
∴ f ' = 150mm
答:透镜焦距为100mm。
5、如图3-30所示,焦距为 f ' =120mm 的透镜后有一厚度为 d =60mm 的平行平板,其折射率
n =1.5。当平行平板绕 O 点旋转时,像点在像平面内上下移动,试求移动量△ y' 与旋
转角φ的关系,并画出关系曲线。如果像点移动允许有 0.02mm 的非线形度,试求φ允
f ' = − l2 =100mm
解得:
2

工程光学 郁道银版 习题解答(一题不落)第十一章_光的干涉和干涉系统

工程光学 郁道银版 习题解答(一题不落)第十一章_光的干涉和干涉系统

第十一章 光的干涉和干涉系统1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。

解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。

继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。

试求注入气室内气体的折射率。

解:设气体折射率为n ,则光程差改变()0n n h ∆=-图11-47 习题2 图()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。

玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。

解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。

工程光学,郁道银,第一章习题及答案

工程光学,郁道银,第一章习题及答案

学习必备欢迎下载第一章习题及答案1、已知真空中的光速c= 3*10 8m/s,求光在水( n=1.333)、冕牌玻璃( n=1.51 )、火石玻璃( n=1.65 )、加拿大树胶( n=1.526 )、金刚石( n=2.417 )等介质中的光速。

解:则当光在水中, n=1.333 时, v=2.25*10 8m/s, 当光在冕牌玻璃中, n=1.51 时, v=1.99*10 8m/s, 当光在火石玻璃中, n=1.65 时, v=1.82*10 8m/s,当光在加拿大树胶中, n=1.526 时, v=1.97*10 8m/s,当光在金刚石中, n=2.417 时, v=1.24*10 8m/s。

2、一物体经针孔相机在屏上成一 60mm大小的像,若将屏拉远 50mm,则像的大小变为 70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为 x,则可以根据三角形相似得出:所以 x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为 200mm的平行平板玻璃(设 n=1.5 ),下面放一直径为 1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为 x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中 n2=1, n 1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立( 1)式和( 2)式可以求出纸片最小直径 x=179.385mm,所以纸片最小直径为 358.77mm。

4、光纤芯的折射率为 n1、包层的折射率为 n 2, 光纤所在介质的折射率为 n0,求光纤的数值孔径(即 n0sinI 1, 其中 I 1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

工程光学,郁道银,第二章习题及答案

工程光学,郁道银,第二章习题及答案

工程光学,郁道银,第二章习题及答案本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March第二章习题及答案1、已知照相物镜的焦距f’=75mm,被摄景物位于(以F点为坐标原点)x=、-10m、-8m、-6m、-4m、-2m 处,试求照相底片应分别放在离物镜的像方焦面多远的地方。

解:(1)xx′=ff′,x= -∝得到:x′=0(2)x= -10 ,x′=(3)x= -8 ,x′=(4)x= -6 ,x′=(5)x= -4 ,x′=(6)x= -2 ,x′=2、已知一个透镜把物体放大-3x 投影在屏幕上,当透镜向物体移近18mm 时,物体将被放大-4x 试求透镜的焦距,并用图解法校核之。

解:3.一个薄透镜对某一物体成实像,放大率为-1x,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动20mm,放大率为原先的3/4 倍,求两块透镜的焦距为多少解:4.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向透镜 移近 100mm ,则所得像与物同大小,求该正透镜组的焦距。

解:5.希望得到一个对无限远成像的长焦距物镜,焦距 =1200mm ,由物镜顶点到 像面的距离 L =700 mm ,由系统最后一面到像平面的距离(工作距)为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。

解:6.一短焦距物镜,已知其焦距为 35 mm ,筒长 L =65 mm ,工作距,按最简单结 构的薄透镜系统考虑,求系统结构。

解:7.已知一透镜求其焦距、光焦度。

解:8.一薄透镜组焦距为100 mm,和另一焦距为50 mm 的薄透镜组合,其组合焦距仍为100 mm,问两薄透镜的相对位置。

解:9.长60 mm,折射率为的玻璃棒,在其两端磨成曲率半径为10 mm 的凸球面,试求其焦距。

解:10.一束平行光垂直入射到平凸透镜上,会聚于透镜后480 mm 处,如在此透镜凸面上镀银,则平行光会聚于透镜前80 mm 处,求透镜折射率和凸面曲率半径。

工程光学第四章课后习题及答案郁道银

工程光学第四章课后习题及答案郁道银
第一个透镜对其前面所成像为本身第二个透镜对其前面所成像为其位置
工程光学第四章课后习题及答案郁道银
第四章习题及答案
1(二个薄凸透镜构成的系统,其中,,,位于后,若入射平行光,请判断一下孔径光阑,并求出入瞳的位置及大小。
解:判断孔径光阑:第一个透镜对其前面所成像为本身,
第二个透镜对其前面所成像为,其位置:
大小为:
故第一透镜为孔径光阑,其直径为4厘米.它同时为入瞳.
2(设照相物镜的焦距等于75mm,底片尺寸为55 55,求该照相物镜的

工程光学_郁道银_光学习题解答

工程光学_郁道银_光学习题解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学,郁道银,第二章 习题及答案

工程光学,郁道银,第二章 习题及答案

第二章习题及答案1、已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)x=-∞、-10m、-8m、-6m、-4m、-2m 处,试求照相底片应分别放在离物镜的像方焦面多远的地方。

解:(1)xx′=ff′,x= -∝得到:x′=0(2)x= -10 ,x′=0.5625(3)x= -8 ,x′=0.703(4)x= -6 ,x′=0.937(5)x= -4 ,x′=1.4(6)x= -2 ,x′=2.812、已知一个透镜把物体放大-3x 投影在屏幕上,当透镜向物体移近18mm 时,物体将被放大-4x 试求透镜的焦距,并用图解法校核之。

解:3.一个薄透镜对某一物体成实像,放大率为-1x,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动20mm,放大率为原先的3/4 倍,求两块透镜的焦距为多少?解:4.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向透镜移近100mm,则所得像与物同大小,求该正透镜组的焦距。

解:5.希望得到一个对无限远成像的长焦距物镜,焦距=1200mm,由物镜顶点到像面的距离L=700 mm,由系统最后一面到像平面的距离(工作距)为,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。

解:6.一短焦距物镜,已知其焦距为35 mm,筒长L=65 mm,工作距,按最简单结构的薄透镜系统考虑,求系统结构。

解:7.已知一透镜求其焦距、光焦度。

解:8.一薄透镜组焦距为100 mm,和另一焦距为50 mm 的薄透镜组合,其组合焦距仍为100 mm,问两薄透镜的相对位置。

解:9.长60 mm,折射率为1.5 的玻璃棒,在其两端磨成曲率半径为10 mm 的凸球面,试求其焦距。

解:10.一束平行光垂直入射到平凸透镜上,会聚于透镜后480 mm 处,如在此透镜凸面上镀银,则平行光会聚于透镜前80 mm 处,求透镜折射率和凸面曲率半径。

解:。

工程光学习题郁道银解答样本

工程光学习题郁道银解答样本

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n, 求光纤的数值孔径( 即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角) 。

解: 位于光纤入射端面, 满足由空气入射到光纤芯中, 应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射, 使得光束能够在光纤内传播, 则有:(2)由( 1) 式和( 2) 式联立得到nsinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上, 求其会聚点的位置。

如果在凸面镀反射膜, 其会聚点应在何处? 如果在凹面镀反射膜, 则反射光束在玻璃中的会聚点又在何处? 反射光束经前表面折射后, 会聚点又在何处? 说明各会聚点的虚实。

解: 该题能够应用单个折射面的高斯公式来解决,设凸面为第一面, 凹面为第二面。

( 1) 首先考虑光束射入玻璃球第一面时的状态, 使用高斯公式:会聚点位于第二面后15mm处。

( 2) 将第一面镀膜, 就相当于凸面镜像位于第一面的右侧, 只是延长线的交点, 因此是虚像。

还能够用β正负判断:( 3) 光线经过第一面折射: , 虚像第二面镀膜,则:得到:( 4) 再经过第一面折射物像相反为虚像。

6、一直径为400mm, 折射率为1.5的玻璃球中有两个小气泡, 一个位于球心, 另一个位于1/2半径处。

沿两气泡连线方向在球两边观察, 问看到的气泡在何处? 如果在水中观察, 看到的气泡又在何处?解: 设一个气泡在中心处, 另一个在第二面和中心之间。

( 1) 从第一面向第二面看( 2) 从第二面向第一面看( 3) 在水中7、有一平凸透镜r1=100mm,r2=,d=300mm,n=1.5,当物体在时, 求高斯像的位置l’。

在第二面上刻一十字丝, 问其经过球面的共轭像在何处? 当入射高度h=10mm, 实际光线的像方截距为多少? 与高斯像面的距离为多少?解:8、一球面镜半径r=-100mm,求=0 , -0.1 , -0.2 , -1 , 1 , 5, 10, ∝时的物距像距。

工程光学课后答案第二版郁道银

工程光学课后答案第二版郁道银

工程光学第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=)、冕牌玻璃(n=)、火石玻璃(n=)、加拿大树胶(n=)、金刚石(n=)等介质中的光速。

解:则当光在水中,n=时,v= m/s,当光在冕牌玻璃中,n=时,v= m/s,当光在火石玻璃中,n=时,v= m/s,当光在加拿大树胶中,n=时,v= m/s,当光在金刚石中,n=时,v= m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=,所以纸片最小直径为。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=的玻璃球上,求其会聚点的位置。

大学工程光学郁道银光学习题很全解答

大学工程光学郁道银光学习题很全解答

第一章习题1、真空中的光速c=3m/s,求光在水〔〕、冕牌玻璃〔〕、火石玻璃〔〕、加拿大树胶〔〕、金刚石〔〕等介质中的光速。

解:那么当光在水中,时,m/s,当光在冕牌玻璃中,时,m/s,当光在火石玻璃中,n=时,m/s,当光在加拿大树胶中,时,m/s,当光在金刚石中,时,m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,假设将屏拉远50mm,那么像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线那么方向不变,令屏到针孔的初始距离为x,那么可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃〔设〕,下面放一直径为1mm的金属片。

假设在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,那么根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1,n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立〔1〕式和〔2〕式可以求出纸片最小直径,所以纸片最小直径为。

4、光纤芯的折射率为 n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径〔即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角〕。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律那么有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,那么有:(2)由〔1〕式和〔2〕式联立得到n0sinI1.5、一束平行细光束入射到一半径r=30mm、折射率的玻璃球上,求其会聚点的位置。

工程光学,郁道银,第一章习题及答案

工程光学,郁道银,第一章习题及答案

学习必备欢迎下载第一章习题及答案1、已知真空中的光速c=3*108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n=1.65 时,v=1.82*108m/s,当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s,当光在金刚石中,n=2.417 时,v=1.24*108m/s。

2、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为 n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即 n0sinI1,其中 I1 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

工程光学课后答案_机械工业出版社_郁道银_物理光学部分12_13_15

工程光学课后答案_机械工业出版社_郁道银_物理光学部分12_13_15
y R R-y
解 : (1)斜率k =
0.1 1 = 100 1000
y = kx =
1 x 1000
0 ≤ x ≤ 100mm | y |= z2 2R
z 2 = R 2 − ( R − y ) 2 = 2 R | y | − | y |2 h= 1 z2 x z2 x+ = + = 常数 - - - (1) 1000 2 R 1000 2000
(2) Δ = 2h + N= 2 (
λ
2
= (2 N + 1)
λ
2
2h = N ⋅ λ
h=N⋅
λ
2
代入(1)式得
x z2 z2 + ) 解得x = 500 Nλ − λ 1000 2000 2 x ≈ 500N ⋅ 500( μm) = 0.25 N (mm)
15.假设照明迈克耳逊干涉仪的光源发出波长为 λ1 和 λ2 的两个单色光波, λ 2 = λ1 + Δλ ,
Δ = 0, I ( p ) = I 0 + I 0 + 2 I 0 ⋅ I 0 ⋅ cos kΔ = 4 I 0
C 当有突变 d 时 Δ = (n − 1)d
'
I ' ( p ) = I 0 + I 0 + 2 I 0 I 0 cos kΔ ' = 2 I 0 + 2 I 0 cos kΔ' Q I ' ( p) = 2π 1 I ( p) ∴ cos kΔ' = 0 2
S1
n ⋅ Δl + r1 = r2
r2 D
Δ x=5mm
S2 r1
⎛d ⎞ r = D + ⎜ − Δx ⎟ ⎝2 ⎠
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档