2015-2016年八年级数学上册质量检测试题(含答案)

合集下载

2015-2016学年八年级上学期调研考试数学试卷及答案

2015-2016学年八年级上学期调研考试数学试卷及答案

八 年 级 数 学 试 题(全卷满分120分,考试时间100分钟)一、精心选一选:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只...有.一项是正确的,把所选答案填入下表.1.下列是我国四大银行的商标,其中不是轴对称图形的是2.2、-3.14、25、12、0.020020002…,其中无理数的个数是 A .2个 B .3个 C .4个 D .5个 3. 等腰三角形的周长是16,一边长为4,则这个等腰三角形腰长为 A .4 B . 6 C .4或6 D .8 4.如果a 、b 、c 是一个直角三角形的三边,则a :b :c 可以等于 A .2:2:4B .3:4:5C .3:5:7D .1:3:95.已知a +2与2a -5都是m 的平方根,则m 的值是 A .1 B . 9 C .-3 D .36.如图所示,△ABC 中,AC=AD=BD ,∠DAC =80°,则∠B 的度数是 A .40° B .35° C .25° D .20°7.利用直尺和圆规作一个角等于已知角,作图如图,请你根据所学的三角形全等的有关知识,说明画出∠A′O′B′=∠AOB 的依据是 A .SASB .ASAC .AASD .SSS8.如图,在△ABC 中,DE 垂直平分AC ,若BC =20cm ,AB =12cm ,则△ABD 的周长为 A .20 cm B . 22 cm C . 26 cm D . 32cm第6题图第7题图9.如图,Rt △ABC 中,∠B=90°,AB=9,BC=6,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段AN 的长等于A . 3B .4C . 5D . 610.勾股定理被誉为“几何明珠” ,在数学的发展历程中占有举足轻重的地位.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC =90°,AB =3,AC =4,点D 、E 、F 、G 、H 、I 都在长方形KLMJ 的边上,则长方形KLMJ 的面积为 A .90 B .100 C .110D .121二、细心填一填:本大题共8小题,每小题3分,共24分.把答案填在横线上. 11.25的算术平方根是 .12.请写出一组你喜欢的勾股数 .,则斜边长为 cm 15.已知等腰三角形的一个内角等于40°,则它的顶角是 °.16.如图,已知AC=AE ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个_____.17.在等边△ABC 中,AB =2 cm ,点D 是BC 边上的任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,BN ⊥AC 于点N ,则DE +DF =__________ cm .18.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动 点,则EC +ED 的最小值是 .三、用心做一做:本大题共2小题,每小题8分,共16分.解答应写出文字说明、推理过程或演算步骤.19.求下列各式中x 的值(1)2(1)40x --= (2)32420x +=第16题图第17题图第18题图20.如图:A 村和B 村在公路l 同侧,且AB =3千米,两村距离公路都是2千米.现决定在公路l 上建立一个供水站P ,要求使P A+PB 最短.(1)用尺规作图,作出点P; (作图要求:不写作法,保留作图痕迹) (2)求出P A+PB 的最小值.四、耐心做一做:本大题共2小题,每小题7分,共14分.解答应写出文字说明、推理过程或演算步骤.21.如图,已知:在△ABC 中,AB =AC . 求证:∠B = ∠C .22.如图,在△ABC 中,BD 、CE 是高,G 、F 分别是BC 、DE 的中点, 连接GF ,求证:GF ⊥DE .五、耐心做一做:本大题共2小题,每小题8分,共16分.解答应写出文字说明、推理过程或演算步骤.23.将长方形纸片ABCD 按如下顺序进行折叠:对折、展平,得折痕EF (如图①);沿GC 折叠,使点B 落在EF 上的点B ′ 处(如图②);展平,得折痕GC (如图③);请你求出图②中∠BCB ′的度数;24.如图,在Rt △ABC 中,∠A=90°,AB=AC=4cm ,若O 是BClACB的中点,动点M在AB移动,动点N在AC上移动,且AN=BM .(1)证明:OM = ON;(2)四边形AMON面积是否发生变化,若发生变化说明理由;若不变,请你求出四边形AMON的面积.六、耐心做一做:本大题共2小题,每小题10分,共20分.解答应写出文字说明、推理过程或演算步骤.25.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上且CE=CA,试求∠DAE的度数;(2))如果把第(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,那么∠DAE与∠BAC有怎样的数量关系?26.材料阅读:在小学,我们了解到正方形的每个角都是90°,每条边都相等;本学期,我们通过折纸得到定理:直角三角形的斜边上的中线等于斜边的一半;同时探讨得知,在直角三角形中,30°的角所对的直角边是斜边的一半.(1)如图1,在等边三角形△ABC内有一点P,且P A=2,PB=3,PC=1.求∠BPC的度数和等边△ABC的边长.聪聪同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2).连接PP′.根据聪聪同学的思路,可以证明△BPP′为等边三角形,又可以证明△ABP′≌△CBP,所以AP’=PC=1,根据勾股定理逆定理可证出△APP′为直角三角形,故此∠BPC= °;同时,可以说明∠BPA=90°,在Rt△APB中,利用勾股定理,可以求出等边△ABC的边AB= .(2)请你参考聪聪同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,祝贺你做完了全部试题!请你再仔细检查一遍,可不要留下不该有的遗憾哦!八年级数学试题参考答案及评分意见 201511说明:1.本意见对每题给出了一种或几种解法供参考,如果考生的解法与本意见不同,可根据试题的主要考查内容比照本意见制定相应的评分细则.2.对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的分段分数.4.只给整数分数.二、填空题(每题3分,共24分)11. 5 12. 如 3;4;5 13 2×103_ml 14. 1315. 40°或100°16. 如AB=AD 等 17. 错误!未找到引用源。

新北师大版2015-2016学年八年级教学质量监测数学试题及答案

新北师大版2015-2016学年八年级教学质量监测数学试题及答案

新北师大版2015-2016学年八年级教学质量监测数学试题第Ⅰ卷 选择题(36分)一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上................) 1A .9B .9±C .3±D .3 2.下列数据中不能作为直角三角形的三边长是A .1、1B. 5、12、13 C .3、5、7D .6、8、103.在直角坐标系中,点M (1,2)关于x 轴对称的点的坐标为A .(﹣1,2)B .(2,﹣1)C .(﹣1,﹣2)D .(1,﹣2)4.如图,下列条件中,不能判断直线a //b 的是A .∠1=∠4B .∠3=∠5C .∠2+∠5=180°D .∠2+∠4=180°5.下列命题中,真命题有①两条直线被第三条直线所截,内错角相等. ②如果∠1和∠2是对顶角,那么∠1=∠2. ③三角形的一个外角大于任何一个内角. ④如果x 2>0,那么x >0. A .1个B .2个C .3个D .4个6.已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗? A .93B. 95C .94D. 967.如果3y =,那么x y 的算术平方根是A .2B .3C .9D .3±8.设M=其中3,2a b ==,则M 的值为 A .2 B . 2- C .1D .1-2016.01.199.国内航空规定,乘坐飞机经济舱旅客所携带行李的重量x(kg)与其运费y(元)之间是一次函数关系,其图象如图所示,那么旅客可携带的免费行李的最大重量为多少?A.20kg B.25kg C.28kg D.30kg(第9题)(第10题)10.已知一次函数y=kx+b的图象如图所示,则下列判断中不正确的是A.方程kx+b=0的解是x=﹣3 B.k>0,b<0C.当x<﹣3时,y<0 D.y随x的增大而增大11. 已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是A B C D (第11题)12. 如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?A.0.4 B.0.6C.0.7 D.0.8第Ⅱ卷非选择题(64分)二、填空题(本题有4小题,每小题3分,共12分.把答案填在答题卡上..........)13. 如图,已知直线y=ax+b 和直线y=kx 交于点P ,则关于x ,y 的二元一次方程组的解是▲ .14.如图,BD 与CD 分别平分∠ABC、∠ACB 的外角∠EBC、∠FCB,若80A ∠=,则∠BDC = ▲ .15.如图,已知A 地在B 地正南方3千米处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (千米)与所行时间t (小时)之间的函数关系图象如图所示的AC 和BD 给出,当他们行走3小时后,他们之间的距离为 ▲ 千米.(第13题) (第14题)(第15题)16. 如图,已知直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,以点A 为圆心,AB 为半径画弧,交x 轴正半轴于点C ,则点C 坐标为 .(第16题)三、解答题(本大题有7题,其中17题9分,18题6分, 19题6分,20题5分,21题8分,22题8分,23题10分,共52分)17.(每小题3分,合计9分)(1(2)计算:02015)(1)π+- (3)解方程组:3(1)55(1)3(5)x y y x -=+⎧⎨-=+⎩18. (6分)如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为点B关于y轴对称的点坐标为点C关于原点对称的点坐标为(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.19.(6分)甲、乙两位同学5次数学成绩统计如下表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题。

2015-2016学年度上学期八年级数学(上)第一章勾股定理检测题附解析

2015-2016学年度上学期八年级数学(上)第一章勾股定理检测题附解析

第一章 勾股定理检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1、下列说法中正确的是( )A 、已知c b a ,,是三角形的三边,则222c b a =+ B 、在直角三角形中,两边的平方和等于第三边的平方C 、在Rt△ABC 中,∠C=90°,所以222c b a =+ D 、在Rt△ABC 中,∠B=90°,所以222c b a =+2、如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来 的( )A 、1倍B 、2倍C 、3倍D 、4倍 3、在△ABC 中,AB =6,AC =8,BC =10,则该三角形为( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等腰直角三角形4、如图,已知正方形B 的面积为144,如果正方形C 的面积为169,那么正方形A 的面积 为( )A 、313B 、144C 、169D 、255、如图,在Rt△ABC 中,∠ACB=90°,若AC =5 cm ,BC =12 cm ,则Rt △ABC 斜边上的高CD 的长为( )A 、6 cmB 、8、5 cmC 、1360cm D 、1330cm 6、分别满足下列条件的三角形中,不是直角三角形的是( )A 、三内角之比为1︰2︰3B 、三边长的平方之比为1︰2︰3C 、三边长之比为3︰4︰5D 、三内角之比为3︰4︰5ABC第4题图7、如图,在△ABC 中,∠ACB=90°,AC =40,BC =9,点M,N 在AB 上,且AM =AC,BN =BC ,则MN 的长为( )A 、6B 、7C 、8D 、98、如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( )A 、6 cmB 、8 cmC 、10 cmD 、12 cm9、如果一个三角形的三边长a,b,c 满足a 2+b 2+c 2+338=10a +24b +26c ,那么这个三角形一定是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形10、在Rt△ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别为a ,b ,c,已知a∶b=3∶4,c =10,则△ABC 的面积为( )A.24B.12C.28D.30 二、填空题(每小题3分,共24分)11、现有两根木棒的长度分别是40 cm 和50 cm ,若要钉成一个三角形木架,其中有一个角 为直角,则所需木棒的最短长度为________、12、在△ABC 中,AB =AC =17 cm ,BC =16 cm ,AD⊥BC 于点D ,则AD =_______、 13、在△ABC 中,若三边长分别为9,12,15,则用两个这样的三角形拼成的长方形的面积 为________、14、如图,某会展中心在会展期间准备将高5 m ,长13 m ,宽2 m 的楼道上铺地毯,已知地 毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要________元钱、第15题图15、(2015·湖南株洲中考) 如图是“赵爽弦图”,△ABH,△BCG,△CDF 和△DAE 是四个BC第7题图全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB =10,EF =2,那么AH 等于 、16、(2015·湖北黄冈中考)在△ABC 中,AB=13 cm ,AC=20 cm ,BC 边上的高为12 cm ,则△ABC 的面积为、17、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2、18、如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m ),却踩伤了花草、 三、解答题(共46分)19、(6分)若△ABC 三边长满足下列条件,判断△ABC 是不是直角三角形,若是,请说明哪个角是直角、 (1)1,45,43===AC AB BC ;(2)△ABC 中,∠A,∠B,∠C 所对的边分别为a ,b ,c ,2=1=2a n b n -,,)1(12>+=n n c 、20、(6分)如图,为修铁路需凿通隧道AC,现测量出∠ACB=90°,AB=5 km,BC=4 km,若每天凿隧道0、2 km,问几天才能把隧道AC凿通?21、(6分)若三角形的三个内角的比是1︰2︰3,最短边长为1,最长边长为2、求:(1)这个三角形各内角的度数;(2)另外一条边长的平方、22、(7分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂吗?23、(7分)张老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数n (n >1)的代数式表示: a =__________,b =__________,c =__________、(2)以a ,b ,c 为边长的三角形是不是直角三角形?为什么?24、(7分)如下图,折叠长方形的一边AD ,使点D 落在BC 边上的点F 处,BC =10 cm ,AB =8 cm 、求:(1)FC 的长;(2)EF 的长、25、(7分)如图,在长方体ABCD A B C D ''''-中,2AB BB '==,AD =3,一只蚂蚁从A 点出发,沿长方体表面爬到C '点,求蚂蚁怎样走路程最短,最短路程是多少?第一章 勾股定理检测题参考答案1、C 解析:A 、不确定三角形是不是直角三角形,故A 选项错误;B 、不确定第三边是不是斜边,故B 选项错误;C 、∠C=90°,所以其对边为斜边,故C 选项正确;D 、∠B=90°时,有b 2=a 2+c 2,所以a 2+b 2=c 2不成立,故D 选项错误、2、B 解析:设原直角三角形的两直角边长分别是a ,b ,斜边长是c ,则a 2+b 2=c 2,则扩大后的直角三角形两直角边长的平方和为()()222224422a b c a b (),+=+=斜边长的平方为()2242c c =,即斜边长扩大到原来的2倍,故选B 、3、B 解析:在△ABC 中,由AB =6,AC =8,BC =10,可推出AB 2+AC 2=BC 2、由勾股定理的逆定理知此三角形是直角三角形,故选B.4、D 解析:设三个正方形A ,B ,C 的边长依次为a ,b ,c ,因为三个正方形的边组成一个直角三角形,所以a 2+b 2=c 2,故S A +S B =S C ,即S A =169-144=25、5、C 解析:由勾股定理可知22222512169AB AC BC =+=+=,所以AB=13 cm,再由三角形的面积公式,有1122AC BC AB CD ⋅=⋅,得60cm 13AC BC CD AB ⋅==()、 6、D 解析:在A 选项中,求出三角形的三个内角分别是30°,60°,90°;在B ,C 选项中,都符合勾股定理的条件,所以A ,B ,C 选项中的三角形都是直角三角形、在D 选项中,求出三角形的三个内角分别是45°,60°,75°,所以不是直角三角形,故选D.7、C 解析:在Rt△ABC 中,AC =40,BC =9,由勾股定理得AB =41、因为BN=BC =9,,所以、8、C 解析:如图为圆柱的侧面展开图,∵ 为的中点,则就是蚂蚁爬行的最短路径、∵ (cm ),∴ (cm ).∵cm ,∴ 22222=68AB CB AC +=+=100(cm ),∴ AB= 10 cm,即蚂蚁要爬行的最短路程是10 cm. 9、B 解析:由,整理,得,即,所以,符合,所以这个三角形一定是直角三角形、10、A 解析:因为a∶b=3∶4,所以设a =3k ,b =4k (k >0)、在Rt△ABC 中,∠C =90°,由勾股定理,得a 2+b 2=c 2、因为c =10,所以9k 2+16k 2=100, 解得k =2,所以a =6,b =8,所以S △ABC =12ab =12×6×8=24、故选A 、11、30 cm 解析:当50 cm 长的木棒构成直角三角形的斜边时,设最短的木棒长为x cm (x >0),由勾股定理,得2224050x +=,解得x=30、12、15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角的平分线互相重合,∴ 1.2BD BC =∵ BC=16,∴ 11168.22BD BC ==⨯= ∵ AD⊥BC,∴ ∠ADB=90°、在Rt△ADB 中,∵ AB=AC =17,由勾股定理,得22222178225AD AB BD =-=-=、∴ AD=15 cm .13、108 解析:因为,所以△是直角三角形,且两条直角边长分别为9,12,则用两个这样的三角形拼成的长方形的面积为、14、612 解析:由勾股定理,得楼梯的底面至楼梯的最高层的水平距离为12 m,所以楼道上铺地毯的长度为5+12=17(m)、因为楼梯宽为2 m,地毯每平方米18元,所以铺完这个楼道需要的钱数为18×17×2=612(元)、15、6 解析:∵ △ABH≌△BCG≌△CDF≌△DAE,∴ AH=DE 、 又∵ 四边形ABCD 和EFGH 都是正方形, ∴ AD=AB=10,HE=EF=2,且AE⊥DE、 ∴ 在Rt△ADE 中,,∴+=∴+=,∴ AH=6或AH= - 8(不合题意,舍去)、16、126或66 解析:本题分两种情况.(1)如图(1),在锐角△ABC中,AB=13,AC=20,BC边上的高AD=12,第16题答图(1)在Rt△ABD中,AB=13,AD=12,由勾股定理,得=25,∴ BD=5、在Rt△ACD中,AC=20,AD=12,由勾股定理,得=256,∴ CD=16,∴ BC的长为BD+DC=5+16=21,△ABC的面积=·BC·AD=×21×12=126、(2)如图(2),在钝角△ABC中,AB=13,AC=20,BC边上的高AD=12,第16题答图(2)在Rt△ABD中,AB=13,AD=12,由勾股定理,得=25,∴ BD=5、在Rt△ACD中,AC=20,AD=12,由勾股定理,得=256,∴ CD=16、∴ BC=DC-BD=16-5=11、△ABC的面积=·BC·AD=×11×12=66、综上,△ABC的面积是126或66、17、49 解析:正方形A,B,C,D的面积之和是最大的正方形的面积,即49 .18、4 解析:在Rt△ABC中,∠C=90°,由勾股定理,得224325 =+=,所以AB=5、他们仅仅少走了(步).19、解:(1)因为,根据三边长满足的条件,可以判断△是直角三角形,其中∠为直角、 (2)因为,所以,根据三边长满足的条件,可以判断△ABC 是直角三角形,其中∠C 为直角、 20、解:在Rt△中,由勾股定理,得222AB AC BC =+,即22254AC =+,解得AC=3,或AC=-3(舍去)、 因为每天凿隧道0、2 km ,所以凿隧道用的时间为3÷0、2=15(天). 答:15天才能把隧道AC 凿通、21、解:(1)因为三个内角的比是1︰2︰3, 所以设三个内角的度数分别为k ,2k ,3k (k≠0)、 由k +2k +3k =180°,得k =30°,所以三个内角的度数分别为30°,60°,90°、(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2、 设另外一条直角边长为x ,则22212x +=,即2=3x 、 所以另外一条边长的平方为3、22、分析:旗杆折断的部分、未折断的部分和折断后原旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出.解:设旗杆未折断部分的长为x m ,则折断部分的长为(16-x )m , 根据勾股定理,得,解得,即旗杆在离底部6 m 处断裂.23、分析:从表中的数据找到规律. 解:(1)n 2-1 2n n 2+1(2)以a ,b ,c 为边长的三角形是直角三角形. 理由如下:∵ a 2+b 2=(n 2-1)2+4n 2=n 4-2n 2+1+4n 2=n 4+2n 2+1=(n 2+1)2=c 2, ∴ 以a ,b ,c 为边长的三角形是直角三角形.24、分析:(1)因为将△翻折得到△,所以,则在Rt△中,可求得的长,从而的长可求;(2)由于,可设的长为,在Rt△中,利用勾股定理解直角三角形即可.解:(1)由题意,得AF =AD =BC =10 cm , 在Rt△ABF 中,∠B=90°, ∵ cm ,∴ 2222210836BF AF AB =-=-=,BF=6 cm,∴(cm ). (2)由题意,得,设的长为,则、在Rt△中,∠C=90°,由勾股定理,得222+EC FC EF =,即,解得,即的长为5 cm.25、分析:要求蚂蚁爬行的最短路程,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解:蚂蚁沿如图(1)所示的路线爬行时,长方形长为,宽为,连接,则构成直角三角形、由勾股定理,得222225229AC AC CC ''=+=+=、 蚂蚁沿如图(2)所示的路线爬行时,长方形长为,宽为,连接,则构成直角三角形、由勾股定理,得22222=+3425AC AD DC ''=+=,、蚂蚁沿如图(3)所示的路线爬行时,长方形ABC D ''长为=5BB B C '''+,宽为AB=2,连接AC ',则构成直角三角形、由勾股定理,得22222=+=25=29.AC AB BC ''+∴ 蚂蚁从点出发穿过A'D'到达C '点时路程最短,最短路程是5.。

【优化版】厦门市2015-2016八年级数学上质量检查(含答案详解)

【优化版】厦门市2015-2016八年级数学上质量检查(含答案详解)

2015—2016学年(上)厦门市八年级质量检测数 学(试卷满分:150分 考试时间:120分钟)一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.多边形的外角和是( )A 。

720°B .540°C .360°D .180° 2.下列式子中表示“n 的3次方"的是( )A 。

n 3B .3nC 。

3nD .3n 3.下列图形,具有稳定性的是( )A 。

B 。

C .D 。

4.计算3a 2÷错误!a 4( )A 。

9a 6B .a 6C .29a D 。

29a 5.(3x +4y -6)2展开式的常数项是( )A 。

-12B .-6C 。

9D .366.如图1,已知OE 是∠AOD 的平分线,可以作为假命题“相等的角是对顶角”的反例的是( ) A 。

∠AOB =∠DOC B 。

∠AOE =∠DOE C .∠EOC 〈∠DOC D .∠EOC 〉∠DOCB图1 图27.如图2,在△ABC 中,AB =AC ,∠B =50°,P 边AB 上的一个动点(不与顶点A 重合),则∠BPC 的值可能是( ) A 。

135° B .85° C 。

50° D .40°8.某部队第一天行军5h,第二天行军6h,两天共行军120km,且第二天比第一天多走2km,设第一天和第二天行军的平均速度分别为x km/h和y km/h,则符合题意的二元一次方程是( )A.5x+6y=118B.5x=6y+2 C。

5x=6y-2 D。

5(x+2)=6y9。

2x2-x-6的一个因式是( )A.x-2B.2x+1 C。

x+3 D。

2x-310.在平面直角坐标系中,已知点P(a,5)在第二象限,则点P关于直线m(直线m上各点的横坐标都为2)对称的点的坐标是()A.(-a,5 )B.(a,-5 )C.(-a+2,5 ) D。

2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案

2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案

2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案导读:就爱阅读网友为您分享以下“2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案”资讯,希望对您有所帮助,感谢您对的支持!义务教育八年级数学第1页(共11页)2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分120分,考试时间120分钟。

)第Ⅰ卷(选择题共30分)一、选择题(本大题10个小题,每小题3分,共30分。

请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里。

)1.下列各数中,无理数的个数有( ) -0.2020020002,2,12π2,-4, 23 A .1个 B .2个 C .3个 D .4个2.下列说法正确的是() A .9的算术平方根是3 B .0.16的平方根是0.4 C .0没有立方根 D .1的立方根是±1 3.下列真命题中,逆命题也是真命题的是()A .全等三角形的对应角都相等; B .如果两个实数相等,那么这两个实数的平方相等; C .5,12,13是勾股数;D .如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.4.已知a 、b 、c 是△ABC 的三边,a 2-2ab +b 2=0且2b 2-2c 2=0,那么△ABC 的形状是()A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形5.下列运算中错误的是()A .3xy -(x 2-2xy ) =5xy -x 2B .5x (2x 2-y ) =10x 3-5xyC .5mn (2m +3n -1) =10m 2n +15mn 2-1D .[(a 2b ) 2-1](a +b ) =a 5b 2+a 4b 3-a -b 6.如图1,AB =AC ,CF ⊥AB 于F ,BE ⊥AC 于E ,CF 与BE 交于点D .有下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上;④点C 在AB 的中垂线上. 以上结论正确的有( )个. A .1B .2C .3D .47.若3x =4,9y =7,则3x -2y 的值为( ) A .47 B 74C .-3 D278.如图2是某商场销售雨伞的情况,从折线图中我们可以看到雨伞销售量最大的季度是() A .第一季度B .第二季度 C .第三季度D .第四季度9.如图3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是() A .2cm 2 B .2a cm 2 C .4a cm 2 D .(a 2-1)cm 210.如图图1义务教育八年级数学第3页(共11页)A .2m B .3m C .6m D .9m第Ⅱ卷(非选择题共90分)二、填空题(本大题6个小题,每小题3分,共18分。

2015-2016年湘教版八年级上期末教学质量检测数学试题含答案

2015-2016年湘教版八年级上期末教学质量检测数学试题含答案

2015---2016学年度第一学期期末八年级数学试卷一、选择题(共12个小题,每小题3分,共36分)1.若分式的值为0,则x的值为()A. 0B. 1C. -1D.2.化简结果正确的是()A. B. C. D.3.若代数式有意义,则的取值范围是()A.B.C.D.4.在实数,,,,3.14中,无理数有()A.1个B.2个C.3个D.4个5.下列图形中,不是..轴对称图形的是()A. B. C. D.6.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4 B.8 C.16 D.647.已知一个三角形的三个内角的比是1∶2∶1,则这三个内角对应的三条边的比是( ) A.1∶1∶ 2 B.1∶1∶2C.1∶2∶1 D.1∶4∶18. 将一副直角三角板,按如图所示叠放在一起,则图中∠的度数是()A. 45oB. 60oC.75oD.90o9 .下列运算错误的是()A. B.C. D.10. 已知:,则的值为()A. B. 1 C. -1 D. -511. 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B. 5C. 4D. 3第11题第12题12.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A. B. 4 C. D. 5二、填空题(共8个小题,每小题3分,共24分)13.16的平方根是.14.计算:= .15.若实数满足,则代数式的值是.16.若2 016-(x-2 016)2=x,则x的取值范围是________.17.一个等腰三角形的两边长分别为5和6,则这个等腰三角形的周长是 .18.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是_________.第18题第19题19.如图,,,则的大小是.20.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第次运算的结果(用含字母和的代数式表示).三、解答题(共10个小题,每小题6分,共60分)21.计算:÷22、化简:23. 已知:,,求代数式的值.24.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.25. 解关于的方程:.26. 先化简,再求值:,其中.27. 为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对9000平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?28. 如图,四边形中,,,,,,求四边形的面积.29. 已知:如图,在中,点是的中点,过点作直线交,的延长线于点,.当时,求证:.30. 如图,在中,,,,点在上,点在上,使得是等腰直角三角形,,求的长. (提示: 可以运用“直角三角形中,角所对的直角边等于斜边的一半”.31、已知:如图,中,点是边上的一点,,交的外角平分线于点.求证:是等边三角形.32.感知:如图①,点E在正方形ABCD的BC边上,BF⊥AE于点F,DG⊥AE于点G.可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C在∠MAN的边AM、AN上,点E, F在∠MAN内部的射线AD 上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边B上.CD=2BD.点E, F在线段AD上.∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为_________.2015---2016学年度第一学期期末八年级教学质量检测数学试题答案及评分参考一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B D B A D D C D B D C二、填空题题号13 14 15 16 17 18 19 20答案 2 17或16三、解答题21. 解:原式=÷………………………………………4分=÷……………………………………………5分=………………………………………………………… 6分22. 解:∵,,∴……………………………………………………… 3分解得……………………………………………………5分∴……………………………………………6分23. 解:原式=……………………………………………3分=……………………………………………5分. ………………………………………………6分24.证明:∵,∴.即.………………………………………………………………1分∵AC∥EF,∴.………………………………………………………………2分在△ABC和△EDF中,∴△ABC≌△EDF.………………………………………………………5分∴BC=DF.………………………………………………………………6分25. 解:方程两边同乘以,得.……………………………………………2分解这个整式方程,得.…………………………………………… 4分检验:当时,.…………………………………………5分是原方程的解.……………………………………………6分26. 解:=…………………………………………… 2分=…………………………………………… 3分=…………………………………………… 4分=…………………………………………… 5分∵,∴∴原式=…………………………………………… 6分27. 解:设甲队每天完成平方米,则乙队每天完成平方米………………… 1分根据题意列方程,得…………………………………………… 3分解这个方程,得……………………………………………5分经检验,,是所列方程的解.………………………………………6分答:甲队每天完成200平方米.28.解:连结AC.在△ABC中,∵,AB=4,BC=3,∴,…………1分.…………2分在△ACD中,∵AD=12,AC=5,CD=13,∴.…………………………3分∴△ACD是直角三角形.………………………………………………………4分∴.……………………………………5分∴四边形ABCD的面积=.…………………6分29.证明:过点B作BG∥FC,延长FD交BG于点G.∴.…………………………1分∵点D是BC的中点,∴BD=CD.……………………………2分在△BDG和△CDF中,∴△BDG≌△CDF.∴BG=CF.……………………………3分∵BE=CF,∴BE=BG.∴.…………………………………………………………4分∵,∴.∴.…………………………………………………………5分∴AE=AF.…………………………………………………………………6分30. 证明:在线段BA上截取BM,使BM=BD.………………………… 1分∵∠ABC=60°,∴△BDM为等边三角形,∠ABF=120°,∴DM=DB,∠BDM=∠BMD=60°,∠AMD=120°,…………………… 2分又∵BE平分∠ABF,∴∠DBE=120°,∴∠AMD=∠DBE,………………………………… 3分∵∠ADE =∠BDM =60°,∴∠1=∠2 ………………………………………… 4分∴△ADM≌△EDB(ASA).……………………… 5分∴AD=ED.∴△ADE为等边三角形.………………………… 6分选做题(5分)解:过点E作EF⊥BC于F,∵,∴∠1+∠3=90°,∵∠2+∠3=90°,∴∠1=∠2,又∵∠DFE =∠ACD =90°,DE =AD,∴△ACD≌△DFE(AAS).………………………… 2分∴AC=DF=1,∵在中,,,,∴AB=2,DC =FE,在Rt△ADE中,设EF为x,则DC为x,BE为2x,BF为,∴,解得,∴.…………………………………… 5分12M ABC D EF。

2015-2016第一学期期末八年级数学试卷

2015-2016第一学期期末八年级数学试卷

2015-2016学年度第一学期期末教学质量检测八年级数学一、选择题(本题共8小题,每小题3分,共24分)()A. 2B. -2C. ±2D.42.下列四个图形中,不是..轴对称图形的是()A. 等边三角形B. 平行四边形C. 圆D.等腰直角三角形3.设ab,a、b是两个连续整数,则()A. a=1,b=2B. a=2,b=3C. a=3,b=4D. a=4,b=54.如图1,某同学把一块三角形的玻璃打破成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以()A. 带①去B.带②去C.带③去D. ①、②、③都带去5.已知一次函数y=kx+b的图像(如图2),当y<0时,x的取值范围是()A. x<1B. x<0C. x>1D. x>06.下列计算正确的是()A. a2+ a3= a5B.(ab)2= a2b2C. a2·a3 = a6D.a8÷a2=a47.若等腰三角形的两边长是6cm和3cm,那么它的周长是 ( )A. 9cmB. 12cmC. 15cmD. 12cm或15cm8.如图3所示,将正方形纸片先沿虚线AB按箭头方向向右..对折,接着对折后的纸片沿虚线CD向下..对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()图1A DB(A)A. B. C. D.二、填空题(本题共8小题,每小题3分,共24分) 9.面积为2的正方形的边长是 10.︱π-3.14︱=11.如图4,尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,做射线OP ,由作法得△OCP ≌△ODP 的根据是 (简写即可)12.有一个数值转换器,原理如图所示:当输入的x =64时,输出的y 等于 13.点(6,-1)关于x 轴对称的点的坐标是14. Rt △ABC 中,∠C =90°,∠B =2∠A , AB =6,则BC =15.因式分解:a 3-ab 2= 16.图6是由四个大小一样的纸片围成的图形,利用面积 的不同表示方法,写出一个代数恒等式 三、解答题(本题共4小题,每题12分,共48分) 17.计算(1)(a 3)2÷(a 2)3 (2)(x -y )(x 2-xy +y 2)18.如图7,D 、E 在△ABC 的边BC 上, AB =AC , AD =AE ,求证:BD =CE 。

【人教版】2015-2016学年八年级上期中数学试卷(含答案)

【人教版】2015-2016学年八年级上期中数学试卷(含答案)

2015~2016学年度第一学期期中质量检测试卷八年级数学温馨提示:时间120分钟,满分150分。

请仔细审题,细心答题,相信你一定会有出色的表现! 一、选择题(本大题10小题,每小题4分,共40分,请将下列各题中唯一正确的答案代号A、B、C、D填到本题后括号内)1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.2.如果一个三角形的两边长分别为2和5,则第三边长可能是()A.2 B.3 C.5 D.83.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°5.如图,∠A+ ∠B +∠C +∠D +∠E +∠F的度数为()A.180°B.360°C.270°D.540°6.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05 B.20:01 C.20:10 D.10:027.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE ,AE 就是∠PRQ 的平分线。

此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE 。

则说明这两个三角形全等的依据是( )A. SASB. ASAC. AASD. SSS8.如图,在△ABC 中,AD 是BC 边上的中线,点E 、F 是AD 的三等分点,若△ABC 的面积为12cm 2,则图中阴影部分的面积为( )A .2cm 2B .4cm 2C .6cm 2D .8cm 29.如图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD 与下列哪一个三角形全等?( )A .△ACFB .△ADEC .△ABCD .△BCF10.如图,在四边形ABCD 中,AB=CD ,BA 和CD 的延长线交于点E ,若点P 使得S △PAB =S △PCD ,则满足此条件的点P ( )A .有且只有1个B .有且只有2个C .组成∠E 的角平分线D .组成∠E 的角平分线所在的直线(E 点除外)二、填空题(本题共4小题,每小题5分,共20分)11. 将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.12. 如图,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,第7题第12题第11题第8题第9题第10题第13题则∠C的度数为;13. 如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3cm,AE=4cm,则CH的长是;14.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,若∠AED=60°,∠EDC=100°,则, ∠ADE= .三、解答题(本大题共90分,注意写出解答过程或计算步骤)15. (8分)小红家有一个小口瓶(如图所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由.(木条的厚度不计)16.(8分)如图,在△ABD和△ACE中,有下列四个等式:①AB=AC、②AD=AE、③∠1=∠2、④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程).题设:,结论:(写序号)17.(8分)如图,已知点E,F在AC上,AD∥BC,DF=BE,添加的一个条件....(不要在图中增加任何字母和线),使△ADF≌△CBE.你添加的条件是:. 证明:18.(8分)如图,在△ABC 中,∠ACB =90°,AC=BC ,BE ⊥CE 于E ,AD ⊥CE 于点D ,AD =3.1cm ,DE =1.8cm ,求BE 的长。

2015—2016学年度第一学期初二期末质量检测数学试卷附答案

2015—2016学年度第一学期初二期末质量检测数学试卷附答案

2015—2016学年度第一学期初二期末质量检测数学试卷2016.1考生须知1.本试卷共6页,共三道大题,30道小题,满分120分.考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,请将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.9的算术平方根是 A .3B .-3C .±3D .±312. 若2x -表示二次根式,则x 的取值范围是 A .x ≤2 B. x ≥ 2 C. x <2 D.x >2 3.若分式21+-x x 的值为0,则x 的值是 A .-2 B .-1 C . 0 D .14.剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为5.在下列二次根式中是最简二次根式的是 A.12B.4C. 3D. 86.下列各式计算正确的是A .235+=B .43331-=C .233363⨯=D .2733÷=7.在一个不透明的箱子里,装有3个黄球、5个白球、2个黑球,它们除了颜色之外没有其他区别. 从箱子里随意摸出1个球,则摸出白球的可能性大小为A.0.2B.0.5C. 0.6D. 0.88.如图,一块三角形玻璃损坏后,只剩下如图所示的残片,对图中的哪些A B C D尺规作图:作一个角等于已知角. 已知:∠AO B.求作:一个角,使它等于∠AO B.数据测量后就可到建材部门割取符合规格的三角形玻璃 A .∠A ,∠B ,∠C B .∠A ,线段AB ,∠BC .∠A ,∠C ,线段ABD .∠B ,∠C ,线段AD9.右图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 A .62°B .152°C .208°D .236°10.如图,直线L 上有三个正方形a b c ,,,若a c ,的面积分别为1和9,则b 的面积为A .8B .9 C.10 D.11二、填空题(本题共21分,每小题3分) 11.如果分式23x +有意义,那么x 的取值范围是____________. 12.若实数x y ,满足2-2(3)0x y +-=,则代数式+x y 的值是 .13.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________. 14.若a <1,化简2(1)1a --等于____________.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________. 16.如图,在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.阅读下面材料:在数学课上,老师提出如下问题:G FEDCB Acb aLDCBA ODCBA(1)作射线O ′A ′;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O ′为圆心,OC 为半径作弧C ′E ′,交O ′A ′于C ′; (4)以C ′为圆心,CD 为半径作弧,交弧C ′E ′于D ′; (5)过点D ′作射线O ′B ′.所以∠A ′O ′B ′就是所求作的角.小强的作法如下:老师说:“小强的作法正确.”请回答:小强用直尺和圆规作图'''A O B AOB ∠=∠,根据三角形全等的判定方法中的_______,得出△'''D O C ≌△DOC ,才能证明'''A O B AOB ∠=∠.三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分)18.计算:03982-3-2-+-().19.计算:18312-2⨯÷.20.计算:(21)(63)+⨯-.21.计算: 11(1)1a a a a+-+⋅+.22.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求BC 的长.E'O'D'C'B'A'23.解方程:12211x x x +=-+.24.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.25. 先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-1,0,1,2中选一个你认为合适的a 值,代入求值.26.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m ,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m ,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)27.列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?FED CBA 备用图HGF EDCBA门框薄木板28.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE 的长为3,求BG的长.29.已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在;(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.CBA图1AB C图2AB C图3HG F EDCBA图3lC ABP A 'D30.请阅读下列材料:问题:如图1,点,A B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小明的思路是:如图2所示,先做点A 关于直线l 的对称点A ',使点',A B 分别位于直线l 的两侧,再连接A B ',根据“两点之间线段最短”可知A B '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题: (1)如图3,在图2的基础上,设AA '与直线l 的交点为C ,过点B 作BD ⊥l ,垂足为D . 若1CP =,1AC =,2PD =,直接写出AP BP +的值; (2)将(1)中的条件“1AC =”去掉,换成“4BD AC =-”,其它条件不变,直接写出此时AP BP +的值;(3)请结合图形,求()()223194m m -++-+的最小值.数学试卷答案及评分参考2016.1一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 ABDBCDBBCC二、填空题(本题共21分,每小题3分) 题 号11121314151617答 案3x ≠-2+323cm -a 143SSS三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分) 18.解:原式=3-22-1+………………4分 =2………………………………5分19.解:原式=22412-2÷………………3分 =12-22………………………………4分 =122………………………………5分 20.解:原式=12663-+-………………3分=123-……………………………4分 =233-=3………………………………5分21.解:原式=211a a a-+…………………………3分=2a a…………………………4分a =…………………………5分22.解:∵△ABD 是等边三角形,∴∠B =∠BAD =∠AD B =60°, ∵AB =2,∴BD=AD=2.………………………2分∵∠BAC =90°,∴∠DA C =90°﹣60°=30°.………………………3分∵∠AD B =60°,∴∠C =30°.………………………4分 ∴AD =DC=2,∴B C=BD+DC=2+2=4. ∴BC 的长为4.………………………5分23.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ················································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解. 所以原方程的解是3x =. ····························································· 5分24.证明:∵AB ∥DE ∴∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分∴BC=DE. …………………………………5分25.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………3分=1-a …………………………………………………4分 当a=2时,原式=1-a=1-2=-1………………………5分26.解:连结HF ,…………..…………………1分 依题意∵FG=1,GH=2,∴在Rt △FGH 中,根据勾股定理:FH=2222=1+2=5FG HG +…………..…………………2分又∵BC=2.2= 4.84,…………..…………………3分 ∴FH >BC ,…………..…………………4分∴小红爸爸要买的木板能通过自家门框进入室内 …………..…………………5分 27.列方程解应用题解:设王军骑自行车的速度为每小时x 千米,则李明乘车的速度为每小时3x 千米. ………..…………………1分 根据题意,得3012032x x+=………..…………………3分解方程,得20x =………..…………………4分经检验,20x =是所列方程的解,并且符合实际问题的意义. 当20x =时,332060.x =⨯=答:王军骑自行车的速度为每小时20千米,李明乘车的速度为每小时60千米. ………..…5分28.(1)证明:CD AB ⊥∵,∴90BDC ∠=°, ∵45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴.………..…………………2分 ∵BE AC ⊥于E ,∴90BEC ∠=°,FED CBA 薄木板门框ABCDEF GH备用图ABCDEFGH∵BFD EFC ∠=∠,DBF DCA ∠=∠∴. Rt Rt DFB DAC ∴△≌△.BF AC =∴.………..…………………3分(2)解:BE ∵平分ABC ∠,22.5ABE CBE ∠=∠=︒∴. ∵BE AC ⊥于E ,∴90BEA BEC ∠=∠=°, 又∵BE=BE,Rt Rt BEA BEC ∴△≌△. CE AE =∴.………..…………………4分连结CG .BCD ∵△是等腰直角三角形,BD CD =∴. 又H 是BC 边的中点,C ⊥∴DH B DH ∴垂直平分BC ,BG CG =∴. 22.5EBC ∠=︒ ,22.5GCB ∴∠=︒∴45EGC ∠=°,∴Rt CEG △是等腰直角三角形, ∵CE 的长为3,∴EG=3,利用勾股定理得:222CE GE GC +=,∴222(3)(3)GC +=, ∴6GC =,∴BG 的长为6.………..…………………6分 29.解:(1)BC 边的中点. ………..…………………1分 (2)点D 的位置没有发生变化. ………..…………………2分 证明:如图,∵BE AD ⊥于点E ,CF AD ⊥于点F , ∴∠3=∠4=90°.又∵∠1=∠2,BE=CF,BED CFD ∴△≌△.∴BD=DC.即点D 是BC 边的中点 ………..…………………4分.(3)AB ,AC ,AD 之间的数量关系为2224AC AB AD +=..………..…………………5分 证明:延长AD 到点H 使DH=AD ,连接HC. ∵点D 是BC 边的中点,∴BD=DC. 又∵DH=AD ,∠4=∠5,ABD HCD ∴△≌△.∴∠1=∠3,AB=CH.∵∠A=90°,∴∠1+∠2=90°.∴∠2+∠3=90°.∴∠ACH=90°.∴222AC CH AH +=. 又∵DH=AD ,∴222(2)AC AB AD +=.∴2224AC AB AD +=.………..…………………7分4321FED CBA54321HA BCD30.(1)32;(2)5;(3)解:设1AC =,CP=m-3, ∵A A ′⊥L 于点C ,∴AP=()231m -+,设2BD =,DP=9-m, ∵BD ⊥L 于点D ,∴BP=2(9)4m -+,∴()()223194m m -++-+的最小值即为A ′B 的长.即:A ′B=()()223194m m -++-+的最小值.如图,过A ′作A ′E ⊥BD 的延长线于点E. ∵A ′E=CD=CP+PD= m-3+9-m=6, BE=BD+DE=2+1=3, ∴A ′B=()()223194m m -++-+的最小值=22BE A E '+ =936+ =35 ∴()()223194m m -++-+的最小值为35.EA'LPD C BA。

2015—2016学年(上)厦门市八年级质量检测数学参考答案

2015—2016学年(上)厦门市八年级质量检测数学参考答案

2015—2016学年(上) 厦门市八年级质量检测数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)11. 50. 12. a 2-1. 13.110. 14. 6a . 15. 32. 16. 2127.17.(本题满分7分) 解: (2x +1)(x +3)=2x 2+6x +x +3 ……………………………5分 =2x 2+7x +3 ……………………………7分 18.(本题满分7分)证明:∵AB =DC ,BF =CE ,∠B =∠C ,……………………………3分∴ △ABF ≌△DCE . ……………………………5分∴ AF =DE . ……………………………7分19.(本题满分7分)解: x -1x +1+x 2+1x +1=x 2+xx +1……………………………4分=x . ……………………………7分20.(本题满分7分)解:解不等式x +1>2,得x >1. ……………………………3分解不等式1+2x3≤x -1,得x ≥4. ……………………………6分F DCB A∴不等式组⎩⎪⎨⎪⎧x +1>2,1+2x 3≤x -1的解集是x ≥4. ……………………………7分21.(本题满分7分)解:正确画出坐标系; …………………1分 正确画出△ABC (正确画各顶点,每点得1分); …………………4分正确画出△A 1B 1C 1 (正确画各顶点,每点得1分). …………………7分22.(本题满分7分)解:当腰长为5cm 时,底边长是20-2×5=10cm , …………………2分∵腰长+腰长=10cm =底边长,不合题意舍去; …………………3分当底边长5cm 时,腰长是20-52=7.5cm , …………………5分∵7.5×2>5,7.5+5>7.5, …………………6分 ∴ 此等腰三角形的腰长是7.5cm ,底边长是5cm . …………………7分 23.(本题满分7分)证明:过点D 作DM ⊥PE ,DN ⊥PF ,垂足分别为M ,N . 则有DM =DN . …………………2分∵PD =PD , ∴ Rt △DMP ≌Rt △DNP . …………………3分 ∴∠DPM =∠DPN . …………………4分 ∵PE ∥AB ,∴∠DPM =∠DAB . …………………5分 ∵∠PFD =∠C , ∴PF ∥AC .∴∠DPF =∠DAC . …………………6分 ∴∠BAD =∠DAC .∴ AD 是∠BAC 的平分线.∴点D 到AB 和AC 的距离相等. …………………7分AB C F MNPE D24.(本题满分7分)设甲的速度是x km/h ,则乙的速度是4x km/h . 设乙追上上甲的时间是a h . 由题意得x (a +32) =4xa . ……………………………3分解得a=12(h ). ……………………………4分当乙追上上甲时,乙走的路程是2x km . ……………………………5分 ∵x ≤10,∴2x ≤20.∴2x <25. ……………………………6分 ∴乙能在途中超过甲. ……………………………7分 25.(本题满分7分)假设3是有理数, ……………………………1分 那么存在两个互质的正整数m ,n ,使得3=nm,于是有3m 2=n 2. ……………………………3分 ∵3m 2是3的倍数,∴n 2也是3的倍数.∴n 是3的倍数. ……………………………4分 设n =3t (t 是正整数),则n 2=9t 2,即9t 2=3m 2.∴3t 2=m 2.∴m 也是3的倍数. ……………………………5分 ∴m ,n 都是3的倍数,不互质,与假设矛盾. ……………………………6分 ∴假设错误.∴3不是有理数. ……………………………7分26.(本题满分11分)(1)(本小题满分4分)解:∵∠B =60°,∠BDA =∠BAD , ∴∠BDA =∠BAD =60°. ………………………1分∴AB =AD . ………………………2分 ∵CD =AB , ∴CD =AD .∴∠DAC =∠C . ………………………3分 ∴∠BDA =∠DAC +∠C =2∠C . ∵∠BDA =60°,∴∠C =30°. ………………………4分A B C E D(2)(本小题满分7分) 证明:延长AE 至M ,使得EM =AE . ………………1分 连接DM . ∵ EM =AE ,BE =DE ,∠AEB =∠MED .∴ △ABE ≌△MDE . ………………2分 ∴∠B =∠MDE ,AB =DM . ………………3分 ∵∠ADC =∠B +∠BAD =∠MDE +∠BDA=∠ADM , ………………4分 又∵DM =AB =CD ,AD =AD ,∴ △MAD ≌△CAD . ………………5分 ∴∠MAD =∠CAD . ………………6分 ∴ AD 是∠EAC 的平分线. ………………7分27.(本题满分12分) (1)(本小题满分5分)解:∵p +q =4,即a 3+a -3+a 3-a -3=4, ………………2分 ∴ 2a 3=4. ………………3分 ∴ a 3=2. ∴ a -3=12. ………………4分∴ p -q =a 3+a -3-a 3+a -3 =2a -3=1. ………………5分(2)本小题满分5分) ∵ q 2=22n +122n-2=(2n -12n )2, ………………6分又∵n ≥1,∴ 2n -12n >0.∵a 是大于1的实数,∴a 3-a -3>0.即q >0.同理p >0.∴ q =2n -12n . ………………7分∵p 2-q 2=(a 3+a -3)2-(a 3-a -3)2D E CB A M=4. ………………8分 ∴p 2=q 2+4.=22n +122n +2=(2n +12n )2.∴p =2n +12n . ………………9分∵p +q =2a 3,即2×2n =2a 3, ∴a 3=2n .∴p -(a 3+14)=12n -14.当n =1时, ∵12n -14=12>0, ∴p >a 3+14. ………………10分当n =2时, 12n -14=0. ∴ p =a 3+14. ………………11分当n >2,且n 是整数时, ∵12n ÷14=22-n <1, ∴12n -14<0.即p <a 3+14. ………………12分。

2015——2016学年度第一学期期末教学质量测试八年级数学试卷附答案

2015——2016学年度第一学期期末教学质量测试八年级数学试卷附答案

2015——2016学年度第一学期期末教学质量测试八年级数学试卷一.选择题(每小题2分,共20分)1.下列各数中,属于无理数的是( )(A )﹣1 (B )3.1415 (C )12(D 2. 若一个有理数的平方根与立方根是相等的,则这个有理数一定是 ( ) (A) 0 (B) 1 (C) 0或1 (D) 0和±1 3.下列命题中,逆命题是真命题的是( )(A )直角三角形的两锐角互余. (B )对顶角相等. (C )若两直线垂直,则两直线有交点. (D )若21,1x x ==则.4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )(A )40°. (B )100°. (C )50°或70°. (D )40°或100°. 5.如图,图中的尺规作图是作( )(A )线段的垂直平分线. (B )一条线段等于已知线段. (C )一个角等于已知角. (D )角平分线.6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm, △ADC 的周长为17cm,则BC 的长为( )(A )7cm (B )10cm (C )12cm (D )22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。

根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )(A )1月至2月 (B )2月至3月 (C )3月至4月 (D )4月至5月8. 若b 为常数,要使16x 2+bx+1成为完全平方式,那么b 的值是 ( )(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形. (B )锐角三角形. (C )钝角三角形. (D )以上都不对. 10.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )(A )48. (B )60. (C )76. (D )80.二、填空题(每小题2分,共18分)11.计算:25a a ⋅= .12.因式分解:24x y y -=__________________.13. 如图将4个长、宽分别均为a 、b 的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD 按如图所示方式折叠,使C 点落在/C 处,/BC 交AD 于点E ,则△EBD 的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在 1.58m ~1.63m 这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。

2015—2016学年度第一学期期中教学质量检测 八年级数学

2015—2016学年度第一学期期中教学质量检测 八年级数学

2015—2016学年度第一学期期中教学质量检测八年级数学试题(满分120分,时间120分钟)一、选择题(每小题给出的四个选项中,只有一个是正确的,把正确选项的代号填入该小题后的括号内,每小题2分,共20分)1.下列各数中,是无理数的是( ) A.22 B.π C.0 D.0.25A.10B.-10 C D .10±3.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的( )倍A.1B.2C.3D.44.下列关系式中,y 不是x 的函数的是( )A .y=|x|B .y=3x-2C .x y 2=D .2x y =5.如图,将一根长20cm 的筷子放入底面直径为5cm ,高为12cm 的圆柱形杯子中,设筷子露在杯子外面的长度为hcm,则h 的最小值为( )A.5cmB.7cmC.8cmD.13cm 6.下列说法中正确的是( )A.64的立方根是2B.-4是64的负的立方根C.负数没有立方根D.8的立方根是± 2 7.2014年3月8日1时20分,马来西亚航空公司MH370与地面失去联系,搜寻机组人员发现疑似飞机残骸的白色漂浮物,要汇报漂浮物的位置,机组人员的表达方式是()A.东经95.1113度B.南纬42.5453度C.澳大利亚西北方向上D.东经95.1113度,南纬42.5453度8.如图,将长为3cm 的长方形ABCD 放在平面直角坐标系内,若点D (6,3),则A 点的坐标为( )A.(5,3)B.(4,3)C.(4,2)D.(3,3) 9.若实数a,b,c 满足a+b+c=0,且a<b<c,则函数y=cx+aA B C D10.小军和小聪是一对双胞胎,某日,两人骑自行车从家出发去学校,途中小军因自行车 出现了故障,进行维修,如图表示它们出发后离家的距离s (m)与出发后的时间t(min) 之间的关系,则下列说法错误的是( )A. 线段OC 表示小聪出发后离家的距离s(m)与出发后的时间t(min)之间的关系B. 小军维修自行车用了2minC. 在维修自行车时,小聪赶上了小军D.在上学的路上,小聪的平均速度大于小军的平均速度二、填空题(每题3分,共30分)11.等腰三角形的腰长为13cm ,底边长为10cm12.已知ΔABC 的三边长分别为a 、b 、c,则化简22)b a c (2)c b a ---+-(的结果为 ;13.在平面直角坐标系中,点P (-3,5)关于y 轴的对称点的坐标为 ;14.如图阴影部分是一个正方形,如果正方形的面积为642cm ,则x 的值为 ;15.若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为 ; 16.按如图所示的程序计算,若开始输入的n值为2,则最后输出的结果是___________;17.如图,点P 是以点A 为圆心,AB 长为半径的圆弧与数轴的交点,则数轴上点P 表示的数C P是 ;18.在平面直角坐标系中放置了一个边长为5的正方形,如图所示,点B 在y 轴上,且坐标为(0,2)。

2015-2016学年八年级数学上册第一次质量检测试题

2015-2016学年八年级数学上册第一次质量检测试题

2015—2016学年度第一学期八年级第一次质量检测数学试题一、选择题(每空3 分,共30 分)1、下列各组数可能是一个三角形的边长的是( )A.1,2,4B.4,5,9C.4,6,8D.5,5,112、等腰三角形的两边长分别为5 cm和10 cm,则此三角形的周长是()A.15 cm B.20 cm C.25 cm D.20 cm或25 cm3、如图3,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D= ( )A.15°B.25°C.30°D.30°4、一个多边形的每个内角都是108°,那么这个多边形是()A.五边形B.六边形C.七边形D.八边形5、将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.6、一个三角形的周长是偶数,其中的两条边长分别是4和7,满足上述条件的三角形(三角形的边长均为整数)的个数为()A.1个B.3个C.5个D.7个7、只用下列图形不能进行平面镶嵌的是()A.正六角形B.正五边形C.正四边形D.正三边形8、如图,ΔABC≌ΔADE,AB=AD,AC=AE,∠B=28º,∠E=95º,∠EAB=20º,则∠BAD为()A.77ºB. 57ºC. 55ºD. 75º9、下列说法:①用同一张底片冲洗出来的8张1寸相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个10、如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN二、填空题(每空3 分,共24 分)11、如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=.12、在△ABC中,AC=5cm,AD是△ABC中线,把△ABC周长分为两部分,若其差为3cm,则BA= .13、如下图,在D,E为斜边AB上的两个点,且BD=BC,AE=AC,则么DCE的大小为度.14、在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是.15、一个凸多边形每一个内角都是135°,则这个多边形是边形.16、如图, △ABC≌△ADE,∠B=35°,∠EAB=21°,∠C=29°,则∠D=°∠DAC= °17、如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有对.18、如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x﹣2,2x﹣1,3,若这两个三角形全等,则x= .三、简答题(共66分)19、如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.(8分)20、如图,在△ABC中,∠BAC是钝角.(8分)(1)画出边BC上的中线AD ;(2)画出边BC上的高AH ;(3)在所画图形中,共有个三角形,其中面积一定相等的三角形是.21、如图,在△ABC中,AD是高,AE和BF是角平分线,它们相交于点O,∠ABC=600,∠C=70°,求∠CAD和∠AOF的度数.(10分)22、如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.(10分)23、如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(10分)(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.24、如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(10分)(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.25、如图10,在△AFD和△CEB中,点A、E、F、C在同一条直线上,有下面四个结断:①AD=CB;②AE=CF;③∠B=∠D;④AD∥BC.请用其中三个作为条件,余下的一个作为结论编一道数学题,并证明结论成立.(10分)。

初二数学2015—2016学年度第一学期期末试卷

初二数学2015—2016学年度第一学期期末试卷

2015—2016学年度第一学期期末学业质量评估八年级数学试题(时间120分钟,满分120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷上.2. 填空题和解答题答案用黑色或蓝黑色墨水钢笔、中性笔或圆珠笔书写.一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填在下面的表格里,每小题选对得3分,满分36分.多选、不选、错选均记零分.)1.下列命题中真命题是A. 两边分别对应相等且有一角为30º的两个等腰三角形全等B. 两边和其中一边的对角分别对应相等的两个三角形全等C. 两个锐角分别对应相等的两个直角三角形全等D. 两角和一边分别对应相等的两个三角形全等2. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是A.B.C.D.3. 某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是A. 96,94.5B. 96,95C. 95,94.5D. 95,954. 如图,P在AB上,AE=AG,BE=BG,则图中全等三角形的组数一共有A.1 组B.2 组C.3组D.4组5. 等腰三角形的一个角是80°,则它的底角是A.50°B.80°C.20°或80°D.50°或80°6. 对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7. 甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是A.甲、乙射中的总环数相同B.甲、乙的众数相同C.乙的成绩波动较大D.甲的成绩稳定8. 如图,OP平分∠AOB,PC⊥OA于C,D在OB上,则PC与PD 的大小关系是A.PC≥PDB.PC=PDC.PC≤PDD.不能确定9. 已知2a =3b =4c ≠0,则c b a +的值为 A. 54 B. 45 C.2 D. 2110. 白浪河是潍坊的母亲河,为打造特色滨水景观区,现有一段河道整治任务由A 、B 两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,那么A 工程队一共做的天数是A .12B .13C .14D .1511. 已知a=2x ,b=2y ,x +y=100xy ,那么分式abba +的值等于 A. 200 B. 100 C. 50 D. 2512. 已知一组数据:-1,x ,0,1,-2的平均数是0,那么,这组数据的方差是 A.2 B.2 C.4 D.10二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题4分,满分24分)13.已知点A (3,﹣2),点B (a ,b )是A 点关于y 轴的对称点,则a+b=_________. 14. 老师为了了解学生周末利用网络进行学习的时间,随机调查了10名学生,其统计数据如下表,则这10名学生周末利用网络进行学习的平均时间是 h.全等三角形的对应边相等17. 如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长等于________cm .18. 如图,AD 是∠BAC 的角平分线,E 是AB 上一点,AE=AC ,EF ∥BC 交AC 于F .下列结论①△ADC ≌△ADE ;②CE 平分∠DEF ;③AD 垂直平分CE .其中正确的是三、解答题(本题共6小题,共60分.解答应写出文字说明、证明过程或推演步骤.) 19.(本大题满分20分)(1)计算:①9122-m --32m ②-12a a -a -1(2(320.(本大题满分6分)已知:如图,A B∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE王大伯几年前承包了甲、乙两片荒山,各栽了100棵杨梅树,成活率为98%,现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?22.(本大题满分8分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?24.(本大题满分10分)已知:如图,点B,C,E三点在同一条直线上,CD平分∠ACE,DB=DA,DM⊥BE于M.(1)求证:AC=BM+CM;(2)若AC=2,BC=1,求CM的长.。

江西省抚州市2015-2016学年八年级上学期期末质量检测数学试卷(扫描版)

江西省抚州市2015-2016学年八年级上学期期末质量检测数学试卷(扫描版)

2015-2016学年上学期八年级数学试卷参考答案一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项.1.D ; 2.A ; 3.C ; 4.A ; 5.B ; 6. A ;二、填空题(本大题共8小题,每小题3分,共24分)7.3; 8.-1;9.6; 10.40°; 11. 76;12.y =-x -1(答案不唯一); 13. 10; 14. 76.三、(本大题共4小题,每小题6分,共24分)15.解:(1)由题意得:(2a -7)+(a +4)=0; b -7=(-2)3解得a =1,b =-1;……………3分(2)由a =1,b =-1得a +b=0,所以a +b 的算术平方根为0.……………6分16.解:原式=26-22-42-6……………3分 =6-423;……………6分 17.解:将方程组变形为234,567,x y x y +=-⎧⎨+=-⎩③④③×2得4x +6y =-8⑤,………………2分⑤-④得-x =-1,解得x =1.………………………4分把x =1代入③中得y =-2.所以原方程组的解为1,2.x y =⎧⎨=-⎩………………6分18.(1)证明:∵AB ∥CD ,∴∠B=∠C ;又∵AE=DF ,∠A=∠D ,∴△AEB ≌△DFC ;∴AB=CD. ……………3分(2)∵AB=CD ,AB=CF ;∴CD=CF ,∴∠D =∠D FC=75°……………6分四、(本大题共4小题,每小题8分,共32分)19. 解:如图①、③(或②、④).20.解:设(1)班有x 人,(2)班有y 人,根据题意可列方程:⎩⎨⎧=+=+8168811181012y x y x ,………………3分解得⎩⎨⎧==5349y x ,即(1)班有49人,(2)班有53人;………………5分 则(1)班节约了49×(12-8)=196(元),(2)班节约了53×(10-8)=106(元). ……………………8分21.解:(1)画图正确.………………………………..…… 3分(2)过点D 作DE ⊥AB 于点E ,又∵DC ⊥BC ,BD 平分∠ABC ,∴DE =DC =3,BC =BE ,……………………………4分在Rt △ADE 中,由勾股定理得AE =4, ∵BE =BC ,设BC =x ,则AB =x +4,∴在Rt △ABC 中,由勾股定理得:BC 2+AC 2=AB 2,∴x 2+82=(x +4)2,……………………………………6分解得:x =6,∴BC =6,AB =10.……………………………………8分22.解:(1)80,85.……………2分(2)由于平均数一样,而八年级的方差小于七年级的方差,方差越小则其稳定性就越强,所以应该是八年级实力强一些;……………4分(3)七年级前三名总分:99+91+89=279(分),……………6分八年级前三名总分:97+88+88=273(分),故七年级实力更强些.…………8分五、(本大题共1小题,共10分)23.解:(1)设直线AB 的函数关系式为y =kx +b ,由题意知直线AB 过(2,150)和(3,0),⎩⎪⎨⎪⎧150=2k +b , 0=3k +b 解得⎩⎪⎨⎪⎧k =-150, b =450………....3分 ∴直线AB 的函数关系式为y =-150x +450;………....4分(2)当x =0时,y =450,∴甲乙两地的距离为450千米.………………....…6分(3)设轿车和货车的速度分别为V 1千米/小时,V 2千米/小时.根据题意得3V 1+3V 2=450;3V 1-3V 2=90.解得:V 1=90,V 2=60,……………8分轿车到达乙地的时间为450÷90=5小时,此时两车间的距离为(90+60)×(5-3)=300千米,∴点C 的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.………………. 10分六、(本大题共1小题,共12分)24.(1)解:如图24-1连接OC ,过C 点作CH ⊥x 轴于H 点.∵折叠△OAB ,∴OA=AC ,∠OBA=∠CBA=60°,OB=CB ,∠CBH=60°A B C D E∴△OAC 是等边三角形,∴∠BCH=30°∴BH=21BC=21×23=3,OH=23+3=33 ……………2分 ∵OC=OA=6,∠COH=30°∴CH=21×6=3 ……………3分 ∴C (33,3)……………4分(2)当0<t ≤3时OF=2t ,S=2322⨯t =23t ……………6分 如图24-2当3<t ≤6时, AF=2t -6; AG=t -3,OG=6-(t -3)=9-t ;∴S=2)9(32t -⨯=93-3t ……………8分如图24-1 如图24-2 如图24-3(3)如图24-3,∵BE ∥OA , ∴∠ABE=∠OAB=60°,∴∠EBC=30°,∴CE=21BE ,BE=AE ;∴BE=4 . 当F 运动到A 点时,△BEF 为等腰三角形,即t=3; ……………10分 当BF=BE 时,△BOF ≌△BCE ,∴OF=CE=2,∴t=1;此时,△BEF 为等边三角形综上所述,t=1或t=3时,△BEF 是以BE 为腰的等腰三角形. ……………12分。

2015~2016学年度上期期中质量监测八年级数学试题附答案

2015~2016学年度上期期中质量监测八年级数学试题附答案
A.-81的平方根是±9 B.任何数的平方是非负数,因而任何数的平方根也是非负数
C.任何一个非负数的平方根都不大于这个数 D.2是4的平方根
7.在平面直角坐标系中,点P(-2,x2+1)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
8.若正比例函数y=kx的图象经过点(1,2),则k的值为( )
15.计算:(1) . (2)
16.计算:
四、解答题(每小题8分,共16分)
17.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根。
18.如图,折叠长方形(四个角都是直角,对边相等)的一边AD,点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长。
五、解答题(19题10分,20题10分,共20分)
19.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为( ,5),( ,3).
⑴请在如图所示的网格平面内作出平面直角坐标系;
⑵请作出△ABC关于y轴对称的△A′B′C′;
⑶写出点B′的坐标.
20.某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时问x(小时)之间的函数图像如图所示,结合图像回答下列问题:
1
第3排
1
第4排
1
第5排
……
……
25.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.
二、解答题(本题8分)
26、已知a、b、c满足 .

2015-2016学年初二第一学期期末答案

2015-2016学年初二第一学期期末答案

初二数学期末学业水平质量检测参考答案一、选择题:(每题只有一个正确答案,共10道小题,每小题2分,共20分)1. C,2. D,3.A,4. D,5. C ,6.B,7. D,8. A,9.D, 10. C二、填空题:(共6道小题,第11~14小题,每小题3分,第15~16小题,每小题4分,共20分)11.2; 12.2)(3a b -; 13.360º; 14.③;15.1或3;16.三边分别相等的两个三角形全等,全等三角形对应角相等;3 .三、解答题(共11道小题,第17~24小题,每小题5分,第25~26小题,每小题6分,第27小题8分,共60分)17.23423)7(2102⨯+-+--⎪⎭⎫ ⎝⎛-π 解:原式=323214+-+-………………………………..(4分)=35+ ………………………………..(5分)18.计算:()()()3232322-+-- 解:原式=323622+-+-………………………………..(4分) =626-………………………………..(5分)19.计算:21422++-m m 解:原式=)2)(2(2)2)(2(2-+-+-+m m m m m …………………………..(2分) =)2)(2(22-+-+m m m ………………………………..(4分) =)2)(2(-+m m m ………………………………..(5分)20.解方程:116112=---+x x x 解: 1)1)(1(611=-++-+x x x x ………………………………..(1分) )1)(1(6)1(2-+=++x x x ……..(2分)161222-=+++x x x ………………………………..(3分)82-=x4-=x ………………………………..(4分)检验:把4-=x 带入最简公分母)1)(1(-+x x 中,最简公分母值不为零.∴4-=x 是原方程的解. ………………………………..(5分)21.已知:0232=-+x x ,求代数式)225(4232---÷--x x x x x 的值. 解:原式=)2425()2(232----÷--x x x x x x………………………………..(1分) =2)3)(3()2(23--+÷--x x x x x x ………………………………..(2分) =)3)(3(2)2(23x x x x x x -+-⋅-- =)3(21x x +………………………………..(3分) =)3(212x x + ………………………………..(4分) 0232=-+x x∴232=+x x原式=41 ………………………………..(5分)22.解: 第一个盒子摸出白球的可能性为531061==p ………………..(2分) 第二个盒子摸出白球的可能性为211262==p ………………..(3分) 21p p >………………..(4分)∴第一个盒子摸出白球的可能性大. ………………..(5分)23. 证明: DE BC //E ACB ∠=∠∴………………..(1分)在△ABC 和△DCE 中⎪⎩⎪⎨⎧=∠=∠=CD BC E ACB DE AC ∴△ABC ≅△DCE (SAS )………………..(4分) ∴ AB =CD ………………..(5分)24.解:设新购买的纯电动汽车每行驶1千米所需电费为x 元, 根据题意得:27108= ………………..(3分)25.(1)Rt △C AB '是Rt △ABC 关于直线l 轴对称的图形………………..(2分)B(2)证明: Rt △C AB '是Rt △ABC 关于直线l 轴对称的图形∴AC 垂直平分B B '………………………………..(3分)∴'AB AB =,'21BB BC =︒=∠30BAC∴︒=∠60B ∴△'ABB 为等边三角形………………………………..(5分) ∴'BB AB = '21BB BC =∴AB BC 21=………………………………..(6分)26.(1)l 即为所求作的直线………………………………..(2分)(2)①︒45≤ABC ∠<︒90………………………………..(3分)②图形在(1)的基础上完成………………………………..(4分) 证明: 线段AB 的垂直平分线为l∴ AB CD ⊥BE AE ⊥ ∴︒=∠=∠90BDC AEB∴︒=∠+∠=∠+∠90B BCD B BAE∴BCD BAE ∠=∠………………………………..(6分)27.(1)①……………………………..(1分)②垂直,相等.……………………………..(3分)(2)①……………………………..(4分)图2 图3②如图2成立,如图3不成立.证明: EF CD ⊥∴ ︒=∠90DCF︒=∠90ACB∴BCD ACB BCD DCF ∠+∠=∠+∠即BCF ACD ∠=∠………………………………..(6分)CF CD AC BC ==,∴△ACD ≅△BCF (SAS )∴ BF AD =,FBC BAC ∠=∠∴︒=∠+∠=∠+∠=∠90BAC ABC FBC ABC ABF即AD BF ⊥……………………………..(8分)A A。

八年级数学上学期质量检试题(含解析) 新人教版-新人教版初中八年级全册数学试题

八年级数学上学期质量检试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省资阳市简阳市养马中学2015-2016学年八年级数学上学期质检试题一、选择题(每题3分,共30分)1.下列四副图案中,不是轴对称图形的是( )A.B.C.D.2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)3.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b24.下列各式从左到右的变形中,是因式分解的是( )A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)5.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4 B.8 C.﹣8 D.±86.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( ) A.+=B.﹣=C.+10= D.﹣10=7.式子有意义的x的取值X围是( )A.x≥﹣且x≠1B.x≠1 C.D.8.下列计算正确的是( )A.=﹣3 B.=7 C.=2D.=×9.已知关于x的分式方程+=1的解是非负数,则m的取值X围是( )A.m>2 B.m≥2 C.m≥2且m≠3D.m>2且m≠310.在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第2013个三角形的以A2013为顶点的内角的度数为( )A.B.C.D.二、填空题(每题3分,共30分)11.若的值在两个整数a与a+1之间,则a=__________.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是__________.13.若分式的值为0,则x的值为__________.14.若等腰三角形的边长分别为2和6,则它的周长为__________.15.已知x(x+3)=1,则代数式2x2+6x+2017的值为__________.16.计算:(x3y)﹣1•(x2y)2=__________.17.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于__________.18.实数a在数轴上的位置如图,化简+|a﹣2|=__________.19.当x<3时,﹣|x﹣6|=__________.20.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为__________.三、计算题(每小题3分,共9分)21.利用乘法公式计算:982﹣22.22.计算:(1)﹣()﹣1﹣+|﹣2|(2)÷3×.四、解答题23.先化简再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)+5xy],其中(x﹣2)2+|y+1|=0.24.先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.26.海门某公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.求购买该品牌一个台灯、一个手电筒各需要多少元?27.八年级数学课上,朱老师出示了如下框中的题目.小聪与同桌小明讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE__________DB(填“>”,“<”或“=”).(2)特例启发•解答题目解:题目中,AE与DB的大小关系是:AE__________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论•设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=1,则CD=__________(请你直接写出结果).28.在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,点D在线段BC的延长线上移动,若∠BAC=40°,则∠DCE=__________°.(2)设∠BAC=m,∠DCE=n.①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.2015-2016学年某某省资阳市简阳市养马中学八年级(上)质检数学试卷一、选择题(每题3分,共30分)1.下列四副图案中,不是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D 的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.【解答】解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),∴D(4,6).故选:B.【点评】此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.3.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+2b)(a﹣b)=a2+ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.4.下列各式从左到右的变形中,是因式分解的是( )A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、没把一个多项式转化成几个整式积的形式,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选;D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.5.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4 B.8 C.﹣8 D.±8【考点】完全平方式.【分析】一个二项式的平方的形式我们就可以想到完全平方公式,16=42,由此来推算一次项的系数.【解答】解:∵(x±4)2=x2±8x+16,所以m=±2×4=±8.故选D.【点评】这道题考我们的逆向思维,关键是我们能够反过来利用完全平方公式确定未知数.6.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( ) A.+=B.﹣=C.+10= D.﹣10=【考点】由实际问题抽象出分式方程.【专题】行程问题;压轴题.【分析】设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,根据“小军乘小车上学可以从家晚10分钟出发”列出方程解决问题.【解答】解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,﹣=.故选:B.【点评】此题考查列分式方程解应用题,找出题中蕴含的等量关系是解决问题的关键.7.式子有意义的x的取值X围是( )A.x≥﹣且x≠1B.x≠1 C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.8.下列计算正确的是( )A.=﹣3 B.=7 C.=2D.=×【考点】二次根式的性质与化简.【分析】根据二次根式的性质,可判断A、B,根据二次根式的除法,可判断C,根据二次根式的乘法,可判断D.【解答】解:A、=3,故A错误;B、==5,故B错误;C、,故C错误;D、=×,故D正确.故选:D.【点评】本题考查了二次根式的性质与化简,二次根式的性质、二次根式的乘除发是解题关键.9.已知关于x的分式方程+=1的解是非负数,则m的取值X围是( ) A.m>2 B.m≥2 C.m≥2且m≠3D.m>2且m≠3【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的X围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.10.在第1个△ABA1中,∠B=52°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,第2013个三角形的以A2013为顶点的内角的度数为( )A.B.C.D.【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A n的度数,进而可得出结论.【解答】解:∵在△ABA1中,∠B=52°,AB=A1B,∴∠BA1A===64°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===32°;同理可得,∠DA3A2=16°,∠EA4A3=8°,∴∠A n=,∴A2013为顶点的内角的度数===故选B.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键二、填空题(每题3分,共30分)11.若的值在两个整数a与a+1之间,则a=2.【考点】估算无理数的大小.【专题】计算题.【分析】利用”夹逼法“得出的X围,继而也可得出a的值.【解答】解:∵2=<=3,∴的值在两个整数2与3之间,∴可得a=2.故答案为:2.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32.【考点】平方差公式.【专题】计算题.【分析】由题目可发现x2﹣y2=(x+y)(x﹣y),然后用整体代入法进行求解.【解答】解:∵x+y=﹣4,x﹣y=8,∴x2﹣y2=(x+y)(x﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.【点评】本题考查了平方差公式,由题设中代数式x+y,x﹣y的值,将代数式适当变形,然后利用“整体代入法”求代数式的值.13.若分式的值为0,则x的值为0.【考点】分式的值为零的条件;解一元二次方程-因式分解法.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x2﹣x=0,|x|﹣1≠0,由x2﹣x=0,得x(x﹣1)=0,∴x=0或x=1,由|x|﹣1≠0,得|x|≠1,∴x≠±1,综上,得x=0,即x的值为0.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.若等腰三角形的边长分别为2和6,则它的周长为14.【考点】等腰三角形的性质.【分析】题目给出等腰三角形有两条边长为2和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:假设以2为等腰三角形的腰长,则三角形的各边长分别为2,2,6,不符合两边之和大于第三边;所以腰长只能为6,等腰三角形的周长为6+6+2=14.故填14.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.已知x(x+3)=1,则代数式2x2+6x+2017的值为2019.【考点】代数式求值.【专题】计算题.【分析】原式前两项变形后,把已知等式代入计算即可求出值.【解答】解:∵x(x+3)=1,∴原式=2x(x+3)+2017=2+2017=2019.故答案为:2019.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.计算:(x3y)﹣1•(x2y)2=xy.【考点】负整数指数幂.【分析】根据积的乘方,可化成同底数幂的乘除法,根据同底数幂的乘除法,可得答案.【解答】解:原式=x﹣3y﹣1•x4y2=x﹣3+4y﹣1+2=xy,故答案为:xy.【点评】本题考查了负整指数幂,利用了积的乘方,同底数幂的乘法.17.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于7或11.【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】因为已知条件给出的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,所以分两种情况讨论.【解答】解:根据题意,①当15是腰长与腰长一半时,AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当12是腰长与腰长一半时,AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故填7或11.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确给出哪一部分长要一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.18.实数a在数轴上的位置如图,化简+|a﹣2|=1.【考点】二次根式的性质与化简;实数与数轴.【分析】利用数轴得出a的取值X围,进而化简求出即可.【解答】解:∵由实数a在数轴上的位置如图,∴1<a<2,∴+|a﹣2|=+|a﹣2|=a﹣1+2﹣a=1.故答案为:1.【点评】此题主要考查了二次根式的性质与化简,正确开平方去绝对值得出是解题关键.19.当x<3时,﹣|x﹣6|=﹣3.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式利用二次根式的性质化简,再利用绝对值的代数意义计算即可.【解答】解:∵x<3,即x﹣3<0,x﹣6<0,∴原式=|x﹣3|﹣|x﹣6|=﹣x+3+x﹣6=﹣3,故答案为:﹣3【点评】此题考查了二次根式的性质与化简,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.20.如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为15°、30°、75°、120°.【考点】等腰三角形的判定.【分析】分别根据当AB=BP1时,当AB=AP3时,当AB=AP2时,当AP4=BP4时,求出答案即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴当AB=BP1时,∠BAP1=∠BP1A=30°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×30°=15°,当AB=AP2时,∠ABP2=∠AP2B=×(180°﹣30°)=75°,当AP4=BP4时,∠BAP4=∠ABP4,∴∠AP4B=180°﹣30°×2=120°,∴∠APB的度数为:15°、30°、75°、120°.故答案为:15°、30°、75°、120°.【点评】此题主要考查了等腰三角形的判定,利用分类讨论得出是解题关键.三、计算题(每小题3分,共9分)21.利用乘法公式计算:982﹣22.【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式计算即可.【解答】解:原式=(98+2)×(98﹣2)=9600.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.22.计算:(1)﹣()﹣1﹣+|﹣2|(2)÷3×.【考点】二次根式的混合运算;负整数指数幂.【专题】计算题.【分析】(1)根据负整数指数幂和绝对值的意义得到原式=2﹣4﹣+2﹣,然后合并即可;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣4﹣+2﹣=﹣2;(2)原式=1•••=•2a=a.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.记住负整数指数幂的意义.四、解答题23.先化简再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)+5xy],其中(x﹣2)2+|y+1|=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3x2y﹣2x2y+6xy﹣3x2y﹣5xy=﹣2x2y+xy,∵(x﹣2)2+|y+1|=0,∴x﹣2=0,y+1=0,即x=2,y=﹣1,则原式=8﹣2=6.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.24.先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】首先把分式进行化简,然后计算分式的除法,最后代入a、b的值计算即可.【解答】解:原式=ab(a+1)÷=ab(a+1)÷(a+1)=ab,则当a=+1,b=﹣1时,原式=(+1)(﹣1)=3﹣1=2.【点评】本题考查了分式的化简求值,解这类题的关键是利用分解因式的方法化简分式.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.【考点】分母有理化.【专题】阅读型.【分析】(1)运用第二种方法求解,(2)先把每一个加数进行分母有理化,再找出规律后面的第二项和前面的第一项抵消,得出答案,【解答】解:(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点评】本题主要考查了分母有理化,解题的关键是找准有理化因式.26.海门某公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.求购买该品牌一个台灯、一个手电筒各需要多少元?【考点】二元一次方程组的应用.【分析】设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程.【解答】解:设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元.【点评】本题考查了方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.27.八年级数学课上,朱老师出示了如下框中的题目.小聪与同桌小明讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE=DB (填“>”,“<”或“=”).(2)特例启发•解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作E F∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论•设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为3,AE=1,则CD=2或4(请你直接写出结果).【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)当E为中点时,过E作EF∥BC交AC于点F,则可证明△BDE≌△FEC,可得到AE=DB;(2)类似(1)过E作EF∥BC交AC于点F,可利用AAS证明△BDE≌△FEC,可得BD=EF,再证明△AEF是等边三角形,可得到AE=EF,可得AE=DB;(3)分点E在AB上和在BA的延长线上,类似(2)证得全等,再利用平行得到.【解答】解:(1)如图1,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(3)因为AE=1,△ABC的边长为3,所以E点可能在线段AB上,也可能在BA的延长线上,当点E在AB时,同(2)可知BD=AE=1,则CD=BC+BD=1+3=4,当点E在BA的延长线上时,如图3,过点E作EF∥BC,交CA的延长线于点F,则∠F=∠FCB=∠B=60°,∠FEC+∠ECD=∠FEC+∠EDC=180°,∴∠EDB=∠FEC,且ED=EC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴EF=BD,又可判定△AEF为等边三角形,∴BD=EF=AE=1,∴CD=BC﹣BD=3﹣1=2,故答案为:2或4.【点评】本题主要考查全等三角形的判定和性质及等边三角形的性质和判定,利用全等得到BD=EF,再找EF和AE的关系是解题的关键.28.在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,点D在线段BC的延长线上移动,若∠BAC=40°,则∠DCE=40°.(2)设∠BAC=m,∠DCE=n.①如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由.②当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】常规题型.【分析】(1)可证△ABD≌△ACE,可得∠ACE=∠B,即可解题;(2)根据△ABD≌△ACE可分别求得∠BCE用m和用n分别表示,即可求得m、n的关系;(3)分两种情况分析,第1种,当D在线段BC的延长线上或反向延长线上时,第2种,当D在线段BC上时.【解答】解:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ACE=∠B,∵AB=AC,∠BAC=40°,∴∠ACE=∠B=70°,∴∠DCE=180°﹣70°﹣70°=40°;(2)∵△ABD≌△ACE(1)已证,∴∠ACE=∠B,∵AB=AC,∠BAC=m,∴∠ACE=∠B=∠ACB=,∴∠BCE=∠ACB+∠ACE=180°﹣m,∵∠BCE=180°﹣∠DCE=180°﹣n,∴m=n.(3)当D在线段BC的延长线上或反向延长线上时,m=n,当D在线段BC上时,m+n=180°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABD≌△ACE是解题的关键.。

湖北省安陆市2015-2016学年八年级上学期期末质量检测数学试卷(扫描版)

湖北省安陆市2015-2016学年八年级上学期期末质量检测数学试卷(扫描版)

CD B A八年级参考答案二、填空题11、bac 352-; 12、2)6(-+b a ; 13、))((22b a b a b a -+=-; 14、36; 15、10; 16、180; 17、23; 18、①②③⑤; 19、10; 20、n 2三、解答题21、(1)(5分)原式=)144()55()49(222+-----x x x x x ………………………………2分 =1445549222-+-+--x x x x x=59-x ………………………………4分 当31-=x 时,原式=5)31(9--⨯=8- ………………………………5分(2)(5分)原式=11)2(1)1)(1(22-+-+⋅-+-x x x x x x ………………………………2分 =)2)(1(2)2)(1(1---+--x x x x x =)2)(1(1---x x x =21-x ………………………………4分 当x =0时,原式=201-=21-.………………………………5分22、(1)BC 边上的中线AD 如图………………………………4分(2)∵AD 是BC 边上的中线,且AD =21BC ∴AD =BD =CD∴∠B =∠BAD , ∠C =∠CAD又∵∠B +∠BAC +∠C =180°∴∠BAD +∠BAC +∠CAD =180°即2∠BAC =180°∴∠BAC =90°即△ABC 是直角三角形………………………………8分23、“丰收1号”小麦的试验田面积是)1(2-a m 2,单位面积产量是15002-a kg/m 2; “丰收2号”小麦的试验田面积是2)1(-a m 2,单位面积产量是2)1(500-a kg/m 2. ……………4分 ∵1>a∴)1()1(22---a a =)1()12(22--+-a a a =22+-a =0)1(2<--a∴)1()1(22-<-a a ………………………………7分又由1>a 可得0)1(2>-a ,012>-a ∴22)1(5001500-<-a a ………………………………9分 ∴“丰收2号”小麦的单位面积产量高. ………………………………10分24、(1)22b a -,33b a -,44b a - ………………………………3分(2)n n b a - ………………………………5分(3)在n n n n n n b a b ab b a ab a -=++++-----))((1221 中令2=a ,1-=b ,10=n 得, 12)1222222)(12(1023789-=-+-+-+-+∴341122222223789=-+-+-+- ∴34222222223789=+-+-+- ………………………………10分25、设江水的流速为x km/h ,则轮船顺流航行90 km 所用的时间为x +3090 h ,逆流航行60 km 所用的时间为x-3060 h ………………………………2分 依题意得xx -=+30603090, ………………………………6分 解得x =6 ………………………………8分经检验x =6是分式方程的解答:江水的流速为6 km/h ………………………………10分26、(1)证明:过点O 分别作OE ⊥AB 于E ,OF ⊥AC 于F ,由题意知,在Rt △OEB 和Rt △OFC 中⎩⎨⎧==OF OE OC OB ∴Rt △OEB ≌Rt △OFC (HL ),∴∠ABC =∠ACB ,∴AB =AC ………………………………3分(2)证明:过点O 分别作OE ⊥AB 于E ,OF ⊥AC 于F ,由题意知,OE =OF .∠BEO =∠CFO =90°,∵在Rt △OEB 和Rt △OFC 中⎩⎨⎧==OF OE OC OB ∴Rt △OEB ≌Rt △OFC (HL ),∴∠OBE =∠OCF ,又∵OB =OC ,∴∠OBC =∠OCB ,∴∠ABC =∠ACB ,∴AB =AC ; ………………………………7分(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)………………………………9分………………………………12分。

潍坊地区2015-2016年八年级上期末质量检测数学试题含答案

潍坊地区2015-2016年八年级上期末质量检测数学试题含答案

潍坊地区2015-2016学年度第一学期期末质量检测八年级数学试题一、选择题(每小题3分,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.化简分式的结果是( ). 112-+a a A . B . C . D .1-a a 11-a 11+a 1+a 2.下列四副图案中,不是轴对称图形的是( ).3.如图,□中,,平分,则等于( ). ABCD108=∠C BE ABC ∠ABE ∠A .18° B .36° C .72° D .108°4.如图所示,已知≌,,,下列不正确的等式是ABE ∆ACD ∆21∠=∠C B ∠=∠( ).A .B .AC AB =CAD BAE ∠=∠ C . D .DC BE =DE AD =5.如果,则等于( ).0622=---x x x x A . ±2 B . -2 C . 2 D . 36.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是( ) A .96,94.5 B .96,95 C .95,94.5 D .95,95 7.下列命题中,是假命题的是( ).A .B .C .D .A .同角的余角相等B .一个三角形中至少有两个锐角C .如果>,>,那么D .全等三角形对应角的平分线相等a b a c c b =8.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级 参加人数中位数 方差 平均数 甲 55 149 191 135 乙55151110135某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字达150个以上为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小. 上述结论中正确的是( ). A .(1)(2)(3)B .(1)(2)C .(1)(3)D .(2)(3)9.如图,已知四边形是平行四边形,下列结论中不正确的是( ). ABCD A .当时,它是菱形 B .当时,它是菱形 BC AB =BD AC ⊥C .当时,它是矩形 D . 当时,它是正方形90=∠ABC BD AC =10.如图,在△中,若,,,BC BD AC AB ==40=∠A 则的度数是( ). BDC ∠A .B .C .D .8070605011.如图,中,分别是的中点,平分,交于点,若ABC ∆E D ,AC BC ,BF ABC ∠DE F ,则的长是( ).6=BC DF A .2 B .3C .D .42512.国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有,,那么下列说法中错误的是( ).AB EFDC ∥∥BC GH AD ∥∥第9题图D CBA第12题图A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等二、填空题(每小题3分,共24分. 只要求填写最后结果.) 13.若,则: .n m 43=m =n 14.命题“相等的角是对顶角”的条件是 ,结论是 ; 它的逆命题是 .15.若一组数据2,4,5,1,a 的平均数为,则 ;这组数据的方差a =a.=2S 16.如图所示,根据四边形的不稳定性制作的边长均为 cm 15的可活动菱形衣架,若墙上钉子间的距离, cm BC AB 15==则_______. =∠117.已知分式方程441+=+-x mx x 有增根,则_______.18.将一张等边三角形纸片沿着一边上的高剪开,可以拼成不同形状的四边形.试写出其中一种四边形的名称 .19.小明家去年的旅游、教育、饮食支出分别出3600元、1200元、7200元,今年这三项支出依次比去年增长10%、20%、30%,则小明家今年的总支出比去年增长的百分数是_________.20.如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB 、A O 1为两邻边作平行四边形AB C 1 O 1, 平行四边形ABC 1O 1的对角线交于点O 2,同样以 AB 、AO 2为两邻边作平行四边形ABC 2O 2,……, 依次类推,则平行四边形ABC n O n 的面积为 .三、解答题(本大题共8小题,共60分.要求写出必要的文字说明和说理过程.) 21.计算与化简:(每小题5分,共10分) (1);ab b a b a a -+--443(2) 先化简,再求值:,其中. 422232-÷⎪⎭⎫ ⎝⎛--+x x x x x x6=x22.(本题6分)如图,画出关于轴对称的, ABC ∆y 111C B A ∆并写出的各顶点、和的坐标. 111C B A ∆1A 1B 1C23.(本题8分)阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.已知:如图,分别 DF BE ABC ADC ,,∠=∠平分且.,,ADC ABC ∠∠21∠=∠求证:.C A ∠=∠证明:∵分别平分( 已知 ), DF BE ,ADC ABC ∠∠,∴( ),ADC ABC ∠=∠∠=∠213,211∵( 已知 ). ADC ABC ∠=∠∴( ), ADC ABC ∠=∠2121∴( ),31∠=∠又因为∵( ), 21∠=∠∴( ).32∠=∠∴∥( ),AB CD ∴( ).180,180=∠+∠=∠+∠ABC C ADC A∴( ). C A ∠=∠24.(本题6分)如图,已知在中,是的中点,于点, ABC ∆D BC AB DE ⊥E AC DF ⊥于点,且.求证:平分. F CF BE =AD BAC ∠25.(本题7分)当今,青少年视力水平下降已引起了社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的条形图(长方形的高表示该组人数)如下:请解答下列问题:(1)本次抽样调查共抽测了多少名学生?(2)参加抽测学生的视力的众数在什么范围内?(3)若视力为4.9,5.0,5.1及以上为正常,试估计该校学生视力正常的人数约为多少?26.(本题7分)人如图,在□中,为中点,的延长线与的延长线相交于点.求ABCD E BC AE DC F 证:(1)≌;(2).ABE ∆FCE ∆21=∆∆的周长的周长AFD ABE27.(本题7分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克.如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元? (2)超市销售这种干果共盈利多少元?28.(本题9分)以四边形的边为斜边分别向外侧作等腰直角三角形,直角顶ABCD DA CD BC AB ,,,点分别为,顺次连结这四个点,得四边形.如图1,当四边形为H G F E ,,,EFGH ABCD 正方形时,我们发现四边形是正方形.EFGH (1)如图2,当四边形为矩形时,请判断:四边形的形状(不要求证ABCD EFGH 明);(2)如图3,当四边形为一般平行四边形时,若, ABCD40=∠ADC ①试求的度数; HAE ∠ ②求证:;HG HE = ③请判定四边形是什么四边形?并说明理由.EFGHABCDHEFG (图2)E BFGDHAC(图3)(图1)A BCDH EFG八年级数学试题参考答案一、选择题(每小题3分,共36分.)1. B2.A3.B4.D5.C6.A7.C8.B9.D 10.B 11.B 12. C. 二、填空题(每小题3分,共24分.)13.; 14.两个角相等,这两个角是对顶角,对顶角相等; 15.3,2; 16.;17. ;3412018. 答案不唯一:平行四边形或矩形或菱形; 19.23%; 20..n 25三、解答题(本大题共7小题,共60分.) 21.(1);…………5分ba b a 44-+(2)解:原式3(2)(2)(2)(2)(2)(2)(2)(2)2x x x x x x x x x x x ⎡⎤-++-=-⨯⎢⎥+-+-⎣⎦2(4)(2)(2)(2)(2)2x x x x x x x-+-=⨯+-4x =-…………3分当x=6时,原式=6-4=2.…………5分22.如图…………3分;,,.…………6分 ()2,31A ()3,41-B ()1,11-C 23.(每空1分)证明:∵分别平分(已知), DF BE ,ADC ABC ∠∠,∴( 角平分线定义),ADC ABC ∠=∠∠=∠213,211∵( 已知).∴(等式性质), ADC ABC ∠=∠ADC ABC ∠=∠2121∴(等量代换),31∠=∠又因为∵(已知),∴(等量代换). 21∠=∠32∠=∠∴∥(内错角相等,两直线平行),AB CD ∴(两直线平行,同旁内角互补).180,180=∠+∠=∠+∠ABC C ADC A ∴( 等角的补角相等). C A ∠=∠24.证明:∵BE=CF ,BD=CD …………2分 ∴Rt △BDE ≌Rt △CDF ,∴DE=DF ,…………4分 又DE ⊥AB 于E ,DF ⊥AC ∴AD 平分∠BAC …………6分25.解:(1)150;…………2分(2)4.25~4.55;…………4分(3)600…………7分26.证明:(1)在平行四边形ABCD 中,AB ∥CD ,∴∠FAB=∠F 在△ABE 和△FCE 中, ∠FAB=∠F 又∠AEB=∠FEC ,BE=CE. ∴ △ABE ≌△FCE .…………4分(2)根据(1),△ABE ≌△FCE ,AE=EF ,BF=CE ,AB=CD=CF ,…………5分 ∴AD=2BE ,DF=2AB ,AF=2AE.∴.…………7分21=∆∆的周长的周长AFD ABE 27.解:解:(1)设该种干果的第一次进价是每千克x 元,则第二次进价是每千克(1+20%)x 元,…………1分 由题意,得=2×+300,解得x=5,经检验x=5是方程的解.…………3分答:该种干果的第一次进价是每千克5元…………4分 (2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000 =1500×9+4320﹣12000 =13500+4320﹣12000=5820(元).…………6分答:超市销售这种干果共盈利5820元.…………7分28.(1)四边形EFGH 是正方形.…………2分 (2) ①∵∠ADC =,40在□ABCD 中,AB ∥CD ,∴∠BAD=180°-∠ADC=140°;E CBAF D∵△HAD和△EAB都是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-140°=130°.………4分②∵△AEB和△DGC都是等腰直角三角形,∴△AEB≌△CGD,∴AE=BE=CG=DG,在□ABCD中,AB=CD,∴AE=DG,∵△HAD和△GDC都是等腰直角三角形,∴∠DHA=∠CDG= 45°,∴∠HDG=∠HAE.∵△HAD是等腰直角三角形,∴HA=HD,∴△HAE≌△HDG,∴HE=HG.…………6分③四边形EFGH是正方形.由②同理可得:GH=GF,FG=FE,∵HE=HG(已证),∴GH=GF=FG=FE,∴四边形EFGH是菱形;∵△HAE≌△HDG(已证),∴∠DHG=∠AHE,又∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°,∴四边形EFGH是正方形.………………9分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016年八年级数学上册质量检测试题(含答案)
2015学年第一学期戴村片八年级学习能力阶段性测试数学学科试题卷考试时间:90分钟满分:120分 2015年10月一、选择题(每小题3分,共30分) 1.为了了解大江东产业集聚区2014年数学学业考试各分数段成绩分布情况,从中抽取 1500名考生的学业考试数学成绩进行统计分析.在这个问题中,样本容量是指( ) A.1500 B.被抽取的1500名考生的学业考试数学成绩 C.被抽取的1500名考生 D.大江东产业集聚区2 014年学业考试数学成绩 2.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若º,则的大小是() A.70º B.110º C.60º D.130º 3.下列各组长度的线段能构成三角形的是() A.1.5 cm,3.9 cm,2.3 cm B.3.5 cm,7.1 cm,3.6 cm C.6 cm,1 cm,6 cm D.4 cm,10 cm,4 cm 4.如图,工人师傅常用角尺平分一个任意角.做法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C 的射线OC即是∠AOB的平分线.这种做法的道理是 ( ) A. SAS B. SSS C. ASA D. 以上三种都可以 5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是() A.∠1=50°,∠2=40° B.∠1=50° ,∠2=50° C.∠1=∠2=45° D.∠1=40°,∠2=40° 6.如图,在△ABC和△DEF中,已有条件AB=DE ,还需要添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是() A. ∠B=∠E,BC=EF B. BC=EF,AC=DF C.∠A=∠D,∠B=∠E D. ∠A=∠D,BC=EF 7. 如图,已知直线L交直线a,b于A,B两点,且a∥b,,E是a上的点,F是b上的点,满足∠DAE= ∠BAE, ∠DBF= ∠ABF,则∠ADB 的度数是() A. B. C. D.无法确定
8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是() A. 3 B. 4 C. 6 D. 5 9、已知等腰三角形一腰上的中线将它的周长分成6cm和12cm两部分,则等腰三角形的底边长为( ) A. 2�M B. 10�M C. 6�M或4�M D.2�M
或10�M 10. 如图,等边ΔABC的边长为 cm,D、E分别是AB、AC上的点,将ΔABC沿直线DE折叠,点A落在A′处,且A′在ΔABC
外部,则阴影部分图形的周长为()cm. A. B. C. D.
二、填空题(每小题4分,共24分) 11. 某种细胞的平均半径是
0.0036m,用科学记数法可表示为 m. 12. 若x,y均为正整数,且2x•4y=32,则x+y的值为. 13.将命题“对顶角相等”,改写成“如果……那么……”的形式。

14. 如图,△BEF是由△ABC平移所得,点A、B、E在同一直线上,若∠F=200,∠E=680,则∠CBF的度数是。

15.如图所示,在△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点的距离相等;④图中共有3对全等三角形,正确的有:
16.如图,点D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S 2,若S△ABC=6,则S1-S2的值为_________.
三、解答题(有7个小题,共66分) 17、(本题6分)如图,有分别过A、B两个加油站的公路、相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足到A、B两个加油站的距离相等,而且P到两条公路、的距离也相等。

请用尺规作图作出点P(不写作法,保留作图痕迹). 18.(本题8分)因式分解(1)(2) 19.(本题8分)已知:如图,点B、E、C、F在同一条直线上,且AB=DE,AC=DF,BE=CF。

求证:AB∥DE.请将下面的过程和理由补充完整解:∵BE=CF( ) ∴BE+EC=CF+EC即 . 在△ABC和△DEF中, AB=DE( 已知) AC= DF( ) BC= ( ) ∴△ABC≌△DEF( ) ∴∠ABC=∠DEF ( ) ∴AB∥DE ( )
20.(本题10分)如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,且∠BDC=∠BCD,求∠DCE的度数. 21.(本题10分)大江东集聚区为了治理污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?
22、(本题12分)如图,中,AC = AB,AD平分,且AD=BD,求证:
CD⊥AC
23. (本题12分)某同学在一次课外活动中,用硬纸片做了两个直
角三角形,见图①、②.图①中,∠B=90°,∠A=30°;图②中,∠D=90°,∠F=45°.图③是该同学所做的一个实验:他将△DEF的直角边DE
与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动
过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,该同学发现:F、C两点间的距离
逐渐;连接FC,∠FCE的度数逐渐.(填“不变”、“变大”或“变小”)(2)△DEF在移动的过程中,∠FCE与∠CFE度
数之和是否为定值,请加以说明.(3)能否将△DEF移动至某位置,使F、C的连线与AB平行?请求出∠CFE的度数. 2015学年第一学
期戴村片八年级学习能力阶段性测试数学答案题号 1 2 3 4 5 6 7 8 9 10 答案 A B C B C D C A A C 一.选择题(每小题3分,共
30分)二.填空题(每小题4分,共24分)11. 3.6×10 ,12. 3或4 13. 如果两个角是对顶角,那么这两个角相等 . 14. 20 15.
①②③④ .16. 1 . 三.解答题(17题6分;18、19题各8分;
20、21题各10分,22、23题各12分;共66分) 17.(本小题6分)画中垂线………………2分画角平分………………2分结论………………2分
18.(本小题8分(1)a(2a+3)(2a-3) ……………………4分(2)(x+y) (x-y) ……………………4分 19.(本小题8分)∵BE=CF( 已知) ∴BE+EC=CF+EC即 BC=EF . 在△ABC和△DEF中, AB=DE( 已
知 ) AC= DF( 已知 ) BC= EF ( 已证) ∴△ABC≌△DEF( SSS )
∴∠ABC=∠DEF ( 全等三角形的对应角相等) ∴AB∥DE ( 同位角相等,两直线平行) ……………………每空一分 20(本小题10分)(其他做法按类似方法给分)证明:(1)∵AD∥BC
∴∠ADB=∠EBC ……………………2分∵∠A=90 , CE⊥BD ∴ ∠A =∠BEC ……………………2分在△ADB与△ECB中∠ADB=∠EBC ∠A =∠BEC BD=BC ∴△ABD≌△ECB(AAS) ……………………2分(2)
∵∠DBC=50°,∠BDC=∠BCD ∴ ∠BDC=∠BCD=(180
-50 )÷2=65 ……………………2分∵CE⊥BD ∴∠B EC=90
∴∠DCE=90 - ∠BDC =90 -65 =25 ……………………2分 21. (本小题10分)解:设原计划每天铺设管道x米,根据题意得……………………4分解得,x=10 ……………………2分经检验,x=10是所列方程的根,且符合题意……………………1分答:原计划每天铺设管道10米. ……………………1分 22. (本小题12分)(其他做法按类似方法给分)证明:取AB中点E,连接
DE ……………………1分∵E是AB的中点∴AE =BE=
AB ……………………1分在△AED与△BED中 AE =BE DE=DE AD=BD ∴△AED≌△BED(SSS) ……………………2分
∴∠AED=∠BED=90 ……………………2分∵AE = AB ∵AC = AB ∴AE = AC ……………………1分
∴∠ACD=90 ∴CD⊥AC ……………………2分
23.(本小题12分)(1)变小,变大;……………………4分(2)∠FCE与∠CFE度数之和为定值;理由:∵∠D=90°,∠DFE=45°,又∵∠D+∠DFE+∠FED=18 0°,∴∠FED=45°,∵∠FED是△FEC 的外角,∴∠FEC+∠CFE=∠FED=45°,即∠FCE与∠CFE度数之和为定值;……………………4分(3)要使FC∥AB,则需
∠FCE=∠A=30°,……………………2分又∵∠CFE+∠FCE=45°,∴∠CFE=45°�30°=15°.……………………2分。

相关文档
最新文档