材料力学第三版答案

合集下载

材料力学课后习题答案详细

材料力学课后习题答案详细
Rr (R r) (3 104 ) (60 30) 0.009mm
变形厚的壁厚:
(R r) | (R r) | 30 0.009 29.991(mm)
[习题 2-11] 受轴向拉力 F 作用的箱形薄壁杆如图所示。已知该材料的弹性
常数为 E, ,试求 C 与 D 两点间的距离改
22

N 22 A

10 103 N 400mm 2
25MPa
33

N 33 A
10 103 N 400mm 2
25MPa
[习题 2-3] 试求图示阶梯状直杆横截面 1-1、2-2 和平 3-3 上的轴力,并作
轴力图。若横截面面积 A1 200mm2 , A2 300mm2 , A3 400mm2 ,并求各横截 面上的应力。
A1 11.503cm2 1150.3mm2
AE

N EA A

366.86 103 N 2 1150.3mm2
159.5MPa
EG

N EG A

357.62 103 N 2 1150.3mm2
155.5MPa
[习题 2-5] 石砌桥墩的墩身高 l 10m ,其横截面面尺寸如图所示。荷载
22

N 22 A2

10 103 N 300mm 2
33.3MPa
3
33

N 33 A
10 103 N 400mm 2
25MPa
[习题 2-4] 图示一混合屋架结构的计算简图。屋架的上弦用钢筋混凝土制
成。下面的拉杆和中间竖向撑杆用角钢构成,其截面均
为两个 75mm 8mm 的等边角钢。已知屋面承受集度为

《工程力学(工程静力学与材料力学)(第3版)》考试试卷(附答案)(2)

《工程力学(工程静力学与材料力学)(第3版)》考试试卷(附答案)(2)

工程力学考试答卷(2)1.(5分)拉压杆件轴向变形公式N F ll EA ∆=的应用条件是:等截面直杆、弹性范围内加载;等截面直杆、弹性范围内加载、力的作用线通过截面形心;等截面直杆、弹性范围内加载、力的作用线通过截面形心沿着杆的轴线; 等截面直杆、力的作用线通过截面形心沿着杆的轴线。

2.(5分)对于建立材料在一般应力状态下的失效判据与设计准则,试选择如下合适的论述。

(A )逐一进行试验,确定极限应力;(B )无需进行试验,只需关于失效原因的假说; (C )需要进行某些试验,无需关于失效原因的假说;(D )假设失效的共同原因,根据简单试验结果。

3.(5分)图示四梁中FP ,、l 、W 、[]σ均相同,不考虑轴力影响。

试判断关于它们强度高低的下述结论中哪一个是正确的。

正确答案是 C 。

正确答案 D(A)强度:图a=图b=图c=图d;(B)强度:图a>图b>图c>图d;(C)强度:图b>图a>图c>图d;正确答案是B。

(D)强度:图b>图a>图d>图c。

4.(5分)提高钢制大柔度压杆承载能力有如下方法.试判断哪一种是最正确的。

(A)减小杆长,减小长度系数,使压杆沿横截面两形心主轴方向的柔度相等;(B)增加横截面面积,减小杆长;(C)增加惯性矩,减小杆长;正确答案是A。

(D)采用高强度钢。

sF WAF ABF BF AN F(a)5.(10分)图示拖车重W = 20kN ,汽车对它的牵引力FS = 10 kN 。

试求拖车匀速直线行驶时,车轮A 、B 对地面的正压力。

图(a ):0)(=∑F A M 08.214.1NB S =⨯+⨯-⨯-F F W6.13NB =F kN0=∑y F ,4.6NA =F kN6.(10分)画出图示梁的剪力图和弯矩图,并确定 max Q ||F 和max||M 。

AB(ql2lFQF 511ADEC B2M 2M M231M2ql=∑A M ,lM F B 2R =(↑)0=∑y F ,lM F A 2R =(↓)lM F 2||max Q =qm8kN ⋅B(a)z(d)M M 2||max =7.(25分)梁的受力及横截面尺寸如图所示。

材料力学第3版习题答案

材料力学第3版习题答案

材料力学第3版习题答案第一章:应力分析1. 某材料在单轴拉伸下的应力-应变曲线显示,当应力达到200 MPa 时,材料发生屈服。

若材料在该应力水平下继续加载,其应力将不再增加,但应变继续增加。

请解释这一现象,并说明材料的屈服强度是多少?答案:这种现象表明材料进入了塑性变形阶段。

在单轴拉伸试验中,当应力达到材料的屈服强度时,材料的晶格结构开始发生滑移,导致材料的变形不再需要额外的应力增加。

因此,即使继续加载,应力保持不变,但应变会因为材料内部结构的重新排列而继续增加。

在本例中,材料的屈服强度是200 MPa。

第二章:材料的弹性行为2. 弹性模量是描述材料弹性行为的重要参数。

若一块材料的弹性模量为210 GPa,当施加的应力为30 MPa时,其应变是多少?答案:弹性模量(E)与应力(σ)和应变(ε)之间的关系由胡克定律描述,即σ = Eε。

要计算应变,我们可以使用公式ε =σ/E。

将给定的数值代入,得到ε = 30 MPa / 210 GPa =1.43×10^-4。

第三章:材料的塑性行为3. 塑性变形是指材料在达到屈服点后发生的永久变形。

如果一块材料在单轴拉伸试验中,其屈服应力为150 MPa,当应力超过这个值时,材料将发生塑性变形。

请解释塑性变形与弹性变形的区别。

答案:塑性变形与弹性变形的主要区别在于材料在去除外力后是否能够恢复原状。

弹性变形是指材料在应力作用下发生的形状改变,在应力移除后能够完全恢复到原始状态,不留下永久变形。

而塑性变形是指材料在应力超过屈服点后发生的不可逆的永久变形,即使应力被移除,材料的形状也不会恢复到原始状态。

第四章:断裂力学4. 断裂韧性是衡量材料抵抗裂纹扩展的能力。

如果一块材料的断裂韧性为50 MPa√m,试样的尺寸为100 mm×100 mm×50 mm,试样中存在一个长度为10 mm的初始裂纹。

请计算在单轴拉伸下,材料达到断裂的临界应力。

材料力学第三版习题答案

材料力学第三版习题答案

材料力学第三版习题答案材料力学第三版习题答案材料力学是研究物质的力学性质和行为的学科,是工程力学的重要分支之一。

在学习材料力学的过程中,习题是非常重要的一部分,通过解答习题可以加深对知识点的理解和掌握。

下面将为大家提供材料力学第三版习题的答案,希望对大家的学习有所帮助。

第一章弹性力学基础1. 问题:材料力学的研究对象是什么?答案:材料力学的研究对象是物质的力学性质和行为,包括材料的强度、刚度、塑性、断裂等方面。

2. 问题:什么是应力?答案:应力是单位面积上的力,可以分为正应力和剪应力。

正应力是指垂直于截面的力,剪应力是指平行于截面的力。

3. 问题:什么是应变?答案:应变是物体在受力作用下发生形变的程度,可以分为线性应变和剪切应变。

线性应变是指物体的长度、体积或角度发生变化,剪切应变是指物体的形状发生变化。

第二章弹性力学基本定律1. 问题:什么是胡克定律?答案:胡克定律是描述弹性体的应力和应变之间关系的基本定律。

根据胡克定律,应力与应变成正比,比例系数为弹性模量。

2. 问题:什么是杨氏模量?答案:杨氏模量是描述材料抗拉刚度的物理量,表示单位应力下单位面积的应变。

杨氏模量越大,材料的刚度越高。

3. 问题:什么是泊松比?答案:泊松比是描述材料在受拉伸或压缩时横向收缩或膨胀程度的物理量,表示纵向应变与横向应变之间的比值。

第三章弹性体的平面应力问题1. 问题:什么是平面应力状态?答案:平面应力状态是指物体在一个平面上受力,而在另外两个平面上不受力的状态。

在平面应力状态下,物体的应力只有两个分量,分别为法向应力和切应力。

2. 问题:什么是平面应变状态?答案:平面应变状态是指物体在一个平面上发生应变,而在另外两个平面上不发生应变的状态。

在平面应变状态下,物体的应变也只有两个分量,分别为法向应变和切应变。

3. 问题:什么是薄壁压力容器?答案:薄壁压力容器是指壁厚相对于容器直径或高度较小的压力容器。

在设计薄壁压力容器时,需要考虑容器的强度和稳定性。

材料力学课后答案

材料力学课后答案

材料力学课后答案材料力学是一门研究材料的结构和性质以及力学行为的学科。

以下是材料力学课后习题的答案。

1. 对于一个材料试验样品的拉伸测试,如何计算应力和应变?答:应力是试样受到的外部力除以其截面积,应变是试样的长度变化除以其原始长度。

2. 当一根钢条受到拉伸力时,它的截面积会变大还是变小?为什么?答:当钢条受到拉伸力时,它的截面积会减小。

这是因为外部力导致钢条内部发生塑性变形,使其截面积减小。

3. 什么是杨氏模量?如何计算?答:杨氏模量是表征材料在受到应力时的变形能力的物理量。

它可以通过应力与应变之间的比率来计算,即杨氏模量=应力/应变。

4. 什么是泊松比?如何计算?答:泊松比是一个无量纲的物理量,它描述了材料在拉伸或压缩时的横向收缩量与纵向伸长量之间的比例关系。

它可以通过横向应变与纵向应变之间的比率来计算,即泊松比=横向应变/纵向应变。

5. 什么是屈服强度?如何确定屈服强度?答:屈服强度是材料在受到应力时开始产生塑性变形的应力值。

它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,屈服强度对应于曲线上的屈服点。

6. 材料的断裂强度是什么?如何计算?答:材料的断裂强度是指材料在受到拉伸或压缩的最大应力值。

它可以通过拉伸测试或压缩测试中的应力-应变曲线来确定,断裂强度对应于曲线上的断裂点。

7. 什么是韧性?如何评价材料的韧性?答:韧性是材料在受力过程中吸收能量的能力。

可以通过材料的断裂能量来评价韧性,断裂能量是在材料断裂前吸收的总能量。

8. 什么是冷加工和热加工?它们对材料性能有何影响?答:冷加工是在室温下对材料进行塑性变形,而热加工是在高温下对材料进行塑性变形。

冷加工会使材料变硬和脆化,而热加工则会使材料变软和韧性增加。

以上是材料力学课后习题的答案,希望对你的学习有所帮助。

如果有任何疑问,请随时向我提问。

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第4章 刚体静力学专门问题

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第4章 刚体静力学专门问题

习题4-2图工程力学(工程静力学与材料力学)习题与解答第4章 刚体静力学专门问题4-1 塔式桁架如图所示,已知载荷FP 和尺寸d 、l 。

试求杆1、2、3的受力。

知识点:桁架、求解桁架的截面法 难易程度:一般 解答:截面法,受力如图(a )d l =αtan ,22cos d l d +=α0=∑x F ,0cos 2P =-αF F∴ P222F d d l F +=(拉)0=∑A M ,02P 1=⋅-l F d F ∴ P 12F d l F =(拉)=∑y F ,0sin 231=++αF F FP 33F d lF -=(压)4-2 桁架的载荷和尺寸如图所示。

试求杆BH 、CD 和GD 的受力。

知识点:桁架、求解桁架的节点法 难易程度:一般 解答:1.节点G :=∑y F ,0=GD F2.节点C :=∑y F ,0=HC F3.整体,图(a )0=∑B M ,0405601015R =⨯+⨯-E F 67.26R =E F kN (↑)习题4-4图习题4-3图4.截面法,图(b )0=∑H M ,067.26106055=⨯+⨯--CD F 67.6-=CD F kN (压)=∑y F ,067.266022=+--BH F1.47-=BH F kN4-3 试判断图示结构中所有零杆。

知识点:桁架、零杆与零杆的判断 难易程度:一般 解答:由节点C 知,F1 = F4 = 0再由节点E 知,F10 = 0由节点D 知,F7 = 0 由节点B 知,F13 = 0 再由节点A 知,F11 = 04-4 图示桁架的两部分用铰链K 连接,在铰链K 上作用有集中载荷FP = 10kN 。

试求各杆受力。

解:1.由结构和载荷对称性,只需考虑一半桁架即可。

由节点D ,FDF = 0 再由节点F ,FHF = 0再由节点H ,FHJ = 0 再由节点J ,FKJ = FJF = 0 再由节点F ,FFB = 0 2.节点K (图(a ))=∑y F ,030cos 2P =+︒F F KH77.53P -=-=F F KH kN (受压)∴ 77.5-======CA GC KG DB HD KH F F F F F F kN (压)其余各杆受力均为零。

《工程力学(工程静力学与材料力学)(第3版)》考试试卷(附答案)(10)

《工程力学(工程静力学与材料力学)(第3版)》考试试卷(附答案)(10)

工程力学考试答卷(10)1.(5分)结构对称的梁在反对称载荷作用下:弯矩图对称,剪力图反对称;弯矩图反对称,剪力图对称;弯矩图和剪力图都对称;弯矩图和剪力图都反对称。

正确答案是B。

2.(5分)关于材料的力学一般性能,有如下结论,请判断哪一个是正确的:脆性材料的抗拉能力低于其抗压能力;(B)脆性材料的抗拉能力高于其抗压能力;(C)韧性材料的抗拉能力高于其抗压能力;正确答案是A。

(D)脆性材料的抗拉能力等于其抗压能力。

3.(5分)关于斜弯曲的主要特征有以下四种答案,请判断哪一种是正确的。

(A) My≠0,Mz≠0,FNx≠0;,中性轴与截面形心主轴不一致,且不通过截面形心;(B) My≠0,Mz≠0,FNx=0,中性轴与截面形心主轴不一致,但通过截面形心;(C) My≠0,Mz≠0,FNx=0,中性轴与截面形心主轴平行,但不通过截面形心;(D) My≠0,Mz≠0,FNx≠0,中性轴与截面形心主轴平行,但不通过截面形心。

正确答案是B。

4.(5分)两根长度相等、直径不等的圆轴受扭后,轴表面上母线转过相同的角度。

设直径大的轴和直径小的轴的横截面上的最大剪应力分别为τ1max和τ2max,材料的切变模量分别为G1和G2。

关于τ1max和τ2max的大小,有下列四种结论,请判断哪一种是正确的。

(A)τ1max>τ2max;(B)τ1max<τ2max;(C)若G1>G2,则有τ1max>τ2max;正确答案是C。

(D)若G1>G2,则有τ1max<τ2max。

5.(10分)截面为工字形的立柱受力如图所示。

试求此力向截面形心C平移的结果。

解:r =(-50, 125, 0)mm F =(0, 0, -100)kN F 向C 平移,得 FR =(0, 0, -100)kN1000000.1250.05-)(-=⨯==kj i F r F M M C C=(-12.5, -5, 0)kN ·m6.(10分)图示芯轴AB 与轴套CD 的轴线重合,二者在B 、C 处连成一体;在D 处无接触。

材料力学答案_单辉祖_习题答案第3版.pdf

材料力学答案_单辉祖_习题答案第3版.pdf

解:

故 因为


返回
3-12(3-23) 图示矩形截面钢杆承受一对外力偶矩
切变模量
,试求:
(1)杆内最大切应力的大小、位置和方向;
(2)横截面矩边中点处的切应力;
。已知材料的
(3)杆的单位长度扭转角。
解:


由表得
MPa
返回
第四章 弯曲应力
4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 下页 4-1(4-1) 试求图示各梁中指定截面上的剪力和弯矩。 解:(a)
解:取消 A 端的多余约束,以 用下杆产生缩短变形。
代之,则
(伸长),在外力作
因为固定端不能移动,故变形协调条件为:

故 返回
6-2 图示支架承受荷载
别为

各杆由同一材料制成,其横截面面积分

。试求各杆的轴力。
解:设想在荷载 F 作用下由于各杆的变形,节点 A 移至 。此时各杆的变形
及 充方程。
如图所示。现求它们之间的几何关系表达式以便建立求内力的补
由附录Ⅳ得
返回 5-5(5-18) 试按迭加原理求图示梁中间铰 C 处的挠度 ,并描出梁挠曲线的 大致形状。已知 EI 为常量。
解:(a)由图 5-18a-1
(b)由图 5-18b-1 = 返回
5-6(5-19)
试按迭加原理求图示平面折杆自由端截面
C 的铅垂位移和水平位移。已知杆各段的横截面面积均为 A,弯曲刚度均为 EI。
及横截面上最大弯曲
得:
由几何关系得: 于是钢尺横截面上的最大正应力为:
返回
第五章 梁弯曲时的位移
5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-1(5-13) 试按迭加原理并利用附录 IV 求解习题 5-4。

工程材料力学性能 第三版课后题答案(束德林)

工程材料力学性能 第三版课后题答案(束德林)

工程材料力学性能课后题答案第三版(束德林)第一章单向静拉伸力学性能1、解释下列名词。

(1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

(2)滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

(3)循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

(4)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

(5)解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

(6)塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

脆性:指材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

(7)解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

(8)河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

(9)解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

(10)穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

(11)韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变。

2、说明下列力学性能指标的意义。

答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生100%弹性变所需的应力。

σ规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。

(2)rσ名义屈服强度(点),对没有明显屈服阶段的塑性材料通常以产生0.2%的塑性形变对应的应力作为屈2.0服强度或屈服极限。

材料力学课后习题答案

材料力学课后习题答案

材料力学课后习题答案材料力学课后习题答案欢迎大家来到聘才网小编搜集整理了材料力学课后习题答案供大家查阅希望大家喜欢1、解释下列名词1弹性比功:金属材料吸收弹性变形功的能力一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示2.滞弹性:金属材料在弹性范围内快速加载或卸载后随时间延长产生附加弹性应变的现象称为滞弹性也就是应变落后于应力的现象3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性4.包申格效应:金属材料经过预先加载产生少量塑性变形卸载后再同向加载规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力7.解理台阶:当解理裂纹与螺型位错相遇时便形成1个高度为b 的台阶8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样是解理台阶的1种标志9.解理面:是金属材料在一定条件下当外加正应力达到一定数值后以极快速率沿一定晶体学平面产生的穿晶断裂因与大理石断裂类似故称此种晶体学平面为解理面10.穿晶断裂:穿晶断裂的裂纹穿过晶内可以是韧性断裂也可以是脆性断裂沿晶断裂:裂纹沿晶界扩展多数是脆性断裂11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时冲击吸收功明显下降断裂方式由原来的韧性断裂变为脆性断裂这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的多数工程材料弹性变形时可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相外在因素:温度、应变速率和应力状态2、试述韧性断裂与脆性断裂的区别为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂这种断裂有1个缓慢的撕裂过程在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂断裂前基本上不发生塑性变形没有明显征兆因而危害性很大3、剪切断裂与解理断裂都是穿晶断裂为什么断裂性质完全不同?答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离一般是韧性断裂而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂解理断裂通常是脆性断裂4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有些?答:宏观断口呈杯锥形由纤维区、放射区和剪切唇3个区域组成即所谓的断口特征三要素上述断口三区域的形态、大小和相对位置因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化5、论述格雷菲斯裂纹理论分析问题的思路推导格雷菲斯方程并指出该理论的局限性答:只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况第二章金属在其他静载荷下的力学性能一、解释下列名词:(1)应力状态软性系数材料或工件所承受的最大切应力τmax和最大正12应力σmax比值即:max(2)缺口效应绝大多数机件的横截面都不是均匀而无变化的光滑体往往存在截面的急剧变化如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等这种截面变化的部分可视为“缺口”由于缺口的存在在载荷作用下缺口截面上的应力状态将发生变化产生所谓的缺口效应(3)缺口敏感度缺口试样的抗拉强度σbn的与等截面尺寸光滑试样的抗拉强度σb的比值称为缺口敏感度即:(4)布氏硬度用钢球或硬质合金球作为压头采用单位面积所承受的试验力计算而得的硬度(5)洛氏硬度采用金刚石圆锥体或小淬火钢球作压头以测量压痕深度所表示的硬度(6)维氏硬度以两相对面夹角为136的金刚石四棱锥作压头采用单位面积所承受的试验力计算而得的硬度(7)努氏硬度采用2个对面角不等的四棱锥金刚石压头由试验力除以压痕投影面积得到的硬度(8)肖氏硬度采动载荷试验法根据重锤回跳高度表证的金属硬度(9)里氏硬度采动载荷试验法根据重锤回跳速度表证的金属硬度二、说明下列力学性能指标的意义(1)σbc材料的抗压强度(2)σbb材料的抗弯强度(3)τs材料的扭转屈服点(4)τb材料的抗扭强度(5)σbn材料的抗拉强度(6)NSR材料的缺口敏感度(7)HBW压头为硬质合金球的材料的布氏硬度(8)HRA材料的洛氏硬度(9)HRB材料的洛氏硬度(10)HRC材料的洛氏硬度(11)HV材料的维氏硬度在弹性状态下的应力分布:薄板:在缺口根部处于单向拉应力状态在板中心部位处于两向拉伸平面应力状态厚板:在缺口根部处于两向拉应力状态缺口内侧处三向拉伸平面应变状态无论脆性材料或塑性材料都因机件上的缺口造成两向或三向应力状态和应力集中而产生脆性倾向降低了机件的使用安全性为了评定不同金属材料的缺口变脆倾向必须采用缺口试样进行静载力学性能试验八.今有如下零件和材料需要测定硬度试说明选择何种硬度实验方法为宜(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金(1)渗碳层的硬度分布HK或显微HV(2)淬火钢HRC(3)灰铸铁HB(4)鉴别钢中的隐晶马氏体和残余奥氏体显微HV或者HK(5)仪表小黄铜齿轮HV(6)龙门刨床导轨HS(肖氏硬度)或HL(里氏硬度)(7)渗氮层HV(8)高速钢刀具HRC(9)退火态低碳钢HB(10)硬质合金HRA第三章金属在冲击载荷下的力学性能冲击韧性:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力【P57】冲击韧度::U形缺口冲击吸收功AKU除以冲击试样缺口底部截面积所得之商称为冲击韧度αku=Aku/S(J/cm2),反应了材料抵抗冲击载荷的能力,用aKU表示P57注释/P67冲击吸收功:缺口试样冲击弯曲试验中摆锤冲断试样失去的位能为mgH1mgH2此即为试样变形和断裂所消耗的功称为冲击吸收功以AK表示单位为JP57/P67低温脆性:体心立方晶体金属及合金或某些密排六方晶体金属及其合金特别是工程上常用的中、低强度结构钢(铁素体珠光体钢)在试验温度低于某一温度tk时会由韧性状态变为脆性状态冲击吸收功明显下降断裂机理由微孔聚集型变为穿晶解理型断口特征由纤维状变为结晶状这就是低温脆性韧性温度储备:材料使用温度和韧脆转变温度的差值保证材料的低温服役行为二、(1)AK:冲击吸收功含义见上面冲击吸收功不能真正代表材料的韧脆程度但由于它们对材料内部组织变化十分敏感而且冲击弯曲试验方法简便易行被广泛采用AKV(CVN):V型缺口试样冲击吸收功.AKU:U型缺口冲击吸收功.(2)FATT50:通常取结晶区面积占整个断口面积50%时的温度为tk 并记为50%FATT或FATT50%t50(或:结晶区占整个断口面积50%是的温度定义的韧脆转变温度.(3)NDT:以低阶能开始上升的温度定义的韧脆转变温度,称为无塑性或零塑性转变温度(4)FTE:以低阶能和高阶能平均值对应的温度定义tk记为FTE(5)FTP:以高阶能对应的温度为tk记为FTP四、试说明低温脆性的物理本质及其影响因素低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料它们的屈服强度会随温度的降低急剧增加而断裂强度随温度的降低而变化不大当温度降低到某一温度时屈服强度增大到高于断裂强度时在这个温度以下材料的屈服强度比断裂强度大因此材料在受力时还未发生屈服便断裂了材料显示脆性从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关当温度降低时位错运动阻力增大原子热激活能力下降因此材料屈服强度增加影响材料低温脆性的因素有(P63P73):1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高材料脆性断裂趋势明显塑性差2.化学成分:能够使材料硬度强度提高的杂质或者合金元素都会引起材料塑性和韧性变差材料脆性提高3.显微组织:①晶粒大小细化晶粒可以同时提高材料的强度和塑韧性因为晶界是裂纹扩展的阻力晶粒细小晶界总面积增加晶界处塞积的位错数减少有利于降低应力集中;同时晶界上杂质浓度减少避免产生沿晶脆性断裂②金相组织:较低强度水平时强度相等而组织不同的钢冲击吸收功和韧脆转变温度以马氏体高温回火最佳贝氏体回火组织次之片状珠光体组织最差钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响当其尺寸增大时均使材料韧性下降韧脆转变温度升高五.试述焊接船舶比铆接船舶容易发生脆性破坏的原因焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷增加裂纹敏感度增加材料的脆性容易发生脆性断裂七.试从宏观上和微观上解释为什么有些材料有明显的韧脆转变温度而另外一些材料则没有?宏观上体心立方中、低强度结构钢随温度的降低冲击功急剧下降具有明显的韧脆转变温度而高强度结构钢在很宽的温度范围内冲击功都很低没有明显的韧脆转变温度面心立方金属及其合金一般没有韧脆转变现象微观上体心立方金属中位错运动的阻力对温度变化非常敏感位错运动阻力随温度下降而增加在低温下该材料处于脆性状态而面心立方金属因位错宽度比较大对温度不敏感故一般不显示低温脆性体心立方金属的低温脆性还可能与迟屈服现象有关对低碳钢施加一高速到高于屈服强度时材料并不立即产生屈服而需要经过一段孕育期(称为迟屈时间)才开始塑性变形这种现象称为迟屈服现象由于材料在孕育期中只产生弹性变形没有塑性变形消耗能量所以有利于裂纹扩展往往表现为脆性破坏第四章金属的断裂韧度2.名词解释低应力脆断:高强度、超高强度钢的机件中低强度钢的大型、重型机件在屈服应力以下发生的断裂张开型(?型)裂纹:拉应力垂直作用于裂纹扩展面裂纹沿作用力方向张开沿裂纹面扩展的裂纹应力场强度因子K?:在裂纹尖端区域各点的应力分量除了决定于位置外尚与强度因子K?有关对于某一确定的点其应力分量由K?确定K?越大则应力场各点应力分量也越大这样K?即可表示应力场的强弱程度称K?为应力场强度因子“I”表示I型裂纹小范围屈服:塑性区的尺寸较裂纹尺寸及净截面尺寸为小时(小1个数量级以上)这就称为小范围屈服有效屈服应力:裂纹在发生屈服时的应力有效裂纹长度:因裂纹尖端应力的分布特性裂尖前沿产生有塑性屈服区屈服区内松弛的应力将叠加至屈服区之外从而使屈服区之外的应力增加其效果相当于因裂纹长度增加ry后对裂纹尖端应力场的影响经修正后的裂纹长度即为有效裂纹长度:a+ry裂纹扩展K判据:裂纹在受力时只要满足KI?KIC就会发生脆性断裂.反之即使存在裂纹若KI?KIC也不会断裂新P71:旧832、说明下列断裂韧度指标的意义及其相互关系K?C和KC答:临界或失稳状态的K?记作K?C或KCK?C为平面应变下的断裂韧度表示在平面应变条件下材料抵抗裂纹失稳扩展的能力KC为平面应力断裂韧度表示在平面应力条件下材料抵抗裂纹失稳扩展的能力它们都是?型裂纹的材料裂纹韧性指标但KC值与试样厚度有关当试样厚度增加使裂纹39材料力学性能课后习题答案材料力学课后习题答案尖端达到平面应变状态时断裂韧度趋于一稳定的最低值即为K?C 它与试样厚度无关而是真正的材料常数3、试述低应力脆断的原因及防止方法答:低应力脆断的原因:在材料的生产、机件的加工和使用过程中产生不可避免的宏观裂纹从而使机件在低于屈服应力的情况发生断裂预防措施:将断裂判据用于机件的设计上在给定裂纹尺寸的情况下确定机件允许的最大工作应力或者当机件的工作应力确定后根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸4、为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?答:由41可知裂纹前端的应力是1个变化复杂的多向应力如用它直接建立裂纹扩展的应力判据显得十分复杂和困难;而且当r→0时不论外加平均应力如何小裂纹尖端各应力分量均趋于无限大构件就失去了承载能力也就是说只要构件一有裂纹就会破坏这显然与实际情况不符这说明经典的强度理论单纯用应力大小来判断受载的裂纹体是否破坏是不正确的因此无法用应力判据处理这一问题因此只能用其它判据来解决这一问题5、试述应力场强度因子的意义及典型裂纹K?的表达式答:几种裂纹的K?表达式无限大板穿透裂纹:Ka;有限宽板穿透裂纹:aaK??1.2?a;有限宽板单边直裂纹:Kaf();Kaf()当b?a时bb 受弯单边裂纹梁:K??6Maf();无限大物体内部有椭圆片裂纹远处受3/2(b?a)b2均匀拉伸:Kaa2(sin??2cos2?)1/4;无限大物体表面有半椭圆裂纹远c1.1?a?处均受拉伸:A点的K??7、试述裂纹尖端塑性区产生的原因及其影响因素答:机件上由于存在裂纹在裂纹尖端处产生应力集中当σy趋于材料的屈服应力时在裂纹尖端处便开始屈服产生塑性变形从而形成塑性区影响塑性区大小的因素有:裂纹在厚板中所处的位置板中心处于平面应变状态塑性区较小;板表面处于平面应力状态塑性区较大但是无论平面应力或平面应变塑性区宽度总是与(KIC/σs)2成正比13、断裂韧度KIC与强度、塑性之间的关系:总的来说断裂韧度随强度的升高而降低15、影响KIC的冶金因素:内因:1、学成分的影响;2、集体相结构和晶粒大小的影响;3、杂质及第二相的影响;4、显微组织的影响外因:1、温度;2、应变速率16.有1大型板件材料的σ0.2=1200MPaKIc=115MPa*m1/2探伤发现有20mm长的横向穿透裂纹若在平均轴向拉应力900MPa下工作试计算KI及塑性区宽度R0并判断该件是否安全?解:由题意知穿透裂纹受到的应力为σ=900MPa根据σ/σ0.2的值确定裂纹断裂韧度KIC是否休要修正因为σ/σ0.2=900/1200=0.75>0.7所以裂纹断裂韧度KIC需要修正对于无限板的中心穿透裂纹修正后的KI为:a9000.01?KI168.1322)?0?0.177(0.75)(.177(?/?s)1?KI?塑性区宽度为:??R0比较K1与KIc:22s?因为K1=168.13(MPa*m1/2)KIc=115(MPa*m1/2)所以:K1>KIc裂纹会失稳扩展,所以该件不安全17.有一轴件平行轴向工作应力150MPa使用中发现横向疲劳脆性正断断口分析表明有25mm深度的表面半椭圆疲劳区根据裂纹a/c可以确定υ=1测试材料的σ0.2=720MPa试估算材料的断裂韧度KIC为多少?解:因为σ/σ0.2=150/720=0.208<0.7所以裂纹断裂韧度KIC不需要修正对于无限板的中心穿透裂纹修正后的KI为:KIC=Yσcac1/2对于表面半椭圆裂纹Y=1.1/υ=1.13?150?25?10所以KIC=Yσcac1/2=1.1=46.229(MPa*m1/2) 第五章金属的疲劳1.名词解释;应力幅σa:σa=1/2(σmaxσmin)p95/p108平均应力σm:σm=1/2(σmax+σmin)p95/p107应力比r:r=σmin/σmaxp95/p108疲劳源:是疲劳裂纹萌生的策源地一般在机件表面常和缺口裂纹刀痕蚀坑相连P96疲劳贝纹线:是疲劳区的最大特征一般认为它是由载荷变动引起的是裂纹前沿线留下的弧状台阶痕迹P97/p110疲劳条带:疲劳裂纹扩展的第二阶段的断口特征是具有略程弯曲并相互平行的沟槽花样称为疲劳条带(疲劳辉纹疲劳条纹)p113/p132 驻留滑移带:用电解抛光的方法很难将已产生的表面循环滑移带去除当对式样重新循环加载时则循环滑移带又会在原处再现这种永留或再现的循环滑移带称为驻留滑移带P111ΔK:材料的疲劳裂纹扩展速率不仅与应力水平有关而且与当时的裂纹尺寸有关ΔK是由应力范围Δσ和a复合为应力强度因子范围ΔK=KmaxKmin=Yσmax√aYσmin√a=YΔσ√a.p105/p120 da/dN:疲劳裂纹扩展速率即每循环一次裂纹扩展的距离P105 疲劳寿命:试样在交变循环应力或应变作用下直至发生破坏前所经受应力或应变的循环次数p102/p117过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后其疲劳极限或疲劳寿命减小就造成了过载损伤P102/p1172.揭示下列疲劳性能指标的意义疲劳强度σ1σp,τ1,σ1N,P99,100,103/p114σ1:对称应力循环作用下的弯曲疲劳极限;σp:对称拉压疲劳极限;τ1:对称扭转疲劳极限;σ1N:缺口试样在对称应力循环作用下的疲劳极限疲劳缺口敏感度qfP103/p118金属材料在交变载荷作用下的缺口敏感性常用疲劳缺口敏感度来评定Qf=(Kf1)/(kt1).其中Kt为理论应力集中系数且大于一Kf为疲劳缺口系数Kf=(σ1)/(σ1N)过载损伤界P102,103/p117由实验测定测出不同过载应力水平和相应的开始降低疲劳寿命的应力循环周次得到不同试验点连接各点便得到过载损伤界疲劳门槛值ΔKthP105/p120在疲劳裂纹扩展速率曲线的Ⅰ区当ΔK≤ΔKth时da/aN=0,表示裂纹不扩展;只有当ΔK>ΔKth时da/dN>0,疲劳裂纹才开始扩展因此ΔKth是疲劳裂纹不扩展的ΔK临界值称为疲劳裂纹扩展门槛值4.试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT旧书P109~111)答:典型疲劳断口具有3个形貌不同的区域疲劳源、疲劳区及瞬断区(1)疲劳源是疲劳裂纹萌生的策源地疲劳源区的光亮度最大因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤压故显示光亮平滑另疲劳源的贝纹线细小(2)疲劳区的疲劳裂纹亚稳扩展所形成的断口区域是判断疲劳断裂的重要特征证据特征是:断口比较光滑并分布有贝纹线断口光滑是疲劳源区域的延续但其程度随裂纹向前扩展逐渐减弱贝纹线是由载荷变动引起的如机器运转时的开动与停歇偶然过载引起的载荷变动使裂纹前沿线留下了弧状台阶痕迹(3)瞬断区是裂纹最后失稳快速扩展所形成的断口区域其断口比疲劳区粗糙脆性材料为结晶状断口韧性材料为纤维状断口6.试述疲劳图的意义、建立及用途(新书P101~102旧书P115~117)答:定义:疲劳图是各种循环疲劳极限的集合图也是疲劳曲线的另1种表达形式意义:很多机件或构件是在不对称循环载荷下工作的因此还需要知道材料的不对称循环疲劳极限以适应这类机件的设计和选材的需要通常是用工程作图法由疲劳图求得各种不对称循环的疲劳极限1、?a?m疲劳图建立:这种图的纵坐标以?a表示横坐标以?m表示然后以不同应力比r条件下将?max表示的疲劳极限?r分解为?a和?m并在该坐标系中作ABC曲线即1?a(?max??min)1?r为?a??m疲劳图其几何关系为:tanm(?max??min)1?r2(用途):我们知道应力比r将其代入试中就可以求得tan?和?而后从坐标原点O引直线令其与横坐标的夹角等于?值该直线与曲线ABC 相交的交点B便是所求的点其纵、横坐标之和即为相应r的疲劳极限?rB?rB??aB??mB2、?max(?min)??m疲劳图建立:这种图的纵坐标以?max或?min表示横坐标以?m表示然后将不同应力比r下的疲劳极限分别以?max(?min)和?m表示于上述坐标系中就形成这种疲劳图几何关系为:tanmax2?max2m?max??min1?r (用途):我们只要知道应力比r,就可代入上试求得tan?和?而后从坐标原点O引一直线OH令其与横坐标的夹角等于?该直线与曲线AHC 相交的交点H的纵坐标即为疲劳极限8.试述影响疲劳裂纹扩展速率的主要因素(新书P107~109旧书P123~125)dac(?K)n答:1、应力比r(或平均应力?m)的影响:Forman提出:dN(1?r)Kc??K残余压应力因会减小r,使因会增大r使da降低和?Kth升高对疲劳寿命有利;而残余拉应力dNda升高和?Kth降低对疲劳寿命不利dN2、过载峰的影响:偶然过载进入过载损伤区内使材料受到损伤并降低疲劳寿命但若过载适当有时反而是有益的da3、材料组织的影响:①晶粒大小:晶粒越粗大其?Kth值越高越低对dN疲劳寿命越有利②组织:钢的含碳量越低铁素体含量越多时其?Kth值就越高当钢的淬火组织中存在一定量的残余奥氏体和贝氏体等韧性组织时可以提da高钢的?Kth降低③喷丸处理:喷丸强化也能提高?KthdN9.试述疲劳微观断口的主要特征答:断口特征是具有略呈弯曲并相互平行的沟槽花样称疲劳条带(疲劳条纹、疲劳辉纹)疲劳条带是疲劳断口最典型的微观特征滑移系多的面心立方金属其疲劳条带明显;滑移系少或组织复杂的金属其疲劳条带短窄而紊乱疲劳裂纹扩展的塑性钝化模型(Laird模型):图中(a),在交变应力为零时裂纹闭合图(b)受拉应力时裂纹张开在裂纹尖端沿最大切应力方向产生滑移图(c),裂纹张开至最大塑性变形区扩大裂纹尖端张开呈半圆形裂纹停止扩展由于塑性变形裂纹尖端的应力集中减小裂纹停止扩展的过程称为“塑性钝化”图(d)当应力变为压缩应力时滑移方向也改变了裂纹尖端被压弯成“耳状”切口图(e)到压缩应力为最大值时裂纹完全闭合裂纹尖端又由钝变锐形成一对尖角12.试述金属表面强化对疲劳强度的影响答:表面强化处理可在机件表面产生有利的残余压应力同时还能提高机件表面的强度和硬度这两方面的作用都能提高疲劳强度表面强化方法通常有表面喷丸、滚压、表面淬火及表面化学热处理等(1)表面喷丸及滚压喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束又在塑变层内产生残余压应力表面滚压和喷丸的作用相似只是其压应力层深度较大很适于大工件;而且表面粗糙度低强化效果更好(2)表面热处理及化学热处理他们除能使机件获得表硬心韧的综合力学性能外还可以利用表面。

《材料力学》习题册附答案

《材料力学》习题册附答案

F12312练习 1 绪论及基本概念1-1 是非题(1) 材料力学是研究构件承载能力的一门学科。

( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。

(是)(3) 构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。

( 是 ) (4) 应力是内力分布集度。

(是 )(5) 材料力学主要研究构件弹性范围内的小变形问题。

(是 ) (6) 若物体产生位移,则必定同时产生变形。

(非 ) (7) 各向同性假设认为,材料沿各个方向具有相同的变形。

(F ) (8) 均匀性假设认为,材料内部各点的力学性质是相同的。

(是)(9) 根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(非 )1-2 填空题(1) 根据材料的主要性质对材料作如下三个基本假设:连续性假设、均匀性假设 、各向同性假设 。

(2) 工程中的强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。

(3) 保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性三个方面。

3(4) 图示构件中,杆 1 发生 拉伸 变形,杆 2 发生 压缩 变形,杆 3 发生 弯曲 变形。

(5) 认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设。

根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。

(6) 图示结构中,杆 1 发生 弯曲变形,构件 2发生 剪切 变形,杆件 3 发生 弯曲与轴向压缩组合。

变形。

(7) 解除外力后,能完全消失的变形称为 弹性变形,不能消失而残余的的那部分变形称为 塑性变形 。

(8) 根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。

1-3选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

材料力学第三版答案

材料力学第三版答案

材料力学答案第二章2-1试画图示各杆的轴力图。

题2-1图解:各杆的轴力图如图2-1所示。

图2-12-2试画图示各杆的轴力图,并指出轴力的最大值。

图a与b所示分布载荷均沿杆轴均匀分布,集度为q。

题2-2图(a)解:由图2-2a(1)可知,)(qx=2F-qaxN轴力图如图2-2a(2)所示,qa F 2m ax ,N =图2-2a(b)解:由图2-2b(2)可知, qa F =R qa F x F ==R 1N )(22R 2N 2)()(qx qa a x q F x F -=--=轴力图如图2-2b(2)所示,qa F =m ax N,图2-2b2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2,载荷F =50kN 。

试求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。

题2-3图解:该拉杆横截面上的正应力为100MPa Pa 1000.1m10500N 10508263=⨯=⨯⨯==-A F σ 斜截面m -m 的方位角, 50-=α故有MPa 3.41)50(cos MPa 100cos 22=-⋅== ασσαMPa 2.49)100sin(MPa 502sin 2-=-⋅== αστα杆内的最大正应力与最大切应力分别为MPa 100max ==σσMPa 502max ==στ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。

试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。

题2-5解:由题图可以近似确定所求各量。

220GPa Pa 102200.001Pa10220ΔΔ96=⨯=⨯≈=εσEMPa 220p ≈σ, MPa 240s ≈σMPa 440b ≈σ, %7.29≈δ该材料属于塑性材料。

2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。

刘鸿文材料力学第三版指导与例题习题解答答

刘鸿文材料力学第三版指导与例题习题解答答

刘鸿文材料力学第三版指导与例题习题解答答案1. 概述本文是对《刘鸿文材料力学第三版》一书中的指导与例题习题解答的总结和归纳。

本书是一本材料力学的经典教材,对于材料力学的基本概念和理论有着全面的介绍和解释。

本文将以Markdown文本格式为基础,给出每个章节的指导和例题习题的解答。

2. 引论2.1 材料力学的基本概念材料力学是研究固体材料在力学作用下的变形和破坏规律的学科。

材料力学的基本概念包括应力、应变、弹性、塑性等。

这些基本概念是理解材料力学的关键。

2.1.1 应力与应变应力和应变是材料力学中最基本的概念。

应力是指单位面积上的力,常用符号为σ;应变是单位长度的变形量,常用符号为ε。

2.1.2 弹性与塑性弹性是指材料在受力后能够恢复原来形状和大小的能力;塑性是指材料在受力后会发生永久性变形的能力。

2.2 材料力学的基本原理材料力学的基本原理包括平衡条件、变形规律和破坏准则。

平衡条件是指材料在受力作用下保持力学平衡的条件;变形规律是指材料在受力作用下发生变形的规律;破坏准则是指材料在受力作用下发生破坏的条件。

2.2.1 平衡条件材料在受力作用下保持力学平衡的条件可以通过平衡方程来描述。

平衡方程包括力的平衡方程和力矩的平衡方程。

2.2.2 变形规律材料在受力作用下发生变形的规律可以通过应力-应变关系来描述。

常见的应力-应变关系有胡克定律和牛顿黏弹性模型。

2.2.3 破坏准则材料在受力作用下发生破坏的条件可以通过破坏准则来描述。

破坏准则可以根据材料的性质和应用场景来确定。

3. 第一章:张力、剪力和弯矩3.1 基本概念和基本公式3.1.1 张力、剪力和弯矩的定义张力是指作用在某个材料上的两个相邻截面之间的力;剪力是指作用在某个材料上的两个相邻截面之间的切力;弯矩是指作用在某个材料上的两个相邻截面之间的力矩。

3.1.2 张力、剪力和弯矩的计算公式张力的计算公式为T = F/A,其中T为张力,F为作用在材料上的力,A为材料的横截面积。

材料力学-单祖辉-第三版课后答案-(第九章—第十九章)

材料力学-单祖辉-第三版课后答案-(第九章—第十九章)
2.强度校核 由于该铸铁构件的最大压应力超过最大拉应力,且超过较多,故宜采用最大拉应变理论 对其进行强度校核,即要求
σr2 σ1 μ(σ2 σ3)[σ] 将上述各主应力值代入上式,得
σr2 [100.25(42.7)] MPa20.7 MPa[σ] 可见,该铸铁构件满足强度要求。
9-12 图示圆球形薄壁容器,其内径为 D,壁厚为 ,承受压强为 p 之内压。试证明
r3 2 4 2 154.52 414.962 MPa 157.4MPa [ ] b 点处的正应力和切应力分别为
3
σ
M yb Iz
7.80104 (0.140 0.0137)N 7.07105 m2
1.393108
Pa 139.3
MPa
τ
FS S z ( b ) Izδ
130103 2.23104 N 7.07105 0.0085m2
(α1
α2
)ΔT
FN1 E1 A1
FN2 E2 A2
σ1t E1
σ2t E2
(d)
由式(a)可知,
σ1t
A1
σ2t
A2,
σ1t σ2t
A2 A1
δ2 δ1

σ1t
δ2 δ1
σ2t
(e)
将方程(e)与方程(d)联立求解,得铜环和钢环内的周向正应力依次为
σ1t
(α1 α2 )E1E2δ2 E1δ1 E2δ2
4.82107
Pa 48.2
MPa
该点也处于单向与纯剪切组合应力状态,其相当应力为
r3 139.32 448.22 MPa169.4MPa[ ] c 点处于纯剪切应力状态,其切应力为
τ
FS S z ,max Izδ

工程材料力学性能-第三版课后题答案(束德林)

工程材料力学性能-第三版课后题答案(束德林)
12、在什么情况下易出现沿晶断裂?怎样才能减小沿晶断裂的倾向?
答:当晶界上有一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续所造成,也可能是杂质元素向晶界偏聚引起 的,如应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹等都是沿晶断裂。要减小沿晶断裂的倾向,则要求防止应力 腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹等出现。
裂纹形成时产生新表面需作的表面功为:W=4aγs
π 2a 2
UE W
整个系统的能量变化关系为:
E
4aγs
系统总能量变化与裂纹半长有关。在平 点处, 衡
π 2a 2 E
4aγ s
a 0
1
于是,得到的裂纹失稳扩展的临界应力为 c
2E s a
2
此即为格雷菲斯方程。局限性:该理论只适用于脆性固体,如玻璃、金刚石等,也就是说对
16、通常纯铁的γs=2J/㎡,E=2*105MPa,a0=2.5×10-10m,试求其理论断裂强度σm 。
解:由题意可得:m
Es a0
1/ 2
2105 2 2.5 1010
1/ 2
4.0104 Mpa
17、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。
答:格雷菲斯理论是针对脆性材料断裂,裂纹已存在时,根据能量平衡原理计算裂纹自动扩
表征金属材料断裂前发生塑性变形的能力。
A11.3 原始标距 L0=10d0 的试样的断后伸长率。
1
A50mm 表示原始标距为 50mm 的断后伸长率。 Agt 最大力总延伸率,它是金属材料拉伸时产生的最大均匀塑性变形量。 Z 断面收缩率,它是指试样拉断后,缩颈处横截面积的最大缩减量与原始横截面积之比的百分率。
展的应力值。

材料力学课后答案

材料力学课后答案

材料力学课后答案材料力学是研究材料内部力学性质和行为的学科,它是材料科学与工程学的重要基础课程之一。

通过学习材料力学,我们可以了解材料的力学性能和行为,为材料的设计、加工和应用提供理论基础和指导。

在课堂学习之外,课后习题是巩固知识、提高能力的重要途径。

下面是一些材料力学课后习题的答案,希望能对大家的学习有所帮助。

1. 什么是应力?应变?它们之间的关系是什么?答,应力是单位面积上的力,通常用σ表示,其公式为σ=F/A,其中F为作用在物体上的力,A为物体的受力面积。

应变是物体单位长度的形变,通常用ε表示,其公式为ε=ΔL/L0,其中ΔL为长度变化量,L0为原始长度。

应力和应变之间的关系由杨氏模量E来描述,公式为σ=Eε。

2. 什么是弹性模量?它有哪些类型?答,弹性模量是描述材料在弹性阶段的刚度和变形能力的物理量。

常见的弹性模量包括杨氏模量、剪切模量、泊松比等。

3. 什么是拉伸、压缩、剪切?答,拉伸是指物体在外力作用下沿着其长度方向发生的形变;压缩是指物体在外力作用下沿着其长度方向发生的缩短形变;剪切是指物体在外力作用下沿着其平面内部发生的相对位移形变。

4. 什么是胶性变形?塑性变形?答,胶性变形是指材料在受力作用下发生的可逆形变,即在去除外力后,材料可以恢复到原来的形状;塑性变形是指材料在受力作用下发生的不可逆形变,即在去除外力后,材料无法完全恢复到原来的形状。

5. 什么是材料的疲劳破坏?有哪些影响因素?答,材料的疲劳破坏是指在交变应力作用下,材料在循环载荷下发生的破坏。

影响因素包括应力幅值、载荷次数、材料的强度和韧性等。

以上是对材料力学课后习题的部分答案,希望能够帮助大家更好地理解和掌握材料力学的知识。

在学习过程中,要多做习题、多思考、多讨论,相信通过努力,一定能够取得好成绩。

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第6章 杆件的内力分析

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第6章 杆件的内力分析

(↑)
弯距图如图示,其中 |
M
|max
ql
2

6-13 试作图示刚架的弯矩图,并确定 | M |max 。
习题 6-13 图
1
1
2
1 2
A
B1
Fx 0 , FAx ql
MA 0
ql
l 2
ql 2
FRB
l
0
— 58 —
FRB
3 2
ql
Fy
0 , FAy
3 2
ql 2
(↑)
弯距图如图示,其中 | M |max ql 2 。
D
B
C
1
1
1.5
M (ql2)
A
M (ql2)
D
BC
10.75
D
B
C
1
25
2
32
知识点:梁的剪力图与弯矩图 难度:一般 解答:
Fy 0 , FRA ql (↑)
M A 0 , M A ql 2
MD
0,
ql 2
ql l
ql
l 2
MD
0
MD
3 2
ql 2
| FQ |max ql
|
M
| max
M (x) 1 q x 0 2 4ql x l 2
2ql x 3l 4ql x 5l
(5l x 6l)
M (x) 1 q x 0 2 4ql x l 2

2ql x 3l 4ql x 5l
(0 x 6l)
2.弯矩图如图(a); 3.载荷图如图(b); 4.梁的支承为 B、D 处简支(图 b)。
Fx 0 , px FNx 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学答案第二章2-1试画图示各杆的轴力图。

题2-1图解:各杆的轴力图如图2-1所示。

图2-12-2试画图示各杆的轴力图,并指出轴力的最大值。

图a与b所示分布载荷均沿杆轴均匀分布,集度为q。

题2-2图(a)解:由图2-2a(1)可知,)(qx=2F-qaxN轴力图如图2-2a(2)所示,qa F 2m ax ,N =图2-2a(b)解:由图2-2b(2)可知, qa F =R qa F x F ==R 1N )(22R 2N 2)()(qx qa a x q F x F -=--=轴力图如图2-2b(2)所示,qa F =m ax N,图2-2b2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2,载荷F =50kN 。

试求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。

题2-3图解:该拉杆横截面上的正应力为100MPa Pa 1000.1m10500N 10508263=⨯=⨯⨯==-A F σ 斜截面m -m 的方位角, 50-=α故有MPa 3.41)50(cos MPa 100cos 22=-⋅== ασσαMPa 2.49)100sin(MPa 502sin 2-=-⋅== αστα杆内的最大正应力与最大切应力分别为MPa 100max ==σσMPa 502max ==στ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。

试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。

题2-5解:由题图可以近似确定所求各量。

220GPa Pa 102200.001Pa10220ΔΔ96=⨯=⨯≈=εσEMPa 220p ≈σ, MPa 240s ≈σMPa 440b ≈σ, %7.29≈δ该材料属于塑性材料。

2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。

若杆径d =10mm ,杆长l =200mm ,杆端承受轴向拉力F = 20kN 作用,试计算拉力作用时与卸去后杆的轴向变形。

题2-6图解: 255MPa Pa 1055.2m0.010πN102048223=⨯=⨯⨯⨯==A F σ 查上述εσ-曲线,知此时的轴向应变为 %39.00039.0==ε 轴向变形为mm 780m 108700390m)2000(Δ4....l εl =⨯=⨯==-拉力卸去后,有00364.0e =ε, 00026.0p =ε故残留轴向变形为0.052mm m 105.2000260(0.200m)Δ5p =⨯=⨯==-.l εl2-9 图示含圆孔板件,承受轴向载荷F 作用。

已知载荷F =32kN ,板宽b =100mm ,板厚=δ15mm ,孔径d =20mm 。

试求板件横截面上的最大拉应力(考虑应力集中)。

题2-9图解:根据2.0m)100.0m/(020.0/==b d查应力集中因数曲线,得42.2≈K根据 δd b Fσ)(n -=, n max σσK =得64.5MPa Pa 1045.60.015m0.020)(0.100N103242.2)(723n max =⨯⨯⨯⨯=-===-δd b KF K σσ 2-10 图示板件,承受轴向载荷F 作用。

已知载荷F =36kN ,板宽b 1=90mm ,b 2=60mm ,板厚δ=10mm ,孔径d =10mm ,圆角半径R =12mm 。

试求板件横截面上的最大拉应力(考虑应力集中)。

题2-10图解:1.在圆孔处根据111100.090mm 010.01.b d == 查圆孔应力集中因数曲线,得 6.21≈K故有117MPa Pa 1017.1m010.0)010.0090.0(N 10366.2)(82311n 1max 1=⨯=⨯⨯⨯===--δd b F K σK σ 2.在圆角处根据1.50.060mm 090.021===b b d D 2.00.060mm 012.02===b R d R 查圆角应力集中因数曲线,得 74.12≈K故有104MPa Pa 1004.10.010m 0.060N 103674.182322n 2max 2=⨯=⨯⨯⨯===δb F K σK σ 3. 结论MPa 117max =σ(在圆孔边缘处)2-14图示桁架,承受铅垂载荷F 作用。

设各杆的横截面面积均为A ,许用应力均为[σ],试确定载荷F 的许用值[F ]。

题2-14图解:先后以节点C 与B 为研究对象,求得各杆的轴力分别为 F F 2N1=F F F ==N3N2根据强度条件,要求 ][2σ≤AF由此得2][][AF σ=2-15 图示桁架,承受载荷F 作用,已知杆的许用应力为[σ]。

若在节点B 和C 的位置保持不变的条件下,试确定使结构重量最轻的α值(即确定节点A 的最佳位置)。

题2-15图解:1.求各杆轴力设杆AB 和BC 的轴力分别为N1F 和N2F ,由节点B 的平衡条件求得αF F αF F ctan sin N2N1==, 2.求重量最轻的α值由强度条件得ασFA σF A ctan ][ ]sin [21==,α结构的总体积为)ctan sin22(][ctan ][cos ]sin [2211αασFl ασFl αl ασF l A l A V +=+⋅=+=由0d d =αV得01cos 32=-α由此得使结构体积最小或重量最轻的α值为4454opt '= α2-16 图示桁架,承受载荷F 作用,已知杆的许用应力为[σ]。

若节点A 和C 间的指定距离为 l ,为使结构重量最轻,试确定θ的最佳值。

题2-16图解:1.求各杆轴力由于结构及受载左右对称,故有θFF F sin 2N2N1== 2.求θ的最佳值 由强度条件可得θσFA A ]sin [221==结构总体积为θσFlθl θσF l A V ]sin2[cos 2]sin [211=⋅== 由 0d d =θV得0cos2=θ由此得θ的最佳值为45opt =θ2-17图示杆件,承受轴向载荷F 作用。

已知许用应力[σ]=120MPa ,许用切应力[τ]=90MPa ,许用挤压应力[σbs ]=240MPa ,试从强度方面考虑,建立杆径d 、墩头直径D 及其高度h 间的合理比值。

题2-17图解:根据杆件拉伸、挤压与剪切强度,得载荷F 的许用值分别为 ][4π][2t σd F =(a) ][4)(π][bs 22b σd D F -=(b)][π][s τdh F =(c)理想的情况下,s b t ][][][F F F ==在上述条件下,由式(a )与(c )以及式(a )与(b ),分别得d h ][4][τσ=d D bs][][1σσ+= 于是得 1:][4][:][][1::bs τσσσ+=d h D 由此得1:333.0:225.1::=d h D2-18 图示摇臂,承受载荷F 1与F 2作用。

已知载荷F 1=50kN ,F 2=35.4kN ,许用切应力[τ]=100MPa ,许用挤压应力][bs σ=240MPa 。

试确定轴销B 的直径d 。

题2-18图解:1. 求轴销处的支反力由平衡方程0=∑x F 与0=∑y F ,分别得 kN 25cos4521=-= F F F BxkN 25sin452== F F By由此得轴销处的总支反力为kN 435kN 252522.F B =+=2.确定轴销的直径由轴销的剪切强度条件(这里是双面剪)][π22s τd F A F τB≤==得m 0150m 10100104.352][263.τF d B =⨯⨯⨯⨯=≥ππ 由轴销的挤压强度条件][bs b bs σd F d F σB≤==δδ 得m 014750m 102400100104.35][63bs ..σδF d B =⨯⨯⨯=≥结论:取轴销直径15m m m 015.0=≥d 。

2-19图示木榫接头,承受轴向载荷F = 50 kN 作用,试求接头的剪切与挤压应力。

题2-19图解:剪应力与挤压应力分别为MPa 5)m 100.0)(m 100.0(N10503=⨯=τMPa 5.12)m 100.0)(m 040.0(N10503bs =⨯=σ2-20图示铆接接头,铆钉与板件的材料相同,许用应力[σ] =160MPa ,许用切应力[τ] = 120 MPa ,许用挤压应力[σbs ] = 340 MPa ,载荷F = 230 kN 。

试校核接头的强度。

题2-20图解:最大拉应力为MPa 3.153)m )(010.0)(020.0170.0(N1023023max =-⨯=σ 最大挤压与剪切应力则分别为MPa 2300.010m)5(0.020m)(N102303bs =⨯=σMPa 4.146π(0.020m)5N 10230423=⨯⨯⨯=τ2-21 图示两根矩形截面木杆,用两块钢板连接在一起,承受轴向载荷F = 45kN 作用。

已知木杆的截面宽度b =250mm ,沿木纹方向的许用拉应力[σ]=6MPa ,许用挤压应力][bs σ=10MPa ,许用切应力[τ]=1MPa 。

试确定钢板的尺寸δ与l 以及木杆的高度h 。

题2-21图解:由拉伸强度条件 ][)2(σδh b Fσ≤-=得0.030m m 10625001045][263=⨯⨯⨯=≥-.σb F δh(a )由挤压强度条件][2bs bs σb δFσ≤=得mm 9m 0090m 1010250.021045][263bs ==⨯⨯⨯⨯=≥.σb F δ (b )由剪切强度条件 ][2τblFτ≤=得mm 90m 0900m 101250.021045][263==⨯⨯⨯⨯=≥.b F l τ 取m 009.0=δ代入式(a ),得 48mm m 0480m )009.02030.0(==⨯+≥.h 结论:取m m 9≥δ,m m 90≥l ,m m 48≥h 。

2-22 图示接头,承受轴向载荷F 作用。

已知铆钉直径d =20mm ,许用应力[σ]=160MPa ,许用切应力[τ]=120MPa ,许用挤压应力][bs σ=340MPa 。

板件与铆钉的材料相同。

试计算接头的许用载荷。

题2-22图解:1.考虑板件的拉伸强度 由图2-22所示之轴力图可知,4/3 N2N1F F F F ==,][)(1N11σδd b FA F σ≤-==432kN N 104.32N 10160015.0)02002000(][)(56=⨯=⨯⨯⨯=-≤.-.σδd b F][)2(432N22σδd b FA F σ≤-==512kN N 105.12N 10160015.0)040.0200.0(34][)2(3456=⨯=⨯⨯⨯-=-≤σδd b F图2-222.考虑铆钉的剪切强度 8s F F =][π842s τdF A F τ≤==302kN N 1002.3N 101200200π2][π25622=⨯=⨯⨯⨯⨯=≤.τd F3.考虑铆钉的挤压强度][ 4 4bs b bs b σδδσ≤===d F d F F FkN 408N 1008.4N 103400.0200.0154][456bs =⨯=⨯⨯⨯⨯=≤σd F δ结论:比较以上四个F 值,得kN 302][=F2-23 图a 所示钢带AB ,用三个直径与材料均相同的铆钉与接头相连接,钢带承受轴向载荷F 作用。

相关文档
最新文档