运动控制系统
运动控制系统的课程设计
运动控制系统的课程设计一、课程目标知识目标:1. 学生能理解运动控制系统的基本概念、组成和分类。
2. 学生能掌握运动控制系统中常见传感器的原理和应用。
3. 学生能描述运动控制系统的执行机构工作原理及其特点。
4. 学生了解运动控制算法的基本原理,如PID控制、模糊控制等。
技能目标:1. 学生具备运用所学知识分析和解决实际运动控制问题的能力。
2. 学生能设计简单的运动控制系统,并进行仿真实验。
3. 学生能熟练使用相关软件和工具进行运动控制系统的调试与优化。
情感态度价值观目标:1. 学生培养对运动控制系统相关技术的兴趣,激发学习热情。
2. 学生养成合作、探究的学习习惯,培养团队协作精神。
3. 学生认识到运动控制系统在工程实际中的应用价值,增强社会责任感。
课程性质:本课程为电子信息工程及相关专业高年级学生的专业课程,旨在帮助学生掌握运动控制系统的基本原理、设计方法和实际应用。
学生特点:学生已具备一定的电子、电气和控制系统基础,具有较强的学习能力和实践操作能力。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,强调学生的动手能力和创新能力培养。
通过本课程的学习,使学生具备运动控制系统设计、调试和应用的能力。
教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。
二、教学内容1. 运动控制系统概述- 运动控制系统的基本概念、组成和分类- 运动控制系统的发展及应用领域2. 运动控制系统传感器- 常见运动控制传感器的工作原理、特性及应用- 传感器的选型及接口技术3. 执行机构- 电动伺服电机、步进电机、液压气动执行机构的工作原理及特点- 执行机构的控制策略及性能分析4. 运动控制算法- PID控制算法原理及其在运动控制中的应用- 模糊控制、神经网络等其他先进控制算法介绍5. 运动控制系统设计- 系统建模、控制器设计及仿真- 硬件在环(HIL)仿真与实验- 运动控制系统调试与优化6. 运动控制系统实例分析- 分析典型运动控制系统的设计过程及解决方案- 案例教学,培养学生的实际操作能力教学内容安排与进度:- 第1周:运动控制系统概述- 第2-3周:运动控制系统传感器- 第4-5周:执行机构- 第6-7周:运动控制算法- 第8-9周:运动控制系统设计- 第10周:运动控制系统实例分析教材章节关联:本课程教学内容与教材中第3章“运动控制系统”相关内容相衔接,涵盖第3章中的3.1-3.5节。
运动控制系统(第4版)第1章 绪论
第1章 绪论
• 信号转换和处理包括电压匹配、极性转换、脉冲整形等,对 于计算机数字控制系统而言,必须将传感器输出的模拟或数 字信号变换为可用于计算机运算的数字量。数据处理的另一 个重要作用是去伪存真,即从带有随机扰动的信号中筛选出 反映被测量的真实信号,去掉随机的扰动信号,以满足控制 系统的需要。 • 常用的数据处理方法是信号滤波,模拟控制系统常采用模拟 器件构成的滤波电路,而计算机数字控制系统往往采用模拟 滤波电路和计算机软件数字滤波相结合的方法。
GD2 4gJ ;
n——转子的机械转速(r/min),
60 m n . 2
第1章 绪论
• 运动控制系统的任务就是控制电动机的转速和转角,对于直 线电动机来说就是控制速度和位移。由式(1-1)和式(1-2) 可知,要控制转速和转角,唯一的途径就是控制电动机的电 磁转矩Te,使转速变化率按人们期望的规律变化。因此,转矩 控制是运动控制的根本问题。 • 为了有效地控制电磁转矩,充分利用电机铁心,在一定的电 流作用下进可能产生最大的电磁转矩,以加快系统的过渡过 程,必须在控制转矩的同时也控制磁通(或磁链)。因为当 磁通(或磁链)很小时,即使电枢电流(或交流电机定子电 流的转矩分量)很大,实际转矩仍然很小。何况由于物理条 件限制,电枢电流(或定子电流)总是有限的。因此,磁链 控制与转矩控制同样重要,不可偏废。通常在基速(额定转 速)以下采用恒磁通(或磁链)控制,而在基速以上采用弱 磁控制。
第1章 绪论
• 1.2 运动控制系统的历史与发展
• 直流电动机电力拖动与交流电动机电力拖动在19世纪中叶先后诞 生(1866年德国人西门子制成了自激式的直流发电机;1890年 美国西屋电气公司利用尼古拉· 特斯拉的专利研制出第一台交流 同步电机;1898年第一台异步电动机诞生),在20世纪前半叶, 约占整个电力拖动容量80%的不可调速拖动系统采用交流电动机, 只有20%的高性能可调速拖动系统采用直流电动机。20世纪后半 叶,电力电子技术和微电子技术带动了带动了新一代的交流调速 系统的兴起与发展,逐步打破了直流调速系统一统高性能拖动天 下的格局。进入21世纪后,用交流调速系统取代直流调速系统已 成为不争的事实。 • 直流电动机的数学模型简单,转矩易于控制。其换向器与电刷
运动控制系统
知识创造未来
运动控制系统
运动控制系统是指利用电子设备和软件来实现运动控制的一种系统。
它可以用于控制机械设备、机器人、汽车等进行运动控制。
运动控制系统通常包括以下几个部分:
1. 传感器:用于检测实际运动的位置、速度、加速度等参数,并将
其转换为电信号。
2. 控制器:负责接收传感器的信号,并根据预设的控制算法,计算
出相应的控制命令。
3. 执行器:根据控制命令,进行相应的机械运动,如电机、气缸等。
4. 软件系统:包括控制算法、运动规划、通信协议等,用于实现运
动控制的逻辑和功能。
运动控制系统的主要功能包括位置控制、速度控制和力控制等。
通
过调整控制器的参数和算法,可以达到不同的控制效果。
运动控制系统广泛应用于各个领域,如工业自动化、机器人、航空
航天、医疗器械等。
它可以提高设备的精度、稳定性和生产效率,
实现自动化生产和操作。
1。
《运动控制系统》教案
《运动控制系统》教案一、教学目标1. 理解运动控制系统的概念和组成2. 掌握运动控制系统的分类和原理3. 了解运动控制系统在实际应用中的重要性二、教学内容1. 运动控制系统的概念和组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的分类和原理2.1 模拟运动控制系统2.2 数字运动控制系统2.3 位置控制、速度控制和加速度控制3. 运动控制系统在实际应用中的重要性3.1 运动控制系统在工业生产中的应用3.2 运动控制系统在技术中的应用3.3 运动控制系统在自动驾驶技术中的应用三、教学方法1. 讲授法:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。
2. 案例分析法:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。
3. 讨论法:组织学生探讨运动控制系统的发展趋势和挑战,培养学生的创新思维和问题解决能力。
四、教学资源1. 教材:《运动控制系统》2. 多媒体课件:PPT、动画、视频等3. 网络资源:相关论文、案例、新闻报道等五、教学评价1. 课堂参与度:评估学生在课堂讨论、提问等方面的积极性。
2. 课后作业:布置相关练习题,评估学生对运动控制系统知识的理解和掌握程度。
3. 小组项目:组织学生团队合作完成一个运动控制系统的应用案例,评估学生的实践能力和问题解决能力。
六、教学安排1. 课时:共计32课时,每课时45分钟2. 教学计划:第1-4课时:运动控制系统的概念和组成第5-8课时:运动控制系统的分类和原理第9-12课时:运动控制系统在实际应用中的重要性第13-16课时:运动控制系统的的发展趋势和挑战七、教学步骤1. 引入:通过一个实际应用案例,引出运动控制系统的重要性,激发学生的学习兴趣。
2. 讲解:讲解运动控制系统的概念、分类和原理,引导学生理解并掌握相关知识。
3. 案例分析:分析运动控制系统在实际应用中的重要性,帮助学生了解运动控制系统的应用价值。
运动控制系统的组成
运动控制系统的组成运动控制系统是指通过控制电机、伺服电机、步进电机等执行器,实现机械运动的系统。
它由多个组成部分构成,下面将逐一介绍。
1. 控制器控制器是运动控制系统的核心部分,它负责接收来自传感器的反馈信号,计算出控制信号,再将信号发送给执行器。
控制器的种类有很多,常见的有PLC、单片机、DSP等。
2. 传感器传感器是用来感知机械运动状态的装置,它可以将机械运动转化为电信号,再通过控制器进行处理。
常见的传感器有编码器、光电开关、压力传感器等。
3. 电机电机是运动控制系统中最常用的执行器,它可以将电能转化为机械能,实现机械运动。
常见的电机有直流电机、交流电机、步进电机、伺服电机等。
4. 驱动器驱动器是用来控制电机运动的装置,它可以将控制信号转化为电能,再通过电机实现机械运动。
常见的驱动器有直流电机驱动器、交流电机驱动器、步进电机驱动器、伺服电机驱动器等。
5. 机械结构机械结构是运动控制系统中最基础的部分,它由各种机械零件组成,用来实现机械运动。
常见的机械结构有滑动轨道、旋转轴、传动装置等。
6. 人机界面人机界面是用来与运动控制系统进行交互的装置,它可以显示机械运动状态、控制参数等信息,同时也可以接收操作者的指令。
常见的人机界面有触摸屏、键盘、鼠标等。
7. 通信接口通信接口是用来与其他设备进行数据交换的装置,它可以将控制信号、反馈信号等信息传输给其他设备,同时也可以接收其他设备的指令。
常见的通信接口有串口、以太网口、CAN总线等。
运动控制系统由控制器、传感器、电机、驱动器、机械结构、人机界面和通信接口等多个组成部分构成。
每个部分都有其独特的功能和作用,只有将它们合理地组合起来,才能实现高效、稳定的机械运动。
【PPT】什么是运动控制系统.
从电能的转换及传递(传输)角度来看,把电力拖动称为电 力传动,把电力拖动控制系统称为电力传动控制系统。由于 这类系统的基本任务是通过控制和调节电动机的旋转速度或 转角来实现工作机械对速度或位移的要求,因此把电力拖动 控制系统又称为运动控制系统。 电力拖动控制系统按被控制量的不同分为两大类: 以电动机的转速为被控制量的系统叫做调速系统; 以工作机械的角位移或直线位移为被控制量的系统叫做位 置伺服系统,又叫做位置随动系统。 电力拖动控制系统还有其他多种类型,如张力控制系统, 多电动机同步控制系统等。虽然电力拖动控制系统种类很多, 但是,各种电力拖动控制系统都是通过控制电动机转速来工 作的,因此,调速系统是最基本的电力拖动控制系统。
0.3 运动控制系统的发展过程及应用
纵观运动控制的发展历程,交、直流两大电气传动并 存于各个工业领域,虽然各个时期科学技术的发展使它 们所处的地位、所起的作用不同,但它们始终是随着工 业技术的发展,特别是电力电子和微电子技术的发展, 在相互竞争、相互促进中,不断完善并发生着变化。由 于历史上最早出现的是直流电机,所以19世纪80年代以 前,直流电气传动是惟一的电气传动方式。直到19世纪 末,出现了交流电,且解决了三相制交流电的输送和分 配问题,并制成了经济适用的鼠笼异步电机,这就使交 流电气传动在工业中逐步地得到广泛的应用。由于大量 使用异步电机,严重影响到电网的功率因数,同步电机 的诞生和使用大大缓解了功率因数问题。在20世纪的大 部分时间里,基本形成直流调速、交流不调速的格局。
运动控制系统的共同特点(续)
(7)可以控制单台电机运行,也可多台协调控制运行, 只是控制方法略有不同而已。 (8)只要合理地选择控制方案,几乎可以适用于任何 传动场合。 由于上述特点,运动控制系统被广泛地用于相关行 业的各个实际需求中。据统计,我国电动机的装机容 量约为4亿多千瓦,其用电量占当年全国发电量的 60%一70%,如何合理、有效、经济地利用好这一 部分电能,提高劳动生产率,运动控制系统的设计者 们对此有着不可推卸的责任。
运 动 控 制 系 统
基于稳态模型的交流调速系统动态性能无法与直
流调速系统相比;基于动态模型的交流调速系统 (矢量控制系统,直接转矩控制系统)动态性能 良好,取代直流调速系统。 同步电动机交流调速系统 同步电动机的转速与电源频率严格保持同步, 机械特性硬。 电力电子变频技术的发展,成功地解决了阻碍同 步电动机调速的失步和启动两大问题。
负载可能是多个典型负载的组合,应根据实际负 载的具体情况加以分析。 1、 恒转矩负载 负载转矩的大小恒定,称作 恒转矩负载 TL 常数 a)位能性恒转矩负载 b) 反抗性恒转矩负载
图1-3 恒转矩负载
2、 恒功率负载
负载转矩与转速成反比, 而功率为常数,称作恒功 率负载
TL
m
PL
信号检测
电压、电流、转速和位置等信号 信号转换 电压匹配、极性转换、脉冲整形等 数据处理 信号滤波
二、运动控制系统的历史与发展
电力电子技术和微电子技术的兴起与发展,使交流
调速系统取代直流调速系统已成为不争的事实。 直流调速系统 直流电动机的数学模型简单,转矩易于控制。 换向器与电刷的位置保证了电枢电流与励磁电 流的解耦,使转矩与电枢电流成正比。 交流调速系统 交流电动机(尤其是笼型感应电动机)结构简单。 但动态数学模型具有非线性多变量强耦合的性质, 比直流电动机复杂得多。
1、电动机—— 运动控制系统的控制对象
从类型上分
直流电动机、交流感应电动机(交流异步电动机) 和交流同步电动机。 从用途上分 用于调速系统的拖动电动机和用于伺服系统的伺服 电动机。 2、 功率放大与变换装置 半控型向全控型发展 低频开关向高频开关发展 分立的器件向具有复合功能的功率模块发展
电力拖动实现了电能和机械能之间 的能量转换。 运动控制系统的任务 是:通过控制电机的电压、 电流、频率等输入量来改 变工作机械的转矩、速度、 位移等机械量,使各种工 作机械按人们期望的要求 运行,以满 足生产工艺及 其他应用要求。
《运动控制系统》课程教学大纲
《运动控制系统》课程教学大纲一、教学内容本节课的教学内容来自于《运动控制系统》课程的第五章,主要讲述运动控制系统的组成、原理及其应用。
具体内容包括:1. 运动控制系统的组成:包括控制器、执行器和传感器等基本组成部分,以及它们之间的相互作用。
2. 运动控制系统的原理:包括控制算法、反馈控制和开环控制等基本原理。
3. 运动控制系统的应用:包括在工业、数控机床和电动汽车等领域的应用实例。
二、教学目标1. 使学生了解运动控制系统的组成、原理及其应用,掌握基本概念和知识点。
2. 培养学生运用运动控制系统的基本原理解决实际问题的能力。
3. 提高学生对运动控制技术在现代工业和科技领域的重要性的认识。
三、教学难点与重点1. 教学难点:运动控制系统的原理和应用。
2. 教学重点:运动控制系统的组成及其在工作中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、投影仪、白板等。
2. 学具:教材、笔记本、彩色笔等。
五、教学过程1. 实践情景引入:以工业为例,介绍运动控制系统在实际工作中的应用。
2. 知识点讲解:讲解运动控制系统的组成、原理及其应用。
3. 例题讲解:分析运动控制系统在实际工作中的应用案例,引导学生理解并掌握运动控制系统的原理。
4. 随堂练习:让学生结合所学内容,分析并解决实际问题。
5. 课堂讨论:引导学生探讨运动控制系统在现代工业和科技领域的重要性。
6. 板书设计:对本节课的主要知识点进行板书,方便学生复习和巩固。
7. 作业布置:布置相关练习题,巩固所学知识。
六、作业设计1. 题目:分析下列运动控制系统的应用案例,并说明其工作原理。
(1)数控机床;(2)电动汽车;(3)工业。
2. 答案:(1)数控机床:数控机床是一种采用数字控制技术进行运动的机床。
通过控制器预设机床的运动轨迹,执行器按照控制器的指令进行运动,实现对工件的加工。
(2)电动汽车:电动汽车采用电动机作为动力来源,通过控制器调节电动机的转速和扭矩,实现车辆的运动控制。
运动控制系统
一、运动控制系统的定义与分类定义:以机械运动的驱动设备--电动机为被控对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论指导下组成的电力传动自动控制系统。
分类:(1)按被控物理量分:以转速为被控量的系统叫调速系统,以角位移或直线位移为被控量的系统叫随动系统(或伺服系统)。
(2)按驱动电动机的类型分:用直流电动机带动生产机械的为直流传动系统,用交流电动机带动生产机械的为交流传动系统。
(3)按控制器的类型分:用模拟电路构成控制器的系统为模拟控制系统,用数字电路构成控制器的系统为数字控制系统。
二、直流调速方法答:(1)调节电枢供电电压U;(2)减弱励磁磁通 ;(3)改变电枢回路电阻R。
三、常用的可控直流电源答:(1)旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。
(2)静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。
(3)直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压四、三种调速方法的性能与比较答:对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。
改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。
五、V-M系统的特点答:晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。
在控制作用的快速性上,变流机组是秒级,而晶闸管整流器是毫秒级, 这将大大提高系统的动态性能六、V-M系统的问题答:(1)由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。
(2)晶闸管对过电压、过电流和过高的d V/d t与d i/d t 都十分敏感,若超过允许值会在很短的时间内损坏器件。
(3)由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”。
《运动控制系统》教案
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的分类及其原理。
3. 熟悉运动控制系统的应用领域和发展趋势。
4. 培养学生对运动控制系统的兴趣和创新能力。
二、教学内容1. 运动控制系统概述运动控制系统的定义运动控制系统的组成运动控制系统的功能2. 运动控制系统的分类开环运动控制系统闭环运动控制系统混合运动控制系统3. 运动控制系统的原理位置控制原理速度控制原理力控制原理4. 运动控制系统的应用领域工业数控机床电动汽车航空航天5. 运动控制系统的发展趋势智能化网络化绿色化三、教学方法1. 讲授法:讲解运动控制系统的基本概念、原理和应用。
2. 案例分析法:分析具体运动控制系统的实例,加深学生对运动控制系统的理解。
3. 讨论法:引导学生探讨运动控制系统的发展趋势及其在我国的应用前景。
4. 实践操作法:安排实验室参观或动手实践,让学生亲身体验运动控制系统的工作原理。
四、教学安排1. 第1-2课时:运动控制系统概述2. 第3-4课时:运动控制系统的分类和原理3. 第5-6课时:运动控制系统的应用领域4. 第7-8课时:运动控制系统的发展趋势5. 第9-10课时:实验室参观或实践操作五、教学评价1. 课堂问答:检查学生对运动控制系统基本概念的理解。
2. 课后作业:巩固学生对运动控制系统知识的掌握。
3. 小组讨论:评估学生在探讨运动控制系统发展过程中的创新能力。
4. 实践报告:评价学生在实验室参观或实践操作中的表现。
六、教学资源1. 教材:《运动控制系统》2. 课件:运动控制系统的基本概念、原理、应用和趋势3. 视频资料:运动控制系统的实际应用案例4. 实验室设备:的运动控制系统实验装置5. 网络资源:关于运动控制系统的相关论文和新闻七、教学过程1. 导入:通过一个运动控制系统的实际应用案例,引发学生对运动控制系统的兴趣。
2. 讲解:结合教材和课件,详细讲解运动控制系统的基本概念、原理、应用和趋势。
运动控制系统的概念
运动控制系统的概念
运动控制(Motion Control)是自动化技术中的部分内容,是指让系统中的可动部分以可控制的方式移动的系统或子系统。
运动控制系统包括运动控制器(Motion Controller)、驱动器(Driver)、电机(Motor),可以是没有反馈信号的开环控制,也可以带有反馈信号的闭环控制,闭环控制也分为全闭环和半闭环控制。
控制器是可以产生控制目标(理想的输出或运动曲线),或是闭环控制系统中需要根据反馈信号运算调整执行速度和位置的器件。
驱动器是可以将控制器的控制信号转换为提供给电机能量的器件。
电机是实际使物体移动的装置,是运动控制的执行端。
执行端还包含编码器、减速机、导轨丝杆等机械装置。
分类
1、开环控制系统
控制器传输信号给驱动器,驱动器驱动电机运动,驱动器和控制器都无法知道电机是否达到预期的动作,典型的步进电机和风扇控制系统,是属于开环控制。
2、半闭环控制系统
对控制要求更准确的系统,在电机侧增加测量器件(如旋转编码器),反馈信号进入驱动器和控制器中,让驱动器或控制器根据反馈调整电机的动作,使实际与命令的误差降到最小,如普通伺服电机控制系统。
3、全闭环控制系统
需要比半闭环更精准的运动系统,在执行端增加直线编码器,直接测量运动的实际位置,使执行更加准确,如直线电机控制系统。
运动控制系统的发展历程
运动控制系统的发展历程1. 概述运动控制系统是一个广泛应用于机械设备中的系统,用于控制和监测物体的运动。
随着科技的发展和工业自动化的推动,运动控制系统也得到了长足的发展。
本文将详细探讨运动控制系统从诞生到现在的发展历程。
2. 早期运动控制系统2.1 机械式运动控制系统最早的运动控制系统可以追溯到19世纪,在当时主要是以机械式的方式实现。
机械式运动控制系统通过连杆、凸轮和曲柄等机械元件的配合来实现对物体的运动控制。
这种系统结构简单,但受限于机械元件的耐久性和精度,应用范围有限。
2.2 电气式运动控制系统随着电气技术的发展,人们开始探索使用电气元件来实现运动控制系统。
1920年代,电机和电子管的应用为电气式运动控制系统的发展奠定了基础。
在这个阶段,人们主要使用继电器和电磁接触器来控制电机的运动,实现简单的运动控制功能。
2.3 数字式运动控制系统20世纪60年代,随着计算机技术的迅速发展,数字式运动控制系统开始兴起。
这种系统使用数字信号处理器(DSP)和微处理器来实现对运动的精确控制。
数字式运动控制系统具有更高的精度和灵活性,广泛应用于机械加工、自动化生产线等领域。
3. 现代运动控制系统3.1 高级运动控制算法现代运动控制系统注重增强系统性能和精确度。
高级运动控制算法的应用使得系统能够更加灵活地控制物体的运动。
例如,PID控制算法能够实现对物体位置、速度和加速度的精确控制。
同时,模糊控制、遗传算法等也逐渐应用于运动控制系统中,提高了系统的稳定性和响应速度。
3.2 传感技术的发展运动控制系统的发展不仅依赖于控制算法的改进,还离不开传感技术的发展。
随着传感器技术的进步,运动控制系统能够更准确地感知物体的位置和状态。
光电编码器、加速度传感器、激光测距仪等传感器的应用,为运动控制系统提供了更大的灵活性和精确度。
3.3 网络化和智能化随着信息技术的快速发展,运动控制系统向网络化和智能化方向发展。
通过将运动控制系统与网络相连接,可以实现远程监控和远程控制。
运动控制系统
电力电子器件组成电力电子装置。
电力电子器件:
第一代:半控型器件,如SCR,方便地应用于相控整流器 (AC→DC)和有源逆变器(DC→AC) ,但用于无源逆变 (DC→AC)或直流PWM方式调压(DC→DC)时,必须 增加强迫换流回路,使电路结构复杂。
第二代:全控型器件,如GTO、BJT、IGBT、MOSFET等 。 此类器件用于无源逆变(DC→AC) 和直流调压 (DC→DC)时,无须强迫换流回路,主回路结构简单。 另一个特点是可以大大提高开关频率,用脉宽调制 (PWM)技术控制功率器件的开通与关断,可大大提高 可控电源的质量。
3.微电子技术--控制基础
微电子技术的快速发展,各种高性能的大规模或超大规 模的集成电路层出不穷,方便和简化了运动控制系统的 硬件电路设计及调试工作,提高了运动控制系统的可靠 性。高速、大内存容量、多功能的微处理器或单片微机 的问世,使各种复杂的控制算法在运动控制系统中的应 用成为可能,并大大提高了控制精度。
4.计算机控制技术--系统控制核心
(1) 计算机控制
(2) 计算机仿真
(3) 计算机辅助设计
计算机具有强大的逻辑判断、数据计算和处理、信息传 输等能力,能进行各种复杂的运算,可以实现不同于一 般线性调节的控制规律,达到模拟控制系统难以实现的 控制功能和效果。计算机控制技术的应用使对象参数辨 识、控制系统的参数自整定和自学习、智能控制、故障 诊断等成为可能,大大提高了运动控制系统的智能化和 系统的可靠性。
计方法和运行性能,新型电机的发明就会带出新的运 动控制系统。 2.电力电子技术--以电力电子器件为基础的功率 放大与变换装置是弱电控制强电的媒介,是运动控制 系统的执行手段。在运动控制系统中作为电动机的可 控电源,其输出电源质量直接影响运动控制系统的运 行状态和性能。新型电力电子器件的诞生必将产生新 型的功率放大与变换装置,对改善电动机供电电源质 量,提高系统运行性能,起到积极的推进作用。
《运动控制系统》教案
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的常见类型及其原理。
3. 学会分析运动控制系统的性能指标。
4. 能够运用运动控制系统的基本原理解决实际问题。
二、教学内容1. 运动控制系统概述运动控制系统的定义运动控制系统的组成运动控制系统的应用领域2. 运动控制系统的类型模拟运动控制系统数字运动控制系统单片机运动控制系统计算机运动控制系统3. 运动控制系统的原理位置控制原理速度控制原理加速度控制原理4. 运动控制系统的性能指标稳态性能指标动态性能指标系统误差指标5. 运动控制系统的硬件组成控制器执行器反馈元件辅助元件三、教学方法1. 讲授法:讲解运动控制系统的基本概念、原理和性能指标。
2. 案例分析法:分析实际运动控制系统的应用案例,加深学生对运动控制系统的理解。
3. 实验法:安排实验室实践环节,让学生亲自动手操作运动控制系统。
4. 小组讨论法:分组讨论运动控制系统的设计和优化方法。
四、教学资源1. 教材:《运动控制系统》2. 课件:运动控制系统的图片、图表、动画等。
3. 实验室设备:运动控制系统实验装置。
4. 网络资源:相关学术论文、企业案例等。
五、教学评价1. 平时成绩:课堂表现、作业、实验报告等。
2. 考试成绩:期末考试,包括选择题、填空题、计算题和论述题。
3. 实践能力:实验室操作运动控制系统的表现。
4. 综合素质:小组讨论、课堂提问、问题解答等。
六、教学安排1. 课时:本课程共计32课时,包括16次课堂讲授,8次实验操作,8次小组讨论。
2. 授课方式:课堂讲授与实验操作相结合,小组讨论与个人作业相辅相成。
3. 进度安排:按照教材和课件内容,依次讲解各个章节,安排实验和小组讨论。
七、实验环节1. 实验目的:通过实际操作,让学生深入了解运动控制系统的原理和应用。
2. 实验内容:包括运动控制系统的搭建、调试和性能测试。
八、小组讨论1. 讨论主题:运动控制系统的设计与优化。
运动控制系统课程教学大纲精选全文
可编辑修改精选全文完整版运动控制系统课程教学大纲一、课程基本信息课程编号:201404110课程中文名称:运动控制系统课程英文名称:Motion Control System课程性质:专业核心课程考核方式:考试开课专业:自动化开课学期:6总学时:48(其中理论40学时,实验8学时)总学分:3二、课程目标目标1:掌握运动控制系统的基本工程原理、工程方法和交直流调速系统的专业知识,通过文献分析研究对自动化工程领域、船舶控制工程领域相关的复杂工程问题提出解决方案,获得有效结论。
(对应指标点2-3)目标2:能够运用直流、交流调速系统的原理及专业知识,针对自动化工程领域、船舶控制工程领域相关的调速系统的复杂工程问题进行研究。
(对应指标点4-1)通过本课程的教学,使学生掌握运动控制的基本理论和交直流调速系统的基本调节规律;具备使用闭环系统分析方法分析调速系统的静、动态特性问题,对交直流调速系统有深入理解及实际工程应用能力;具有应用运动控制理论解决交直流调速系统控制问题的能力,并将其用于解决船舶控制及自动化科学技术领域的交直流调速系统功能及指标等问题。
三、教学基本要求1、通过学习运动控制系统的专业知识,能够将电力电子技术、电机及拖动基础、自动控制理论等专业基础知识较好的融合起来,掌握直流电动机转速单闭环控制系统的原理和控制规律,掌握直流电动机转速、电流双闭环控制系统的原理和控制规律,掌握调速系统静态指标和动态指标的意义,能够应用直流电机和交流电机调速的基础理论和闭环控制的分析手段、方法,对船舶控制及自动化工程领域交直流调速系统中的复杂问题进行分析。
(对应目标1)2、通过所学的专业知识,理解交直流调速设备制造和使用过程中不同控制方法对调速系统性能的影响。
理解PWM、SPWM、SVPWM以及矢量控制等技术手段和控制方法对交直流调速系统提高性能指标的价值和意义,具有对船舶控制及自动化工程领域中涉及调速系统的复杂工程问题进行研究的能力。
运动控制系统PPT参考课件
第1篇 直流拖动பைடு நூலகம்制系统
1.1 直流调速系统用的可控直流电源 ❖ 直流调速方法 ❖ 直流调速电源 ❖ 直流调速控制
10
1.1.1 直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A);
R — 电枢回路总电阻( );
晶闸管-电动机调速系统(简称VM系统,又称静止的Ward-Leonard系 统),图中VT是晶闸管可控整流器,通 过调节触发装置 GT 的控制电压 Uc 来移 动触发脉冲的相位,即可改变整流电压 Ud ,从而实现平滑调速。
22
• V-M系统的特点
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提
25
1). 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton
M _O
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
Ud t
26
2). 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT 导通时,直流电源 电压 Us 加到电动机上;当VT 关断时,直流电 源与电机脱开,电动机电枢经 VD 续流,两端 电压接近于零。如此反复,电枢端电压波形如 图1-5b ,好像是电源电压Us在ton 时间内被接上, 又在 T – ton 时间内被斩断,故称“斩波”。
改变电压 UN U
U n , n0
❖ 调速特性:
O
转速下降,机械特性
运动控制系统总结
• 电流环设计完成后,把电流环等效成转速环(外 环)中的一个环节,再用同样的方法设计转速环 为典型II型系统。
图3-26 双闭环调速系统内环和外环的开环对数幅频特性 I——电流内环 n——转速外环
(3)内、外环开环对数幅频特性的比较 • 外环的响应比内环慢,这是按上述工程设计方法设计多环控
• 准确的测速时间是用所得的高频时钟脉冲个数M2 计算出来的,即 Tt M2/ f0,
• 电动机转速为
n 60 60 f0 ZTt ZM2
(2-80)
• T(M法2-测1)速时的转分速辨的率变定化义量为,时钟脉冲个数由M2变成
Q 6f0 0 6f0 0 6f0 0 Z(M 21 ) Z2 MZ2 M (M 21 )
h
3
4
5
6
7
Hale Waihona Puke 89 1052.6% 43.6% 37.6% 33.2% 29.8% 27.2% 25.0% 23.3%
tr / T 2.4 2.65 2.85 3.0 3.1 3.2 3.3 3.35
ts / T 12.15 11.65 9.55 10.45 11.30 12.25 13.25 14.20
异步电动机传递的电磁功率
Pm
3I
'2 r
Rr'
s
机械同步角速度
m1
1
np
异步电动机的机械特性
异步电动机的电磁转矩(机械特性方程式 )
Te
Pm
m1
3np
1
Ir'2
Rr' s
1Rs
3npUs2Rr' /s
《运动控制系统》教案
《运动控制系统》教案一、教学目标1. 了解运动控制系统的概念、组成和作用。
2. 掌握运动控制系统的分类及其特点。
3. 熟悉运动控制系统的主要组成部分及其功能。
4. 理解运动控制系统在实际应用中的重要性。
二、教学内容1. 运动控制系统的概念与组成1.1 运动控制系统的定义1.2 运动控制系统的组成要素2. 运动控制系统的分类与特点2.1 模拟运动控制系统2.2 数字运动控制系统2.3 现代运动控制系统3. 运动控制系统的主要组成部分及其功能3.1 控制器3.2 执行器3.3 传感器3.4 反馈环节4. 运动控制系统在实际应用中的重要性4.1 运动控制系统在工业生产中的应用4.2 运动控制系统在交通运输中的应用4.3 运动控制系统在生物医学中的应用三、教学方法1. 讲授法:讲解运动控制系统的概念、组成、分类、特点及应用。
2. 案例分析法:分析实际应用中的运动控制系统案例,加深学生对运动控制系统的理解。
3. 讨论法:组织学生就运动控制系统相关问题进行讨论,提高学生的思考能力。
四、教学准备1. 教材:《运动控制系统》相关章节。
2. 课件:制作涵盖教学内容的课件。
3. 案例材料:收集运动控制系统在实际应用中的案例。
五、教学过程1. 导入:简要介绍运动控制系统的基本概念,激发学生兴趣。
2. 讲解:详细讲解运动控制系统的组成、分类、特点及应用。
3. 案例分析:分析实际应用中的运动控制系统案例,让学生理解运动控制系统的作用。
4. 讨论:组织学生就运动控制系统相关问题进行讨论,提高学生的思考能力。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对运动控制系统概念、组成、分类和应用的理解。
2. 练习题:布置课后练习题,评估学生对运动控制系统知识的掌握程度。
3. 案例分析报告:评估学生在案例分析环节的思考深度和分析能力。
七、教学拓展1. 介绍运动控制系统领域的最新研究成果和技术发展动态。
《运动控制系统》期末复习资料
第1章绪论1.什么是运动控制? 电力传动又称电力拖动,是以电动机作为原动机驱动生产机械的系统的总称。
运动控制系统是将电能转变为机械能的装置,用以实现生产机械按人们期望的要求运行,以满足生产工艺及其它应用的要求。
2.运动控制系统的组成:现代运动控制技术是以电动机为控制对象,以计算机和其它电子装置为控制手段,以电力电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为理论基础,以计算机数字仿真或计算机辅助设计为研究和开发的工具。
3.运动控制系统的基本运动方程式:第2章转速反馈控制的直流调速系统1.晶闸管-电动机(V-M )系统的组成:纯滞后环节,一阶惯性环节。
2.V-M 系统的主要问题:由于电流波形的脉动,可能出现电流连续和断续两种情况。
3.稳态性能指标:调速范围D 和静差率s 。
D =??(1-??),额定速降??,D =????,s =????04.闭环控制系统的动态特性;静态特性、结构图?5.反馈控制规律和闭环调速系统的几个实际问题,积分控制规律和比例积分控制规律。
积分控制规律:t 0n cd 1tU U 比例积分控制规律:稳态精度高,动态响应快6.有静差、无静差的主要区别:比例调节器的输出只取决于输入偏差量的现状;而积分调节器的输出则包含了输入偏差量的全部历史。
比例积分放大器的结构:PI 调节器7.数字测速方法:M 法测速、T 法测速、M/T 法测速。
8.电流截止负反馈的原理:采用某种方法,当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。
电流截止负反馈的实现方法:引入比较电压,构成电流截止负反馈环节9.脉宽调制:利用电力电子开关的导通与关断,将直流电压变成连续可变的电压,并通过控制脉冲宽度或周期达到变压变频的目的。
10.直流蓄电池供电的电流可反向的两象限直流斩波调速系统,已知:电源电压Us=300V,斩波器占空比为30%,电动机反电动势E=100V,在电机侧看,回路的总电阻R=1Ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RI d n n0cl ncl (2-2) Ce (1 K ) Ce (1 K ) 它的开环机械特性为
Ud0 Id n Ce
* K p K sU n
Ce
RId n0op nop Ce
* 在开环与闭环中的取值不同 Un
(2-3)
nop
n0op
因为条件是 n0cl n0op,所以 sop (2-5) scl 1 K
调速范围的比较
(3)在相同的静差率约束下,闭环系统的调速范围 为开环系统的(1+K)倍。 当系统的最高转速是电动机额定转速 nN ,所要 求的静差率为s时,
nN Dcl ncl ( 1 s )
nN Dop nop ( 1 s )
由式(2-4)得到
Dcl ( 1 K )Dop
(2-6)
从上述三点可见, 闭环系统的静特性比开环系统的 机械特性要硬得多, 在保证一定静差率的要求下,闭 环系统能够扩大调速范围。
系统调节过程
n n04 n03 n02 n01 n0cl A A’ B C D Ud04 Ud03 Ud02 Ud01 0 Id1 Id2 Id3 Id4 Id
稳态结构图
IdR Un*
ΔUn
Un
Kp
Uc
Ks
Ud0
E
1 Ce
n
α
图2-2 转速负反馈闭环直流调速系统稳态结构框图
只考虑给定作用时的闭环系统
1 Ce
n
U n*
Kp
Ks
α
图2-2 转速负反馈闭环直流调速系统稳态结构框图
-IdR
只考虑扰动作用时的闭环系统
1 Ce
n
Ks
Kp
α
图2-2 转速负反馈闭环直流调速系统稳态结构框图
U c K p U n
U n n
U d 0 K sU c
直流电动机
U d 0 I dR n Ce
以上各关系式中新出现的系数为: K p——比例调节器的比例系数; ——转速反馈系数(V· min/r) U d 0——电力电子变换器理想空载输出 电压(V)(变换器内阻已并入电枢回 路总电阻R中)。
Un经过放大器 A,产生电力电 子变换器UPE的控制电压Uc ,用 以控制电动机转速 n。 闭环控制系统和开环控制系统的 主要差别就在于转速经过测量元 件反馈到输入端参与控制。
闭环调速系统中各环节的稳态关 系
电压比较环节
* U n U n Un
比例调节器
测速反馈环节 电力电子变换器
系统工作原理
~
Id Un* Un
TG
ΔUn
A
Uc
UPE
Ud
M n
Utg
图2-1
带转速负反馈的闭环直流调速系统原理框图
在反馈控制的闭环直流调速系统 中,与电动机同轴安装一台测速 发电机 TG ,从而引出与被调量 转速成正比的负反馈电压Un , Un与给定电压 U*n 相比较后,得 到转速偏差电压 Un ,
静特性方程式
RI d n Ce (1 K p K s / Ce ) Ce (1 K ) Ce (1 K )
* K p K sU n Id R * K p K sU n
(2-1)
式中: K
K p K s Ce
闭环系统的开环 放大系数
系统静特性分析
闭环系统的静特性方程式为
ΔnN
Ud2
0
TeN
Te
n n04 n03 n02 n01 n0cl
开环机械特性
闭环静特性
A A’ B C D Ud04 Ud03 Ud02 Ud01
0
Id1
Id2
Id3
Id4
Id
内 容 提 要
转速单闭环直流调速系统 转速、电流双闭环直流调速系统 调节器的设计方法
本节课要解决的问题
2.1.1转速单闭环直流调速系 统的控制规律
将系统的被调节量作为反馈量引入 系统中,使之与给定量进行比较,用 比较后的差值对系统进行控制,可以 有效地抑制直至消除扰动造成的影响, 而维持被调节量很少变化或不变,这 就是反馈控制的基本思想。
基于负反馈(输入量与输出量相 减)基础上的“检测误差,用以 纠正误差”这一原理组成的系统, 对于输出量反馈的传递途径有一 个闭合的环路,因此被称作闭环 控制系统。
运动控制系统 第2章
闭环控制的直流调速 系统
图1-17 开环调速系统的原理图
静差率与调速范围:
D
nN s nN ( 1 s )
U d 0 RId K sU c RId 开环调速系统静特性方程:n Ce Ce Ce
n
负载 控制电压
电枢电流 电枢电压
n01
ΔnN
U d1
n02
RI d nop Ce
它们的关系是
ncl
nop
1 K
(2-4)
n
n0
1 2
Δncl Δnop
0
IL
Id
图2-3 闭环系统静特性与开环系统机械特性
转速静差率的比较
(2)在相同的理想空载转速条件下,闭环系统的转速 1 静差率也仅为开环系统的 。
1 K
s cl
ncl
n0 cl
sop
开环机械特性
ห้องสมุดไป่ตู้
闭环静特性
图2-4 闭环系统静特性和开环系统机械特性的关系
开环系统 I d n 例如:在图2-4中工作点从A A′ 闭环系统 Id n Un Un
n Ud0 Uc 例如:在图2-4中工作点从A B
最终从A点所在的开环机械特性过渡 到B点所在的开环机械特性,电枢电 压由 U d 01 增加至 U d 02 。
载转速; ncl 和nop 分别表示闭环和开环系统的稳态速 降。
n0 cl 和 n0op分别表示闭环和开环系统的理想空
分析比较
负载转速降落、静差率、调速范围
式中
稳态速降的比较
(1)在相同的负载扰动下,闭环系统的负载降落 1 仅为开环系统转速降落的 1 K 。
RI d ncl Ce ( 1 K )
给出单闭环直流调速系统的原理框图、介绍工 作原理;利用稳态结构框图分析系统的静特性; 对静特性改善加以物理过程分析;利用反馈控 制规律对该调速系统的抗扰性能、系统设计需 要注意的问题加以分析(2.1.1) 在原有转速单闭环基础上引入电流截止负反馈, 对其静特性进行分析;给出实现方式(2.1.2) 分析单闭环单闭环直流调速系统的动态数学模 型,对系统的稳定性加以分析(2.1.3)