中小学数学思想方法(打印版)
数学小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
数学小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
中小学数学中常见的数学思想方法简介
中小学数学中常见的数学思想方法简介字丽花201015010150所谓数学方法是指解决数学具体问题时所采用的方式、途径、程序和手段。
数学方法具有过程性、层次性和可操作性等特点。
数学思想是数学的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,两者往往结合在一起,习惯上把它们称为数学思想方法。
其中,小学数学思想方法是指对小学数学知识有本质的认识,从方法论的角度来研究掌握小学数学中分析问题、思考问题的方法。
它是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍的适用的方法。
在小学数学教育教学中有意识地向学生渗透一些基本的数学思想方法能使学生领悟数学的真谛,懂得数学的价值,学会数学地思考和解决问题,能把知识的学习与培养能力。
发展智力、发展智力有机地统一起来,且它本身也蕴涵了情感素养的熏染,这也正是新课程标准充分强调的。
小学数学教学主要渗透的数学思想有如下几种:1.集合思想。
包括并集思想、交集思想、差集思想、空集思想(加法)(公约数)(减法)(0的认识)。
2.对应思想。
对应思想是指人的思想对两个集合元素之间联系的把握。
许多具体的数学思想来源于对应思想。
对应思想主要体现在:数形结合思想、函数思想、变换思想。
(1)数形结合的思想。
在小学数学中的主要体现在:a.利用图形的“一一配对”来理解数学概念。
b.利用“数”与“形”的对应,让学生理解数与式的概念。
c.用“数轴”渗透数集与直线上的点集对应的思想。
(自然数集N与数轴上的对应的点组成的集合)d.通过数形对应,分析应用题。
(如:用线段图分析数量关系)小学各年级课件教案习题汇总一年级二年级三年级四年级五年级(2)函数思想。
a.函数概念的渗透。
小学数学教材从低年段开始,如一个加数不变时,“和”随“另一个加数”变化,也是找出其对应关系。
正反比例这部分内容更是集中渗透了函数概念。
教师处理这部分教材时,应通过画图、列表等直观形式,引导学生通过观察、归纳发现出两个量的“变化”,突出“两种相关的量”之间的对应关系。
数学小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
数学小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
小学数学中常用的数学思想方法
小学数学中常用的数学思想方法在小学数学教学中,常用的数学思想方法有以下几种:1.查找规律法:通过观察一系列数的特点,总结出它们之间的规律和规则。
例如,观察一个数列的每个项与前一项之间的关系,推理出数列的通项公式。
2.分类讨论法:对于一个问题,将其分为几种情况进行讨论,然后分别解决。
例如,求解一个实际问题中的数字运算题,可以将问题中的数字进行分类,分别计算后再进行合并。
3.反证法:当问题较难解决时,可以通过假设结论不成立,再推导出矛盾的结论,证明原结论一定成立。
例如,证明一个数是素数时,可以先假设该数是合数,然后推导出矛盾的结论。
4.归纳法:通过寻找一个问题的基本情况和递推关系,进行逐步推导,从而得出结论。
例如,通过归纳法可以证明等差数列的通项公式。
5.求同法:将问题中的数学关系与其他几个问题中的数学关系进行对比,从而找出相似之处。
例如,解决一个数学问题时,可以将其与类似的已解决问题进行比较,找到解决问题的方法。
6.分析法:将一个复杂的问题拆解成多个简单的部分,然后逐个分析解决。
例如,解决一个几何问题时,可以将其分解成多个几何图形,逐个进行研究和解决。
7.探究法:鼓励学生自主探索,通过实际操作和观察,发现问题的规律和解决方法。
例如,通过实际测量和比较,学生可以探究出相似三角形的性质。
8.逆向思维法:从问题的目标出发,反向思考解决问题的方法。
例如,当一个问题无法直接求解时,可以考虑从目标得出的信息反向推导,从而找到解决问题的线索。
9.列出方程法:通过将问题中的数学关系用方程式表示,转化为代数问题进行求解。
例如,解决一个关于两个未知数的问题时,可以先列出方程组,然后求解方程组得出结果。
10.图形化表示法:通过绘制图形来表示问题,直观地观察和推理问题的特点。
例如,在解决一个几何问题时,可以先绘制出对应的图形,再进行推理和求解。
以上是小学数学教学中常用的一些数学思想方法,帮助学生更好地理解和解决数学问题。
数学小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
学好小学数学常用的17种思想方法
学好小学数学常用的17种思想方法1.对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2.假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3.比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4.符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5.类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6.转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7.分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
数学小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
数学小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
数学小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
数学小学数学常用的16种思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
王永春小学思想方法收集整理目录小学数学思想方法的梳理(一) (3)一、符号化思想 (3)1. 符号化思想的概念。
(3)2. 如何理解符号化思想。
(3)3. 符号化思想的具体应用。
(4)4.符号化思想的教学。
(7)小学数学思想方法的梳理(二) (7)二、化归思想 (7)1. 化归思想的概念。
(7)2. 化归所遵循的原则。
(8)4.解决问题中的化归策略。
(10)(1)化抽象问题为直观问题。
(10)(2)化繁为简的策略。
(10)(3)化实际问题为特殊的数学问题。
(11)(4)化未知问题为已知问题。
(12)(5)化一般问题为特殊问题。
(13)小学数学思想方法的梳理(三) (14)三、模型思想 (14)1. 模型思想的概念。
(14)2. 模型思想的重要意义。
(14)3. 模型思想的具体应用。
(15)4.模型思想的教学。
(17)小学数学思想方法的梳理(四) (19)四、推理思想 (19)1. 推理思想的概念。
(19)2. 推理思想的重要意义。
(21)3. 推理思想的具体应用。
(21)4.推理思想的教学。
(23)小学数学思想方法的梳理(五) (26)五、方程和函数思想 (26)1.方程和函数思想的概念。
(26)2. 方程和函数的关系。
(27)3. 方程和函数思想的重要意义。
(28)4. 方程和函数思想的具体应用。
(28)4.方程和函数思想的教学。
(29)小学数学思想方法的梳理(六) (31)六、几何变换思想 (31)1. 初等几何变换的概念。
(31)2. 几何变换思想的重要意义。
(33)3. 几何变换思想的具体应用。
(33)4.几何变换思想的教学。
(34)小学数学思想方法的梳理(七) (38)七、分类讨论思想 (38)1. 分类讨论思想的概念。
(38)2. 分类讨论思想的重要意义。
(38)3. 分类讨论思想的具体应用。
(39)4.分类讨论思想的教学。
(40)八、统计思想 (42)1. 统计思想的概念。
(42)2. 统计思想的重要意义。
(42)3. 统计思想的具体应用。
(42)4.统计思想的教学。
(42)九、概率思想 (46)十、分析法和综合法 (48)十一、反证法 (51)十二、集合思想 (52)十三、数形结合思想 (55)十四、极限思想 (58)十五、假设法 (61)小学数学思想方法的梳理(一)课程教材研究所王永春数学思想和数学方法既有区别又有密切联系。
数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。
人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。
因此,二者是有密切联系的。
我们把二者合称为数学思想方法。
数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。
数学课程标准在总体目标中明确提出:“学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。
”这一总体目标贯穿于小学和初中,这充分说明了数学思想方法的重要性。
在小学数学阶段有意识地向学生渗透一些基本的数学思想方法可以加深学生对数学概念、公式、法则、定律的理解,提高学生解决问题的能力和思维能力,也是小学数学进行素质教育的真正内涵之所在。
同时,也能为初中数学思想方法的学习打下较好的基础。
在小学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、一一对应思想、模型思想、数形结合思想、演绎推理思想、变换思想、统计与概率思想等等。
为了使广大小学数学教师在教学中能很好地渗透这些数学思想方法,笔者把这些思想方法比较系统地进行概括和梳理,明晰这些思想方法的概念,整理它们在小学数学各个知识点中的应用,以及了解每个思想方法的适当拓展。
一、符号化思想1. 符号化思想的概念。
数学符号是数学的语言,数学世界是一个符号化的世界,数学作为人们进行表示、计算、推理和解决问题的工具,符号起到了非常重要的作用;因为数学有了符号,才使得数学具有简明、抽象、清晰、准确等特点,同时也促进了数学的普及和发展;国际通用的数学符号的使用,使数学成为国际化的语言。
符号化思想是一般化的思想方法,具有普遍的意义。
2. 如何理解符号化思想。
数学课程标准比较重视培养学生的符号意识,并提出了几点要求。
那么,在小学阶段,如何理解这一重要思想呢?下面结合案例做简要解析。
第一,能从具体情境中抽象出数量关系和变化规律,并用符号表示。
这是一个从具体到抽象、从特殊到一般的探索和归纳的过程。
如通过几组具体的两个数相加,交换加数的位置和不变,归纳出加法交换律,并用符号表示:a+b=b+a。
再如在长方形上拼摆单位面积的小正方形,探索并归纳出长方形的面积公式,并用符号表示:S=ab。
这是一个符号化的过程,同时也是一个模型化的过程。
第二,理解符号所代表的数量关系和变化规律。
这是一个从一般到特殊、从理论到实践的过程。
包括用关系式、表格和图象等表示情境中数量间的关系。
如假设一个正方形的边长是a,那么4a就表示该正方形的周长,a2表示该正方形的面积。
这同样是一个符号化的过程,同时也是一个解释和应用模型的过程。
第三,会进行符号间的转换。
数量间的关系一旦确定,便可以用数学符号表示出来,但数学符号不是唯一的,可以丰富多彩。
如一辆汽车的行驶时速为定值80千米,那么该辆汽车行驶的路程和时间成正比,它们之间的数量关系既可以用表格的形式表示,也可以用公式s=80t表示,还可以用图象表示。
即这些符号是可以相互转换的。
第四,能选择适当的程序和方法解决用符号所表示的问题。
这是指完成符号化后的下一步工作,就是进行数学的运算和推理。
能够进行正确的运算和推理是非常重要的数学基本功,也是非常重要的数学能力。
3. 符号化思想的具体应用。
数学的发展虽然经历了几千年,但是数学符号的规范和统一却经历了比较慢长的过程。
如我们现在通用的算术中的十进制计数符号数字0~9于公元8世纪在印度产生,经过了几百年才在全世界通用,从通用至今也不过几百年。
代数在早期主要是以文字为主的演算,直到16、17世纪韦达、笛卡尔和莱布尼兹等数学家逐步引进和完善了代数的符号体系。
符号在小学数学中的应用如下表。
直线L两线段平行:AB∥CDABCD两线段垂直:AB⊥CD用字母表示公式三角形面积:S=a b平行四边形面积:S=ah梯形面积:S=(a+b)h圆周长:C=2πr圆面积:S=πr?长方体体积:v=abc正方体体积:v=a?圆柱体积:v=sh圆锥体积:v=sh统计与概统计图和统计表用统计图表描述和分析各种信息率可能性用分数表示可能性的大小4.符号化思想的教学。
符号化思想作为数学最基本的思想之一,数学课程标准把培养学生的符号意识作为必学的内容,并提出了具体要求,足以证明它的重要性。
教师在日常教学中要给予足够的重视,并落实到课堂教学目标中。
要创设合适的情境,引导学生在探索中归纳和理解数学模型,并进行解释和应用。
学生只有理解和掌握了数学符号的内涵和思想,才有可能利用它们进行正确的运算、推理和解决问题。
数学符号是人们在研究现实世界的数量关系和空间形式的过程中产生的,它来源于生活,但并不是生活中真实的物质存在,而是一种抽象概括。
如数字1,它可以表示现实生活中任何数量是一个的物体的个数,是一种高度的抽象概括,具有一定的抽象性。
一个数学符号一旦产生并被广泛应用,它就具有明确的含义,就能够进行精确的数学运算和推理证明,因而它具有精确性。
数学能够帮助人们完成大量的运算和推理证明,但如果没有简捷的思想和符号的参与,它的工作量及难度也是很大的,让人望而生畏。
一旦简捷的符号参与了运算和推理证明,数学的简捷性就体现出来了。
如欧洲人12世纪以前基本上用罗马数字进行计数和运算,由于这种计数法不是十进制的,大数的四则运算非常复杂,严重阻碍了数学的发展和普及。
直到12世纪印度数字及十进制计数法传入欧洲,才使得算术有了较快发展和普及。
数学符号的发展也经历了从各自独立到逐步规范、统一和国际化的过程,最明显的就是早期的数字符号从各自独立的埃及数字、巴比伦数字、中国数字、印度数字和罗马数字到统一的阿拉伯数字。
数学符号经历了从发明到应用再到统一的逐步完善的过程,并促进了数学的发展;反之,数学的发展也促进了符号的发展。
因而,数学和符号是相互促进发展的,而且这种发展可能是一个慢长的过程。
因而,符号意识的培养也应贯穿于数学学习的整个过程中,并需要一定的训练才能达到比较熟练的程度。
小学数学思想方法的梳理(二)二、化归思想1. 化归思想的概念。
人们在面对数学问题,如果直接应用已有知识不能或不易解决该问题时,往往将需要解决的问题不断转化形式,把它归结为能够解决或比较容易解决的问题,最终使原问题得到解决,把这种思想方法称为化归(转化)思想。
从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。
因此,化归既是一般化的数学思想方法,具有普遍的意义;同时,化归思想也是攻克各种复杂问题的法宝之一,具有重要的意义和作用。
2. 化归所遵循的原则。
化归思想的实质就是在已有的简单的、具体的、基本的知识的基础上,把未知化为已知、把复杂化为简单、把一般化为特殊、把抽象化为具体、把非常规化为常规,从而解决各种问题。
因此,应用化归思想时要遵循以下几个基本原则:(1)数学化原则,即把生活中的问题转化为数学问题,建立数学模型,从而应用数学知识找到解决问题的方法。
数学来源于生活,应用于生活。
学习数学的目的之一就是要利用数学知识解决生活中的各种问题,课程标准特别强调的目标之一就是培养实践能力。
因此,数学化原则是一般化的普遍的原则之一。
(2)熟悉化原则,即把陌生的问题转化为熟悉的问题。
人们学习数学的过程,就是一个不断面对新知识的过程;解决疑难问题的过程,也是一个面对陌生问题的过程。
从某种程度上说,这种转化过程对学生来说既是一个探索的过程,又是一个创新的过程;与课程标准提倡培养学生的探索能力和创新精神是一致的。
因此,学会把陌生的问题转化为熟悉的问题,是一个比较重要的原则。
(3)简单化原则,即把复杂的问题转化为简单的问题。
对解决问题者而言,复杂的问题未必都不会解决,但解决的过程可能比较复杂。
因此,把复杂的问题转化为简单的问题,寻求一些技巧和捷径,也不失为一种上策。
(4)直观化原则,即把抽象的问题转化为具体的问题。
数学的特点之一便是它具有抽象性。
有些抽象的问题,直接分析解决难度较大,需要把它转化为具体的问题,或者借助直观手段,比较容易分析解决。