考研数学二考试大纲变化对比表
2024考研数二新大纲
2024考研数二新大纲2024年考研数学二新大纲近日公布,引起了广大考生的关注。
本文将对2024年考研数学二新大纲进行详细的解读和分析。
一、知识结构2024年考研数学二新大纲的知识结构相比以往有了一些变化。
新大纲主要包括五个模块,分别是高等代数、数理统计与概率论、数值计算与科学计算、运筹与优化、随机过程与金融数学。
1.高等代数高等代数是考研数学二中的重要部分,也是许多考生的痛点。
新大纲中的高等代数要求考生熟练掌握矩阵、线性空间、线性变换等基本概念和基本性质,熟悉矩阵的运算和特征值、特征向量等相关知识。
2.数理统计与概率论数理统计与概率论是考研数学二的重中之重。
新大纲要求考生掌握概率论的基本概念和基本性质,熟悉离散型和连续型随机变量的概率分布、数学期望、方差等基本统计量的计算方法,掌握大数定律和中心极限定理等重要定理的应用。
3.数值计算与科学计算数值计算与科学计算是2024年考研数学二新大纲的一个新增内容。
新大纲要求考生熟练掌握常见数值计算方法,包括插值、数值积分、常微分方程数值解等。
此外,新大纲还要求考生了解并能够应用常用科学计算软件进行一定的科学计算。
4.运筹与优化运筹与优化是考研数学二新大纲中的另一个新内容。
新大纲要求考生了解线性规划、整数规划、非线性规划、动态规划等基本概念和基本性质,熟悉常用的优化方法和算法。
考生需要能够应用这些方法和算法解决一些实际问题。
5.随机过程与金融数学随机过程与金融数学是考研数学二新大纲的最后一个模块。
新大纲要求考生掌握马尔可夫链的基本性质和马尔可夫过程的基本概念、基本性质,熟悉布朗运动和几何布朗运动的一些基本理论,了解基本的金融数学知识。
二、备考建议1.系统学习根据2024年考研数学二新大纲的知识结构,考生需要对各个模块的知识进行系统学习。
建议考生可以根据新大纲的要求,制定详细的学习计划,并按照计划有序地进行学习。
2.突出重点新大纲中的高等代数、数理统计与概率论是考研数学二的重点和难点。
2011年与2010年考研数学大纲变化对比表——数二
2011年与2010年考研数学大纲变化对比表——数二.txt铁饭碗的真实含义不是在一个地方吃一辈子饭,而是一辈子到哪儿都有饭吃。
就算是一坨屎,也有遇见屎壳郎的那天。
所以你大可不必为今天的自己有太多担忧。
章节 2010年数学考试大纲考试内容和考试要求 2011年数学考试大纲考试内容和考试要求变化对比高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.对比:无变化本章的重点内容之一是极限,考生不仅要准确的理解极限的概念和极限存在的充要条件,而且还要能正确求出各种极限,由于篇幅所限,有关求极限的各种方法和本章的其它考点,详见由高等教育出版社出版的《2011年全国硕士研究生入学统一考试数学考试大纲配套强化指导》第二部分,第一篇,第一章函数、极限、连续。
[整理]年考研数学二考试大纲变化对比表
7.会用微分方程解决一些简单的应用问题。
考试内容
常微分方程的基本概念,变量可分离的微分方程,齐次微分方程,一阶线性微分方程,可降阶的高阶微分方程,线性微分方程解的性质及解的结构定理,二阶常系数齐次线性微分方程,高于二阶的某些常系数齐次线性微分方程,简单的二阶常系数非齐次线性微分方程,微分方程的简单应用
3了解高阶导数的概念,会求简单函数的高阶导数。
4会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
5理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。
6掌握用洛必达法则求未定式极限的方法。
7理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
章节
2012大纲
2013大纲
变化情况及复习指南
一、一、函数、极限、连续
考试内容
函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立
数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:
考试内容
多元函数的概念,二元函数的几何意义,二元函数的极限与连续的概念,有界闭区域上二元连续函数的性质,多元函数的偏导数和全微分,多元复合函数、隐函数的求导法,二阶偏导数,多元函数的极值和条件极值、最大值和最小值,二重积分的概念、基本性质和计算
2021考研数学大纲变动一览表
2021考研数学大纲变动一览表
第一部分考试形式和试卷结构
1.试卷内容结构调整
2.试卷题型结构调整
第二部分
考试内容和考试要求
1.数学(一)考试要求变动情况(1)高等数学
(2)线性代数
(3)概率论与数理统计
2.数学(二)考试要求变动情况(1)高等数学
常微分方程5.理解二阶线性微分
方程解的性质及解的
结构定理
5.理解线性微分方程解的
性质及解的结构
微分方程理解的性质及解的结
构不再局限于“二阶线性微分方
程”而是扩展到“线性微分方程”
(2)线性代数
3.数学(三)考试要求变动情况(1)高等数学
(2)线性代数
(3)概率论与数理统计。
年与年考研数学二大纲变化对比表
考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用
三、一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
2011年与2010年考研数学大纲变化对比表——数二
2010年数学考试大纲考试内容和考试要求
2011年数学考试大纲考试内容和考试要求
变化对比
高等数学
一、函数、极限、连续
考试内容
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:
2024考研数学二大纲变化
2024考研数学二大纲变化
2024年考研数学二大纲相较于之前有一些变化。
新大纲主要是对原有内容进行了调整,并增加了一些新的内容。
在线性代数部分,新大纲重点强调矩阵的基本性质,包括行列式、特征值和特征向量、矩阵的相似和对角化等。
此外,对于线性空间和
线性变换的概念要求更加严格,要求考生熟练掌握相关定理和推导过程。
在概率与数理统计部分,新大纲对概率论的重要性给予了更高的
重视。
要求考生掌握概率空间、随机变量以及其分布函数和密度函数。
此外,概率计算、条件概率和独立性等内容也被加强。
而在数理统计
方面,重点放在了参数估计和假设检验上,要求考生熟练掌握极大似
然估计、最小二乘估计和检验统计量等。
在数学分析部分,新大纲对极限、连续和一致连续的定义和性质
进行了深入讲解。
此外,函数的导数和不定积分的性质和计算方法也
要求考生熟练掌握。
还增加了对级数收敛和一致收敛、泰勒公式和积
分的Cauchy准则等内容的考察。
总体来说,2024年考研数学二大纲的变化主要是对原有内容的改进和细化,旨在更好地考察考生对数学基本理论和方法的掌握和运用
能力。
考生需充分准备,理解和掌握新大纲要求的内容。
最新11年与10年考研数学大纲变化对比表——数二02812汇总
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
«Skip Record If...»,«Skip Record If...»
函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
最新考研数学二考试大纲变化对比表汇总
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
考试内容
函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立
数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
无变化
重点复习:
极限的定义及性质、极限存在的两个准则、两个重要极限、各种类型函数极限的求法、无穷小量、函数间断点、连续函数的性质等
本章基础内容较多,复习要扎实、稳步进行,以保证后面各章节的顺利复习。
2019年与2018年考研数学大纲变化对比数二
考试内容 常微分方程的基本概念 分方程 程 一阶线性微分方程 变量可分离的微分方程 可降阶的高阶微分方程 齐次微
考试内容 常微分方程的基本概念 一阶线性微分方程 变量可分离的微分方程 可降阶的高阶微分方程 齐次微 线性微 线性微 分方程
分方程解的性质及解的结构定理
二阶常系数齐次线性微分方 分方程解的性质及解的结构定理 简单的二阶常 程 系数非齐次线性微分方程 考试要求
sin x 1 lim 1 , lim 1 e x 0 x x x
函数连续的概念 考试要求 1.理解函数的概念,掌握函数的表示法,并会建立应用问 题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数 的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概 5.理解极限的概念,理解函数左极限与右极限的概念以及 函数极限存在与左极限、右极限之间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握 函数间断点的类型 初等函数的连续性 对比:无变化 闭区间上连续函数的性质
6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和
求函数极值的方法,掌握函数的最大值和最小值的求法及其应 求函数极值的方法,掌握函数的最大值和最小值的求法及其应
8.会用导数判断函数图形的凹凸性(注导数判断函数图形的凹凸性(注:在区间 a , b 内,
设函数 f ( x ) 具有二阶导数.当 f ( x ) 0 时, f ( x ) 的图形是凹 设函数 f ( x ) 具有二阶导数.当 f ( x ) 0 时, f ( x ) 的图形是凹 的;当 f ( x ) 0 时, f ( x ) 的图形是凸的) ,会求函数图形的拐 的;当 f ( x ) 0 时, f ( x ) 的图形是凸的) ,会求函数图形的拐 点以及水平、铅直和斜渐近线,会描绘函数的图形. 点以及水平、铅直和斜渐近线,会描绘函数的图形.
考研数学(一二三)大纲对比
的关系,理解导数的几何意义,会求平面曲线 的关系,理解导数的几何意义,会求平面曲线 关系,了解导数的几何意义与经济意义(含边
的切线方程和法线方程,了解导数的物理意 的切线方程和法线方程,了解导数的物理意 际与弹性的概念),会求平面曲线的切线方程
义,会用导数描述一些物理量,理解函数的可 义,会用导数描述一些物理量,理解函数的可 和法线方程.了解微分的概念、导数与微分之
7.理解函数的极值概念,掌握用导数判断函 7.理解函数的极值概念,掌握用导数判断函 7.掌握函数单调性的判别方法,了解函数极
数的单调性和求函数极值的方法,掌握函数最 数的单调性和求函数极值的方法,掌握函数的 值的概念,掌握函数极值、最大值和最小值的
大值和最小值的求法及其应用.
最大值和最小值的求法及其应用.
导性与连续性之间的关系.
导性与连续性之间的关系.
间的关系以及一阶微分形式的不变性.
2.掌握导数的四则运算法则和复合函数的求 2.掌握导数的四则运算法则和复合函数的求 2.掌握基本初等函数的导数公式、导数的四
导法则,掌握基本初等函数的导数公式.了解 导法则,掌握基本初等函数的导数公式.了解 则运算法则及复合函数的求导法则,会求函数
分的概念.
分的概念.
积分的基本性质和基本积分公式,掌握不定积
分的换元积分法与分部积分法.
2.掌握不定积分的基本公式,掌握不定积分 2.掌握不定积分的基本公式,掌握不定积分 2.了解定积分的概念和基本性质,了解定积 和定积分的性质及定积分中值定理,掌握换元 和定积分的性质及定积分中值定理,掌握换元 分中值定理,理解积分上限的函数并会求它的
理量(平面图形的面积、平面曲线的弧长、旋 理量(平面图形的面积、平面曲线的弧长、旋
2019-2019考研数学二考纲对比共15页文档
2019与2019年考研数学大纲变化对比:数二(文字版)来源:万学教育 【爱学习,爱考试大】 2019年9月16日章节 2019年数学考试大纲考试内容和考试要求 2019年数学考试大纲考试内容和考试要求变化对比 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以 及函数极限存在与左、右极限之间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间对比: 无变化法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西对比:无变化拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。
2019考研数学二大纲变化对比表共9页word资料
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
考试内容
函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立
数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:
二、一元函数微分学
考试内容
导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L’Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径
(整理)考研大纲变化对比分析(数学二).
数学二精品文档精品文档导数和微分的概念导数的几何意义和物理意义函数平面曲线的切线和法线导数和基本初等函数的导数复合函数、反函数、隐函高阶导数一阶微分形微分中值定理洛必达(L'Hospital)法则函数单调函数的极值函数图形的凹凸性、拐点及渐近线函数函数的最大值和最小值弧微分曲率的概念曲理解导数和微分的概念,理解导数和微分的关系,理解导数的几掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等了解高阶导数的概念,会求简单函数的高阶导数会求分段函数的导数,会求隐函数和由参数方程所确定的函数以理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理Taylor)定理,了解并会用柯西( Cauchy )中值定理掌握用洛必达法刚求未定式极限的方法.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水了解曲率和曲率半径的概念,会计算曲率和曲率半径.考试内容:导数和微分的概念导数的几何意义和物理意义数的可导性与连续性之间的关系平面曲线的切线和法线数和微分的四则运算基本初等函数的导数数、隐函数以及参数方程所确定的函数的微分法高阶导数阶微分形式的不变性微分中值定理洛必达(L'Hospital)函数单调性的判别函数的极值函数图形的凹凸性、近线函数图形的描绘函数的最大值和最小值弧微分率的概念曲率圆与曲率半径考试要求:1. 理解导数和微分的概念,几何意义,会求平面曲线的切线方程和法线方程,理意义,会用导数描述一些物理量,之间的关系.2.初等函数的导数公式.的不变性,会求函数的微分3. 了解高阶导数的概念,会求简单函数的高阶导数4.数以及反函数的导数5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理6. 掌握用洛必达法刚求未定式极限的方法.7.数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(a,b数f(x)具有二阶导数。
数二考研范围大纲2024变化
数二考研范围大纲2024变化自2023年起,中国研究生招生考试(简称考研)的大纲开始更新,根据最新的消息,2024年考研的大纲也将有所变化。
本文将针对2024年考研大纲的变化进行详细介绍,并对其可能对考生的影响进行分析。
首先,在2024年考研大纲中,一些科目的考试内容将进行调整。
例如,英语科目将增加听写和词汇理解的考查内容,这将使考生需要更加注重对英语词汇的记忆和理解能力的提升。
数学科目将减少部分理论内容的考查,增加数学模型的应用和解题能力的考查,这有助于更好地培养考生解决实际问题的能力。
其次,在2024年考研大纲中,一些学科的考试形式也将发生变化。
例如,法学科目将取消论述题,增加案例分析和实务问题的考查,这将使考生更加注重在实际情况下的法律应用能力的培养。
材料科学与工程学科将增加实验设计和数据处理的考查,这将要求考生具备更强的实验操作和数据分析能力。
除了考试内容和形式的变化外,2024年考研大纲还将更加注重对考生综合素质的考查。
例如,在某些学科中,将增加对考生创新和实践能力的考察,这将要求考生在研究过程中具备一定的创新思维和实际动手能力。
此外,一些学科还将注重对考生学术论文写作能力的考察,这将使考生在备考过程中需加强对学术写作规范和方法的学习。
这些变化对考生将产生一定的影响。
首先,考生需要了解新的考试形式和内容,合理调整备考计划。
他们需要更加注重对实际问题的解决能力和综合素养的培养,同时加强对学术论文写作规范的学习。
其次,考生需要更加注重对学科知识的理解和应用能力的培养,加强实际问题的解决能力和数据分析能力,提高实验操作和数据处理的技巧。
在备考过程中,考生可以通过以下几个方面来应对这些变化。
首先,加强对考研大纲的研究,了解新的考试形式和内容。
其次,制定合理的备考计划,注重对实际问题解决能力和创新能力的培养。
此外,加强对学术论文写作规范和方法的学习,提高写作能力。
最后,多参加模拟考试和真题练习,提高应试能力。
2024年数学二考研大纲变化
2024年数学二考研大纲的变化可以从多个方面进行解读。
首先,我们需要了解考研大纲的基本情况。
考研大纲是教育部考试中心发布的考试标准和要求,它规定了考试的内容、范围、题型、难度等方面的要求。
因此,了解考研大纲的变化对于备考至关重要。
接下来,我们来分析一下2024年数学二考研大纲的具体变化。
从题型方面来看,数学二考研大纲增加了填空题和选择题的比重,而解答题的数量和分值也有所调整。
这表明考试对于知识点的覆盖面更广,对于学生的数学思维和计算能力要求更高。
从内容方面来看,数学二考研大纲对于知识点和考点的要求也有所调整。
例如,对于微积分部分,新大纲更加注重基础知识的掌握和运用,同时对于一些难度较高的知识点,如无穷级数、多元函数微分等,要求也有所提高。
这要求考生在备考时要更加注重基础知识的巩固,同时也要加强对高难度知识点的理解和掌握。
最后,我们来看看这些变化对于备考的影响。
首先,考生需要更加注重数学思维和计算能力的培养,以应对新的考试要求。
其次,考生需要根据新的大纲要求,调整备考策略和复习计划,对于新增的考点和题型要加强练习。
最后,考生需要认真分析自己的优劣势,针对自己的情况制定个性化的备考方案,提高备考效率和效果。
综上所述,2024年数学二考研大纲的变化对于考生来说既是机遇也是挑战。
考生需要认真分析大纲变化,制定科学的备考策略和计划,加强数学思维和计算能力的培养,提高自己的竞争力。
2021考研数学二考试大纲解析
2021考研数学二考试大纲解析1.大纲变动对比(1)数学(二)试卷内容结构高等数学(微积分)分值比例由“78%”改为“约80%”,线性代数分值比例由“22%”改为“约20%”,(2)数学(二)试卷题型结构发生了变化选择题由“8小题,每小题4分,共32分”改为“10小题,每小题5分,共50分”;填空题由“6小题,每小题4分,共24分”改为“6小题,每小题5分,共30分”;解答题由“9小题,共94分”改为“6小题,共70分.(3)数学(二)大纲内容的变化有两处(与2021年考试大纲相比)(1)在一元积分学部分,“了解反常积分的概念,会计算反常积分”修订为“理解反常积分的概念,了解反常积分收敛的比较判别法,会计算反常积分”。
(2)在多元积分学部分,“了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标)”修订为“理解二重积分的概念,了解二重积分的基本性质,了解二重积分的中值定理,掌握二重积分的计算方法(直角坐标、极坐标)”。
(3)增加了“了解而二重积分的积分中值定理”(4)在微分方程部分,“理解二阶线性微分方程解的性质及解的结构定理”修订为“理解线性微分方程解的性质及解的结构”。
考试范围扩大.(5)线性代数部分的第五章矩阵的特征值和特征向量部分,“会将矩阵化为相似对角矩阵”变为“掌握将矩阵化为相似对角矩阵的方法”,增加了对矩阵化为对角矩阵方法的掌握(6)线性代数部分的第五章矩阵的特征值和特征向量部分,实对称矩阵的特征值和特征向量的性质的考试要求“理解”变为“掌握”,考试要求提高.(7)线性代数部分,第六章的二次型部分,“会用矩阵形式表示二次型”变为“掌握二次型及其矩阵表示”,考试要求提高.(8)线性代数部分,第六章的二次型部分,“会用正交变换化二次型为标准形”变为“掌握用正交变换化二次型为标准形的方法”,考试要求提高.2.大纲解析(1)从分值上看,数学二增加了高数部分的分值(增加了3-5分),更加体现了高数的优势学科位子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
3.了解高阶导数的概念,会求简单函数的高阶导数。
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。
6.掌握用洛必达法则求未定式极限的方法。
2掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3了解高阶导数的概念,会求简单函数的高阶导数。
4会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
5理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。
章节
2012大纲
2013大纲
变化情况及复习指南
一、一、函数、极限、连续
考试内容
函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立
数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:
函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。
考试要求
1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。
考试内容
函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立
数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
8.会用导数判断函数图形的凹凸性(注:在区间(
考试要求
1理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。
考试要求
1理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。
2了解函数的有界性、单调性、周期性和奇偶性。
3理解Байду номын сангаас合函数及分段函数的概念,了解反函数及隐函数的概念。
4掌握基本初等函数的性质及其图形,了解初等函数的概念。
6掌握极限的性质及四则运算法则。
7掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
考试内容
导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L’Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径
6掌握用洛必达法则求未定式极限的方法。
7理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
无变化
重点复习:
导数的定义、函数可导性与连续性的关系、各类函数的求导法、微分中值定理、洛必达法则、函数性态等
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
二、一元函数微分学
考试内容
导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L’Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径
5理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。
无变化
重点复习:
极限的定义及性质、极限存在的两个准则、两个重要极限、各种类型函数极限的求法、无穷小量、函数间断点、连续函数的性质等
本章基础内容较多,复习要扎实、稳步进行,以保证后面各章节的顺利复习。
6.掌握极限的性质及四则运算法则。