提取公因式法
因式分解之提取公因式法
![因式分解之提取公因式法](https://img.taocdn.com/s3/m/da7495996bec0975f465e246.png)
第六讲 因式分解之提取公因式法一、知识要点1、 因式分解:把一个多项式写成几个整式的积的形式叫做多项式的因式分解。
(1) 多项式的乘法与多项式因式分解的区别简单地说:乘法是积.化和.,因式分解是和.化积.。
如:()()22b a b a b a -=-+,从左边到右边的变形属于整式乘法; ()()b a b a b a -+=-22,从左边到右边的变形属于因式分解; (2)因式分解的方法:①提公因式法; ②运用公式法; ③十字相乘法; ④分组分解法2、提公因式法:(1)如果多项式的各项含有公因式,那么就可以把这个公因式提出来。
把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。
(2)公因式:多项式ab +ac +ad 的各项ab 、ac 、ad 都含有相同的因式a ,a 称为多项式各项的公因式。
公因式由两部份构成:系数:各项系数的最大公约数相同字母的指数:取最低次幂(3)用提公因式法时的注意点:① 公因式要提尽,考虑的顺序是,先系数,再单独字母,最后多项式。
如:4a 2(a-2b)-18ab(a-2b)=2a(a-2b)(2a-9b);② 当多项式的第一项的系数为负数时,把“-”号作为公因式的负号写在括号外,使括号内的第一项的系数为正。
如:-2m 3+8m 2-12m= -2.m(m 2-4m+6); ③ 提公因式后,另一个多项式的求法是用原多项式除以公因式。
二、知识运用典型例题例1、下列各式由左边到右边的变形中,哪些是因式分解,那些不是,为什么?(1) ()()ab b a b a 422+-=+ (2)()()ab b a b a 422-+=- (3)()()22b a a b -=+- (4)()()22b a b a +=--练习:下列式子从左到右的变形中是因式分解的是( )2233.236A a b ab a b ⋅= 2.(1)(1)1B x x x +-=-()22.211C x x x ++=+ ()2.111D x x x x ++=++例2、 若多项式2x mx n ++分解因式的结果是()()65x x -+,则m = ,n = 。
因式分解一_提取公因式法和公式法_超经典
![因式分解一_提取公因式法和公式法_超经典](https://img.taocdn.com/s3/m/6ab3e05f6f1aff00bfd51e20.png)
因式分解(一)——提取公因式与运用公式法【学习目标】(1)让学生了解什么是因式分解;(2)因式分解与整式的区别; (3)提公因式与公式法的技巧。
【知识要点】1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。
☆提公因式分解因式要特别注意:(1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是正的,并且注意括号内其它各项要变号。
(2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。
(3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公因式,这时要特别注意各项的符号)。
(4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。
(5)分解因式时,单项式因式应写在多项式因式的前面。
2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: ()()22a b a b a b -=+-; ()2222a ab b a b ±+=±。
平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。
完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同;(3) 中间项是首末两项的底数的积的2倍。
☆运用公式法分解因式,需要掌握下列要领:(1)我们学过的三个乘法公式都可用于因式分解。
具体使用时可先判断能否用公式分解,然后再选择适当公式。
(2)各个乘法公式中的字母可以是数,单项式或多项式。
(3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。
(4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。
【经典例题】例1、找出下列中的公因式:(1) a 2b ,5ab ,9b 的公因式 。
(2) -5a 2,10ab ,15ac 的公因式 。
七年级数学提取公因式法
![七年级数学提取公因式法](https://img.taocdn.com/s3/m/43357e9f250c844769eae009581b6bd97f19bccc.png)
代数方程
求解一元一次方程
01
在一元一次方程中,提取公因式法可以帮助我们化简方程,使
其更容易求解。
化简多元一次方程组
02
在多元一次方程组中,提取公因式法可以用于化简方程,简化
计算过程。
证明代数恒等式
03
在证明代数恒等式时,提取公因式法可以帮助我们化简等式两
边,使其更易于验证。
几何图形
计算面积和周长
特点
提取公因式法是一种简化多项式 的有效方法,它可以将多项式中 的相似项合并,使多项式更易于 理解和计算。
提取公因式法的重要性
01
02
03
提高计算效率
提取公因式法可以简化多 项式的计算过程,提高计 算效率。
培养数学思维
通过提取公因式法,可以 培养学生的数学思维和逻 辑推理能力,提高数学素 养。
应用广泛
出现。
在提取公因式后,应注意剩余部 分的符号变化,确保结果与原多
项式相等。
掌握基本代数规则
掌握基本的代数规则是正确使用提取公因式法的前提。 了解代数式的展开、合并同类项、乘法分配律等基本规则。
熟悉代数式的化简和变形技巧,能够灵活运用代数规则进行多项式的简化。
05 提取公因式法练习题与解 析
练习题一
解析
首先观察多项式$x^2 - 2x - 3x + 6$,可以发现$x$是所有项的公因式。然后提取 公因式$x$,得到$x(x - 2 - 3 + 6)$。
答案
提取公因式后,多项式变为$x(x - 1)$。
练习题二
解析
首先观察多项式$(x + y)^2 - (x - y)^2$,可以发现这是一个平方差公式,即$(a+b)(a-b)$。根据平方差公式, $(x + y)^2 - (x - y)^2$可以化简为$(x + y + x - y)(x + y - x + y)$。
因式分解和提公因式法
![因式分解和提公因式法](https://img.taocdn.com/s3/m/f6450a173d1ec5da50e2524de518964bcf84d2c1.png)
因式分解和提公因式法因式分解是代数中的一种重要的运算方法,在解题过程中往往可以起到简化问题、求解方程、找出公因数等作用。
而提公因式法是因式分解的一种特殊形式,通过提取公因式来简化多项式的表达式。
本文将详细介绍因式分解和提公因式法的概念、原理以及应用。
一、因式分解的概念和原理1.1 因式分解的概念因式分解是将一个多项式拆解成若干个因式的乘积,其中每个因式都是多项式的一个因子。
通过因式分解,我们可以将复杂的多项式化简为简单的因子形式,便于进一步求解方程、计算和进行其他代数运算。
1.2 因式分解的原理因式分解的原理是根据多项式的特点和运算规律,将其拆解为不可再分解的因子相乘的形式。
常用的分解方法有提取公因式法、配方法、根据特殊公式和因式定理等。
二、提公因式法的概念和步骤2.1 提公因式法的概念提公因式法是一种较为常见且简便的因式分解方法,通过提取多项式中的公因式,将多项式拆解为公因式和剩余部分的乘积。
这样可以达到简化表达式的效果,从而便于求解方程或进行其他计算。
2.2 提公因式法的步骤步骤一:观察多项式中是否存在公因式;步骤二:提取出公因式,并在多项式外面加上括号,表示公因式;步骤三:将多项式中去掉公因式后的部分作为括号内的剩余部分;步骤四:将公因式和剩余部分用乘号连接起来,得到最终的因式分解式。
三、因式分解和提公因式法的应用3.1 解方程因式分解和提公因式法在解方程中经常被使用。
通过因式分解,可以将原方程化简为简单的因子形式,从而更容易求解。
例如,对于二次方程ax^2 + bx + c = 0,如果可以进行因式分解成(a'x + b')(c'x + d') = 0,那么可以根据方程因式乘积为零的性质,得到x的取值。
3.2 简化计算在进行复杂的数学计算时,因式分解和提公因式法可以起到简化计算的作用。
通过将多项式化简为因子形式,可以减少计算的复杂性。
特别是在涉及多次相同运算的情况下,将公因式提取出来可以减少重复计算。
2 提公因式法
![2 提公因式法](https://img.taocdn.com/s3/m/27a531433a3567ec102de2bd960590c69fc3d85e.png)
A.5ab(b-a)
B.5a2b2(b-a)源自C.5a2b(b-a)D.以上均不正确
新课讲解
知识点2
提公因式法
(1)多项式2x2+6x3中各项的公因式是什么? (2)你能尝试将多项式2x2+6x3因式分解吗?与同
伴交流.
新课讲解
确定一个多项式的公因式时,要从__数__字__系__数____ 和___字__母__及__其__指__数_____分别进行考虑 . 数字系数
母最低次幂;
新课讲解
典例分析
例 指出下列多项式各项的公因式:
(1)3a2y-3ya+6y; (42) 8xy3-
9
27
(3)a(x-y)3+b(x-y)2+(x-y)3;
(4)-27a2b3+36a3b2+9a2b.
x3y2;
新课讲解
解:(1)3,6的最大公约数是3,所以公因式的系数是3;
有相同字母y,并且y的最低次数是1,所以公因 式是3y.
新课讲解
添括号法则: (1)添上括号和“+”号,括到括号里的各项都不
变. (2)添上括号和“-”号,括到括号里的各项都改
变符号.
新课讲解
典例分析
例 把a(x-y)-b(y-x)提公因式后,所得的另一个
因式是( B )
A.a-b
B.a+b
C.x+y
D.x-y
分析:因为y-x=-(x-y),所以若将-b(y-x)转化为 +b(x-y),则多项式出现公因式x-y,由此可确
5
5
因式1 是-
5
ab,那么另一个A因式是( )
A.c-b+5ac
B.c+b-5ac
C.c-b+ 1 ac
5
ac
1D.c+b-
因式分解———提公因式公式法
![因式分解———提公因式公式法](https://img.taocdn.com/s3/m/7212390632687e21af45b307e87101f69e31fbce.png)
因式分解———提公因式公式法因式分解是数学中的一个重要的方法,它可以将一个多项式拆分成更简单的乘积形式。
常用的因式分解方法有提公因式法和公式法。
一、提公因式法提公因式法是一种常用的因式分解方法,它的基本思想是找出多项式中的公因式,并将其提取出来。
下面以一个具体的例子来说明:例题:将多项式3x^2+9x分解因式。
解题步骤:1.观察多项式中的每个项,找出它们的公因式。
在这个例子中,3和9都是3的倍数,所以可以提取出公因式3来,即3x^2+9x=3(x^2+3x)。
2.检查提取出的公因式是否是多项式的最大公因子。
这一步其实是用求最大公因子的方法来验证的。
在这个例子中,公因式3是最大公因子,因为3x^2和3x都可以被3整除,而且没有其他的公因子。
3.将提取出来的公因式和剩下的部分组合在一起。
在这个例子中,可以将公因式3和剩下的部分(x^2+3x)组合在一起,即3(x^2+3x)。
综上所述,多项式3x^2+9x可以分解因式为3(x^2+3x)。
二、公式法公式法是因式分解中的另一种常用方法,它适用于具有特定形式的多项式。
下面以一个具体的例子来说明:例题:将多项式x^2+4x+4分解因式。
解题步骤:1.观察多项式的各个项的系数。
在这个例子中,x^2的系数为1,4x的系数为4,4的系数为42.检查多项式是否具有特定形式。
在这个例子中,多项式的形式为x^2+4x+4,它的形式和公式(a+b)^2非常相似。
3.根据公式(a+b)^2,将多项式进行分解。
根据公式(a+b)^2 = a^2 + 2ab + b^2,可以将多项式x^2 + 4x + 4分解为(x+2)^2综上所述,多项式x^2+4x+4可以分解因式为(x+2)^2综合练习:1.将多项式6x^2+9x+3分解因式。
解:可以观察到,多项式的各个项的系数都是3的倍数,所以可以提取公因式3,即6x^2+9x+3=3(2x^2+3x+1)。
2.将多项式x^3-8分解因式。
提公因式的方法
![提公因式的方法](https://img.taocdn.com/s3/m/033b49b750e79b89680203d8ce2f0066f533642a.png)
提公因式的方法
提公因式是一种简化代数式的方法,其基本思想是将多个代数式中的公共因式提取出来,从而简化式子,减少计算量。
下面介绍几种常见的提公因式方法。
1. 提取单项式公因式
对于一个多项式,如果其中每一项都含有相同的单项式因子,那么就可以将这个单项式提取出来,得到一个新的表达式。
例如:将式子3x^2 + 6x^3提取公因式x^2,得到3x^2(1 + 2x)。
2. 提取多项式公因式
对于一个多项式,如果其中每一项都可以被一个相同的多项式整除,那么就可以将这个多项式提取出来,得到一个新的表达式。
例如:将式子6x^2y^2 + 12x^3y^2提取公因式6x^2y^2,得到6x^2y^2(1 + 2x)。
3. 将多项式转化为因式分解式
将一个多项式进行因式分解,可以将其表示为若干个单项式的乘积形式,其中每个单项式都是原多项式的因子之一。
例如:将式子x^2 + 5x + 6进行因式分解,得到(x + 2)(x + 3)。
通过以上三种方法,我们可以将复杂的代数式化简为更简单的形式,提高计算效率。
- 1 -。
因式分解-提取公因式法
![因式分解-提取公因式法](https://img.taocdn.com/s3/m/ca4ccbc303d276a20029bd64783e0912a2167c90.png)
因式分解是数学中的一种重要技巧,通过提取公因式,可以简化复杂的表达 式,更容易进行后续运算。
提取公因式法的定义
提取公因式法是一种因式分解的方法,通过找出表达式中的公因式,将其提取出来,从而简化表达式。
提取公因式法的基本原理
1 寻找公因式
观察表达式中的各项,找 出它们的共同因子。
将3x+6分解为3(x+2)。
练习二
将4y+8分解为4(y+2)。
练习三
将5z+10分解为5(z+2)。
其他因式分解方法的比较
提取公因式法
适用于有公因式的表达式,简 化运算。
配方法
适用于二次型的因式分解。
分组分解法
适用于四项的因式分解,通过 分组化简表达式。
提取公因式法的应用和意义
提取公因式法在代数表达式的化简、解方程、因式分解、展开式等方面有着 广泛的应用。它可以帮助简化运算、找出规律、化简复杂的代数式。
2 提取公因式
将公因式提取出来,得到 一个简化的表达式。
3 化简表达式
对去除公因式后的表达式 行进一步化简。
提取公因式法的步骤与例子
1
步骤一
观察各项中的公因子,将其提取。
2
步骤二
对剩余项进行化简,如需要可以应用其他因式分解方法。
3
例子
例如,将2x+4分解为2(x+2)。
提取公因式法的练习题
练习一
结论和总结
提取公因式法是一种简化代数表达式的重要工具,通过寻找和提取公因式,可以简化运算、化简表达式、发现 规律,并在各种数学问题中应用广泛。
提取公因式的方法
![提取公因式的方法](https://img.taocdn.com/s3/m/40e2414c91c69ec3d5bbfd0a79563c1ec5dad7f8.png)
提取公因式的方法在代数表达式的化简和因式分解中,提取公因式是一种常见的方法。
通过提取公因式,可以简化表达式,使得计算更加方便和高效。
下面将介绍几种常见的提取公因式的方法。
首先,我们来看一元二次多项式的提取公因式。
对于形如ax^2 + bx + c的二次多项式,我们可以通过找出其中的公因式来进行提取。
例如,对于表达式3x^2 +6x,我们可以提取公因式3x,得到3x(x + 2)。
这样就将原来的二次多项式进行了因式分解,得到了更简化的表达式。
其次,对于多项式中的其他类型的提取公因式,我们可以利用公因式分解的原理来进行。
例如,对于表达式3a^3b + 6ab^2,我们可以提取公因式3ab,得到3ab(a^2 + 2b)。
同样地,对于更复杂的多项式,我们也可以通过找出其中的公因式来进行提取,使得表达式更加简化。
除了多项式外,对于分式表达式,我们同样可以利用提取公因式的方法进行化简。
例如,对于分式表达式(2x^2 + 4x)/(2x),我们可以提取公因式2x,得到2x(x + 2)/2x,进一步化简为x + 2。
这样就将原来的分式表达式进行了化简,得到了更简单的形式。
在实际应用中,提取公因式的方法常常用于简化代数表达式、解决方程和不等式等问题。
通过提取公因式,可以使得表达式更加清晰明了,从而更方便进行后续的计算和分析。
总之,提取公因式是一种常见且重要的代数方法,通过找出表达式中的公因式,可以使得表达式更加简化和方便计算。
在学习和应用代数知识时,我们可以灵活运用提取公因式的方法,从而更加高效地解决问题。
希望本文介绍的提取公因式的方法能够对大家有所帮助,也希望大家在学习和工作中能够灵活运用这一方法,提高解决问题的效率和准确性。
提取公因式法--课件(沈艳秋)
![提取公因式法--课件(沈艳秋)](https://img.taocdn.com/s3/m/6380ba73caaedd3383c4d31d.png)
第5节 因式分解
9.13 提取公因式法(1)
上海市曹杨中学附属学校 沈艳秋
由“数”及“式”,迁移知识
m与a相乘,
m与b相乘,
ma m和a都叫做它们积ma的因式. mb m和b都叫做它们积mb的因式.
m(a b)
m与a+b相乘, m和a+b都叫做它们积m(a+b)的因式.
巩固练习,提高能力
分解因式:
(1)
15 a b 3 ab ;
2
(2)
a a
2n
n 1
a
n 1
(n ≥2且n为整数) .
梳理总结,承前启后
通过本节课的学习,我们有哪些收获和体会?
由“数”及“式”,迁移知识
ma mb mc
由“数”及“式”,迁移知识
多项式因式分解
ma mb mc = m ( a b c)
概括一下,什么叫做把多项式因式分解?
由“数”及“式”,迁移知识
下列等式中,从左到右的变形是不是因式分解? (1)3x 2 x 1 x(3x 2) 1 ;
2
不是. 不是. 不是. 是. 不是.
4 (2)m 4m 4 m(m 4 ) ; m 2 3x( x y) 3x 3xy ; (3 ) 整式乘法
2
(4)2a 4ab 2a(a 2b) ;
2
(5)24a b c 2a 3b 4c ;Fra bibliotek3 2 3 2
由“数”及“式”,迁移知识
多项式因式分解
ma mb mc = m ( a b c)
提取公因式法 一个因式
另一个因式
4.2 提取公因式法
![4.2 提取公因式法](https://img.taocdn.com/s3/m/56e069436bec0975f565e27c.png)
要点小结
1.运用提取公因式法分解因式应注意不要犯以下错误: ①提取不尽;②漏项(尤其要注意当某项恰好为公因式 时,提取公因式后,该项应为 1,不可漏掉);③疏忽 变号;④只提取部分公因式,而最后整个式子未变成 乘积的形式.
2.公因式既可以是单项式,也可以是多项式. 3.添括号法则和去括号法则正好相反,因此可以用去括
是
.
【答案】 (b+c)(2a-3)
4.分解因式: (1)4x3-6x2.
【解】 原式=2x2(2x-3).
(2)a3b3+a2b2-ab.
【解】 原式=ab(a2b2+ab-1). (3)6a(b-a)2-2(a-b)3.
【解】 原式=6a(a-b)2-2(a-b)3 =2(a-b)23a-(a-b) =2(a-b)2(2a+b). (4)x(x-y)2-y(x-y).
【点拨】 添括号时,所添括号前面是“-”号,括到括 号里的各项都要改变符号,这是易错点. 【解析】 (1)前一个小括号前为“+”号,故小括号内 各项符号不变;后一个小括号前为“-”号,故小括号 内各项都要变号. (2)两个小括号前都没有符号,即都为“+”号,小括号 内各项符号不变.
【答案】 (1)b+c b+c (2)x-3 x-3
【答案】 (1)3a (2)2x2y2 (3)(p-q)
【典例 2】 把下列各式分解因式: (1)8a3b2+12ab3c. (2)8m2n+2mn2. (3)2a(b+c)-3(b+c). (4)p(a2+b2)-q(a2+b2).
【点拨】 (1)提取公因式时,对数字系数和字母应分别 进行考虑:如果是整数系数,就应取最大公因数;字母取 各项都含有的相同字母的最低次幂的积. (2)提取公因式后,应使多项式余下的各项不再含有公因 式.
公因式提取的方法
![公因式提取的方法](https://img.taocdn.com/s3/m/a240332177c66137ee06eff9aef8941ea76e4bb0.png)
公因式提取的方法公因式提取是在多项式中提取一个共同的因子,这个因子是每个项都具有的,也就是公共的因子。
比如,对于式子3x+6,公因式就是3。
a ×b + a ×c = a × (b + c)其中,a就是公因式,b和c是多项式中的项。
公因式提取的步骤如下:步骤一:找到多项式中的公共因子。
首先,要找到多项式中所有项的公共因子。
比如,对于多项式12x^2+8x,公共因子为4x。
步骤二:将公共因子提取出来。
将公共因子提取出来,并用括号括起来。
对于上面的例子,公共因子4x可以提取出来,得到4x(3x+2)。
步骤三:化简。
咱们要化简公因式提取的结果,也就是将括号里面的内容再乘以公因式。
4x(3x+2)=4x×3x+4x×2=12x^2+8x化简后得到的结果应该与原多项式相同,这样才证明公因式提取的步骤正确。
1. 求多项式6x^2-12x的公因式。
因此,公共因子为6x。
6x( x -2)化简一下,得到原多项式。
6x^2-12x=6x(x-2)这个多项式中每个项都可以被4x整除。
因此,公共因子是4x。
提取公因式得到4x( x^2-2x+3)。
公因式提取可以帮助我们更方便地化简多项式,从而更容易地求解问题。
比如,在解方程或者求导数等问题中,公因式提取都是经常使用的技巧。
例如,在求解方程的过程中,我们经常需要将式子化为标准形式,这是公因式提取的重要应用。
在求导数的过程中,我们需要将多项式化为简单的形式,这也需要用到公因式提取。
总之,公因式提取是数学中一个极其重要的基础概念,我们需要仔细学习并且灵活运用。
《提取公因式法》因式分解
![《提取公因式法》因式分解](https://img.taocdn.com/s3/m/9bcb3a4e77c66137ee06eff9aef8941ea76e4b28.png)
规划上,应该根据自己的实际情况和学习进度,合理 安排时间进行学习和练习。同时,要注重系统性学习 ,把相关的知识点串联起来,形成完整的知识体系。
感谢您的观看
THANKS
04
习题与解析
习题一:提取公因式法
详细描述
2. 将公因式提取出来,可以使用 乘法分配律。
总结词:提取公因式法是因式分 解的一种基本方法,通过找到多 项式中的公因式,将其提取出来 ,使多项式得到简化。
1. 找到多项式中的公因式,通常 是最简公分母或同类项的系数。
3. 将提取公因式后的多项式进行 因式分解,得到若干个单项式。
因式分解的应用
01
02
03
解决数字计算问题
通过因式分解可以解决一 些数字计算问题,例如简 化计算、求值、整除性问 题等。
解决几何问题
因式分解在几何中也有广 泛的应用,例如解三角形 的问题。
解决方程问题
通过因式分解可以解决一 些方程问题,例如解一元 二次方程等。
03
提取公因式法与因式分解 的关系
提取公因式法是因式分解的一种方法
对于初学者来说,提取公因式法可能比较抽 象,难以理解,尤其是当多项式项数较多时 ,更容易出现错误。
解决这个问题的方法包括:多看例题、多做 练习题,通过大量的实践来加深对提取公因 式法的理解和掌握。同时,要学会总结和归 纳提取公因式法的各种情况,以便更好地掌
握这种方法。
对后续学习的展望和规划
掌握提取公因式法之后,可以进一步学习其他的因式 分解方法,如分组分解法、十字相乘法等。同时,通 过不断的学习和实践,可以逐渐提高自己的数学水平 。
习题二:因式分解
总结词:因式分解是将一个多项式分解 为若干个单项式的乘积,每个单项式是 多项式的因式。
提取公因式法
![提取公因式法](https://img.taocdn.com/s3/m/8051f9d828ea81c758f578e7.png)
将下列各式分解因式 (1)xn+xn-1+xn-2 =xn-2(x2+x+1)
(2)ac-bc-ad+bd
=c(a-b)-d(a-b) =(c-d)(a-b)
或
=a(c-d)-b(c-d) =(a-b)(c-d)
提取公因式法
因式分解:ma mb mc
解:
ma mb mc m(a b c)
提公因式法 公因式 多项式中各项都含有的相同因式,称之为公因式 把公因式提出来,多项式ma+mb+mc 就可以 分解成两个因式m和(a+b+c)的乘积。像这种 因式分解的方法,叫做提取公因式法。
分解因式: 2am-1bn-4ambn+1+6am+1bn
解:原式=
m-1 n 2 2a b (1-2ab+3a )
3 2 m ( x 3) 6mn( x 3) 2 分解因式: 2 3 2 原式 [m ( x 3) 4mn( x 3) 2 ] 2 3 m( x 3)[m 4n( x 3)] 2 3 m( x 3)(m 4nx 12n) 2
=m[(a-b)2+(b-c)2+(c-a)2+6(ab+bc+ca)] =m[2(a2+b2+c2) +4(ab+bc+ca)] =2m(a2+b2+c2+2ab+2bc+2ca) =2m(a+b+c)2 =2m×m2 =2m3
因式分解-提取公因式法课件
![因式分解-提取公因式法课件](https://img.taocdn.com/s3/m/e8e64e0ebdd126fff705cc1755270722192e59c4.png)
根据上面的分析,你能把这个多项式 分解因式吗?不妨试一试! 解: 8a3b2+12ab3c
= 4ab2 •2a2+4ab2 •3bc =4ab2(2a2+3bc)
如果提取的公因式是 4ab,另一个因式是否 还有公因式?
通过学习,你能总结出找公因式的 方法吗? 我们把找公因式的方法归纳为三看:
一看系数 二看字母 三看指数
因式分解
二、探究
1、你能把下面的式子写成几个整式积
的形式吗?
X2+x=__x_(x_+_1_)_
x2-1=(_x_+_1_)_(x_-_1_)
2、你是怎么想到的?与同学交流一下, 看看你的想法和同学想的是不是一样?
3、成果交流
利用整式的乘法运算,可以将几个整式的积 化成一个多项式,反过来,也可以把一个多项式 写成几个整式的积的形式。
怎样提取公因式?提取公因式后的另 一个因式是什么? 由整式乘法可得p(a+b+c)= pa+pb+pc 反过来就有pa+pb+pc = p(a+b+c),这样,
就把pa+pb+pc分解成了两个因式的积,其中一
个是公因式p,另一因式是pa+pb+pc除以公 因式p所得的商a+b+c。
(3)提取公因式法 根据上面的例子,你能说出怎样提 取公因式吗?
指出下列各式中的公因式 (1) 8x+64____8_____ (2) 2ab2+ 4abc___2_a_b___ (3) m2n3 -3n2m3__m__2_n_2__ (4) a3b-2a2b2+ab3__a_b______ (5)ab2(x+y)2-a2b(x+y)3 _a_b_(_x_+_y_)2__
提取公因式的方法
![提取公因式的方法](https://img.taocdn.com/s3/m/073e825d0a4e767f5acfa1c7aa00b52acfc79cee.png)
提取公因式的方法提取公因式是在代数式计算中常见的一种方法,通过提取公因式可以简化计算过程,使得代数式更加简洁、易于处理。
下面我们将介绍几种常见的提取公因式的方法。
一、提取公因式的基本原理。
在代数式中,如果多个项有一个共同的因子,那么我们就可以将这个共同的因子提取出来,这个过程就是提取公因式。
提取公因式的基本原理就是找出代数式中各项的最大公因式,然后将其提取出来,从而简化代数式的形式。
二、提取公因式的方法。
1. 查找公因式。
在进行提取公因式的时候,首先需要对代数式进行分解,然后找出各项的公因式。
通常情况下,我们可以通过观察各项中的变量和常数的因子,来找出它们的最大公因式。
2. 提取公因式。
找到各项的最大公因式之后,我们就可以将其提取出来,形成一个公因式和一个括号内的代数式相乘的形式。
这样可以使得代数式更加简洁,方便后续的计算和化简。
3. 化简代数式。
提取公因式之后,我们还可以进一步对代数式进行化简。
通过提取公因式,可以将复杂的代数式化简成简单的形式,从而更容易进行计算和分析。
三、提取公因式的应用。
1. 因式分解。
在因式分解的过程中,提取公因式是非常重要的一步。
通过提取公因式,可以将复杂的代数式分解成简单的因式,从而更容易进行后续的计算和分析。
2. 求解方程。
在求解方程的过程中,有时候我们需要对方程进行化简,这时候提取公因式就可以发挥作用。
通过提取公因式,可以将方程化简成简单的形式,从而更容易求解方程的根。
3. 求解不定积分。
在求解不定积分的过程中,有时候我们需要对被积函数进行化简,这时候提取公因式也可以发挥作用。
通过提取公因式,可以将被积函数化简成简单的形式,从而更容易进行积分运算。
四、总结。
提取公因式是代数运算中常见的一种方法,通过提取公因式可以简化代数式的形式,使得计算更加简洁高效。
在实际应用中,提取公因式有着广泛的应用,可以用于因式分解、方程求解、不定积分等方面。
因此,掌握提取公因式的方法对于代数运算是非常重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提取公因式法
各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。
当各项的系数有分数时,公因式系数为各分数的最大公约数。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“-”号时,多项式的各项都要变号。
口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。
例如:-am+bm+cm=-(a-b-c)m
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。
注意:把
变成
不叫提公因式
公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。
平方差公式:
反过来为
完全平方公式:
反过来为
反过来为
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
两根式:
立方和公式:a3+b3=(a+b)(a2-ab+b2)
立方差公式:a3-b3=(a-b)(a2+ab+b2)
完全立方公式:a3±3a2b+3ab2±b3=(a±b)3
公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
例如:a2+4ab+4b2 =(a+2b)2
1.分解因式技巧掌握:
①分解因式是多项式的恒等变形,要求等式左边必须是多项式。
②分解因式的结果必须是以乘积的形式表示。
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
2.提公因式法基本步骤:
(1)找出公因式
(2)提公因式并确定另一个因式
①第一步找公因式可按照确定公因式的方法先确定系数再确定字母
②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式
③提完公因式后,另一因式的项数与原多项式的项数相同
解方程法
通过解方程来进行因式分解,如:
X2+2X+1=0 ,解,得X1=-1,X2=-1,就得到原式=(X+1)×(X+1)。