静矩和形心
截面的形心静矩
形心静矩具有方向性,其方向与形心 位置有关。
形心静矩的应用
01
在结构设计中,形心静矩可用于计算截面的抗弯能 力,从而评估结构的稳定性。
02
在机械设计中,形心静矩可用于计算转动惯量,从 而评估机械设备的动态性能。
03
在船舶与海洋工程中,形心静矩可用于计算浮力与 稳性,确保船舶的安全航行。
03
截面形心静矩的计算
截面形心静矩与其他力学性能的关系研究
总结词
材料属性影响
详细描述
材料属性对截面形心静矩的影响也是未来的 研究方向之一。研究不同材料属性(如弹性 模量、泊松比等)对截面形心静矩的影响规 律,有助于更好地理解材料的力学行为,并 为新型材料的开发和优化提供理论支持。
截面形心静矩在新型材料和结构中的应用研究
05
截面形心静矩的未来研究 方向
截面形心静矩的优化计算方法
总结词
优化计算方法
详细描述
随着计算机技术的不断发展,截面形心静矩的优化计算方法成为了一个重要的研究方向。目前,研究 者们正在探索更高效、精确的数值计算方法,以解决复杂截面形状和材料属性对形心静矩计算的影响 。
截面形心静矩的优化计算方法
总结词
截面的形心静矩
contents
目录
• 截面形心静矩的定义 • 截面形心静矩的性质 • 截面形心静矩的计算 • 截面形心静矩的实例分析 • 截面形心静矩的未来研究方向
01
截面形心静矩的定义
形心
定义
形心是截面图形的几何中心,通 常用于描述截面的质量分布情况 。
计算方法
对于规则图形,形心位置可以通 过几何计算得出;对于不规则图 形,可以通过积分计算得出。
详细描述
对于圆形截面,形心静矩可以通过以 下公式计算:$I = frac{pi d^4}{64}$, 其中$d$为截面的直径。这个公式适 用于圆形截面,其中形心静矩表示截 面对其轴线的惯性矩。
材料力学课件截面的静矩和形心位置
y 10
1 x1
C(y, x)
y1
2 y2
10
o x2
x
80
材料力学课件截面的静矩和形心位 置
§ І -2 极惯性矩 惯性矩 惯性积
定义:
z dA
z
截面对 o 点的极惯性矩为
y
y 0
Ip Aρ2dA
材料力学课件截面的静矩和形心位 置
截面对 y ,z 轴的惯性矩分别为
Iy A z2dA Iz A y2dA
dx dx x
材料力学课件截面的静矩和形心位 置
截面对 x , y 轴的惯性半俓为
iy
Iy , A
ix
Ix A
材料力学课件截面的静矩和形心位 置
例 2 _ 1 求矩形截面对其对称轴 x , y 轴的惯性矩。
Hale Waihona Puke 解:dA = b dy
Ix
A y2dA
h
2h
by2dy
2
bh3 12
Ix A y2dA
Ixc ,Iyc , Ixc yc —— 截面对形心轴 xc , yc 的惯性矩和惯性积。
则平行移轴公式为
y
yc
I x I xc a2 A
Iy Iyc b2 A
I xy I xcyc abA
a
C(a,b)
xc
ob
x
材料力学课件截面的静矩和形心位 置
二、组合截面的惯性矩 惯性积
Ixi , Iyi , Ixyi —— 第 i个简单截面对 x ,y 轴的惯性矩、
例 1-1 试确定图示截面心 C 的位置。
解:将截面分为 1,2 两个矩形。
y 10
取 x 轴和 y 轴分别与截面
截面的静矩和形心位置及惯性矩的计算
x 0
截面对 x , y 轴的惯性积为
Ixy A xydA
惯性矩的数值恒为正,惯性积则可能为正值,负值,
也可能等于零。
y
若 x , y 两坐标轴中有一个为
dA y
截面的对称轴,则截面对 x , y 轴的 惯性积一定等于零 。
dx dx x
截面对 x , y 轴的惯性半俓为
iy
Iy , A
二 、 截面的主惯性轴和主惯性矩
I x1y1
Ix
2
Iy
sin 2α
I xy cos 2α
主惯性轴 —— 总可以找到一个特定的角 0 , 使截面对新坐标 轴 x0 , y0 的惯性积等于 0 , 则称 x0 , y0 为主惯轴。
主惯性矩——截面对主惯性轴的惯性矩。
形心主惯性轴 ——当一对主惯性轴的交点与截面的形心 重合时,则称为形心主惯性轴。
x
80
§ І -2 极惯性矩 惯性矩 惯性积
定义:
z dA
z
截面对 o 点的极惯性矩为
y
Ip Aρ2dA
y 0
截面对 y ,z 轴的惯性矩分别为
Iy A z2dA Iz A y2dA
因为 ρ2 y2 z2
I p Aρ2 dA
所以 Ip = Ix + Iy
y
y
dA
ix
Ix A
例 2 _ 1 求矩形截面对其对称轴 x , y 轴的惯性矩。
解:
dA = b dy
Ix
A y2dA
h
2h
by2dy
2
bh3 12
Ix A y2dA
第七章 静矩及其性质
Iy Iy i i 1 n I z I z i i 1 n I yz I yz i i 1
n
I z i 、 I y i、 I yz i 分别为第个i简单图形对y轴和z轴的惯 式中, 性矩和惯性积。
22
§7-3
17
例2
求图示矩形的 I z , I y , I yz ,i y ,iz z
dz z
h
c
y
b
1 3 b 3 bh I y z dA z A 12 3 h 2 1 3 2 I z y dA hb A 12 Iy 3 iy h A 6
2
h 2
Iz 3 iz b A 6 I yz yzdA 0
z
60 96 65 (77 ) 39.7(mm ) 96 77 13
§7-2
惯性矩和惯性积
y
z y dA z
一、简单图形的惯性矩 1、定义: dA对z轴的惯性距: dA对y轴的惯性距: 图形对z轴的惯性矩:
2
dIz y dA 2 dIy z dA o
I z y 2 dA,
求圆环圆形的 I z , I y z D d y
I P I P大 I P小
1 1 D 4 d 4 32 32 1 D 4 ( 1 4 ) 32
d D
I y I z I z大 I z小
1 D 4 (1 4 ) 64
21
三、组合图形的惯性矩及惯性积 根据定义可知,组合图形对某坐标轴的惯性矩 等于各个简单图形对同一轴的惯性矩之和;组合图 形对于某一对正交坐标轴的惯性积等于各个简单图 形对同一对轴的惯性积之和。用公式可表示为
材料力学(附录)
2I xy Ix I y
0
x1
x
012tan1(I2xIxIyy )
0
0
2
与 0 对应的旋转轴为x0 、y0 轴,
平面图形对x0 、y0轴惯性矩 I x0 、 I y0 为
y
IIm mianxIx2Iy (Ix2Iy)2Ix2y
y0
x0
0
x
平面图形对x0 、y0 轴的惯性积 I x 0 y 0 为
单位:cm
40 10
20 y
1
C2
15 单位:cm
Iy
Iy
i
I y1
Iy2
1020 3 I y1 12
0.67104(cm4)
I
y
2
40 15 12
3
1.13104(cm4)
x
Iy Iy1Iy2
y
x1
(0.671.13)104
1.8104 (cm4 )
[例] 计算图示图形对其形心轴x轴的惯性矩。
360 40
40
20 180
2.592108(mm4)
t
an20
2I xy Ix I y
52.7(521.15.8932)21.3226
2052.9 , 0 26.45
yo 180 y
I max I min
IxIy 2
(Ix 2Iy)2Ix2y
360 40
§I-2 惯性矩和惯性半径 一、惯性矩:
定义: I x y 2 dA
A
I y x 2dA
y
A
Ix、Iy称为图形对x轴、y轴
静矩和形心
z
y dA
z
2 dA
O
y
I p
2 dA
A
定义为图形对O点的极惯性矩
§6-1 静矩和形心
z
y dA
z
O
y
Sz
ydA
A
,
Sy
zdA
A
形心坐标: z
yC C
zC
O
y
y dA
zdA
yC
A
A
A
, z A C
CL6TU3
静矩和形心坐标之间的关系:
z
yC C
zC
yC
Sz A
zC
Sy A
解: Iy
z2 dA
h/2
z2bdz
bh 3
A
h/2
12
dz
z
例:求图示圆平面对y、z轴的惯性矩。
d4
I p 32 Iy Iz Ip
Iy Iz
CL6TU8
三、惯性积
z
y dA
z
O
y
I yz
yzdA
A
如果所选的正交坐标轴中,有一个坐标轴是对称轴,则平面图形对该对坐标轴 的惯性积必等于零。
6.81
作业 (P84-86)
❖1(C) ❖2 ❖3 ❖5(b) ❖9
zC
Sy A
10 120 60 70 10 5 39.7mm 1200 700
例:求图示阴影部分的面积对y轴的静矩。 CL6TU6
解:
Sy
b
h 2
a a
h 4
a 2
b h2
2 4
a
2
§6-2 惯性矩、极惯性矩和惯性积
静矩和形心
附录I 平面图形的几何性质§I-1 静矩和形心 §I-2 惯性矩和惯性半径 §I-3 惯性积 §I-4 平行移轴公式 §I-5 转轴公式与主惯性轴§I-1 静矩和形心1. 静矩定义:⎪⎭⎪⎬⎫==⎰⎰AyA Z zdA S ydA S (1)静矩是对坐标而言的,同一图形对不同坐标轴静矩不同(面积对轴的一次矩)。
(2)静矩可正值,可为负,亦可为零。
(3)量纲为长度的三次方。
2.形心坐标计算公式(1)合力矩定理——合力对某轴之矩,等于其各分对同一轴力矩的代数和。
(2)静面矩定理——总面积对某轴之矩,等于其各分面积对同一轴之矩的代数和。
⎪⎪⎭⎪⎪⎬⎫==⎭⎬⎫==A S z A S y z A S y A S y z y Z ·· (3)若某轴过形心,则图对该轴静矩为零。
反之若图形对某轴静为零,则该轴过形心。
Example 试用积分法求图示图形对y 轴的静矩S y ,并求形心坐标Z 。
Solution 以y 、z 为参考坐标轴 ①dz Z b a ydz dA nn==22·20210+=+====++⎰⎰⎰n abn z b a dzZ badz Z b a Z zdA S bn n A bon nn n b y②()11100+=+====+⎰⎰⎰n abn b ab dz Z b a ydz dA A n n bn n bA()21122++=++==n bn n ab n ab A S Z y 3.组合图形静矩计算及形心坐标确定。
(1)组合图形:有若干简单图形(如矩形、圆形、三角形)组(2)静矩定理:整个图形对某轴之静矩等于组合图形各组成部分面积对该轴之矩的代数和。
⎪⎭⎪⎬⎫==∑∑==ni i i y ni i i Z z A S y A S 11⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫==∑∑∑∑====ni i ni i i ni i ni ii A z A z A yA y 1111Example1 试求图形形心坐标z y ,Solution 以y 、z 为参考坐标系,因为形心一定在对称轴上,故()()cmO A A Z A Z A z y 67.12040445200222212211=--⨯⨯-=++==ππExample2 求组合图形的形心坐标,z y ,Given [No.18a A 1=25.7cm 2 cm z cmy 988.111==[No.9 90×90×10A 2=17.2cm 2()59.21859.222-=-=z cmySolution :以yz 作为参考坐标轴()cmA A Z A Z A z 57.112.177.255.2182.17957.2212211=+-⨯+⨯=++=()cmA A y A y A y 0874.02.177.2559.22.1788.157.2212211=+-+⨯=++=§I-2 惯性矩和惯性半径 1.定义⎪⎭⎪⎬⎫==⎰⎰A z A y dA y I dA z I 22 (1)惯性矩恒为正值 (2)量纲为长度的四次方力学计算中,有时把惯性矩写成图形面积A 与某一长度二次方的乘积,即 ⎭⎬⎫==22··z z y y i A I i A I 2.惯性半径⎪⎪⎭⎪⎪⎬⎫==A I i A I i z z y y (1) i y 为图形对y 轴的惯性半径i z 为图形对z 轴的惯性关径 (2)量纲为长度。
工程力学第四章
Z
C
Z
y
a yC
dA
ZC
y
2
ZC
截面对Z轴的惯性矩为:
I Z y dy ( yC a) dy
2 A A
y
yC
IZ
A
2 yC dA 2a
yC dA a A
2 A
截面对形心轴 ZC轴的惯性矩
由ZC轴通过截面 形心,其值为0
2
O
即:I Z I ZC a A
1400 16
50
(2)由平行移轴公式计算惯性矩
Iy
I I I yc 2
(0.24 0.211)m 0.029 m
4
4
0.86m 1.4m3 a A1 (0.7 0.51)2 1.204 m4 z 12 0.24 m 4 A B a b 3 II II 16 16 I yc I y 0 a 2 A2 0.828m 1.334 m yc 12 1.334 ( 0.05 0.51) 2 1.105m 4 c z d 2 y o 4 0.211m C D 430 860
b3
12 0.02m 0.14m3 (0.08 0.0467 )2 m2 2.8 103 m2 12 7.68 106 m4
z A1
2
20
0 100
II
yC
y
140
z
20
II II I yc I y 0 a 2 A2
C
z b 3 2 A2 z 0 12 100 3 (0.01m)(0.02m) 0.0467 mm2 2.0 103 mm2 12
100
材料力学第五章
xC
Sy A
n
x C
Ai
i 1
n
Ai
i 1
n
yC
Sx A
i 1 n
y C
Ai
Ai
i 1
第五章 平面图形的几何性质
270
30
y [例1] 已知:图形尺寸如图
Ⅱ
所示。
求:图形的形心。
50
C2
Ⅰ
C C1
yc
z
解:1、将图形分解为 简单图形的组合
第五章 平面图形的几何性质
静矩与形心坐标之间的关系
S y
zdA
A
S z
ydA
A
Sy AzC
Sz AyC
yC
Sz A
ydA
A
A
zC
Sy A
zdA
A
A
已知静矩可以确定图形的形心坐标 已知图形的形心坐标可以确定静矩
第五章 平面图形的几何性质
构件截面的图形往往是由矩形、圆形等简单图形 组成,称为组合图形。
xc
A
G
A At g
, yc
A
G
A At g
由于是均质等厚度,t、 、g为常量,故上式可改写为
xdA
ydA
xc
A
A
, yc
A
A
第五章 平面图形的几何性质
1. 静矩的定义
对 z 轴静矩 对 y 轴静矩
Sz
ydA
A
Sy
材料力学的静矩和形心计算
-
谢谢观看
XXXXX
XXXXX
材料力学的静矩和形心计算
-
第一部分 第二部分 第三部分 第四部分 第五部分
静矩的定义 形心的计算 静矩和形心的关系 静矩和形心在工程中的应用 材料力学中的静矩和形心计算
1
静矩的定义
静矩的定义
这个概念主要在分析物体的稳 定性和强度时使用
在材料力学中,静矩是指一个 物体在受到外力作用时,所产 生的力矩与其对应的位移之商 静矩的计算公式为:S=∫(r × F) dV,其中S为静矩,r为物体 上任意点的位置向量,F为作用 在该点的外力,dV为微小体积
2
形心的计算
形心是物体形受到 的合力为零,那么这个物体 就是处于静力平衡状态。这 时,物体的重心位置就是其 形心。形心的计算方法有多 种,其中一种是利用物体的 质量分布和形状来确定。如 果一个物体具有均匀的密度 分布,那么其形心就是其质
量分布的几何中心
形心的计算
在计算形心时,通常需要将 物体分割成若干个小的体积 元素,并计算每个元素的质 心位置。然后将所有元素的 质心位置进行平均,得到整 个物体的形心位置。如果物 体具有旋转对称性,那么其 形心就是其旋转轴的交点
3
静矩和形心的关系
静矩和形心的关系
1 静矩和形心之间存在一定的关系。对于一个 物体,如果其受到的合力为零,那么其静矩 也为零。这是因为静矩是外力与位移的商, 而当物体处于静力平衡状态时,其位移为零。 因此,静矩也为零
此外,在建筑设计中,也需要计算建筑结构的静矩和形心位置,以确 保建筑结构的强度和稳定性。在机械设计中,需要计算零件的静矩和 形心位置,以确保零件的强度和稳定性
静矩和形心
附录I 平面图形的几何性质§I-1 静矩和形心 §I-2 惯性矩和惯性半径 §I-3 惯性积 §I-4 平行移轴公式 §I-5 转轴公式与主惯性轴§I-1 静矩和形心1. 静矩定义:⎪⎭⎪⎬⎫==⎰⎰AyA Z zdA S ydA S (1)静矩是对坐标而言的,同一图形对不同坐标轴静矩不同(面积对轴的一次矩)。
(2)静矩可正值,可为负,亦可为零。
(3)量纲为长度的三次方。
2.形心坐标计算公式(1)合力矩定理——合力对某轴之矩,等于其各分对同一轴力矩的代数和。
(2)静面矩定理——总面积对某轴之矩,等于其各分面积对同一轴之矩的代数和。
⎪⎪⎭⎪⎪⎬⎫==⎭⎬⎫==A S z A S y z A S y A S y z y Z ·· (3)若某轴过形心,则图对该轴静矩为零。
反之若图形对某轴静为零,则该轴过形心。
Example 试用积分法求图示图形对y 轴的静矩S y ,并求形心坐标Z 。
Solution 以y 、z 为参考坐标轴 ①dz Z b a ydz dA nn==22·20210+=+====++⎰⎰⎰n abn z b a dzZ badz Z b a Z zdA S bn n A bon nn n b y②()11100+=+====+⎰⎰⎰n abn b ab dz Z b a ydz dA A n n bn n bA()21122++=++==n bn n ab n ab A S Z y 3.组合图形静矩计算及形心坐标确定。
(1)组合图形:有若干简单图形(如矩形、圆形、三角形)组(2)静矩定理:整个图形对某轴之静矩等于组合图形各组成部分面积对该轴之矩的代数和。
⎪⎭⎪⎬⎫==∑∑==ni i i y ni i i Z z A S y A S 11⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫==∑∑∑∑====ni i ni i i ni i ni ii A z A z A yA y 1111Example1 试求图形形心坐标z y ,Solution 以y 、z 为参考坐标系,因为形心一定在对称轴上,故()()cmO A A Z A Z A z y 67.12040445200222212211=--⨯⨯-=++==ππExample2 求组合图形的形心坐标,z y ,Given [No.18a A 1=25.7cm 2 cm z cmy 988.111==[No.9 90×90×10A 2=17.2cm 2()59.21859.222-=-=z cmySolution :以yz 作为参考坐标轴()cmA A Z A Z A z 57.112.177.255.2182.17957.2212211=+-⨯+⨯=++=()cmA A y A y A y 0874.02.177.2559.22.1788.157.2212211=+-+⨯=++=§I-2 惯性矩和惯性半径 1.定义⎪⎭⎪⎬⎫==⎰⎰A z A y dA y I dA z I 22 (1)惯性矩恒为正值 (2)量纲为长度的四次方力学计算中,有时把惯性矩写成图形面积A 与某一长度二次方的乘积,即 ⎭⎬⎫==22··z z y y i A I i A I 2.惯性半径⎪⎪⎭⎪⎪⎬⎫==A I i A I i z z y y (1) i y 为图形对y 轴的惯性半径i z 为图形对z 轴的惯性关径 (2)量纲为长度。
第10章平面图形的几何性质ppt课件
如:
1.静矩
n
Sx
yd A
ydA
A n
A1 An n
i 1
Ai
yd A
S xi Ai yCi A yC
i 1
i 1
n
n
S y S yi Ai xCi A xC
i 1
i 1
y
xC C yC
x O
2.形心
n
Ai xCi
Ix0
Ix
Iy 2
1 2
Ix Iy
2
4
I
2 xy
I y0
Ix
Iy 2
1 2
Ix
Iy
2
4
I
2 xy
极大值Imax 极小值Imin
例 计算所示图形的形心 主惯性矩.
120 40 z 20
25 20 10
解:该图形形心C的位置已
确定,如图所示.
过形心C选一对座标轴
C
y
y z 轴,计算其惯性矩(积).
1.5d (2d )3 3d 2(0.177d )2 [πd 4 πd 2 (0.5d 0.177d )2 ]
12
64 4
2d
0.685d 4
I zC I矩zC I圆zC
(1.5d )3 2d πd 4 0.513d 4
12
64
I yC zC 0
所以 yCzC 便是形心主轴
——反映平面图形的形状与尺寸的几何量
如:
在轴向拉(压)中:
FN A
l FNl EA
本章介绍:平面图形几何性质的定义、计算方法和性质
§10.1 静矩与形心
截面特性(New2)
I yc
=
∫A
z 2 dA. c
∫ I = y 2 dA
zc
A
c
∫ I = y z dA
yc zc
A
cc
∫ ∫ I y =
z 2dA =
A
( zc + a)2 dA
A
∫ ∫ ∫ = zc 2dA + 2a zcdA + a2 dA
A
A
A
{ = I yc + a2 A
惯性矩和惯性积的平行移轴公式
I y = I yc + a2 A I z = I zc + b2 A
I yz = I yc zc + abA
例题
平行移轴公式
计算图形对其形心轴的惯性矩
解:
z = A1 z1 + A 2 z2 A1 + A 2
= 0.14× 0.02× 0.08 + 0.1× 0.02× 0 0.14× 0.02 + 0.1× 0.02
I
I
=
yc
0.0467m
= 1 × 0.02
Iy = × 0.143
I
I yz
=
0 + (−0.035) × 0.0745× 0.011× 0.059
= −1.69 ×10−6 m4
转轴公式 主惯性轴
I
II y
=
1 12
× 0.011× 0.163
=
3.76×10−6 m4
I
II z
=
1 12
× 0.16× 0.0113
=
0.0178×10−6 m4
I II yz
(z cosα − y sinα)2 dA
截面的静矩和形心位置
Iy
cos 2α
I xy
sin 2α
I y1
Ix
Iy 2
Ix
2
Iy
cos 2α
I xy
sin 2α
I x1 y1
Ix
2
Iy
sin 2α
I xy
cos 2α
y y1
o
x1
x
上式称为转轴公式 显然
I x1 I y1 I x I y
二 、 截面的主惯性轴和主惯性矩
I x1y1
Ix
2
Iy
sin 2α
C —— 截面形心
a
(a , b ) _____ 形心 c 在 xoy 坐标系下的
坐标。
o
xc , yc ——过截面的形心 c 且与 x , y 轴平 行的坐 标轴(形心轴)
yc
C(a,b)
xc
b
x
Ix , Iy , Ixy _____ 截面对 x , y 轴的惯性矩和惯性积。
Ixc ,Iyc , Ixc yc —— 截面对形心轴 xc , yc 的惯性矩和惯性积。
70 20 10
120
y
80
c
x
10
y
Ix
1 12
120 103 152 120 10
1 12
703
10
(25)2
70
10
100.4 104 mm 4
Iy 278.4 104 mm4
70 20 10
120
y
80
c
x
10
y
I xy 0 15 20 120 10 0 (25) (35) 70 10
截面对形心轴的静矩等于零。
1、静矩与形心2、惯性矩、极惯性矩和惯性积3、平行移轴公
1. 转轴公式
y
y
A dA
C E
D
O
x
B
新坐标系ox1y1 旧坐标系o x y
x1 x cos y sin y1 y cos x sin
将上述关系代入平 面图形对x1轴的惯性矩:
x
I x1 A y12 d A
Ix1
cos2
y2 d A sin2
(4)由转轴公式得
80 aⅡ 20 10
40 C
bⅠ Ⅰ
aⅠ
xC
tan 20
2I xc yc I xc I yc
1.093
=113°.8
yc0
bⅡ
20 227 .6 0 113 .8
10 Ⅱ
I xc0
Imax
I xc
I yc 2
1 2
I xc
目录
§ I-2 极惯性矩 ·惯性矩 ·惯性积
1.极惯性矩(或截面二次极矩)
y
I p
2d A
A
2.惯性矩(或截面二次轴矩)
y
I y
x2 d A
A
I x
y2d A
A
O
由于 2 y2 x2
dA
x
x
所以
Ip
2 d A
A
(y2
A
x2)
dA IxIy
(B) Ixy<0 (D) Ix=Iy
(思考题I—2)A
y
bO
(思考题I—3)
x
a
y a
x
Ba
D
思考题I—3:等腰直角三角形如图所示,x、y轴是过斜边中点的
截面的静矩和形心位置及惯性矩的计算课件
数值模拟与优化
利用数值模拟技术,如有限元方法、边界元方法等,可以更精确地计算 截面的静矩和形心位置及惯性矩,并在此基础上进行结构优化设计。
03
多学科交叉
未来研究可以结合多个学科领域,如物理学、化学、生物学等,以更全
面地理解截面的静矩和形心位置及惯性矩的本质和规律,推动相关领域
的发展。
感谢您的观看
THANKS
详细描述
对于任意形状截面,其静矩可以通过对截面进行微分, 然后计算每个微元面积与微元重心到截面边缘的距离乘 积,最后对所有微元的静矩进行积分得到。形心位置可 以通过对截面进行微分,然后计算每个微元的面积与微 元重心坐标的平均值得到。惯性矩可以通过对截面进行 微分,然后计算每个微元的面积、微元重心到截面边缘 的距离以及微元的转动惯量,最后对所有微元的转动惯 量进行积分得到。
矩值。
通过公式计算其半径和 圆周率,得出惯性矩值。
通过公式计算其长轴、 短轴和圆周率,得出惯
性矩值。
不规则截面
需采用数值分析方法进 行近似计算或通过实验
测量得出。
03
截面几何特性的应用
结构强度分析
静矩
静矩是截面内力的一个重要参数,用于计算截面在受力时的稳定性。静矩的计算公式为 ∫(y*dA),其中y为截面各点到截面中心的距离,dA为面积微元。
形心位置
形心是截面的几何中心,其位置决定了截面的质量分布和转动惯量。形心位置可以通过积分 计算得到,公式为∫dA/A∫dxdy,其中A为截面面积。
惯性矩
惯性矩是衡量截面抗弯能力的重要参数,其计算公式为∫y^2dA,其中y为截面各点到形心距 离,dA为面积微元。
结构稳定性分析
结构失稳
当结构受到的外部载荷超 过其承载能力时,结构会 发生失稳,导致结构变形 甚至破坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静矩和形心
S y AzC
S z AyC
1.若截面对某一轴的静矩等于零,则该轴必
过
形心; 2.若轴过形心,则截面对该轴的静矩等于零
。
静矩和形心
三、组合截面的静矩
由几个简单图形组成的截面称为组合截面 。
截面各组成部分对于某一轴的静矩之代数和 , 等于该截面对于同一轴的静矩。
静矩和形心
n
S y
zdA
A
Ai zCi
i 1
n
S z
ydA
A
A i yCi
i 1
其中 Ai —第 i个简单截面面积;
( yCi, zCi)—第 i个简单截面的形心坐标;
静矩和形心
静矩和形心
一、静矩(面积的一次矩)
设平面图形,取 yoz 为图形所在平面的坐标 系,在坐标为(y , z)处取面积元dA。 截面对 y , z 轴的静矩为 z
y
S y
zdA
A
dA
m3
z
S z
ydA
A
O
y
静矩和形心
S y
zdA
A
Sz
ydA
A
1.静矩可正,可负,也可能等于零;
2.同一图形,对不同的坐标轴,静矩也不同。
静矩和形心
二、截面的形心(Centroid of an area)
n
Ai zCi
zC
i1 n
Ai
i1
z d
A
A
A
z
z zC
dA C
O yC
y
Sy A
y
静矩和形心
n
Ai
i1
A ydA
A Sz
A
z
z zC
O
dA C
y
yC