高等数学大纲

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》教学大纲

课程类别:专业基础课

适用专业:计算机应用技术、计算机网络技术、计算机信息管理

信息安全技术

授课学时:32

课程学分:2

一、课程性质、任务

《高等数学》课程是计算机专业学生开设的一门专业基础课程。

本课程主要为学生培养分析问题、解决问题的能力,抽象思维和逻辑思维能力,为学生进一步学习后继课程打下扎实的基础,并注意培养学生的数学建模能力和用所学理论解决简单应用问题的能力,培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力。

二、课程培养目标:

基于我院是一所培养应用型人才的高职院校,本课程为我院计算机应用技术各专业的基础课课程,以优化课程体系和教学内容为核心,以教学方法和教学手段改革为重点,以建设规范课程以及精品课程为目标,扎实打好学生数学基础,努力提高学生数学素养,加强数学应用能力培养,发挥数学在素质教育中的功能,为学生的后续专业学习提供支撑。通过学习,学生应达到以下要求:(一)知识目标

●掌握高等应用数学基本理论:微分学、积分学

●掌握函数的单调、有界、奇偶、周期等分析表示。

●掌握数列极限和函数极限的定义和运算法则,了解两个重要极限的

证明。

●会运用两个重要极限求一些数列和函数的极限,掌握连续函数的定义及

其基本性质。

●了解并学会函数无穷量级的比较。

●理解导数的概念,理解导数的几何意义及函数的可导性与连续性之间的

关系。会用导数描述一些物理量。掌握导数的四则运算法则和复合函

数的求导法则,掌握基本初等函数的导数公式。

●理解罗尔(Rolle)定理和拉格朗日(Lagrange)定理,掌握这两个定理的

简单应用。

了解柯西(Cauchy)定理。理解函数的极值概念,掌握用导数判断函数

的单调性和求极值的方法。

●掌握较简单的最大值和最小值的应用问题的求解方法。

熟练掌握用洛必达法则(L'Hospital)求不定式的极限的方法

●理解原函数与不定积分的概念及性质。掌握不定积分的基本公式,掌握

不定积分的换元法和分部积分法。

●理解定积分的概念及性质。掌握定积分的换元法和分部积分法。理解变

上限的积分作为其上限的函数及其求导定理。

●掌握牛顿(Newton)莱布尼兹(eibniz)公式。

(二)职业能力培养目标

●能够运用微积分的基本理论分析和研究客观事物的数学性质和规律

●能够运用相关知识对客观现象进行分析

●能够解决专业相关的数学问题

(三)素质目标

●培养学生良好的数学素养

●培养学生严密的逻辑意识

●培养学生对客观世界的认识和分析能力

三、选用教材与参考资料

本课程使用的是高等教育出版社出版的《高等数学》2008年第三版,同济大学、天津大学、浙江大学、重庆大学主编,该书是全国高职高专教育“十一五”规划教材,是根据《高职高专教育高等数学课程教学基本要求》,按

照当前的教学实践和数学课程改革需要,在之前版本基础上修改而成。主要适用于工科类高职高专各专业,还可作为“专升本”及学历文凭考试的教材或参考书。

教学参考资料:

1、参考书籍:

北京大学数学科学学院主编:《高等数学辅导》,科学技术文献出版社,上下册合订本

2、通过网络、图书室、请教计算机专业老师等方式搜集、准备教学资料,

编写教学大纲和教案。

四、本课程与其他课程的联系与分工

先修课程:本课程的开设是在学生高中数学基础上设立的,是计算机专业的专业基础课

后续课程:线性代数

高等数学作为一门工具学科,是继续学习专业课程的基础。

五、课程教学内容与基本要求

第一章极限与连续

(一)、教学内容

第一节函数

一、集合与区间

二、函数的概念

三、函数的几种特性

四、反函数

五、复合函数

六、初等函数

七、函数关系的建立

第二节极限的概念

一、数列的极限

二、函数的极限

第三节极限的运算法则

一、极限的四则运算法则

二、复合函数的极限法则

三、极限不等式

四、函数极限的性质

第四节极限存在准则与两个重要极限

一、夹逼准则

二、单调有界收敛准则

第五节无穷小与无穷大、无穷小的比较

一、无穷小

二、无穷大

三、无穷小的比较

第六节函数的连续性与间断点

一、函数连续性

二、函数的间断点及其分类

第七节连续函数的运算与初等函数的连续性

一、连续函数的四则运算

二、复合函数的连续性

三、反函数的连续性

四、初等函数的连续性

第八节闭区间上连续函数的性质(删节)

一、最大值和最小值定理

二、介值定理

(二)、教学目的、要求

学习本章,要求联系集合和映射掌握函数概念,并掌握函数的单调、有界、奇偶、周期等分析表示、图形和特征,并要求学生具有常见的实际问题建立相应的函数关系的能力,养成图文并重的思维方法。要求学生掌握数列极限和函数极限的定义和运算法则,了解两个重要极限的证明,并学会运用两个重要极

限求一些数列和函数的极限,掌握连续函数的定义及其基本性质,了解并学会函数无穷量级的比较。

【本章教学重点】

1、两个重要极限

2、数列极限和函数极限的定义和运算法则

3、函数无穷量级的比较

【本章教学难点】

1、两个重要极限

2、连续函数的定义及其基本性质

第二章导数与微分

(一)、教学内容

第一节导数的概念

一、导数概念的引例

二、导数的定义与几何意义

三、函数的可导性与连续性的关系

第二节函数的和、差、积、商的求导法则

一、函数和、差的求导法则

二、函数积的求导法则

三、函数商的求导法则

第三节反函数的导数与复合函数的导数

一、反函数的导数

二、复合函数的导数

第四节隐函数的导数和由参数方程确定的函数的导数初等函数的导数

一、隐函数的导数

二、由参数方程确定的函数的导数(删除知识点)

三、初等函数的导数

第五节高阶导数(删节)

第六节微分及其应用(删节)

相关文档
最新文档