环烷烃
有机化学环烷烃
有机化学环烷烃在有机化学的广袤领域中,环烷烃是一类具有独特结构和性质的化合物。
它们就像是化学世界里的“小圈圈”,有着自己独特的魅力和价值。
环烷烃,简单来说,就是碳原子通过单键连接形成环状结构的烃类化合物。
与我们熟悉的直链烷烃相比,环烷烃的环状结构赋予了它们一些与众不同的特点。
从结构上看,环烷烃的碳原子排列成环。
环的大小可以不同,常见的有三元环、四元环、五元环等等。
环的大小对环烷烃的稳定性有着重要的影响。
比如,三元环和四元环由于环张力较大,相对来说不太稳定,容易发生开环反应。
而五元环和六元环则相对稳定得多。
稳定性的差异导致了它们在化学反应中的表现各不相同。
以开环反应为例,小环烷烃在一定条件下能够与氢气、卤素等发生开环加成反应。
这是因为小环烷烃的环张力使得它们的化学键相对更容易被打开,从而与其他物质发生反应。
而大环烷烃则相对较难发生这样的反应。
环烷烃的物理性质也有其特点。
一般来说,环烷烃的沸点和熔点比相同碳原子数的直链烷烃要高。
这是因为环状结构使得分子间的接触更为紧密,相互作用增强,从而需要更高的温度来打破这种相互作用。
在实际应用中,环烷烃有着广泛的用途。
在石油化工领域,环烷烃是重要的原料。
通过一系列的化学反应,可以将它们转化为各种有用的化学品,如溶剂、润滑油等。
在医药领域,一些含有环烷烃结构的化合物具有特定的生物活性,被用于药物的研发和制造。
让我们更深入地了解一下环烷烃的命名规则。
对于简单的环烷烃,通常以“环”字开头,然后根据环上碳原子的数目称为“环某烷”。
如果环上有取代基,则要按照一定的顺序为取代基编号,以表明它们在环上的位置。
再来看看环烷烃的同分异构体。
由于环的结构可以有多种变化,所以相同碳原子数的环烷烃可能存在多种同分异构体。
比如,C₅H₁₀就有环戊烷和甲基环丁烷等多种同分异构体。
环烷烃的存在和性质对于我们理解有机化学的整体框架有着重要的意义。
它们不仅丰富了有机化合物的种类,也为我们研究和应用有机化学提供了更多的可能性。
化学环烷烃
小环易发生加成反应。
11
① . 加 H2
+ H2 + H2 + H2
Ni 40℃
Ni 100℃
CH3CH2CH3
CH3CH2CH2CH3
Pt 300℃
CH3CH2CH2CH2CH3
由上面反应条件可以看出,小环发生加成反应活性大。 ②. 加 X2
+ Br2
室温
BrCH2CH2CH2Br
12
+ Br2
小环:3~4个碳原子。 普通环:5~7个碳原子。 中环:8~11个碳原子。 大环:12个以上碳原子。 螺环:两个环公用一个碳原子,公用的碳叫螺碳。
桥环:两个环公用两个或两个以上碳原子。
螺碳 桥头碳
2
单环体系
多环体系
2. 异构 包括:
构造异构
顺反异构:构造式相同,分子中原子在空间的 排列方式不同。由于环的存在,使 C-C键不能旋转而引起的。
a 为 小 环 中 的 , 为 大 环 中 的 。பைடு நூலகம்b
7
5 6
4
3
1 2
8
7 6 4 3
1 2
7
5
螺[2 . 4]庚烷
1,6-二甲基螺[3 . 4]辛烷
桥环烃: ①. 确定母体:几环某烷(由桥环中总碳数确定)。 ②. 环数的确定:把桥环烃变为链烃,打开几次,就 是几元环。
③. 编号:先编大桥后编小桥,从桥头碳开始编,使
例:C5H10的环烷烃异构
3
CH3 CH3 H H
H CH3
CH3 H
3. 命名 1). 单环环烷烃 规则:①. 确定母体:环某烷(由环中总碳数确定)。 ②. 编号:若环上有取代基,编号尽可能小。若有 不同取代基,要用较小的数字,表示较小取代 基的位置。 ③. 书写同烷烃。
有机化学-环烷烃
得到的构型与原来的构型一样。 椅式C-H键的分类: 6个直立键:3个朝上,3个朝下。
23
都叫a键。平行于C3轴。
6个平伏键:3个朝上,3个朝下。
都叫e键,与直立键成109°28/。
结论:
C3
①. 椅式是环己烷的最稳定的构象,在各种构象的
平衡混合物中,椅式占99.9%。 因为在椅式构象中,相邻两个碳原子上C-H键都
1. 物理性质(自学) 2. 化学反应 1). 取代反应
+ Br2
hν
Br
+ HBr
机理:自由基机理 取代反应一般在五、六元环上易发生。
12
2). 加成反应 小环易发生加成反应。
①. 加 H2
+ H2
Ni
+ H2 + H2
② . 加 X2
40℃ Ni CH CH CH CH 3 2 2 3 100℃
16
三. 环烷烃的稳定性 (Stability of Cycloalkanes)
为什么三元环不稳定易发生加成?
为什么五元环、六元环较稳定不易发生开环加成,而易
发生取代? 1. 拜尔(Baeyer )张力学说要点
①. 形成环的碳原子都在同一平面上,并排成正多边形。 ②. 正常C-C键之间夹角为109.5°,环中C-C键之间夹
第三章 环烷烃
主讲:徐华
一. 环烷烃的分类、命名和异构 二. 环烷烃的物理性质和化学反应 三. 环烷烃的稳定性 四. 环烷烃的构象
2
一. 环烷烃的分类、命名和异构 概述:单环环烷烃通式:CnH2n 1. 分类
,
与烯烃互为异构体。
环烷烃的性质与烷烃相似。
小环:3~4个碳原子。 普通环:5~7个碳原子。 单环体系 中环:8~11个碳原子。 大环:12个以上碳原子。 螺环:两个环公用一个碳原子,公用的碳叫螺碳。 多环体系 桥环:两个环公用两个或两个以上碳原子。
环烷烃的概念
环烷烃的概念环烷烃是一类有机化合物,也被称为脂环烷烃或脂肪环烷烃。
它的分子结构由碳(C)和氢(H)原子组成,其中碳原子形成一个或多个环状结构,每个碳原子上连接着两个氢原子。
环烷烃的普遍化学式为CnH2n,其中n代表碳原子的数量。
环烷烃根据碳原子的环状结构可以分为多个类别,最简单的是环己烷(C6H12),它由六个碳原子组成一个环。
其他常见的环烷烃有环戊烷、环丙烷等。
环烷烃的特点是分子结构中含有一个或多个环状结构,这种环状结构使得环烷烃相对于直链烷烃具有一些特殊的性质。
首先,由于环烷烃分子内部有较大的空间限制,环烷烃的分子难以与其他分子进行反应,使得环烷烃的化学稳定性较高。
此外,环烷烃还具有较高的沸点和熔点,比直链烷烃的物理性质要高。
环烷烃可以通过多种方法合成,最常见的方法是通过烷烃的脱氢反应得到。
例如,环己烷可以由己烷经过加热脱氢反应制得。
此外,环烷烃还可以通过环状化合物之间的反应合成,如环戊烷可以由乙烯和乙烯二聚反应得到。
环烷烃在生活中有广泛的应用。
最典型的例子是石油和天然气中的环烷烃,它们是石油和天然气中最常见的组分之一。
石油和天然气中的环烷烃可以用于生产燃料、润滑剂和化工原料。
此外,环烷烃还可用作溶剂、塑料、橡胶等领域的原料。
但是,环烷烃也存在一些环境和健康方面的问题。
环烷烃是一类挥发性有机物,它们在大气中的存在会对空气质量产生负面影响,形成臭氧、光化学烟雾等污染物。
此外,环烷烃还可能引发健康问题,如呼吸道疾病和神经系统损伤。
总之,环烷烃是一类有机化合物,具有稳定性高、物理性质特殊的特点。
它们在能源、化工和其他领域有着广泛的应用,但也带来环境和健康方面的问题。
对环烷烃的深入研究和合理利用,有助于提高环境质量,推动可持续发展。
环烷烃
• 环烷烃的化学性质
加氢
与卤素反应
+ Cl2
hv
+ Br2 300 ℃
Cl + HCl
Br + HBr
与氢卤酸反应
+HI +HI CH3 +HI
CH3CH2CH2I
CH3CH2CH2CH2I I
CH3CHCH2CH3
反应活性次序 :
• 第三章习题 • 1-1,2,4,5,6 • 3-1,2,5 •5 • 6-1,2,4,5 • 10-1
CH3 CH3
CH3 CH3
优势构象
多取代环己烷有不同取代基时,体积较大 的取代基在e键为优势构象
CH3
CH3
(CH3)2CH
CH(CH3)2
(CH3)2CH
CH3
优势构象
(CH3)2CH
CH3
CH3
(CH3)2CH
优势构象
(CH3)2CH CH3
• 思考题: 写出反-1-甲基-3-叔丁基环己烷的优势构象。
4
315
2
6
a键和e键:
6个a键
6个e键
• a键和e键的转换
H 5H 4H 3
H
H6 1 H2
4 5
3
6
2 1
• 取代环己烷的稳定构象
单取代环己烷一般以取代基在e键的 构象为优势构象
H
5H
4
3
HH
C
H
61
室温
2
4
3
5
2
6
CH3
1
CH3
H
多取代环己烷一般以取代基在e键较多者为 优势构象
CH3 CH3
第二节_环烷烃
环烷烃2.1环烷烃的定义和命名分子中具有碳环结构的烷烃称为环烷烃,单环烷烃的通式为C n H2n,与单烯烃互为同分异构体。
环烷烃可按分子中碳环的数目大致分为单环烷烃和多环烷烃两大类型。
1.单环烷烃最简单的环烷烃是环丙烷,从含四个碳的环烷烃开始,除具有相应的烯烃同分异构体外,还有碳环异构体,如分子式为C5H10的环烷烃具有五种碳环异构体。
为了书写方便,上述结构式可分别简化为:当环上有两个以上取代基时,还有立体异构。
单环烷烃的命名与烷烃基本相同,只是在“某烷”前加一“环”字,环烷烃若有取代基时,它所在位置的编号仍遵循最低系列原则。
只有一个取代基时“1”字可省略。
当简单的环上连有较长的碳链时,可将环当作取代基。
如:2.多环烷烃含有两个或多个碳环的环烷烃属于多环烷烃。
多环烷烃又按环的结构、位置分为桥环、螺环等。
(1)桥环两个或两个以上碳环共用两个以上碳原子的称为桥环烃,两个或两个以上环共用的叔碳原子称为“桥头碳原子”,从一个桥头到另一个桥头的碳链称为“桥”。
桥环化合物命名时,从一个桥头开始,沿最长的桥编到另一个桥头,再沿次长的桥编回到起始桥头,最短的桥最后编号。
命名时以二环、三环作词头,然后根据母体烃中碳原子总数称为某烷。
在词头“环”字后面的方括号中,由多到少写出各桥所含碳原子数(桥头碳原子不计入),同时各数字间用下角圆点隔开,有取代基时,应使取代基编号较小。
例如:1,2,7-三甲基-双环[2.2.1]庚烷双环[4.4.0]癸烷双环[2.2.1]庚烷(2)螺环脂环烃分子中两个碳环共用一个碳原子的称为螺环烃,共用的碳原子为螺原子。
命名时根据成环的碳原子总数称为螺某烷,编号从小环开始,经过螺原子编至大环,在“螺”字之后的方括号中,注明各螺环所含的碳原子数(螺原子除外),先小环再大环,数字间用下角圆点隔开。
有取代基的要使其编号较小。
例如:5-甲基螺[3.4]辛烷 1,6-二甲基螺[3.5]壬烷2.2环烷烃的物理性质在常温常压下,环丙烷与环丁烷为气体,环戊烷、环己烷为液体。
环烷烃
1–甲基–2–乙基环己烷
CH(CH3)2
CH3
1–甲基环丁烯
5–异丙基– 1,3–环戊二烯
二、环烷烃的化学性质
卤代反应
光照 + Br2 Br + HBr
CH3 +
光照 Br2
Br CH3 + HBr
1-甲基-1 –溴环已烷
开环加成反应 (1)加H2
C 2 H H2C H2C H2C CH2 CH CH Ni / 80。 C H2 Ni H2
氧化反应 常温下环烷烃与氧化剂不反 应,不使KMnO4溶液褪色。
三、环烷烃的稳定性
与张力能有关
环丙烷 总张力能(KJ.mol-1) 115.5
环丁烷
110.4
环戊烷 环己烷
27.0 0
结论:环烷烃的张力能越大,越不稳定。 (稳定性:环己烷 > 环戊烷 > 环丁烷 > 环丙烷)
四、环已烷的构象
环已烷的构象
(1)优势构象:椅式构象
椅式 (2)a,e键和构象的翻转
Hale Waihona Puke 船式环烷烃内容提要
环烷烃的命名 环烷烃的化学性质 环烷烃的稳定性 环已烷的构象
环烷烃
脂环烃是指性质类似脂肪烃的碳环化合
物。饱和的脂环烃又称环烷烃,通式为
CnH2n(n≥3)。
一、环烷烃的命名
1.常见环烷烃
环丙烷
环丁烷
环戊烷
环已烷
2. 复杂结构的环烷烃命名
CH3 CH3
CH3 CH2CH3
1,2–二甲基环丙烷
CH3CH2CH3
H2C H2C CH2
H2
CH2 Ni / 200 C
。 CH3CH2CH2CH3
环烷烃
a键
e键
(3) 相邻两组a键伸展方向相反,一个向上,一个向下,e 键也如此。
a a
e e
e a
a e
e e a a
1
2
3
4
a
e
a 和e键的关系不清晰
5 a 和e 键的关系清晰
3.构象翻转:
Year 1883
Name of scientist Baeyer
1890 H.Sachse 1915-1918 W.M.Mohr
1920
1943 O.Hassel
1950 D.Barton
Point of view
Assumes that six carbon atoms are on the same plane
当环己烷由一种椅式构象翻转为另一种椅式构象时,原
来的a键变成e键,原来的e键变成a键。由于六个碳上连接的 都是氢原子,所以两种椅式构象完全等同。
5
61
43
2
456 3 21
O
O
O
O O O
4O
O1 O
O O
4O O
O O
O
O
O
环上原子或基团的空间关系保持。
O
O O O
O1 O
二. 取代环己烷的构象
3.3 环的张力
一、Bayer’s张力学说
Assumption: 1 成环的碳原子均在同一同面上,且呈正多边形 2 碳原子采取sp3杂化形式,正常键角应为约109.5度 3 为了满足平面正多边形的内角要求,成环的键必须向内或向
立体化学 第5章 环烷烃
1,2,4-三甲基环己烷
C. 必要时须注明立体构型;
D. 复杂化合物也可将环的部分当作取代基。
顺-1,2-二甲基环丙烷 反-1,3-二甲基环丁烷
4-环戊基庚烷
(2) 多环化合物的命名:
(命名较为复杂, 以二环化合物为例). A. 参加成环的总碳原子数作为母体烃; 如有8个碳原子,则称为辛烷 B. 简单桥环可用“二环”、“三环”等作词头; C. 二环“连接”处的碳原子为桥头碳原子; D. 从桥头碳原子处,由大环开始编号;将各“桥”所含的碳原子 数写入方括号中(注意:桥头C原子都不可计入)。
2) 环戊烷的构象
环戊烷的结构是以拆叠的形式存在,四个C原子基本在一 平面上,另一个C则在平面之外,这种构象称为信封式构象。 环戊烷由于以“信封式”构象存在,使分子张力较小,化学性 质较稳定。
3) 环己烷的构象及构象分析
i) 椅式和船式构象
椅式
船式
船式构象相对能量较高, 不稳定,通过C-C键扭曲, 使其成为扭曲式(或称为扭 船型)。这种构象相对于船 式能量低。
角张力---由于键角偏离正常键角 而产生的张力。
环丙烷的三个C在同一平而上,相邻两个C上的C-H键都是重叠式构象, 相互拥挤,产生排斥,也具有较高的能量。
扭转张力---由于重叠式构象而产生的张力。
4. 环烷烃的构象和构象分析
1) 环丁烷的构象
环丁烷的四个C不在同一平面上,形如蝴蝶。即通过C-C键的扭转而以 一个拆叠的碳环存在。 环丁烷的三个C原子分布在同一平面,另一个C取于平面之外。 环丁烷的这种存在形式可使环的张力降低,但仍然是一个不稳定分子。
(1)分子中有两个平行的平面,C1、C3、C5和C2、C4、C6;
(2)12个氢原子分成两类:一类与分子对称轴平行,即垂直于环平面,称为
第三章 环烷烃
环戊烯
环辛炔
1,3-环己二烯
带有侧链的环烯烃命名:
a. 若只有一个不饱和碳上有侧链,该不饱和碳编号为1; b. 若两个不饱和碳都有侧链或都没有侧链,则碳原子编号顺序除双 键所在位置号码最小外,还要同时以侧链位置号码的加和数为最 小。
第三章 环烃
第一节 脂环烃
脂环族化合物:结构上具有环状碳骨架,性质与开链化合物相似的
一类化合物。脂环烃:只有C、H两种元素组成的脂环化合物。
一、脂环烃的分类
1、按碳环数分:单环脂环烃;二环脂环烃和多环脂环烃等
CH3
十氢化萘
降冰片烷
螺[2,4]庚烷
立方烷
棱烷
蓝烷
金刚烷
2、按成环碳原子数分:三元环、四元环、五元环脂环烃等
环己烷不是平面结构,较为稳定的构象 为折叠的船型构象和椅型构象。
1
(Ⅰ)
6 1
2
3 5 3 2 5
4
(Ⅱ)
6
4
Ⅰ
Ⅱ
在(Ⅰ)和(Ⅱ)中,C2、C3 、C5 、C6都在一个平面内,但在(Ⅱ)
中,C1和C4在平面的同一侧,这种构象叫船式构象;而在(Ⅰ)
中,C1和C4在平面的上下两侧,这种构象叫椅式构象
HH3C 3C
11
1 C1-C2 1 C1-C2
C5-C4 6 C5-C4 6 C1-C2 C1-C2 C5-C4 C5-C4
4
HH HH3C 2 3C HH HH
2
H H
6 6 44 55
环烷烃
4. 环己烷的构象异构 船式、椅式 优势构象: e键取代基最多的构象; 大基团处于e键的构象。
THE END
根据分子的不饱和程度分为
2、命名 、 (1)单脂环烃 )单脂环烃:
环丙烷
环丁烷
环戊烷
环己烷
环辛烷
以较小数字表较小基的位次
1-甲基-3-叔丁基环戊烷
1-甲基-4-异丙基环己烷
CH2-CH2 -CH2 -CH-CH2 CH3
2-甲基-1-环丙基-5-环戊基戊烷
环烯烃中以双键的位次最小 1-甲基-3-异丙基环己烯
H 4 H H H 2 H 3
183pm H H H H
5 H 3 6
1
H H
H
2
H 纽 H 曼 4 投 影H 5 H 式 H
H 3 CH2 CH2 6 交叉式
1 CH2 CH2 4
H 6 5 H H
HH HH 重叠式(存在扭转张力)
椅式构象占99.9% (优势构象 椅式构象占 优势构象) 优势构象
船式构象占0.1% 船式构象占
一些原子和基团的范德华半径(pm) H 120;C 150;N 150;O 140; Cl 180 ;CH3 200.
椅式环己烷的2类C-H键:a键和e键
与对称轴平行的C-H键,叫直立键 直立键(a键),几乎垂直于 直立键 对称轴的C-H键,叫平伏键 平伏键(e键)。 平伏键 转环作用:通过碳碳单键的转动,环己烷一种椅式构象 可以转变成另一种椅式构象。 转环前后,a键变e键,e键变a键。
环烷烃
一、脂环烃的分类和命名 1.分类 2.命名:单脂环烃、螺环烃*、桥环烃* 二、环烷烃的结构和稳定性 三、环烷烃的性质 取代、加H2、加X2、加HX 四、环烷烃的异构现象
环烷烃
b)弯曲键 在环丙烷分子中,电子云的重叠不能沿着 sp3轨道轴对称重叠,只能偏离键轴一定的 角度以弯曲键侧面重叠,形成弯曲键
C)扭转张力 由于环中三个碳位于同一平面,相邻的C-H
环丙烷的结构图
键互相处于重叠式构象,前后两个C-H键有 电子云的斥力,有旋转成交叉式的趋向,种 斥力是由于键的扭转而形成的称为扭转张力。 环丙烷的总张力能为114KJ/mol。
环丁烷的构象
环戊烷的构象
环戊烷分子中,C-C-C夹角为108°,接近sp3杂化轨道间夹 角109.5°,环张力甚微,是比较稳定的环。但若环为平面结构, 则其C-H键都相互重叠,会有较大的扭转张力,所以,环戊烷是 以折叠式构象存在的,为非 平面结构,见右图,其中有 四个碳原子在同一平面,另 外一个碳原子在这个平面之 外,成信封式构象。 环戊烷的构象
2) 环丁烷和环戊烷的构象
环丁烷的构象 与环丙烷相似,环丁烷分子中存在着张力,但比环丙烷的 小,因在环丁烷分子中四个碳原子不在同一平面上,见右图: 根据结晶学和光谱学的证明, 环丁烷是以折叠状构象存在的, 这种非平面型结构可以减少C-H 的重叠,使扭转张力减小。环丁 烷分子中 C-C-C键角为 111.5°, 角张力也比环丙烷的小,所以环 丁烷比环丙烷要稳定些,总张力 能为108KJ/mol。
这种构象的张力很小,总张力能25KJ/mol,扭转张力在2.5KJ/mol 以下,因此,环戊烷的化学性质稳定。
3)环己烷的构象
在环己烷分子中,六个碳原子不在同一平面内,碳碳键 之间的夹角可以保持109.5°因此环很稳定。 A 两种极限构象——椅式和船式
椅式构象稳定的原因:
船式构象不稳定的原因:
CH3CH3
反式
顺式
2 命名
环烷烃
H H H H H H H H H H H H
偏离109.5o
C-H 重叠
环己烷碳架是折叠的
H H
3
H
2
H
1
H H
H H
3
4 2
H H
1
H H
6
H H
4
5 H
6
H H
5
H
H H
H
C2, C3, C5, C6 共平面
H
H
椅式构象 (chair form)
船式构象 (boat form)
(打开一根 C-C 键)
H 2 / Pt, 50 o C
3 1
CH 3
3
CH 2 CH 3
or N i, 80 o C
C H 3 C HC H 2 C H 3
1
支链多 较稳定
主要产物
H 2 / Pt, 120 o C or N i, 200 C
o
CH 3 CH 2 CH 2 C H 3
小环化合物与卤素的反应
3-甲基-4-环丁基庚烷 4-cyclobutyl-3-methylheptane
2 1 1'
2'
环可作为取代基
3'
(称环基) 相同环连结时,可
3
联环丙烷 bicyclopropane
用词头“联”开头。
桥环烃(Bridged hydrocarbon)的命名
桥头间的碳原子数
2 1 3 4 5
小 环
C3 C4 C5 C7
环丙烷 环丁烷
697.1 686.1
中 环 大 环
C8 C11 C12
环烷烃知识讲解ppt课件
电子云偏
向环平面外 侧,容易受 等亲电试剂 进攻,故似 烯烃进行加 成反应。
弯曲键(香蕉键)
共价键的形成是由于原 子轨道相互交盖的结果,交 盖程度越大,键越稳定。
CH3
CH2 109。28′
CH3
10
燃 烧 热------指化合物燃烧时所放出的热量(它
的大小反映出分子内能的高低。 比较单位CH2燃烧热( H) kJ/mol
+ H2
Pt 300 0C
CH3CH2CH2CH2CH3
+ H2
Pt >300 0C
CH3CH2CH2CH2CH2CH3
18
2. 加HX 、X2
CH2 CH2 + Br2
常温
CH2
CH2-CH2-CH2
Br
Br
CH2 CH2 + HBr CH2
CH2-CH2-CH2
H
Br
H3C— CH CH2 + HBr CH2
双环烃
分子的碳架中含有两个碳环的烃。
联环
桥环 螺环
稠环
4
2、螺环烃的命名 螺环烃:两个碳环共用一个碳原子的化合物。
螺原子:两个碳环共用的碳原子
螺原子
2
1
6
7
1 5 6
5
8
3
4
10 9
螺[4.5]癸烷
2
7
4
8
3
5-甲基- 螺 [3.4] 辛烷
1、确定成环碳原子的数目。 7-庚烷 , 9-壬烷
2、从小环中螺原子旁的一个碳原子开始编号,编完小环,再 编螺原子,最后编大环。
1-甲基-3-乙基环戊烷 1
③ 若环烃中有双键时,编号应从双键开始,且使编号的数 值最小。
第三章。环烷烃
翻转后: 翻转后:
21
在室温下环已烷的一种椅式构象通过σ 在室温下环已烷的一种椅式构象通过σ键旋转迅速转变成另 一种椅式构象: 一种椅式构象:
22
2. 船式构象
◇船式构象的基本形态
四个C 1,2,4,5四个C在同一平面 C-3,C-6均在该平面上方
船式构象中张力能每一项都不等于零: ◇船式构象中张力能每一项都不等于零: 范德华半径240pm 240pm, ≠0, 如:lH3-H6=183pm < 范德华半径240pm,故Enb≠0,同时非键作用使 H3键长和键角有变, ≠0, 键长和键角有变,使El≠0,Eφ≠0
第三章 环烷烃
(Cycloalkane )
1
分子中C原子以单键互相连接成闭合环。 ◇环烷烃 — 分子中C原子以单键互相连接成闭合环。 链成环需增加一个C 单键,同时减少两个H ◇通 式 — CnH2n,链成环需增加一个C-C单键,同时减少两个H,与烯 烃为同分异构体。 烃为同分异构体。
一、环烷烃的异构和命名
环稳定性: 环稳定性:
>
环开裂一般发生在含氢最多和含氢最少的两个碳原子之间。 环开裂一般发生在含氢最多和含氢最少的两个碳原子之间。
6
(2) 加溴 例:
开环加成
环丁烷、环戊烷等与溴的反应与烷烃相似: 环丁烷、环戊烷等与溴的反应与烷烃相似:
hv Br
+
Br2
7
(3) 加HBr 例:
在含H最少C与含H最多C间断裂,Br 加到含H最少C 在含H最少C与含H最多C间断裂,Br-加到含H最少C上
4
◇例子: 例子: 例1: 1-甲基-3-乙基环戊烷 甲基-
例2:
1
2
3
环烷烃
H
H
H
2.49Å
H
2.49Å
H~H之间距离均大于 H的Van der Waal’s 半径之和(2.40Å )
船式构象
H
2 5
重叠式 (有扭转张力)
H 1 H
6
H 4 C3-C2 H
3
H H
H H
4 3 2
1 5
6
HH
H C5-C6
H H
H H
1.84Å
H H
H H
旗杆键
H H H H H
H H H H
优势构象
2 CH3 1
结论:
(1)环己烷多元取代物的最稳定的构 象是e-取代最多的构象。
(2)环上有不同取代基时,大的取代
基在e-键的构象最稳定。
顺或反十氢萘的构象
H H
H
H
trans 较稳定
cis
H
反式十氢萘的构象
H
H
6 5 8 9 1 2 10 4 3
H H H H
C2-C3
H
8 10 1 9 5 4
直立键(a键)
平伏键(e键)
翻环
H
3
H
5
H
2 6
H
1
翻转
H H
H
4
H
3 5
H H
6 2
H
4
H
H
H H
H
H
H H 1 H
H H
H
翻转后,原来的a键转变 为e键,而e键转变为a键
3、取代环己烷的优势构象
一取代环己烷平伏键与直立键构象 间的位能差(范德华斥力 strain ) 基团 位能差 基团 位能差 .1 .0 7 1 CH3 F .1 .5 Cl 2 C2H5 7 .1 .8 2 Br (CH3)CH 8 2 .2 HO 4 (CH3)C 21 3 CN 0.8 C6H5 13 .3 .9 6 H2N COOH 5
有机化学 第三章 环烷烃
环丙烷的结构:
弯曲键
纽蔓投影式
环丁烷和环戊烷的构象:
折 叠 式 构 象
信 封 式 构 象
扭 曲 式 构 象
3.3.2 环己烷的构象 椅式构象和船式构象:
椅式构象是无张力环,稳定
船式构象存在扭转张力 和非键张力,不稳定
直立键 (a键) 和平伏键(e键)
直立键
平伏键
直 立 键 『 键 』
顺反异构:
——当环上有两个碳原子各连有不同的原子或 基团时就存在顺反异构.
例如:n=5时单环烷烃的构造异构
单环烷烃命名:
① “环”字 ② 取代基的位次和最小 ③ 小的号码表示小的取代基
顺反异构的命名:
双环烷烃:
通式CnH2n-2 根据两个碳环的位置关系分为:
命名:
隔离型双环烷烃: 联环烷烃:
立体透视式
锯架式
例:1,2-二甲基环己烷
顺式:
a,e
反式:
e,e
a,a
稳 定
反式
顺式
顺-1-甲基-4-叔丁基环己烷
稳 定
优势构象
顺-4-叔丁基环己醇
稳 定
优势构象
顺-1-甲基-3-氯环己烷
多取代环己烷:
全顺式-1,2,4-三甲基环己烷
十氢化萘的结构:
稳 定
第三章
环烷烃
环烷烃的定义、分类、异构和命名 环烷烃的性质 环烷烃的环张力和稳定性 环己烷的构象
3.1 脂环烃的定义、分类、异构和命名
脂环烃——具有环状碳骨架,而性质上与脂肪
烃相似的烃类。分为饱和脂环烃和不饱和脂环烃.
环烷烃——饱和脂环烃
环烷烃分类: 单环烷烃 双环烷烃 多环烷烃
环烷烃
一、环烷烃的命名环烷烃的命名与烷烃相似,只是在同数碳原子的链环烷烃的名称前加“环”字。
环丙烷环丁烷环己烷成环碳原子的编号,应使环上取代基的位次最小。
甲基环戊烷1-甲基-3-乙基己烷当环上有复杂取代基时,可将环作为取代基命名。
CH2CH2CH2CH3CH2CH2CH2CH21-环丁基丁烷1,4-二环戊基丁烷二、环烷的结构与稳定性环烷烃的稳定性与其环的几何形状和角张力有关,分子键角越接近正四面体角(109°28′),分子越稳定,反之,偏差越大角张力越大,环越不稳定。
………一、稳定性:烷烃具有高度的化学稳定性,常用作溶剂的药物基质。
烷烃在适宜的反应条件下,也能进行一些反应,主要有卤代反应。
二、卤代反应:有机化合物分子中的氢原子(或其他原子)或基团被另一原子或基团取代的化学反应称为取代反应。
烷烃分子中的氢原子被卤素原子取代的反应称为卤代反应。
1、甲烷的卤代反应条件:紫外光照射或加热至250~400℃产物:一氯甲烷、二氯甲烷、三氯甲烷(氯仿)和四氯甲烷(四氯化碳)的混合物一般较难限定取代在一元取代的产物(CH3Cl)的阶段CH4+Cl22、烷烃卤代反应的取向含有不同类型氢原子的烷烃,发生自由基氯取代反应,生成多种氯代烷异构体的混合物。
CH3CH2CH33CH2CH2Cl+CH3CHCH3Cl1-氯丙烷(43%)2-氯丙烷(57%)CH3CH3CH3CH3CHCH3+Cl23CHCH2-Cl + CH3CCH3Cl2-甲基-1-氯丙烷(37%)2-甲基-2氯丙烷(63%)由于氯的活泼性较大,选择性较差,在氯代反应中,各种产物间的相对比例相差不大;溴的活泼性较小,选择性较强,总是以一种产物占优势。
CH3CH2CH3CH3CH2CH2Br+CH3CHCH3Br1-溴丙烷(3%)2-氯丙烷(97%)CH3CH3CH3CH3CHCH3+Br3CHCH2-Br + CH3CCH3Br卤代反应活性:叔氢>仲氢>伯氢F 2>Cl 2>Br 2>I 2不同类型的C-H 键离解能不同,离解能越小,生成的自由基稳定性越大。
环烷烃
2.2 环烷烃(cycloalkane)一、环烷烃的分类和命名(一)环烷烃的分类小环:三元环、四元环中环:七元环十二元环大环:十二元环以上常见环:五元环、六元环单环环烷烃螺环烃桥环烃环烷烃多环环烷烃(二)环烷烃的命名1.单环环烷烷烃:与烷烃相似,只在母体名称前加“环”字,编号使取代基的位次最小。
环丙烷环丁烷环戊烷环己烷环辛烷4-Ethyl-1,2-dimethyl-cyclopentane1,2-二甲基-4-乙基环戊烷例:2.双环螺脂环烃的命名是在成环碳原子总数的烷烃名称前加上“螺”字。
螺环的编号是从螺原子的邻位碳开始,由小环经螺原子至大环,并使环上取代基的位次最小。
将连接在螺原子上的两个环的碳原子数,按由少到多的次序写在方括号中,数字之间用下角圆点隔开,标在“螺”字与烷烃名之间。
例如螺[3.4]辛烷spiro[3.4]octane命名双桥脂环烃时,以碳环数“二环”为词头。
然后在方括号内按桥路所含碳原子的数目由多到少的次序列出,数字之间用下角圆点隔开。
方括号后写出分子中全部碳原子总数的烷烃名称。
编号的顺序是从一个桥头开始,沿最长桥路到第二桥头,再沿次长桥路回到第一桥头,最后给最短桥路编号,并使取代基位次最小。
例如:1,7-二甲基螺[4.4]壬烷1-甲基二环[4.1.0]庚烷 二环[2.2.2]辛烷1-methylbicyclo[4.1.0]heptane bicyclo[2.2.2]octane二、环烷烃的结构与稳定性 (一)拜尔张力学说o28'60o90o(1)碳原子成环时都处于同一平面,即具有平面的分子结构。
(2)根据正四面体的模型,假设成环后键角为109º28′的环状化合物不仅稳定,而且容易形成。
角张力:SP 3杂化的C 形成环丙烷时每个键必须向内偏转24º44′,形成环丁烷则须偏转9º44′,它们都有恢复稳定的正四面体结构的趋势,即键的偏转使分子内部产生了张力,这种张力是由于键角的偏转而产生,故称角张力。
有机化学-环烷烃
1、单环烷烃
单环烷烃是指分子结构中含有一个环的饱和烃类化合物。最简单的脂环烃是 环丙烷。
脂环烃是不少重要药物的主要成份。
2、分类和命名
2.1环烷烃的分类: (1)按碳数的多少分 环上碳原子数为3~4时, 称为小环;为5~6时,称为普通环;为7~12时,称为 中环;大于12时,称为大环。 (2)按环的多少分 分子中只有一个环的称为单 环;两个环的称为双环;有三个或以上环的称为多环。 (3)按环的结合方式分 两个环共用一个碳原 子——螺环;两个环共用两个碳原子——稠环;两个 环共用两个以上碳原子——桥环。
2.2 命名:
单环 在相应的开链烃名称前加一个“环”字即可,若有官能 团就使其位次号最小或尽可能的使取代基有最低的系列编号。
练习
环戊烷 甲基环丁烷 乙基环丙烷 1.1-二甲基环丙烷 1.2-二甲基-1-乙基环丙烷
二、环烷烃的物理性质பைடு நூலகம்1、在常温常压下,环丙烷与环丁烷为气体,环戊烷、环己烷为 液体。 2、环烷烃不溶于水,易溶于有机溶剂,比水轻。环烷烃的沸点、 熔点、相对密度都比同碳原子数的烷烃高
第二节 环烷烃
一、环烷烃 环烷烃(huán wán tīng),含有脂环结构的饱和烃。 有单环脂环和稠环脂环。 含有1个脂环且环上无取代烷基的环烷烃,
。环戊烷、环己烷及它们的烷基取代衍生物是石 油产品中常见的环烷烃。稠环环烷烃存在于高沸点石油 馏分中。环烷烃有很高的发热量,凝固点低,抗爆性介 于正构烃和异构烃之间。化学性质和烷烃相似。其中以 五碳脂环和六碳脂环的性质较稳定。
三、环烷烃的化学性质
乙二酸是合成尼龙的单体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部分:环烷烃2.7环烷烃
主要内容
分类和命名
脂环烃的化学性质
Baeyer张力学说
影响环状化合物稳定性的因素 环状化合物的构象
环己烷的构象
取代环己烷的构象
十氢化萘的构象
2.7.1 分类
脂环烃的定义:碳原子相互连接成环的烃 多数脂环烃性质和开链的饱和烃及不饱和烃类似
•分类:
饱和脂环烃(环烷烃)
脂环烃环烯烃
不饱和脂环烃
环炔烃
环戊二烯
顺反异构体
顺(Cis ): 相似基团位于环平面的同一边
反(Trans ):相似基团位于环平面的两边
顺-1,2-二甲基环戊烷反-1,2-二甲基环戊烷
环烷烃的分类
单环烷烃--只含一个环的环烷烃
桥环烷烃--共用两个或两个以上
碳原子的多环烷烃环烷烃
螺环烷烃--单环之间共用一个
碳原子的多环烷烃
集合环烷烃--环与环之间用单键
相连的多环烷烃
多环烃是指环之间有共同碳原子的多环化合物。
根据环中共有碳原子的不同可分为:
螺环烃
稠环烃
桥环烃
螺环烃(spiro hydrocarbons):脂环烃中两个碳环共有一个碳原子。
螺〔3,3〕庚环
spiro〔3,3〕heptane
螺环化合物命名时,在螺环化合物的名称前加一个螺(spiro)字,表示类型,用方括号中的阿拉伯数字表示每个环中碳的数目(共有原子除外),数字间用小黑点隔开,并按由小到大的顺序排列,母体名称由环中所含碳原子的总数表示。
3个碳的一边4个碳的一边
螺原子
螺〔3.4〕辛烷
spiro〔3.4〕octane
•编号从螺原子(共用原子)旁的一个碳原子开始,首先沿较小的环编号(如果存在),然后通过螺原子从第二个还编号。
在此编号规则基础上使取代基及官能团编号较小。
CH 3CH 3
1,5-二甲基螺〔3.5〕壬烷
1,5-demethyspiro 〔3.5〕nonane
1
2
345678
9
稠环烃(fused polycyclic hydrocarbons):脂环烃中两个碳环共有两个碳原子。
双环〔4,4,0〕癸烷
十氢化奈(decalin)
桥环烃的命名
1)词头双环(bicyclo)有时也称二环,表示它含有两个环,环数根据一个环状化合物转变成开链化合物时需断开的碳碳键数来确定。
2)公有的碳原子称为桥头碳(1,4),一般是分支最多的碳,两个桥头碳之间可以是碳链,也可以是一个碳键,称为桥。
方括号中由大到小排列的数字表示通过桥头的碳链中的碳数,用黑圆点把它们分开,如:〔3.2.1〕。
3)庚烷表示环中碳原子总数。
4)编号从一桥头开始,沿最长的桥到另一桥头,再沿次长的桥到第一桥头,最后编最短的桥。
在编号的基础上使官能团或取代基编号最小。
6
1
2
3
45
7
2,6,6-三甲基双环〔3.1.1.1〕-2-庚烯
2,6,6-
trimethyl bicyclo〔3.1.1〕-2-heptene
单环烃
双环烃双环和稠环化合物的命名
=
双环烃
双环和稠环化合物的命名
4.4.0双环[]癸烷
44
02424.2.2双环[]癸烷双环和稠环化合物的命名
Spiro[4.5]decane
螺[4.5]
癸烷
Bicyclo[4.3.0]nonane 双环[4.3.0]
壬烷Bicyclo[3.2.1]octane
双环[3.2.1]辛烷
命名
2.7.4 脂环烃的化学性质
•
2.环烷烃的加成开环反应1.自由基取代反应加氢
加卤素
加卤化氢
加水
环丁烷较环丙烷稳定,在较强烈的条件下被氧化,但在常温时甚至在催化剂作用下都不与氢或卤素起开环反应。
反应需要苛刻的条件。
CH2CH2 H C H2
Ni,H2 120℃CH2 H
环丁烷丁烷
环丁烷加氢
五元、六元环较稳定,不易开环。
环丙烷也不易臭氧化。
含三元环的多环化合物氧化时,反应发生在三元环的α位,三元环保
持不变,例如:
环丙烷与烯烃
既类似又有区别,它有抗氧化性,不使高锰酸钾水溶液褪色,可用此性质区分它与不饱和烃。
拜耳(Baeyer)张力学说
•张力学说的基础
(strain theory)
•张力学说的内容
•张力学说的缺陷
为什么环丙烷及环丁烷
易开环,而环戊烷及环
己烷却相对稳定呢?
A.Baeyer 1835-1917 (Germany. )
1885提出了张力学说,1905年获Nobel化学奖
1885年拜耳提出张力学说认为sp3杂化的碳与其它四个原子成键的角度应是109.5º,而三角形的环丙烷键角只能是60º,正方形的环丁烷键角应为90º,它们与正常键角的差分别是49.5º及19.5º,因此成环时需压缩正常键角以适应环的几何形状。
Baeyer张力学说的局限性
根据拜耳张力学说推断:环戊烷与正常键角差别最小为(109.5º-108º=1.5º),应最稳定,环己烷为(109.5º-120º=-10.5º),有一定的张力。
环增大张力也增大,因此大环化合物很难合成。
后来发现,这些结论都是错误的!这些错误的结论是在假设环状化合物是平面结构的基础上得出的。
近代测试结果表明,五碳及其以上的环中碳碳键的夹角都是109.5º,组成环的碳原子不使处在一个平面上,因此它们几乎不存在角张力.
环丁烷(Cyclobutane)•Angle strain due to compression •Torsional strain partially relieved by ring-puckering
环戊烷(Cyclopentane)
•If planar, angles would be 108 , but all hydrogens would be eclipsed.
•Puckered conformer reduces torsional strain.
环烷烃的稳定性
三元、四元环有较高的内能,不稳定
其余环的内能与开链烷烃接近,较稳定
五碳及其以上的环中碳碳间的夹角都是109.5 ,组成环的碳原子不是处在一个平面上,因此它们几乎不存在角张力
比较燃烧一个-CH
–放出的热量可知,放出热量越多,
2
与之相适应的环内能越大,越不稳定
Cycloalkane kJ/mol Per CH
2环丙烷Cyclopropane2,091 697.1环丁烷Cyclobutane2,721 686.2
影响环状化合物稳定性的因素
---环状化合物的构象
•角张力Angle (Baeyer) strain
•扭转张力torsion (bond rotation) energy-Torsional strain
•范德华力Van der Waals energy
•非键原子或基团间偶极和偶极之间的相互作用nonbonded interactions
角张力
任何与正常键角的偏差,降低轨道重叠性而引起的张力
stretch energy
伸展能
角张力
Angle (Baeyer) strain
范德华(Van der Waals)张力
e-+
e-
+两个不成键的原子靠近时,它们之间的吸引力逐渐增强,当原子之间距离等于范德华半径之和,吸引力达到最大。
这种分子中非键原子相互吸引的力是范德华引力的一种。
如果迫使原子进一步接近,则范德华引力立即被范德华斥力所代替,这个斥力称为范德华张力或空间张力。
非键原子或基团间偶极和偶极
之间的相互作用
•氢键、静电相互作用、范德华力。
•环状化合物的稳定构象,是上述四种力共同作用的结果
90º更稳定
扭转张力变小
83º
环丁烷可以通过扭转来减少“角张力”
H H H
H H H H
H 信封式
108º
100º
3 hybridized carbon
has the unstrained angle
环己烷可以通过扭转,使角张力与扭转张力都达到最小
角张力(120º bond angles)
扭转张力
(12 eclipsed C-H bonds)
无角张力
(109.5º 键角)
无扭转张力。