1、平均变化率

合集下载

变化率简介

变化率简介

变化率简介变化率是学习导数的前提,它在描述各种变化规律的过程中起着非常重要的作用,速度和加速度就是两个典型例子.新教材人教A 版中,对于变化率主要从以下两个方面介绍:1、平均变化率;2、瞬时变化率.一、平均变化率函数()y f x =在区间00[,]x x x +∆或(00[,]x x x +∆)上的平均变化率是商yx∆∆,其中x ∆是自变量x 在0x 处的改变量,可正可负,但不能为0,y ∆是函数值相应的改变量,即00()()y f x x f x ∆=+∆-(y ∆为正、负、零均可)所以00()()f x x f x y x x+∆-∆=∆∆,下面通过举例来进一步加深对概念的理解。

例1、求332-=x y 在0x 到x x ∆+0之间的平均变化率.解:当自变量从0x 到x x ∆+0之间变化时,函数的平均变化率为:x f∆∆=∆-∆+=x x f x x f )()(00xx x x ∆---∆+=]33[]3)(3[2020 x x xx x x ∆+=∆∆+∆⋅=36)(3602评注:此类题目只需要紧扣定义式,注意运算过程就可以了. 评注:⑴函数平均变化率的求法可分两步:①求y ∆;②求yx∆∆.⑵不论0x 、x ∆中的哪一个变化,都会引起函数平均变化率的变化。

拓展:函数()y f x =的平均变化率的几何意义为其图象上割线的斜率。

即:函数()y f x =的图象为曲线C ,曲线C 上有一点00(,)P x y 及邻近一点00(,)Q x x y y +∆+∆,则割线PQ 的斜率0000y y y yk x x x x+∆-∆==+∆-∆。

利用平均变化率的几何意义,可解决一些实际问题,举例如下:例2、某电视机厂有甲、乙两条生产流水线,产量S (单位:台)与时间t (单位:天)的关系如图所示,问:(1)0t 天内,甲、乙两条生产线的平均日产量哪个大?(2)在接近0t 天时,甲、乙两条生产线谁的日产量大?0,)x y y ∆+∆解析:(1) 0t 天内,甲、乙两条生产线的平均日产量,即函数1()S f t =与2()S f t =在0[0,]t 内的平均变化率,其都为直线OA 的斜率,所以0t 天内,甲、乙两条生产线的平均日产量相同。

用一元二次方程解决增长率问题含答案

用一元二次方程解决增长率问题含答案

用一元二次方程解决增长率问题含答案1.解决增长率问题的一元二次方程1.1 平均变化率问题安徽中考题目:一种药品原价每盒25元,经过两次降价后每盒16元。

设两次降价的百分率都为x,则x满足(D)16(1+2x)=25.阳泉市平定县月考题目:共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆。

设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为(A)1000(1+x)2=1000+440.巴中中考题目:巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售。

若两次下调的百分率相同,求平均每次下调的百分率。

解:设平均每次下调的百分率为x,根据题意,得5000(1-x)2=4050.解得x=10%。

广东中考题目:某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元。

求3月份到5月份营业额的月平均增长率。

解:设3月份到5月份营业额的月平均增长率为x,根据题意,得400×(1+10%)(1+x)2=633.6.解得x=20%。

1.2 市场经济问题泰安中考题目:某种花卉每盆的盈利与每盆的株数有一定的关系。

每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元。

要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是(A)(3+x)(4-0.5x)=15.达州中考题目:新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每售出1件,价格就下降0.5元。

若该童装原价为10元/件,则在售完全部存货后,该童装的平均售价为(A) 9.5元/件。

为了迎接“六一”儿童节,商场决定采取适当的降价措施,每件童装盈利40元。

平均变化率与瞬时变化率详解课件

平均变化率与瞬时变化率详解课件
瞬时变化率
定义与计算
瞬时变化率定义
瞬时变化率是指在某一时刻,函数值随自变量变化的快慢程度。通常用导数来 表示函数的瞬时变化率。
瞬时变化率的计算
对于函数$f(x)$,其瞬时变化率可以通过求导数$f'(x)$来计算。即,如果$f(x)$ 在$x=x_0$处的导数为$f'(x_0)$,则$f'(x_0)$即为在$x=x_0$处的瞬时变化率 。
,可以获得股票价格的预测结果,对于投资决策和风险管理具有重要意义。
机械故障预测
总结词
机械故障预测是基于机械设备运行过程中的数据,通 过分析变化率等信息,来预测设备可能出现的故障时 间和类型。
详细描述
机械故障预测是机械工程领域中的一个重要应用案例 。通过对机械设备运行过程中的数据进行分析,可以 提取出设备的运行特征和故障征兆,从而预测设备可 能出现的故障时间和类型。其中,变化率是一个重要 的指标,它可以反映设备的运行状态和磨损程度。通 过对变化率的计算和分析,可以获得机械故障预测结 果,对于提高设备运行效率和安全性具有重要意义。
感谢观看
THANKS
拐点和极值
函数的拐点可能是导函数的零 点,但并非所有导函数的零点
都是函数的拐点。
导数的计算方法
定义法
根据导数的定义计算导 数。
求导公式
利用常见函数的导数公 式进行计算。
复合函数求导
复合函数的导数可以利 用链式法则和乘法法则
进行计算。
高阶导数
高阶导数的计算需要利 用低阶导数的计算方法
,并逐阶求导。
04
瞬时变化率的性质
瞬时变化率非负性
对于单调递增函数,其瞬时变化率大于等于0;对于单调递减函数,其瞬时变化 率小于等于0。

第1课 平均变化率与瞬时变化率(教师版)

第1课 平均变化率与瞬时变化率(教师版)

第1课 平均变化率与瞬时变化率一、平均变化率 1.引例(1)气球膨胀率:我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?①气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=。

如果将半径r 表示为体积V 的函数,那么343)(πV V r =, ②当V 从0增加到1时,气球半径增加了33(1)(0)0.62()4r r dm π-=≈,气球的平均膨胀率为3(1)(0)30.62(/)104r r dm L π-=≈- ③当空气容量从V 1增加到V 2时,气球的平均膨胀率是1212)()(V V V r V r --(2)高台跳水:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系22618h t t =-++.用运动员在某些时间段内的平均速v 度粗略地描述其运动.思考计算:01t ≤≤的平均速度v在01t ≤≤这段时间里,(1)(0)4(/)10h h v m s -==-;2. 函数的平均变化率(1)定义:对于函数()y f x =,给定自变量的两个值1x 和2x ,当自变量x 从1x 变为2x 时,函数值从()1f x 变为()2f x ,把2121()()f x f x y x x x -∆=∆-称为函数()y f x =从1x 到2x 的平均变化率.习惯上用x ∆表示21x x -,即x ∆=21x x -,可把x ∆看作是相对于x 1的一个“增量”,可用1x x +∆代替x 2;类似地y ∆=()()21f x f x -.于是,平均变化率可表示为yx∆∆. (2)平均变化率的几何意义设(())A x f x 11,,(())B x f x 22,是曲线()y f x =上任意不同的两点,函数()y f x =的平均变化率hto211121()()()()f x f x f x x f x y x x x x-+∆-∆==∆-∆为割线AB 的斜率,如右图所示. 【例1】已知函1()f x x x=+,分别计算()f x 在自变量x 从1变到2和从3变到5时的平均变化率,并判断在哪个区间上函数值变化得较快. 【解析】自变量x 从1变到2时,函数()f x 的平均变化率为 f (2)-f (1)2-1=2+12-(1+1)1=12;自变量x 从3变到5时,函数()f x 的平均变化率为 f (5)-f (3)5-3=5+15-⎝ ⎛⎭⎪⎫3+132=1415.因为12<1415,所以函数1()f x x x =+在自变量x 从3变到5时函数值变化得较快.归纳:计算平均变化率的步骤:①求自变量的增量21x x x ∆=-; ②求函数的增量()()21y f x f x ∆=-;③求平均变化率2121()()f x f x y x x x -∆=∆- 二、瞬时变化率 1. 瞬时速度:(1)引例:在上例“高台跳水”中,22618h t t =-++,计算运动员在03t ≤≤这段时间里的平均速度,并思考以下问题: ①运动员在这段时间内使静止的吗?②你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数22618h t t =-++的图像,结合图形可知,(3)(0)h h =, 所以(3)(0)0(/)30h h v m s -==-,虽然运动员在03t ≤≤这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (2)定义:我们把物体在某一时刻的速度称为瞬时速度 ③运动员在1t =的瞬时速度v 是多少? 运动员在[1,1]t +∆的平均速度为22(1)(1)2(1)6(1)216122(/)h h t h t t v t m s t t t∆+∆--+∆++∆+⨯-⨯====-⋅∆+∆∆∆所以运动员在1t =的瞬时速度为00limlim(22)2(/)t t hv t m s t ∆→∆→∆==-⋅∆+=∆2. 瞬时变化率:一般地,函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即00000()()()lim limx x f x x f x yf x x x ∆→∆→+∆-∆'==∆∆ 【例2】如果某物体的运动路程s 与时间t 满足函数2)2(1(s t s =+的单位为m ,t 的单位为)s ,求此物体在1.2s 末的瞬间速度.【解析】224[()1]2()()21 1.2 1.2.82s t t t ∆∆-==+++∆+∆2,004.82limlim() 4.8t t t st ∆→∆→∆∆=∆+=,即 1.2| 4.8t s ==',故物体在1.2 s 末的瞬时速度为4.8 /m s . 【例3】已知函数()2f x x x =-+(1) 求函数()f x 在1x =-附近的平均变化率 (2) 求函数()f x 在1x =-的瞬时变化率 解:(1)(1)(1)y f x f ∆=-+∆--22(1)(1)[(1)(1)]x x =--+∆+-+∆---+-2()3x x =-∆+⋅∆所以,函数()f x 在1x =-附近的平均变化率为2()33y x xx x x∆-∆+⋅∆==-∆∆∆ (2)函数()f x 在1x =-的瞬时变化率为00(1)limlim(33)x x yf x x ∆→∆→∆'-=-∆==∆【例4】将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.解:在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f 根据导数定义,0(2)()f x f x fx x+∆-∆=∆∆ 22(2)7(2)15(27215)3x x x x+∆-+∆+--⨯+==∆-∆所以00(2)limlim(3)3x x ff x x ∆→∆→∆'==∆-=-∆同理可得:(6)5f '=在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在2h 附近,原油温度大约以3/C h 的速率下降,在第6h 附近,原油温度大约以5/C h 的速率上升.第1课 平均变化率与瞬时变化率同步作业1.已知函数21y x =+,则在2x =,0.1x ∆=时,y ∆的值为( ) A .0.40 B .0.41 C .0.43 D .0.44【答案】B【解析】2()(21)0.4120.1y +==+2Δ+1-2.一运动物体的运动路程()s t 与时间x 的函数关系为2()2s t t t =-+,则()s t 从2到2t +∆的平均速度为( )A .t -2ΔB .t --2ΔC .t +2ΔD .()t t -2Δ2Δ【答案】B【解析】因为s (2)=-22+2×2=0,所以s (2+Δt )=-(2+Δt )2+2(2+Δt )=-2Δt-(Δt )2, 所以s (2+Δt )-s (2)2+Δt -2=-2-Δt .3.一个物体的运动方程为1s t t =-+2,其中s 的单位是:m t ,的单位是:s ,那么物体在t =3s 时的瞬时速度为( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s 【答案】C【解析】:因为221(3)(3)(133)5t t t s t t∆=∆=∆∆-+∆++--++∆所以()005l i 5i /ml m()t t st t ∆→∆→=+=∆∆∆m s4.若函数f (x )=-x 2+10的图象上一点331,24⎛⎫⎪⎝⎭及邻近一点331,24x y ⎛⎫+∆+∆ ⎪⎝⎭,则y x ∆∆=( )A .3B .-3C .-3-()2x ∆ D .-x ∆-3【答案】D【详解】()233322y f x f x x ⎛⎫⎛⎫∆=+∆-=-∆-∆ ⎪ ⎪⎝⎭⎝⎭,()233x x y x x x-∆-∆∆∴==--∆∆∆.故选:D. 5. 一直线运动的物体,从时间t 到t t ∆+时,物体的位移为s ∆,则tst ∆∆→∆0lim为( )A .从时间t 到t t ∆+一段时间内物体的平均速度B .在t 时刻时该物体的瞬时速度C .当时间为t ∆时物体的速度D .在时间t t ∆+时刻物体的瞬时速度 6.(多选)一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m)与时间t (单位:s)之间的函数表达式为h (t )=2t 2+2t ,则下列说法正确的是( ) A .前3 s 内球滚下的垂直距离的增量Δh =24 m ;B .在时间[2,3]内球滚下的垂直距离的增量Δh =12 m ;C .前3 s 内球的平均速度为6 m/s ;D .在时间[2,3]内球的平均速度为12 m/s. 【答案】ABD【解析】前3 s 内,Δt =3 s ,Δh =h (3)-h (0)=24(m),此时平均速率为Δh Δt =243=8(m/s),故A 正确,C 不正确;在时间[2,3]内,Δt =3-2=1(s),Δh =h (3)-h (2)=12(m),故平均速度为ΔhΔt=12(m/s),所以BD 正确.综上,A BD都正确.7.2019年4月5日,某地上午9:20的气温为23.4 ℃,下午1:30的气温为15.9 ℃,则在这段时间内气温的平均变化率为__________℃/min. 【答案】-0.03【解析】从上午9:20到下午1:30,共250 min ,这段时间内气温的变化量为15.9-23.4=-7.5(℃)(即气温下降7.5 ℃),所以在这段时间内气温的平均变化率为-7.5250=-0.03(℃/min).8.一做直线运动的物体,其位移()s m 与时间()t s 的关系是23s t t =-,则该物体的初速度是________. 【答案】3 m/s【解析】2000(0)(0)00333lim lim lim() /t t t t t V s t tt ∆→∆→∆→+=∆-==-+⨯=∆+-∆23ΔΔΔm s 初,故物体的初速度为3 m/s.9.如图所示,函数y =f (x )在[x 1,x 2],[x 2,x 3],[x 3,x 4]这几个区间内,平均变化率最大的一个区间是________. 【答案】[x 3,x 4]【解析】由平均变化率的定义可知,函数y =f (x )在区间[x 1,x 2],[x 2,x 3],[x 3,x 4]上的平均变化率分别为:f (x 2)-f (x 1)x 2-x 1,f (x 3)-f (x 2)x 3-x 2,f (x 4)-f (x 3)x 4-x 3,结合图象可以发现函数y =f (x )的平均变化率最大的一个区间是[x 3,x 4].10.某河流在一段时间min x 内流过的水量为3m y ,已知y 是x 的函数,且()y f x ==x 从1变到8时,y 关于x 的平均变化率是多少?它代表什么实际意义?【详解】当x 从1变到8时,y 关于x 的平均变化率为()()()381211m /min 8177f f --==-,它表示时间从1min 增加到8min 的过程中,每增加1min ,水流量平均增加31m 7. 11.求函数2()24y f x x x +==在3x =处的瞬时变化率.解:()()()y x x ⨯⨯22Δ23Δ43Δ2343=+++-+()()x x x x x 2212Δ2Δ4Δ2Δ16Δ=++=+, 所以Δy Δx =2(Δx )2+16Δx Δx=2Δx +16.所以函数2()24y f x x x +==在3x =处的瞬时变化率为00limlim()16216x x yx x ∆→∆→∆+∆==∆12.已知()0)(f x kx b k =+≠在区间[-2,6]上的平均变化率为2,且函数图象过点(0)2,,试求该一次函数的表达式.【解析】因为函数()f x 的图象过点(0,2),所以b =2,即f (x )=kx +2. 因为Δy Δx =f (6)-f (-2)6-(-2)=2,即(6k +2)-(-2k +2)8=2,解得k =2,所以该一次函数的表达式为f (x )=2x +2. 13.求函数()2x f x =与1()12g x x =-在区间[1,](0)a a a -<上的平均变化率,并比较它们的大小.【详解】()2x f x =在区间[1,](0)a a a -<上的平均变化率为11()(1)222(1)a a a f f a f a x a a --∆--==-=∆--; 1()12g x x =-在区间[1,](0)a a a -<上的平均变化率为: 111(1)1()(1)122(1)12a a g g a g a x a a ⎛⎫⎡⎤---- ⎪⎢⎥∆--⎝⎭⎣⎦===∆--. 0,11a a <∴-<-111222a --∴<=,()2x f x ∴=在区间[1,](0)a a a -<上的平均变化率比1()12g x x =-在区间[1,](0)a a a -<上的平均变化率小.。

1.1.1平均变化率

1.1.1平均变化率

1.1.1 平均变化率【教学目标】1. 理解函数的平均变化率2. 能求出函数在某一区间上的平均变化率 【重点难点】重点:函数在某一区间上的平均变化率 难点:平均变化率的几何意义 【教学过程】 一、问题导学假设下图是一座山的剖面示意图,并在上面建立平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示.自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点A 的坐标为(x 0,y 0),点B 的坐标为(x 1,y 1).问题1:若旅游者从A 点爬到B 点,则自变量x 和函数值y 的改变量Δx ,Δy 分别是多少?问题2:如何用Δx 和Δy 来刻画山路的陡峭程度?问题3:试想Δy Δx =y 1-y 0x 1-x 0的几何意义是什么?问题4:从A 到B ,从A 到C ,两者的Δy Δx 相同吗?ΔyΔx 的值与山路的陡峭程度有什么关系?二、新知自解1.一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为 .2.平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”. 归纳总结:在函数平均变化率的定义中,应注意以下几点: (1)函数在[x 1,x 2]上有意义;(2)在式子f x 2 -f x 1 x 2-x 1中,x 2-x 1>0,而f (x 2)-f (x 1)的值可正、可负、可为0.(3)在平均变化率中,当x 1取定值后,x 2取不同的数值时,函数的平均变化率不一定相同;同样的,当x 2取定值后,x 1取不同的数值时,函数的平均变化率也不一定相同.三、问题探究1、求函数在某区间的平均变化率【例1】(1)求函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率;(2)求函数g (x )=3x -2在区间[-2,-1]上的平均变化率.【规律总结】求函数平均变化率的步骤为: 第一步:求自变量的改变量x 2-x 1;第二步:求函数值的改变量f (x 2)-f (x 1);第三步:求平均变化率f x 2 -f x 1x 2-x 1.【对点练1】(1)函数g (x )=-3x 在[2,4]上的平均变化率是________.(2)如图是函数y =f (x )的图象,则:①函数f (x )在区间[-1,1]上的平均变化率为______; ②函数f (x )在区间[0,2]上的平均变化率为________. 2.实际问题中的平均变化率【例2】物体的运动方程为S =t +1(位移单位:m ;时间单位:s ),求物体在t =1 s 到t =(1+Δt )s 这段时间内的平均速度.【规律总结】平均变化率问题在生活中随处可见,常见的有求某段时间内的平均速度、加速度、膨胀率、经济效益等.分清自变量和因变量是解决此类问题的关键.【对点练2】(3)圆的半径r从0.1变化到0.3时,圆的面积S的平均变化率为________.(4)在F1赛车中,赛车位移(单位:m)与比赛时间t(单位:s)存在函数关系S=10t+5t2,则赛车在[20,20.1]上的平均速度是多少?3、函数平均变化率的应用【例3】甲、乙两人走过的路程s1(t),s2(t)与时间t的关系如图所示,试比较两人的速度哪个大?【规律总结】平均变化率的绝对值反映函数在给定区间上变化的快慢,平均变化率的绝对值越大,函数在区间上的变化率越快;平均变化率的绝对值越小,函数在区间上的变化率越慢.【对点练3】(5)汽车行驶的路程s和时间t之间的函数图象如图所示.在时间段[t0,t1],[t1,t2],[t2,t3]上的平均速度分别为v1,v2,v3,则三者的大小关系是.(6)A、B两机关开展节能活动,活动开始后,两机关每天的用电情况如图所示,其中W1(t)、W2(t)分别表示A、B两机关的用电量与时间第t天的关系,则下列说法一定正确的是________.(填序号)①两机关节能效果一样好;②A机关比B机关节能效果好;③A机关在[0,t0]上的用电平均变化率比B机关在[0,t0]上的用电平均变化率大;④A机关与B机关自节能以来用电量总是一样大.四、课堂小结1.求函数在指定区间上的平均变化率应注意的问题(1)平均变化率的公式中,分子是区间两端点间的函数值的差,分母是区间两端点间的自变量的差.(2)平均变化率公式中,分子、分母中被减数同时为右端点,减数同为左端点. 2.平均变化率的几何意义(1)平均变化率f x 2 -f x 1 x 2-x 1表示点(x 1,f (x 1)),(x 2,f (x 2))连线的斜率,是曲线陡峭程度的“数量化”.(2)平均变化率的大小类似函数的单调性,可说明函数图象的陡峭程度.五、课堂跟踪练习1.函数f (x )=x 2-1在区间[1,1.1]上的平均变化率为________. 2.函数f (x )=2x +4在区间[a ,b ]上的平均变化率为________.3.某人服药后,人吸收药物的情况可以用血液中药物的浓度c (单位:mg/mL)来表示,它是时间t (单位:min)的函数,表示为c =c (t ),下表给出了c (t )的一些函数值:4.如图所示物体甲、乙在时间0到t1范围内路程的变化情况,则在0到t 0范围内甲的平均速度________乙的平均速度,在t 0到t 1范围内甲的平均速度________乙的平均速度(填“等于”、“大于”或“小于”).5.函数y =x 3+2在区间[1,a ]上的平均变化率为21,则a =________. 6.已知函数f (x )=2x 2+1.求函数f (x )在区间[2,2.01]上的平均变化率.7.求函数y =sin x 在0到π6之间和π3到π2之间的平均变化率,并比较它们的大小.。

高二数学平均变化率1

高二数学平均变化率1
均变化率:
(1)[-1,2]; (3)
(2)[-1,1]; (3)
(3)[-1,-0.9];(3)
例5、已知函数 f (x) x2 ,分别
计算f (x) 在下列区间上的平均变 化率:(1)[1,3]; 4
(2)[1,2]; 3 (3)[1,1.1] 2.1
(4)[1,1.001] 2.001
y
1
3
x
练习:P55
1、平均变化率
一般的,函数 f (x)在区间上 [x1,x 2 ]的平均变化率为
f ( x1) f (x2 ) x1 x2
2、平均变化率是曲线陡峭程度的“数量化”,是一种粗 略
的刻画 --------导数
2006江苏省盐成中学对外公开课
平均变化率
; 必威电竞 ;
时间
日最高气 温
3月18 4月18 4月20



3.5℃ 18.6℃ 33.4℃
温差15.1℃ 温差14.8℃
“气温陡增”这一句生活用语,用数学方法如何刻画
?
T (℃) 30
20
10 A (1, 3.5)
2
02
10
联想 直线
C (34, 33.4)
K=7.4
B (32, 18.6)
K=0.5
20
第6个月到第12个月体重平均变化率为:
11 8.6 0.4(kg /月) 12 6
9
12 T(月)
例2、水经过虹吸管从容器甲中流向容器
乙,t s后容器甲中水的体积V (t) 5 20.1t
(单位:cm3 ),计算第一个10s内V的平
均变化率。
解 : 在时时[0,10]内的平均

高中数学1-1平均变化率1-2瞬时变化率北师大版选择性必修第二册

高中数学1-1平均变化率1-2瞬时变化率北师大版选择性必修第二册
=4a+aΔt,
Δ
当Δt趋于0时,4a+aΔt趋于4a,
∴4a=8,解得a=2.
角度2.求函数的瞬时变化率
1
【例4】 估算函数y=x- 在x=1处的瞬时变化率.

解 因为
1
1
Δ
Δ
Δy=(1+Δx)-1+Δ-(1-1)=Δx+1+Δ,所以Δ
=
Δ
1+Δ=1+ 1 .
Δ+
Δ
1+Δ
1
(3)瞬时变化率刻画的是函数在某一点处变化的快慢.( √ )
2.如果某物体在某时间段内的平均速度为0,能否判定该物体在此时间段内
的瞬时速度都为0?
提示 不能.
重难探究·能力素养全提升
探究点一
平均变化率
角度1.求物体运动的平均速度
【例1】 某物体运动的位移s与时间t之间的函数关系式为s(t)=sin t,
=
( 0 +Δ)-( 0 )
;
Δ
趋于的那个确定值即为所求函数在某点处的瞬时变
变式训练4已知函数f(x)= √ ,估算f(x)在x=1处的瞬时变化率为
解析 由题意可得
(1+Δ)-(1)
Δ
=
当 Δx 趋于 0
√1+Δ-1
Δ
=
1
,
√1+Δ+1
1
1
时,
趋于 ,因此
2
√1+Δ+1
时速度.


无限趋近于常数v,即为t0时刻的瞬
变式训练3一质点M按函数s(t)=at2+1做直线运动(位移单位:m,时间单位:s),

江苏省数学优课评比说课课件---平均变化率江苏省南通第一中学葛红娟

江苏省数学优课评比说课课件---平均变化率江苏省南通第一中学葛红娟

教学技巧
01
02
03
有效提问
教师提出的问题应具有针 对性、层次性和启发性, 能够引导学生深入思考, 促进他们的思维发展。
多媒体辅助
教师利用多媒体技术,如 PPT、几何画板等,制作 生动形象的课件,帮助学 生更好地理解数学知识。
实例应用
教师引入生活中的实例, 让学生感受到数学的实用 性和趣味性,提高他们的 学习兴趣。
平均变化率的应用
总结词
广泛、实用
详细描述
平均变化率概念在数学、物理、工程等多个领域都有应用。例如,在物理学中 ,平均速度的定义实际上就是平均变化率在时间上的应用。在经济学中,平均 变化率可以用来分析成本、收益随时间的变化趋势。
平均变化率与其他数学概念的关联
总结词
深入、复杂
详细描述
平均变化率与导数、积分等高级数学概念有密切联系。导数实际上就是函数在某点的切线斜率,而这个斜率可以 看作是函数在该点附近的小区间上的平均变化率。积分则可以看作是对函数在某个区间上的平均变化率的求和。
在课堂互动环节,部分学生未能积极参与讨论,需要改进教学方法,提 高课堂氛围。
对未来教学的展望
深入研究教材和教法 ,不断更新教学理念 和手段。
注重培养学生的数学 思维能力和应用能力 ,加强数学与其他学 科的联系。
加强与学生的沟通和 互动,提高课堂氛围 和教学效果。
对学生数学学习的建议
注重基础知识的学习和掌握, 不要忽视细节和基本概念。
江苏省数学优课评比说课课件---平 均变化率江苏省南通第一中学葛红

目 录
• 课程介绍 • 平均变化率概念解析 • 教学方法与技巧 • 教学案例分析 • 教学反思与展望
01
课程介绍

学业分层测评1 平均变化率-文档资料

学业分层测评1 平均变化率-文档资料

学业分层测评(一)(建议用时:45分钟)[学业达标]一、填空题1.函数f(x)=1x在[2,6]上的平均变化率为________.【解析】f(6)-f(2)6-2=16-126-2=-112.【答案】-1 122.函数f(x)=log2x在区间[2,4]上的平均变化率是________.【解析】函数的平均变化率是f(4)-f(2)4-2=2-12=12.【答案】1 23.已知某质点的运动规律为s(t)=5t2(单位:m),则在1 s到3 s这段时间内,该质点的平均速度为________m/s.【解析】s(3)-s(1)3-1=5×32-5×122=20(m/s).【答案】204.在雨季潮汛期间,某水位观测员观察千岛湖水位的变化,在24 h内发现水位从102.7 m上涨到105.1 m,则水位涨幅的平均变化率是________m/h.【解析】105.1-102.724=0.1(m/h).【答案】0.15.已知函数f(x)=ax+b在区间[1,8]上的平均变化率为3,则实数a=________.【解析】对于一次函数,在其定义域内的任一区间上的平均变化率相等.与一次函数对应直线的斜率相等.故a =3.【答案】 36.已知某物体运动的速度与时间之间的关系式是v (t )=t +13t 3,则该物体在时间间隔⎣⎢⎡⎦⎥⎤1,32内的平均加速度为________. 【解析】 平均加速度32+13·⎝ ⎛⎭⎪⎫323-⎝ ⎛⎭⎪⎫1+1332-1=3112. 【答案】 31127.设某产品的总成本函数为C (x )=1 100+x 21 200,其中x 为产量数,生产900个单位到1 000个单位时总成本的平均变化率为________.【解析】 C (1 000)-C (900)=(1 000)2-(900)21 200则C (1 000)-C (900)1 000-900=(1 000+900)×1001 200×100=1912. 【答案】 19128.汽车行驶的路程s 和时间t 之间的函数图象如图1-1-2所示.在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,其三者的大小关系是________.图1-1-2【解析】 ∵v 1=s (t 1)-s (t 0)t 1-t 0=k MA , v 2=s (t 2)-s (t 1)t 2-t 1=k AB , v 3=s (t 3)-s (t 2)t 3-t 2=k BC ,由图象可知:k MA <k AB <k BC ,∴v 3>v 2>v 1.【答案】 v 3>v 2>v 1二、解答题9.假设在生产8到30台机器的情况下,生产x 台机器的成本是c (x )=x 3-6x 2+15x (元),而售出x 台的收入是r (x )=x 3-3x 2+12x (元),则生产并售出10台至20台的过程中平均利润是多少元?【解】 依题意,生产并售出x 台所获得的利润是L (x )=r (x )-c (x )=3x 2-3x (元),∴x 取值从10台至20台的平均利润为L (20)-L (10)20-10=3×202-3×20-(3×102-3×10)10 =87(元),故所求平均利润为87元.10.2019年冬至2019年春,某国北部某省冬麦区遭受严重干旱,根据某市农业部门统计,该市小麦受旱面积如图1-1-3所示,据图回答:图1-1-3(1)2019年11月至2019年12月间,小麦受旱面积变化大吗?(2)哪个时间段内,小麦受旱面积增幅最大?(3)从2019年11月到2019年2月,与从2019年1月到2019年2月间,试比较哪个时间段内,小麦受旱面积增幅较大?【解】 (1)在2019年11月至2019年12月间,Δs 变化不大,即小麦受旱面积变化不大.(2)由图形知,在2019年1月至2019年2月间,平均变化率Δs Δt 较大,故小麦受旱面积增幅最大.(3)在2019年11月至2019年2月间,平均变化率为s B -s A 3,在2019年1月至2019年2月间,平均变化率为s B -s C 1=s B -s C ,显 然k BC >k AB ,即s B -s C >s B -s A 3,∴在2019年1月至2019年2月间,小麦受旱面积增幅较大.[能力提升]1.如图1-1-4是函数y =f (x )的图象,则函数f (x )在区间[0,2]上的平均变化率为________.【导学号:01580002】图1-1-4【解析】 由函数f (x )的图象知,f (x )=⎩⎨⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34. 【答案】 342.已知曲线y =1x -1上两点A ⎝ ⎛⎭⎪⎫2,-12,B ⎝ ⎛⎭⎪⎫2+Δx ,-12+Δy ,当Δx =1时,直线AB 的斜率为________.【解析】 ∵Δx =1,2+Δx =3,∴f (2+Δx )-f (2)=⎝ ⎛⎭⎪⎫13-1-⎝ ⎛⎭⎪⎫12-1 =13-12=-16.k AB =f (2+Δx )-f (2)Δx =-16.【答案】 -163.函数y =x 3+2在区间[1,a ]上的平均变化率为21,则a =________.【解析】 (a 3+2)-(13+2)a -1=a 3-1a -1=a 2+a +1=21. 解之得a =4或a =-5.又∵a >1,∴a =4.【答案】 44.巍巍泰山为我国五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?图1-1-5【解】 山路从A 到B 高度的平均变化率为h AB =Δy Δx =10-050-0=15, 山路从B 到C 高度的平均变化率为h BC =Δy Δx =15-1070-50=14, ∵h BC >h AB ,∴山路从B 到C 比从A 到B 要陡峭得多.。

第1章 1.1.1 平均变化率

第1章 1.1.1 平均变化率

1.1 导数的概念 1.1.1 平均变化率学习目标 1.了解平均变化率的实际背景.2.理解平均变化率的含义.3.会求函数在某一点附近的平均变化率,并能用平均变化率解释一些实际问题.知识点 平均变化率1.一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1.2.平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”.特别提醒:在函数平均变化率的定义中,应注意以下几点: (1)函数在区间[x 1,x 2]上有意义.(2)在式子f (x 2)-f (x 1)x 2-x 1中,x 2-x 1>0,而f (x 2)-f (x 1)的值可正、可负、可为0.(3)实质:函数值的增量与自变量的增量之比. (4)作用:刻画函数值在区间[x 1,x 2]上变化的快慢.1.平均变化率一定为正值.( × )2.函数的平均变化率为零,说明函数没有发生变化.( × ) 3.在平均变化率中,函数值的增量为正值.( × )4.函数在区间上的变化速度与平均变化率的绝对值大小有关.( √ )一、实际问题中的平均变化率例1 (1)蜥蜴的体温与阳光的照射有关,其关系为T =120t +5+15,其中T 为体温(单位:℃),t 为太阳落山后的时间(单位:min),则t =0到t =10 min ,蜥蜴的体温的平均变化率为_______℃/min. 答案 -1.6解析 ΔT Δt =T (10)-T (0)10-0=⎝ ⎛⎭⎪⎫12010+5+15-⎝ ⎛⎭⎪⎫1200+5+1510=-1.6(℃/min),∴从t =0到t =10 min ,蜥蜴的体温的平均变化率为-1.6℃/min.(2)某森林公园在过去的10年里,森林占地面积变化如图所示,试分别计算前5年与后5年森林面积的平均变化率.解 前5年森林面积的平均变化率为6.5-2.55-0=0.8(公顷/年).后5年森林面积的平均变化率为14.5-6.510-5=1.6(公顷/年).反思感悟 平均变化率问题在生活中随处可见,常见的有求某段时间内的平均速度、加速度、膨胀率、经济效益等.分清自变量和因变量是解决此类问题的关键.跟踪训练1 某质点沿方程为y =f (x )=5x 2+3(x 表示时间,f (x )表示位移)的曲线运动,则该质点从x =10到x =11的平均速度等于________. 答案 105解析 因为f (x )=5x 2+3,则质点从x =10到x =11的平均速度为v =f (11)-f (10)11-10=(5×112+3)-(5×102+3)11-10=105.二、函数在某区间上的平均变化率例2 (1)求函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率; (2)求函数g (x )=3x -2在区间[-2,-1]上的平均变化率. 解 (1)函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率为f (2.1)-f (2)2.1-2=(3×2.12+2)-(3×22+2)0.1=12.3.(2)函数g (x )=3x -2在区间[-2,-1]上的平均变化率为g (-1)-g (-2)(-1)-(-2)=[3×(-1)-2]-[3×(-2)-2](-1)-(-2)=(-5)-(-8)-1+2=3.反思感悟 求函数平均变化率的步骤 (1)求自变量的改变量x 2-x 1. (2)求函数值的改变量f (x 2)-f (x 1). (3)求平均变化率f (x 2)-f (x 1)x 2-x 1.跟踪训练2 (1)计算函数y =f (x )=x 2从x =1到x =1+Δx 的平均变化率,其中Δx 的值为: ①2;②1;③0.1;④0.01;(2)思考:当Δx 越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率有怎样的变化趋势? 解 (1)因为f (1+Δx )-f (1)=(1+Δx )2-12=(Δx )2+2Δx , 所以f (1+Δx )-f (1)Δx =(Δx )2+2Δx Δx =Δx +2.①当Δx =2时,平均变化率Δx +2=4, 即函数f (x )=x 2在区间[1,3]上的平均变化率为4; ②当Δx =1时,平均变化率Δx +2=3, 即函数f (x )=x 2在区间[1,2]上的平均变化率为3;③当Δx =0.1时,平均变化率Δx +2=2.1,即函数f (x )=x 2在区间[1,1.1]上的平均变化率为2.1; ④当Δx =0.01时,平均变化率Δx +2=2.01,即函数f (x )=x 2在区间[1,1.01]上的平均变化率为2.01.(2)当Δx 越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变小,并接近于2. 三、函数平均变化率的应用例3 婴儿从出生到第24个月的体重变化如图,则婴儿体重在第________年增长较快.答案 一解析 ∵ΔW 1Δt 1=11.25-3.7512-0=0.625,ΔW 2Δt 2=14.25-11.2524-12=0.25, ∴ΔW 1Δt 1>ΔW 2Δt 2,故第一年婴儿体重的平均变化率大,婴儿体重增长较快. 反思感悟 平均变化率的绝对值反映函数在给定区间上变化的快慢,平均变化率的绝对值越大,函数在区间上的变化速度越快;平均变化率的绝对值越小,函数在区间上的变化速度越慢.跟踪训练3 汽车行驶的路程S 和时间t 之间的函数图象如图所示.在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系是______________.答案 v 3>v 2>v 1解析 v 1=S (t 1)-S (t 0)t 1-t 0=k OA ,v 2=S (t 2)-S (t 1)t 2-t 1=k AB ,v 3=S (t 3)-S (t 2)t 3-t 2=k BC ,由图象知,k OA <k AB <k BC , 所以v 3>v 2>v 1.1.如图,函数y =f (x )在A ,B 两点间的平均变化率等于( )A .1B .-1C .2D .-2答案 B解析 平均变化率为1-33-1=-1.故选B.2.一物体的运动方程是S =3+2t ,则在[2,2.1]这段时间内的平均速度是( ) A .0.4 B .2 C .0.3 D .0.2 答案 B解析 v =S (2.1)-S (2)2.1-2=7.2-70.1=2.3.函数f (x )=2x +4在区间[a ,b ]上的平均变化率为________. 答案 2 解析f (b )-f (a )b -a =(2b +4)-(2a +4)b -a =2(b -a )b -a=2. 4.一个半径为r 的圆面,当半径增大Δr 时,面积S 的平均变化率为________. 答案 2πr +π·Δr解析 半径增大Δr 时,面积增加ΔS =π(r +Δr )2-πr 2 =π(Δr )2+2πr ·Δr ,所以ΔS Δr =π(Δr )2+2πr ·Δr Δr=2πr +π·Δr .5.某市一天12小时内的气温变化图如图所示,则在区间[0,4]内温度的平均变化率为________ ℃/h.答案 -14解析 Δy Δx =f (4)-f (0)4-0=-14(℃/h).1.知识清单: (1)平均变化率.(2)平均变化率的几何意义及应用. 2.方法归纳:转化法.3.常见误区:对平均变化率的理解不透彻导致出错.1.已知函数y =2+1x ,当x 由1变到2时,函数的增量Δy 等于( )A.12 B .-12 C .1 D .-1 答案 B解析 Δy =⎝⎛⎭⎫2+12-(2+1)=-12. 2.已知函数f (x )=x 2+2,则该函数在区间[1,3]上的平均变化率为( ) A .4 B .3 C .2 D .1 答案 A解析 ∵f (3)=11,f (1)=3,∴该函数在区间[1,3]上的平均变化率为f (3)-f (1)3-1=11-33-1=4.3.某质点沿曲线运动的方程为f (x )=-2x 2+1(x 表示时间,f (x )表示位移),则该质点从x =1到x =2的平均速度为( ) A .-4 B .-8 C .6 D .-6 答案 D解析 由题意得该质点从x =1到x =2的平均速度为f (2)-f (1)2-1=-8+1-(-2+1)1=-6.4.一根金属棒的质量y (单位:kg)是长度x (单位:m)的函数,y =f (x )=3x ,则从4 m 到9 m 这一段金属棒的平均线密度是( )A.25kg/m B.35kg/m C.34kg/m D.12kg/m 答案 B解析 从4 m 到9 m 这一段金属棒的平均线密度是 f (9)-f (4)9-4=3(9-4)9-4=35(kg/m).5.质点运动规律的方程是S =t 2+3,则在时间[3,3+Δt ]内,相应的平均速度是( ) A .6+Δt B .6+Δt +9ΔtC .3+ΔtD .9+Δt答案 A解析 平均速度为(3+Δt )2+3-32-3Δt =6Δt +(Δt )2Δt=6+Δt .6.国庆黄金周7天期间,某大型商场的日营业额从1 300万元增加到4 100万元,则该商场国庆黄金周期间日营业额的平均变化率是______万元/天. 答案 400解析 日营业额的平均变化率为4 100-1 3007=400(万元/天).7.函数y =x 3+2在区间[1,a ]上的平均变化率为21,则a =________. 答案 4解析 (a 3+2)-(13+2)a -1=a 3-1a -1=a 2+a +1=21.解得a =4或a =-5.∵a >1,∴a =4.8.函数y =f (x )=-2x 2+5在区间[2,2+Δx ]内的平均变化率为________. 答案 -8-2Δx解析 ∵Δy =f (2+Δx )-f (2)=-2(2+Δx )2+5-(-2×22+5)=-8Δx -2(Δx )2, ∴ΔyΔx=-8-2Δx ,即平均变化率为-8-2Δx . 9.已知函数f (x )=x 2+3x 在[0,m ]上的平均变化率是函数g (x )=2x +1在[1,4]上的平均变化率的3倍,求实数m 的值.解 函数g (x )在[1,4]上的平均变化率为g (4)-g (1)4-1=9-33=2.函数f (x )在[0,m ]上的平均变化率为f (m )-f (0)m -0=m 2+3mm =m +3.令m +3=2×3,得m =3.10.为了检测甲、乙两辆车的刹车性能,分别对两辆车进行了测试,甲车从25 m/s 到0 m/s 花了5 s ,乙车从18 m/s 到0 m/s 花了4 s ,试比较两辆车的刹车性能. 解 甲车速度的平均变化率为0-255=-5(m/s 2).乙车速度的平均变化率为0-184=-4.5(m/s 2),平均变化率为负值说明速度在减少,因为刹车后,甲车的速度变化相对较快,所以甲车的刹车性能较好.11.已知函数f (x )=-x 2+x 的图象上一点(-1,-2)及邻近一点(-1+Δx ,-2+Δy ),则ΔyΔx 等于( ) A .3 B .3Δx -(Δx )2 C .3-(Δx )2 D .3-Δx答案 D解析 ∵Δy =f (-1+Δx )-f (-1)=-(-1+Δx )2+(-1+Δx )-(-2)=3Δx -(Δx )2 ∴ΔyΔx=3-Δx . 12.(多选)如图显示物体甲、乙在时间0到t 1范围内,路程的变化情况,下列说法正确的是( )A .在0到t 0范围内,甲的平均速度大于乙的平均速度B .在0到t 0范围内,甲的平均速度等于乙的平均速度C .在t 0到t 1范围内,甲的平均速度大于乙的平均速度D .在t 0到t 1范围内,甲的平均速度小于乙的平均速度答案 BC解析 在0到t 0范围内,甲、乙的平均速度都为v =s 0t 0,故A 错误,B 正确;在t 0到t 1范围内,甲的平均速度为s 2-s 0t 1-t 0,乙的平均速度为s 1-s 0t 1-t 0.因为s 2-s 0>s 1-s 0,t 1-t 0>0,所以s 2-s 0t 1-t 0>s 1-s 0t 1-t 0,故C 正确,D 错误. 13.某人服药后,人吸收药物的情况可以用血液中药物的浓度c (单位:mg/mL)来表示,它是时间t (单位:min)的函数,表示c =c (t ),下表给出了c (t )的一些函数值: t /min 0 10 20 30 40 50 60 70 80 90 c (t )/ (mg/mL) 0.840.890.940.981.001.000.970.900.790.63服药后30~70 min 这段时间内,药物浓度的平均变化率为________mg/(mL·min). 答案 -0.002 解析c (70)-c (30)70-30=0.90-0.9840=-0.002mg/(mL·min).14.如图是函数y =f (x )的图象.(1)函数f (x )在区间[-1,1]上的平均变化率为______; (2)函数f (x )在区间[0,2]上的平均变化率为________.答案 12 34解析 (1)函数y =f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数y =f (x )的图象知, f (x )=⎩⎨⎧x +32,-1≤x ≤1,x +1,1<x ≤3,所以函数y =f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.15.将半径为R 的球加热,若半径从R =1到R =m 时球的体积膨胀率为28π3,则m 的值为________. 答案 2解析 体积的增加量ΔV =4π3m 3-4π3=4π3(m 3-1),所以ΔV ΔR =4π3(m 3-1)m -1=28π3,所以m 2+m +1=7,所以m =2或m =-3(舍).16.圆柱形容器,其底面直径为2 m ,深度为1 m ,盛满液体后以0.01 m 3/s 的速率放出,求液面高度的平均变化率.解 设液体放出t 秒后液面高度为y m , 则π·12·y =π·12×1-0.01t , ∴y =1-0.01πt ,液面高度的平均变化率为 ΔyΔt =1-0.01π(t +Δt )-1+0.01πtΔt =-0.01π,故液面高度的平均变化率为-0.01π.。

变化率计算公式范文

变化率计算公式范文

变化率计算公式范文
变化率是指在一段时间内,一些量或一些指标的变化程度或速度。

变化率的计算公式因具体情况而异,下面会详细介绍几种常见的变化率计算公式。

1.绝对变化率:
绝对变化率是指在一段时间内,一些量或指标从初始值变化到最终值的差值。

计算公式如下所示:
绝对变化率=最终值-初始值
2.相对变化率:
相对变化率是指在一段时间内,一些量或指标相对于初始值的变化百分比。

计算公式如下所示:
相对变化率=(最终值-初始值)/初始值*100%
3.平均变化率:
平均变化率是指在一段时间内,一些量或指标的平均变化速度。

计算公式如下所示:
平均变化率=(最终值-初始值)/时间间隔
4.复合增长率:
复合增长率是指在一段时间内,一些量或指标的年均增长率。

计算公式如下所示:
复合增长率=((最终值/初始值)^(1/年数)-1)*100%
5.边际变化率:
边际变化率是指在一些特定点上,对应输入量的微小变化所引起的输
出量的变化率。

计算公式如下所示:
边际变化率=(Δ输出量/Δ输入量)
这些公式适用于不同的实际情况和场景。

根据具体的问题和需要,可
以选择相应的变化率计算公式来进行计算。

需要注意的是,在实际计算中,可能还需要考虑一些特殊情况,比如时间间隔过大或过小,或者一些量的
变化过程呈现非线性等,这些情况可能需要采用额外的修正或调整来计算
准确的变化率。

第一部分 第3章 3.1 3.1.1 平均变化率

第一部分  第3章   3.1   3.1.1  平均变化率

3.1导数的概念3.1.1 平均变化率某病人吃完退烧药,他的体温变化如下:问题1:试比较时间x 从0 min 到20 min 和从20 min 到30 min 体温变化情况,哪段时间体温变化较快?提示:从20 min 到30 min 变化快. 问题2:如何刻画体温变化的快慢? 提示:用平均变化率.问题3:平均变化率一定为正值吗? 提示:不一定.可正、可负、可为零.1.平均变化率一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1.2.平均变化率与曲线变化关系平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”.对平均变化率的理解(1)由平均变化率的定义知,平均变化率可正、可负、可为零. (2)平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢.[对应学生用书P36][例1] 已知函数f ((1)求函数f (x )在区间[1,1.1]上的平均变化率; (2)求函数f (x )在区间[2,2.01]上的平均变化率. [思路点拨] 直接利用平均变化率的定义求解即可. [精解详析] (1)f (1.1)-f (1)1.1-1=2×1.12-2×120.1=0.420.1=4.2.(2)f (2.01)-f (2)2.01-2=2×2.012-2×220.01=8.080 2-80.01=0.080 20.01=8.02.[一点通] 求函数f (x )在区间[x 1,x 2]上的平均变化率的步骤: 第一步:求x 2-x 1; 第二步:求f (x 2)-f (x 1); 第三步:由定义得出f (x 2)-f (x 1)x 2-x 1.1.如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12. (2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)342.求函数y =f (x )=x 2在x =1,2,3附近的平均变化率,取Δx 都为13,哪一点附近的平均变化率最大?解:在x =1附近的平均变化率为k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx =2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx =4+Δx ;在x =3附近的平均变化率为k 3=f (3+Δx )-f (3)Δx =(3+Δx )2-32Δx=6+Δx .当Δx =13时,k 1=2+13=73,k 2=4+13=133,k 3=6+13=193.由于k 1<k 2<k 3,所以在x =3附近的平均变化率最大.[例2] 已知气球的体积为V (单位:L)与半径r (单位:dm)之间的函数关系是V (r )=43πr 3.(1)求半径r 关于体积V 的函数r (V );(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 时半径r 的平均变化率,哪段半径变化较快(精确到0.01)?此结论可说明什么意义?[思路点拨] 首先由球的体积公式变形得到函数r (V )的解析式,再根据求平均变化率的步骤运算.[精解详析] (1)∵V =43πr 3,∴r 3=3V 4π,r = 33V 4π,∴r (V )= 33V4π.(2)函数r (V )在区间[0,1]上的平均变化率约为r (1)-r (0)1-0=33×14π-01≈0.62(dm/L). 函数r (V )在区间[1,2]上的平均变化率约为r (2)-r (1)2-1=- 33×24π-33×14π≈0.16(dm/L).显然体积V 从0 L 增加到1 L 时,半径变化快,这说明随着体积的增加,气球的半径增加的越来越慢.[一点通] 平均变化率在实际问题中有很大作用,要把实际问题中的量与函数中的量对应起来,从而能利用平均变化率的定义来解决实际问题.3.已知某一细菌分裂的个数随时间t s 的变化满足函数关系式f (t )=3t +1,分别计算该细菌在[1,2],[3,4],[5,6]时间段内分裂个数的变化率,由此你能得出什么结论?解:细菌分裂的个数在[1,2]内的平均变化率为 f (2)-f (1)2-1=32-3=6, 细菌分裂的个数在[3,4]内的平均变化率为 f (4)-f (3)4-3=34-33=54. 细菌分裂的个数在[5,6]内的平均变化率为 f (6)-f (5)6-5=36-35=486. 由此得出随时间的增加,细菌分裂的个数增加速度越来越快. 4.某商户2017年上半年的销售收入如图所示:试说明该商户1月到2月和2月到6月的经营情况.解:1月到2月,销售收入的平均变化率为6-22-1=4(万元/月),2月到6月,销售收入的平均变化率为12-66-2=1.5(万元/月).因为4>1.5,故可说明该商户1月到2月的销售情况较好,2月到6月销售迟缓.平均变化率近似地刻画了曲线在某一区间上的变化趋势,平均变化率的绝对值反映了曲线在给定的区间上变化的快慢,平均变化率的绝对值越大,曲线在该区间上的变化越快;反之则慢.[对应课时跟踪训练(十五)]1.函数f (x )=1x 在x =1到x =2之间的平均变化率为________.解析:f (2)-f (1)2-1=12-11=-12.答案:-122.某人服药后,人吸收药物的情况可以用血液中药物的浓度c (单位:mg/mL)来表示,它是时间t (单位:min)的函数,表示为c =c (t ),下表给出了c (t )的一些函数值:解析:c (70)-c (30)70-30=0.90-0.9840=-0.002.答案:-0.0023.在曲线y =x 2+1的图象上取一点(1,2)及附近一点(1+Δx,2+Δy ),则ΔyΔx=________.解析:Δy Δx =(1+Δx )2+1-(1+1)1+Δx -1=2Δx +(Δx )2Δx =Δx +2.答案:Δx +24.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1.1,2.21),则该曲线在[1,1.1]上的平均变化率为________.解析:2.21-21.1-1=0.210.1=2.1.答案:2.15.函数y =f (x )=ln x +1从e 到e 2的平均变化率为________. 解析:因为Δy =f (e 2)-f (e)=(ln e 2+1)-(ln e +1)=1,Δx =e 2-e , 所以Δy Δx =1e 2-e .答案:1e 2-e6.已知自由落体运动的位移s (m)与时间t (s)的关系为s =f (t )=12gt 2,计算t 从3秒到3.1秒、3.001秒、3.000 1秒各段时间内的平均速度(g =9.8 m/s 2).解:设Δt =(t +d )-t 指时间改变量,Δs =f (t +d )-f (t )指位移改变量. 则Δs =f (t +d )-f (t )=12g (t +d )2-12gt 2=gtd +12gd 2,v =Δs Δt =gtd +12gd 2d =gt +12gd ,所以t 从3秒到3.1秒的平均速度v =29.89(m/s); t 从3秒到3.001秒的平均速度v =29.404 9(m/s); t 从3秒到3.000 1秒的平均速度v =29.400 49(m/s).7.路灯距地面8 m ,一个身高为1.6 m 的人以84 m/min 的速度在地面上从路灯在地面上射影点C 沿某直线离开路灯.(1)求身影的长度y 与人距路灯的距离x 之间的关系式; (2)求人离开路灯的第一个10 s 内身影的平均变化率.解:(1)如图所示,设人从C 点运动到B 处的路程为x m ,AB 为身影长度,AB 的长度为y m ,由于CD ∥BE ,则AB AC =BECD ,即y y +x =1.68,所以y =f (x )=14x .(2)在[0,10]上身影的平均变化率为: f (10)-f (0)10-0=14×10-14×010=14.即人离开路灯的第一个10 s 内身影的平均变化率为14.8.若函数y =f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1,得Δx ≥-2.又因为Δx >0,即Δx 的取值范围是(0,+∞).。

第4章+第2讲+导数的概念及运算2024高考数学一轮复习+PPT(新教材)

第4章+第2讲+导数的概念及运算2024高考数学一轮复习+PPT(新教材)

=(x2)′ex+x2(ex)′=2xex+x2ex=(2x+x2)ex,错误;对于 C,(xcosx)′=cosx
-xsinx,错误;对于 D,x-1x′=1-1x′=1+x12,错误.故选 A.
解析 答案
x-3 (2)(2021·贵阳模拟)已知 f(x)的导函数为 f′(x),f(x)= ex +2f′(1)·x, 则 f′(1)=________. 答案 -3e 解析 ∵f(x)=x-ex 3+2f′(1)·x,∴f′(x)=4-ex x+2f′(1),∴f′(1)=3e+ 2f′(1),解得 f′(1)=-3e.
解析 由导函数图象可知两函数的图象在x0处的切线斜率相等,故选D.
解析 答案
4. (2021·长沙检测)如图所示,y=f(x)是可导函数,直线 l:y=kx+3 是 曲线 y=f(x)在 x=1 处的切线,令 h(x)=fxx,h′(x)是 h(x)的导函数,则 h′(1) 的值是( )
A.2
B.1

导数的运算方法 (1)连乘积形式:先展开化为多项式的形式,再求导. (2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分 式函数,再求导. (3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导. (5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.
的值,即ΔΔyx有极限,则称 y=f(x)在 x=x0 处可导,并把这个确定的值叫做 y
=f(x)在 x=x0 处的导数(也称为瞬时变化率),记作 f′(x0)或 y′|x=x0,即
f′(x0)= lim Δx→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0

课件3:1.1.1 函数的平均变化率

课件3:1.1.1 函数的平均变化率

C.0.43
D.0.44
解析:Δy=f(2+0.1)-f(2)=2.12+1-(22+1)=0.41.
答案:B
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在 4到4+Δt之间的平均速度v. 解:Δs=s(4+Δt)-s(4) =3(4+Δt)2+(4+Δt)+4-(3×42+4+4) =25Δt+3(Δt)2. ∴v=ΔΔst=25+3Δt. 即物体在 4 到 4+Δt 之间的平均速度为 25+3Δt.
提示:从20 min到30 min变化快. 问题2:如何刻画体温变化的快慢? 提示:用平均变化率. 问题3:平均变化率一定为正值吗? 提示:不一定.可正,可负,可为零.
知识点解读
平均变化率
(1)定义:对一般的函数 y=f(x)来说,当自变f量(x2x)-从f(xx21)变为 x2 时,函数值从 f(x1)变为 f(x2),它的平均变化率为. x2-x1
其中自变量的变化 x2-x1 称作自变量的改变量,记作Δx ,
函数值的变化 f(x2)-f(x1) 称作函数值的改变量,记作Δy .这样,
函数的平均变化率就可以表示为函数值的改变量与自变量的改变
f(x2)-f(x1)
量之比,即ΔΔxy=
x2-x1 .
(2)作用:刻画函数值在 区间[x1,x2] 上变化的快慢.
瞬时变化率
(1)定义:对于一般的函数 y=f(x),在自变量 x 从 x0 变到 x1
的过程中,设 Δx=x1-x0,Δy=f(x1)-f(x0),则函数的平均变化
率是ΔΔxy=
fx1-fx0 = x1-x0
fx0+Δx-fx0 Δx
.而当 Δx趋于0
时,平
均变化率就趋于函数在 x0 点的瞬时变化率.

高二数学(选修人教B版)函数的平均变化率1教案

高二数学(选修人教B版)函数的平均变化率1教案

教案下面是一个曲线的一个局部图形,你能判断它是直的还是弯曲的吗?如果显示出网格线,能否判断呢?这个图的全貌其实是这样的:如果我们用一个“高倍显微镜”来看曲线的一个局部,都可以近似地把它看成直线段.所以,我们也可以把弯曲的山路看成许多平直的小段组成.从学生的知识经验理解“以直代曲”.类比双曲线,理解弯曲山路中的“以直代曲”.概念的形成(四)构造数学模型表示山坡陡峭程度假设下图是一座山的剖面示意图.爬山者上升的高度y可以看成水平行进距离x的函数,这座结合函数的概山的山坡剖面图则可以看作函数y =f (x )的图象,建立平面直角坐标系如图所示.我们把山路分成许多近似平直的小段.对于AB 这一段平直的山路,放大如下图:坡度为: 1010tan y y yx x xθ-∆==-∆. 对于CD 这一段弯曲的山路,可以分成许多段,比如第一小段CD 1可以近似地看成直线段,于是这一段山路的陡峭程度可表示为:32323232()()y y f x f x y x x x x x --∆==-∆-. 一般地,任何一小段山路的陡峭程度可以表示为:11()()k k k k f x f x y x x x ++-∆=∆-.念,以函数图象表示山坡的剖面图,将实际问题数学化.用数学语言表达山路的陡峭程度.O y x D 1x 3AB k =y B -y A x B -x A =f (x 1)-f (x 0)x 1-x 0=ΔyΔx =tan θ.概念的 巩固例 求函数y =x 在x 0到x 0+∆x 之间的平均变化率. 解:当自变量从x 0变到x 0+∆x 时,函数的平均变化率为0000()()()1f x x f x x x x x x +∆-+∆-==∆∆.思考与总结:(1)函数y =2x 在x 0到x 0+∆x 之间的平均变化率是什么?你有什么发现?函数y =2x 在x 0到x 0+∆x 之间的平均变化率是2. 我们发现,一次函数在任何一个区间内的平均变化率等于它的一次项系数,几何意义就是直线的斜率. (2)求函数的平均变化率的主要步骤:①求自变量的增量Δx =x 2-x 1;②求函数值的增量Δy =f (x 2)-f (x 1);③求函数的平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.(3)求函数在x 0附近的平均变化率,常用f (x 0+Δx )-f (x 0)Δx 的形式来表达.例 求函数y =x 2在x 0到x 0+∆x 之间的平均变化率. 解:当自变量从x 0变到x 0+∆x 时,函数的平均变化率为2200000()()()2f x x f x x x x x x x x +∆-+∆-==+∆∆∆.计算与探索: (1)当∆x =13,x 0=1,2,3时,求函数的平均变化率;(2)当x 0=1,∆x =13,12,1时,求函数的平均变化率.通过例题研究具体函数在x 0到x 0+∆x 之间的平均变化率,并研究它随着x 0及∆x 变化而变化的规律,加深和巩固对函数的平均变化率的理解.【思考】(请同学们自行思考)(1)如果10x-<∆<,它们的大小关系如何?你能结合函数的图象来解释吗?(2)与y x=的平均变化率比较,它们的大小关系如何呢?例两工厂经过治理,污水的排放流量(W)与时间(t)的关系,如图所示.试指出哪一个厂治污效果较好?分析:这是一个应用问题.读图的关键点是“治污效果”用什么量来刻画——考查函数的平均变化率的应用.解:甲、乙两厂在相同的时间内都将污水排放流量治理到标准要求.甲厂原来的排放流量较大,因而平均变化率较大,所以甲厂的治污效果较好.课堂小结本节课学习的主要内容是函数的平均变化率.学习过程从生活情境到数学情境,再到数学概念以及几何意义,初步体会了“以直代曲”的思想和数形结合的方法.概括本节课的主要知识与思想方法.布置作业(1)求223y x x=-+在2到94之间的平均变化率.(2)试比较正弦函数siny x=在0到π6之间和π3到π2之间的平均变化率,哪一个较大?延伸巩固函数的平均变化率的概念.。

(2019版)高二数学平均变化率1

(2019版)高二数学平均变化率1
3.1.1平均变化率
法国《队报》网站的文章称刘翔以不可思议的速度统治 了赛场。这名21岁的中国人跑的几乎比炮弹还快,赛道 上显示的12.94秒的成绩已经打破了12.95奥运会记录,但 经过验证他是以12.91秒平了世界纪录,他的平均速度 达到8.52m/s。
平均速度的数学意义是什么 ?
2006江苏省盐成中学对外公开课 平均变化率 ;上海自动化仪表公司于1993年末改制设立,首家向国内发行A股, 上海自动化仪表股份有限公司 上海自动化仪器股份有限公司 向国外发行B股的从事仪器仪表经营生产的上市股份制公司。是国家大型一 档企业、“中国500家最大工业企业”和“全国工业企业技术开发实力规模最大、产品门类最全、系 统成套能力最强的自动化仪表制造企业。 ;
壮蜀之趾 ”明人杨慎亦称其为“六朝人才”之冠 下令点燃牛尾芦苇 诏钊兼领西川节度 项王喑恶叱咤 创甚 18..华商报[引用日期2013-12-13]郭子仪(697年—781年) 假装友善 然卒败垓下 徐达“世业农” 非臣饰说 只有会稽 吴郡 丹阳 豫章 庐陵数郡 [12] 率师趋长安 水土不服 "乃传呼曰:"令公来!常常表现得好像自己做得很不够 ”田侯曰:“善 遂以子仪为朔方 河中 北庭 潞仪泽沁等州节度行营 又加朔方管内 采访处置使 孙膑还出现在京剧《孙膑装疯》 《马陵道》 《五雷阵》中 年四十八 命郭子仪兼任河东副元帅 河中节度观察使 河中尹 何生亮!仅半年时间 大破梁军 举国若狂 徐达是明朝开国第一功臣 赠尚书左仆射 杜元颖不能御 朝廷欲图大举 三分独数一周瑜 子仪病甚 元将张思道闻风而逃 佐周平戎 但自明代以来关于她的传说 野史 伪史颇多 项王自立为西楚霸王 郭子仪围困卫州(今河南汲县) 臣诚薄劣 且袁绍兵多 粮足 强藩畏服 ?西有菑上之虞 以臣所见 寇奉天 武功 以亡其身;祠墓遗址编辑 肯为君

平均变化率ppt1 苏教版

平均变化率ppt1 苏教版

境2:
某市2004年3月和4月某天日最高气温记载.
时间 3月18日 4月18日 4月20日
日最高气温
3.5℃
18.6℃
33.4℃
根据上面的数据我们可以得到哪些信息?
T (℃ )
C (34, 33.4)
以 月 3 18 日 为 第 一 天
30 B (32, 18.6)
20
10 2 0
A (1, 3.5)
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤

1.平均变化率

1.平均变化率

(1)[-1,2]; ) , ; (2)[-1,1]; ) , ;
(3) (3)
(3)[-1,-0.9]; (3) ) , ;
10 2011-12-20
Teaching Plan on Senior Mathematicsห้องสมุดไป่ตู้
例5、已知函数 f
( x ) = x ,分别计算 f ( x ) 在
2
下列区间上的平均变化率: 下列区间上的平均变化率: (1)[1,3]; 4 ) , ; (2)[1,2]; 3 ) , ; (3)[1,1.1] 2.1 ) , (4)[1,1.001] 2.001 ) ,
“气温陡增”这一句生活用语,用数学方法如何刻 气温陡增”这一句生活用语,
画?
3 2011-12-20
Teaching Plan on Senior Mathematics
联想 直线
T (℃) ℃ C (34, 33.4)
30
B (32, 18.6) 20
k=7.4
10 A (1, 3.5) 2 0 2 10 20 30 34 t(d)
10 1 2 1 2 解 :甲 : = ,乙 : ,Q < 12 × 5 6 5 6 5 ∴乙的经营效果较好.
6 2011-12-20
Teaching Plan on Senior Mathematics
1、某婴儿从出生到第12个月的体重变化如 、某婴儿从出生到第 个月的体重变化如 图所示,试分别计算从出生到第3个月与第 图所示,试分别计算从出生到第 个月与第 6个月到第 个月该婴儿体重的平均变化率 个月到第12个月该婴儿体重的平均变化率 个月到第
--------导数 的刻画 --------导数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 变化率问题
1.变化率 一个变量相对于另一个变量的变
化而变化的快慢程度叫做变化率.
问题1 气球膨胀率
我们都吹过气球回忆一下吹气球的过程,可以
发现,随着气球内空气容量的增加,气球的半径 增加越来越慢.
从数学角度,如何描述这种现象呢?
问题1 气球膨胀率
气球的体积V(单位:L)与半径r(单位:dm)
2.平均变化率的定义
上述问题中的变化率可用式子 f(x2 ) f (x1) 表示 x2 x1
我们称之为函数f(x)从x1到x2的平均变化率
• 若设Δx=x2-x1, Δy=f(x2)-f(x1)
这里Δx是x1的一个“增量” :x2=x1+Δx ;
Δy是f(x1)的一个“增量” : f(x2)=f(x1) +Δy .
则平均变化率为
y = f(x2 ) - f(x1 ) = f(x1 + x)- f(x1)
x
x2 - x1
x
3.平均变化率的几何意义
思考? 观察函数f(x)的图象,平均变化率
y f (x2 ) f (x1)
x
x2 x1
表示什么?
y f(x2)
Y=f(x) B
割线AB 的斜率
f(x1) O
f(x2)-f(x1)=△y
之间的函数关系是 V(r) = 4 πr3 3
如果将半径r表示为体积V的函数, 那么
r(V) = 3 3V 4π
分析一下: r(V ) 3 3V
4Байду номын сангаас
• 当V从0增加到1时,气球半径增加了 r(1) r(0) 0.62(dm) 气球的平均膨胀率为 r(1) r(0) 0.62(dm / L)
问题2 高台跳水
在高台跳水运动中,运动员相对于水面的高 度h(单位:米)与起跳后的时间t(单位:秒)存 在函数关系
h(t)=-4.9t2+6.5t+10.
如果用运动员在某段
时间内的平均速度粗略地
h
描述其运动状态,那么
o
t
分析一下: h(t)=-4.9t2+6.5t+10
• 当t从0增加到0.5时,平均速度为
(3 4 1) (3 2 1) 3 2
例、求y=x2在x=x0附近的平均变化率.

y x
f(x0
x ) f(x0 ) x
(x0 +△x)2 △x
x02
=
2x0
△x
练习
1、 过y=x3上两点P(1,1)、Q(1+Δx,1+Δy) 作割线,当Δx=2时, 求
(1) 点Q的坐标; (2) Δy的值; (3) 割线PQ的斜率.
解 (1) Q(3, 27),(2) y 26 (3) kPQ 13
练习
2、在高台跳水运动中,运动员相对于水面的 高度h(单位:米)与起跳后的时间t(单位:秒) 存在函数关系
h(t)=-4.9t2+6.5t+10.
当t从2 变到2+△t 时,求运动的平均速度.
解 v h h(2 t) h(2)
A
x2-x1=△xx
x1
x2
例、 设函数f(x)=2x, 当x从2变到1.9时, 求△x和 △ y.
解 △x=1.9-2=0.1
△y=f(1.9)-f(2)=-0.2
例 位移s(t)(单位:m)与时间t(单位 : s)的 关系为: s(t) 3t 1,求t从2到4的平均速度v.
解 v s s(4) s(2) t 42
t
t
= [-4.9(2+ t)2 + 6.5(2 + t) 10]-[-4.9 22 + 6.5 2 + 10]
t
=-4.9△t-13.1
作业 P10 1, P11 2
补充题、求y=1/x在x=x0 附近的平均变化率.
1 0
• 当V从1增加到2时,气球半径增加了r(2) r(1) 0.16(dm) 气球的平均膨胀率为 r(2) r(1) 0.16(dm / L)
2 1
显然 0.62>0.16
思考?
r(V ) 3 3V
4
当空气容量从V1增加到V2时,气球的平均膨胀 率是多少?
r(V2 ) r(V1) V2 V1
v h(0.5) h(0) 4.05(m / s) 0.5 0
• 当t从1增加到2时,平均速度为
v h(2) h(1) 8.2(m / s) 2 1
h
o
t
思考? h(t)=-4.9t2+6.5t+10
当时间从t1增加到t2时,运动员的平均平 均速度是多少?
h(t2 ) h(t1) t2 t1
相关文档
最新文档