对数函数(第一课时)
4.4对数函数第一课时-人教A版(2021)高中数学必修第一册同步讲义
第四章 指数函数与对数函数4.4对数函数 第1课时对数函数的概念【课程标准】1. 理解对数函数的概念、图像及性质。
2. 会解与对数函数有关的定义域、值域、比较大小等问题【知识要点归纳】1. 对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,定义域是(0,+∞) 2.对数函数的图像和性质定义 形如log a y x =(a 0>且1a ≠)的函数叫做对数函数定义域 ()0,+∞ 值域(),-∞+∞图像【经典例题】()()()()242213log 2log 3log 4log (1).(5)log 1x y x y x y y x y x =+=;=;=5;=+[跟踪训练]1(1)对数函数的图象过点M (16,4),则此对数函数的解析式为 。
(2)若对数函数y =f(x)满足f(4)=2,则该对数函数的解析式为( ) A .y =log 2xB .y =2log 4xC .y =log 2x 或y =2log 4xD .不确定注意:判断一个函数是对数函数必须是形如y =log a x(a>0且a≠1)的形式,即必须严格满足以下条件: (1)系数为1.(2)底数为大于0且不等于1的常数.(3)对数的真数仅有自变量x.例2求下列函数的定义域.(1)y=log a(3-x)+log a(3+x);(2)y=log2(16-4x).[跟踪训练]2 求下列函数的定义域.(1)y=3log2x;(2)y=log0.5(4x-3);(3)y=log0.5(4x-3)-1;(4)y=log(x+1)(2-x).注意:求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数大于零且不等于1.例3画出函数y=lg|x-1|的图象.例4 (1)函数y =x +a 与y =log a x 的图象只可能是下图中的( )(2)函数y =log a (x +1)-2(a>0,且a≠1)的图象恒过点________.[跟踪训练] 3 (1) 已知a>0,且a≠1,则函数y =a x 与y =log a (-x)的图象只能是( )(2)221log 21x y x -=+-图象恒过定点坐标是________.注意:(1)明确图象的分布区域.对数函数的图象在第一、四象限.当x 趋近于0时,函数图象会越来越靠近y 轴,但永远不会与y 轴相交.(2)建立分类讨论的思想.在画对数函数图象之前要先判断对数的底数a 的取值范围是a>1,还是0<a<1.(3)牢记特殊点.对数函数y =log a x(a>0,且a≠1)的图象经过点:(1,0),(a,1)和⎝ ⎛⎭⎪⎫1a ,-1. 【当堂检测】一.选择题(共5小题)1.下列函数是对数函数的是( ) A .3log (1)y x =+B .log (2)(0a y x a =>,且1)a ≠C .y lnx =D .2(0,1)a y log x a a =>≠且2.函数2()(5)log a f x a a x =+-为对数函数,则1()8f 等于( )A .3B .3-C .3log 6-D .3log 8-3.函数1()(2)3f x lg x x =-+-的定义域是( ) A .(2,3) B .(3,)+∞C .[2,3)(3⋃,)+∞D .(2,3)(3⋃,)+∞4.函数()(24)x f x ln =-的定义域是( ) A .(0,2)x ∈B .(0x ∈,2]C .[2x ∈,)+∞D .(2,)x ∈+∞5.已知132a =,21()3b =,21log 2c =,则( )A .c a b <<B .b a c <<C .c b a <<D .b c a <<二.填空题(共3小题)6.已知45a ln =,22()3b =,0.15c =,将a 、b 、c 由小到大的顺序排列为 .7.已知log 2(0a y x a =+>且1)a ≠的图象过定点P ,点P 在指数函数()y f x =的图象上,则()f x = .8.已知函数()||f x lgx =,实数a ,()b a b ≠满足f (a )f =(b ),则ab 的值为 . 三.解答题(共1小题) 9.设函数2()(2)f x lg x x a =-+. (1)求函数()f x 的定义域A ;(2)若对任意实数m ,关于x 的方程()f x m =总有解,求实数a 的取值范围.当堂检测答案一.选择题(共5小题)1.下列函数是对数函数的是( )A .3log (1)y x =+B .log (2)(0a y x a =>,且1)a ≠C .y lnx =D .2(0,1)a y log x a a =>≠且【分析】根据对数函数的定义即可得出.【解答】解:根据对数函数的定义可得:只有y lnx =为对数函数. 故选:C .【点评】本题考查了对数函数的定义,考查了推理能力与计算能力,属于基础题. 2.函数2()(5)log a f x a a x =+-为对数函数,则1()8f 等于( )A .3B .3-C .3log 6-D .3log 8-【分析】由对数函数定义推导出2()log f x x =,由此能求出1()8f .【解答】解:函数2()(5)log a f x a a x =+-为对数函数,∴25101a a a a ⎧+-=⎪>⎨⎪≠⎩,解得2a =, 2()log f x x ∴=,211()388f log ∴==-.故选:B .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意对数性质的合理运用.3.函数1()(2)3f x lg x x =-+-的定义域是( ) A .(2,3) B .(3,)+∞C .[2,3)(3⋃,)+∞D .(2,3)(3⋃,)+∞【分析】令对数的真数2x -大于0;分母3x -非0,列出不等式组,求出函数的定义域. 【解答】解:要使函数有意义,需满足 2030x x ->⎧⎨-≠⎩解得2x >且3x ≠ 故选:D .【点评】求函数的定义域:常需考虑开偶次方根的被开方数大于等于0;对数的真数大于0底数大于0且不等于1;分母不为0等.注意函数的定义域一定以集合形式或区间形式表示. 4.函数()(24)x f x ln =-的定义域是( ) A .(0,2)x ∈B .(0x ∈,2]C .[2x ∈,)+∞D .(2,)x ∈+∞【分析】可看出,要使得函数()f x 有意义,则需满足240x ->,解出x 的范围即可.【解答】解:要使()f x 有意义,则:240x ->; 2x ∴>;()f x ∴的定义域为(2,)+∞.故选:D .【点评】考查函数定义域的定义及求法,指数函数的单调性. 5.已知132a =,21()3b =,21log 2c =,则( )A .c a b <<B .b a c <<C .c b a <<D .b c a <<【分析】利用指数式和对数式的性质,比较三个数与0或1的大小得答案. 【解答】解:10231221()03a b =>=>=>,21log 102c ==-<, c b a ∴<<.故选:C .【点评】本题考查对数值的大小比较,关键是注意利用0和1为媒介,是基础题. 二.填空题(共3小题)6.已知45a ln =,22()3b =,0.15c =,将a 、b 、c 由小到大的顺序排列为 a b c << .【分析】由20.1420,0()1,5153ln <<<>,即可得出a ,b ,c 的大小关系.【解答】解:4105ln ln <=,220()13<<,0.10551>=, a b c ∴<<.故答案为:a b c <<.【点评】本题考查了对数函数、指数函数的单调性,考查了计算能力,属于基础题. 7.已知log 2(0a y x a =+>且1)a ≠的图象过定点P ,点P 在指数函数()y f x =的图象上,则()f x = 2x .【分析】求出定点(1,2)P ,代入指数函数中,求出a ,得到()f x .【解答】解:由a 的任意性,1x =时,2y =,故log 2(0a y x a =+>且1)a ≠的图象过定点(1,2)P ,把(1,2)P 代入指数函数()x f x a =,0a >且1a ≠,得2a =,所以()2x f x =, 故答案为:2x .【点评】考查对数函数的定点问题,和求指数函数的解析式,基础题.8.已知函数()||f x lgx =,实数a ,()b a b ≠满足f (a )f =(b ),则ab 的值为 1 . 【分析】由已知条件a b ≠,不妨令a b <,又y lgx =是一个增函数,且f (a )f =(b ),故可01a b <<<,则lga lgb =-,由此可得ab 的值. 【解答】解:f (a )f =(b ), ||||lga lgb ∴=.不妨设0a b <<,则由题意可得01a b <<<, lga lgb ∴=-,0lga lgb +=, ()0lg ab ∴=, 1ab ∴=,故答案为:1.【点评】本题主要考查对数函数的性质、函数的单调性、函数的值域,考查对数函数单调性的应用,属于基础题. 三.解答题(共1小题) 9.设函数2()(2)f x lg x x a =-+. (1)求函数()f x 的定义域A ;(2)若对任意实数m ,关于x 的方程()f x m =总有解,求实数a 的取值范围.【分析】(1)由真数大于0,可得222(1)10x x a x a -+=-+->,对a 分类讨论即可求得定义域;11 (2)对任意实数m R ∈,方程()f x m =总有解,等价于函数2()(2)f x lg x x a =-+的值域为R ,由△0即可求得a 的取值范围.【解答】解:(1)由2()(2)f x lg x x a =-+有意义,可得222(1)10x x a x a -+=-+->,当1a >时,()f x 的定义域为A R =;当1a =时,()f x 的定义域为{|1}A x x =≠;当1a <时,()f x的定义域为{11A x x x =+<.(2)对任意实数m R ∈,方程()f x m =总有解,等价于函数2()(2)f x lg x x a =-+的值域为R ,即22t x x a =-+能取遍所有正数即可,所以△440a =-,1a ,实数a 的取值范围(-∞,1].【点评】本题主要考查函数的定义域与值域,考查对数函数的性质,属于中档题,。
对数函数及其性质1
对数函数y=logax
a>1 图 象 性 质
y
0 (1,0) x
(a>0,a≠1) 的图象与性质
0<a<1
y
0 (1,0) x
定义域 : ( 0,+∞) 值 域 : R 过点(1 ,0), 即当x =1时,y=0 在(0,+∞)上是增函数 在(0,+∞)上是减函数
当x>1时,y>0 当x=1时,y=0 当0<x<1时,y<0
0
1 3.4 8.5
x
∵3.4<8.5
∴ log23.4< log28.5
∴ log23.4< log28.5
比较下列各组中,两个值的大小: (1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7 (2)解法1:画图找点比高低 解法2:构造函数y=log 0.3 x ,
小
结
0<a<1时为减函数)
2.比较真数值的大小;
3.根据单调性得出结果。
比较下列各组中,两个值的大小: •(3) loga5.1与 loga5.9
解: ①若a>1则函数在区间(0,+∞)上是增函数;
∵5.1<5.9 ∴ loga5.1 < loga5.9 ②若0<a<1则函数在区间(0,+∞)上是减函 数; ∵5.1<5.9
提示 : log aa=1 提示: log a1=0
(3)巩固练习:P73
T3
注意:利用对数函数的增减性比较两个对数的大 小.当不能直接进行比较时,可在两个对数中间插入 一个已知数(如1或0等),间接比较上述两个对数的大 小
【课件】对数函数的图像和性质(第1课时)课件高一上学期数学人教A版(2019)必修第一册
3
欢迎大家批评指正!
2.对数函数的应用
练习1选出正确大答案: (1) 设a=30.7,b=(13)-0.8,c=log0.70.8,则a,b,c的大小关系
为(D)
A.a<b<c B.b<a<c C.b<c<a D.c<a<b
(2)a=log52,b=log83,c=12,则下列判断正确的是(C)
A.c<b<a B.b<a<c C.a<c<b D.a<b<c
所以此地为声压无害区,环境优良。
1.如图所示是对数函数y=logax, y=logbx, y=logcx和y=logdx的图像,则a,b,c,d与
1的大小关系为 b>a>1>d>c 。
2.函数y=loga(x+3)-1的图像恒过顶点A,则A的坐标为 (-2,-1) 。
3.已知a=log2e,b=ln2,c=
活动二 请认真思考后,填写完成学案上的表格。
1.对数函数图像与性质
0<a<1
y
a>1
y
图像
(1,0)
O
x
f(x)=logax (0<a<1)
O
(1,0)
x
定义域 (0,+∞)
值域 R
过定点 (1,0)
单调性
性 质
取值分布
奇偶性
在(0,+∞)上是减函数
在(0,+∞)上是增函数
当x>1时y<0;当0<x<1时y同>0正. 异当负x>1时y>0;当0<x<1时y<0.
(D )
log 1
2
1,则a,b,c的大小关系为
对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册
)
(1)A已.知cab0.3a0.4 ,A.b cB.lobga34ab,cc lBo.g0.a3 4C,b.则b(c a c )C. b Da.bc c a D.b c a
A. c b a B. a b c
C.b a c
D.b c a
例题讲练
(2)设 a log3 , b log2 3 , c log3 2 ,则(
x lxogaloyg(a ya ( 0a且 a0 且 1a),1x),也是x 也以是y以为自y 为变自量变的量函的数函(数其(中其y 中 0y, 0x , Rx ),R ), 根据根我据们我的们认的知认习知惯习,惯我,们我把们x 把 lxogaloyg中a 字y 中母字x 母, xy,对调y 对,调, 写成写y成 lyogaloxg(a 其x (中其x 中 0x, 0y, Ry ).R ).
例题讲练
【练习习 55】】
((11))已已知知ff((xx))的的定定义义域域为为[0[,10],1,] ,则函则数函数f [lof g[l1o(g31(3x)] 的x)定] 的义定域义为域___为____________._____.
22
例题讲练
(2)已知函数 y f [lg(x 1)] 的定义域为 (0,99] ,则函数 y f [log2 (x 2)] 的定义域为__________.
§4.4 对数函数及其性质 (第一课时)
人教版高中数学必修一
课堂引入:
通过前面的学习我们知道,某细胞经过 x 次分裂后,变成的细胞个数 y 2x ,
得由到一由y 个y2指x 数2x函x数x.lo由gglo22gyyy2y2对x 于对任于x意任的意lo细的g2胞细y个胞,数个对数y于,任y 我,意们我的都们细可都胞以可个通以数过通y对过,数对我运数们算运都算可 得到以得唯通到一唯过的一对的数x 与运x 之与算对之得应对到,应唯所,一以所的细以x胞细与分胞之裂分对次裂应数次,所数x以也x细可也胞以可分看以裂出看次以出数细以x胞细也个胞可数个以数y看为y成自为以变自细变胞个 量的数量函的y数函为.数自.变量的函数. 同样同地样,地根,据根指据数指与数对与数对的数关的系关,系由,y由 ayx(aax ( 0a且 a0 且 1a)可1)以可得以到得:到:
对数函数第一课时
猜猜:
2
1
-1
-2
1
2
4
0
y
x
3
0
+∞
+∞
- ∞
(1, 0)
·
(1, 0)
0
增函数
减函数
+∞
+∞
- ∞
定义域 (0,+∞)
值 域 R
过点(1,0),即
图 象 性 质
a > 1 0 < a < 1
定义域 :
( 0,+∞)
值 域 :
R
减函数
在(0,+∞)上是:
图象位于y轴右方
图象向上、向下无限延伸
自左向右看图象逐渐下降
探究:对数函数:y = loga x (a>0,且a≠ 1) 图象与性质
探索发现: 认真观察函数 的图象填写下表
2
1
-1
-2
1
2
4
0
y
x
3
探究:对数函数:y = loga x (a>0,且a≠ 1) 图象与性质
一般地,函数 y = loga x (a>0,且a≠ 1 )
1、定义:
讲授新课:
一个函数为对数函数的条件是: ①系数为1; ②底数为大于0且不等于1的常数; ③真数为单个自变量x.
练习:1、判断下列函数,哪些是对数函数. (1)y=log3(x+1); (2)y=5log2x; (3)y=log3x-1; (4)y=logxa(x>0且x≠1); (5)y=lg x; (6)y=ln x2.
探究:对数函数:y = loga x (a>0,且a≠ 1) 图象与性质
X
1/4
对数函数及其性质(第一课时)课件
A.0 a b 1 c d
在指数函数 y 2 中, x 为自变量, y 为因 变量。如果把 y 当成自变量,x 当成因变量,那
x
探 究:
么 x 是 y 的函数吗?如果是,那么对应关系是
什么?如果不是,请说明理由。 y=2x x log 2 y y 0,
(1)因为x2>0,所以x≠,即函数y=logax2的定义域为 解:
- (0,+ (-4)
(2)因为 4-x>0,所以x<4,即函数y=loga(4-x)的定义域为
(3) y=log(x-1)(3-x)
解:
因为
3-x>0
x-1>0
x-1≠
所以 1<x<3,且x≠2即函数y=log(x-1)(3-x) 的定义域为: (1,2)
1 1 log 7 2 log 7 5
y
log 2 7 log 5 7
o
y log2 x y log5 x
1
7
x
∴ log 2 7 > log 5 7
例4:比较下列各组数中两个值的大小: log 6 7 > log 7 6 log 6 7 > log 6 6 = 1 log 7 6 < log 7 7 = 1 log 6 7 > log 7 6
log 3 2 > log 2 0.8
log 3 2 > log 3 1= 0
log 2 0.8 < log 2 1= 0
log 3 2> log 2 0.8
钥当底数不相同,真数也不相同时,利用“介值法” 匙 常需引入中间值0或1(各种变形式).
小结:两个对数比较大小
(一)同底数比较大小 1.当底数确定时,则可由函数的 单调性直接进行判断; 2.当底数不确定时,应对底数进 行分类讨论。 (二)同真数比较大小 1.通过换底公式; 2.利用函数图象。 (三)若底数、真数都不相同, 则常借 助1、0等中间量进行比较。
5.3 对数函数(第1课时 对数函数的概念、图象和性质)2024-2025学年高一上北师版必修1
3.反函数
指数函数y=2x和对数函数x=log2y刻画的是同一对变量x,y之间的关系,所不
同的是:在指数函数y=2x中,x是自变量,y是x的函数,其定义域是R;而在对数
函数x=log2y中,y是自变量,x是y的函数,其定义域是(0,+∞).我们称对数函数
规律方法
定义域问题注意事项
(1)要遵循以前已学习过的求定义域的方法,如分式分母不为零,偶次根式
被开方式大于或等于零等.
(2)遵循对数函数自身的要求:一是真数大于零;二是底数大于零且不等于1;
三是按底数的取值应用单调性,有针对性地解不等式.
探究点四
对数函数的图象
【例4】 函数y=log2x,y=log5x,y=lg x的图象如图所示.
(2)值域:R
(3)过定点(1,0),即x=1时,y=0
(4)当x>1时,y>0;当0<x<1时,y<0
(4)当x>1时,y<0;当0<x<1时,y>0
性质 (5)在定义域(0,+∞)上是增函数
(5)在定义域(0,+∞)上是减函数
当x值趋近于正无穷大时,函数值
当x值趋近于正无穷大时,函数值
趋近于正无穷大;
A.-7
B.-9
C.-11
D.-13
解析 由题意知f(x)=2x,
故当x>0时,g(x)=2x+x2.
∵g(x)为奇函数,∴g(-1)=-g(1)=-3,g(-2)=-g(2)=-(22+22)=-8.
∴g(-1)+g(-2)=-11.
探究点三
与对数函数有关的定义域、值域问题
对数函数及其性质课件(第一课时)
图象位于y轴右方
定义域 : ( 0,+∞)
图象向上、向下无限延伸 值 域 : R
自左向右看图象逐渐下降 在(0,+∞)上是:减函数
2.思考:对数函数:y = loga x (a>0,且a≠ 1) 图象随着a 的取值变化图象如何变化?有规律吗?
猜猜: 对数函数 y log 3 x和y log 1 x 的图象。
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
(0,+∞)
非奇非偶函数
非奇非偶函数
R ( 1 , 0 ) 即 x = 1 时,y = 0 在 ( 0 , + ∞ ) 上是增函数 在 ( 0 , + ∞ ) 上是减函数
当 x>1 时,y>0
当 x>1 时,y<0
当 0<x <1 时, y<0 当 0<x<1 时,y>0
名称
指数函数
对数函数
指 数
xR
(3).y
log 3
x 1 3x 1
解:x 1 0 ( x 1)(3x 1) 0 3x 1
x 1或x 1 x {x | x 1或x 1}
3
3
小结
(1)本节要求掌握对数函数的概念、 图象和性质. (2)在理解对数函数的定义的基础 上,掌握对数函数的图象和性质的 应用是本小节的重点.
底
数
数
我们研究指数函数时,曾讨论过细胞分裂问题:如
2.3.1对数函数的定义和图像
x
y log 1 x
3
y log 1 x
2
对数函数y=log a x (a>0, a≠1)
a>1
0<a<1
图
y
y
象
o (1, 0)
(1, 0) xo
x
(1) 定义域: (0,+∞)
性 (2) 值域:R
(3) 过点(1,0), 即x=1 时, y=0
(4) 0<x<1时, y<0;
y
描函数 y=2log2x 的图象如何作呢? 点
1 11
0 42 1 2 3 4
x
连 -1
线 -2
x … 1/4 1/2 1
列 表
y
y
log 2
log 1
x
x
… …
2
-2 2
-1 1
0 0
y
描
2
点
1
11
0 42 1 2 3 4
x
连
-1
线
-2
24 …
1 2… -1 -2 …
这两个函数 的图象有什 么关系呢?
1 11
42
0 123 4
x
-1
-2
函数性质
图象位于y轴右方
定义域 : ( 0,+∞)
图象向上、向下无限延伸
值域: R
自左向右看图象逐渐下降 在(0,+∞)上是:减函数
对数函数 y log 3 x和y log 1 x的图象。
3
y 2
1 11
0 42 1 2 3 4 -1 -2
y log 2 x
质 在R上是增函数
对数函数的图象与性质(第一课时)
▪ 例2.(导学案P102) ▪ 已知对数函数f(x)过点(2,4),则f( )的值为_____.
判断一个函数是否为对数函数
▪ 必须是形如y=logax(a>0,且a≠1)的形式 ▪ (1)系数为1; ▪ (2)底数为大于0且不等于1的常数; ▪ (3)对数的真数仅有自变量x.
对数函数的图象分布规律
▪ 解析:假设该人发布的信息经转载达到了x条时,所用的时间是y分 钟,则y关于x的函数解析式为y=log2x.
对数函数的概念 ▪ 一般地, 函数 y log a x(a>0且a≠1)叫做对数函数,
其中 x 是自变量, 函数的定义域为(0,) .
▪ 思考:对数函数的值域是什么?
(2).若函数y=log(2a-1)x+(a2-5a+4)是对数函数,则 a=_______.
▪ 情感、态度与价值观:体会分类讨论、数形结合的思想
学习重点、难点 ▪ 学习重点: 对数函数的概念的理解. ▪ 学习难点:对数函数的图象与性质的掌握.
问题反馈
新课导入:
▪ 随着计算机技术的迅速发展,互联网、智能手机的普及,人们已经进 入到了信息化时代,任何一个事件都可以快速的传播,比如微博、微 信等通讯平台都可以快速的传播信息.假设某人在微博发布了一条 信息,一分钟后经人转载变成了两条,两分钟后变成了4条.依次类推, 假设该人发布的信息经转载达到了x条时,所用的时间是y分钟,试写 出y关于x的函数解析式.
▪ (1)若底数为同一常数,则可由对数函数的单调性直接进行比 较;
▪ (2)若底数为同一字母,则根据底数对对数函数单调性的影响, 对底数进行分类讨论;
▪ (3)若底数不同,真数相同,则可以先用换底公式化为同底后, 再进行比较;
第1课时 对数函数的概念、图象及性质 课件(40张)
数学
2
即时训练 1-1:(1)若函数 f(x)=log(a+1)x+(a -2a-8)是对数函数,则 a=
(2)已知对数函数 f(x)的图象过点 M(8,3),则 f( )=
.
.
-- = ,
解析:(1)由题意可知 + > 0, 解得 a=4.
+ > ,
所以函数的定义域是{x|-3<x<3}.
+ > 0,
(2)由题意有
解得 x>- 且 x≠0,
+ ≠ ,
则函数的定义域为(- ,0)∪(0,+∞).
数学
[变式训练2-1] 把本例(1)中的函数改为y=loga(x-3)+loga(x+3)呢?
解:由 - > 0, 得 x>3.
为(
)
解析:法一
函数 y=-lg |x+1|的定义域为{x|x≠-1},可排除 A,C;当 x=1
时,y=-lg 2<0,显然只有 D 符合题意.故选 D.
法二
y=-lg |x+1|=
-( + ), > -,
-(--), < -,
又 x∈(-1,+∞)时,y=-lg(x+1)是减函数,因此选 D.
数学
即时训练5-1:(2020·海南高一期中)如图,若C1,C2分别为函数y=logax和
y=logbx的图象,则(
)
(A)0<a<b<1
(B)0<b<a<1
高一数学对数函数及其性质1
1 y log2 x 2 x 3 ; 2 2 y log0.1 2 x 5x 3 .
2
分析:关键是把握好复合函数单调性的判断.
例3 若实数
a
2 满足 log a 1 3
,求
a
的取值范围.
分析:一是要把握住对数函数的单调性;
2 2 a 1时, loga <1=log a a, a ,即a 1. 3 3 2 2 2 0 a 1时, loga <1=log a a a ,即0<a< . 3 3 3 2 a 0, 1, . 3
3 2 5
分析:把握好对数函数的单调性以及底数对图象 的影响的结论是关键,还要注意中间量的选取.
1 log1.5 3.4 log1.5 8.5; 2 log 0.4 1.8 log 0.4 2.7; 3 log a 5.1, log a 5.9 a 0, a 1
8
y
y log2 x
y log3 x
x
0 1
y log 1 x
3
x 1
y log 1 x
2
•O<a<1 时a的值越大图象在 x 1 的 部分越远离 x 轴
• a>1 时a的值越大图象在 x 1 的
部分越靠近
x轴
例2 求下列函数的定义域
1 y 3 2 y 3 y
1 y f 用常用形式表示(即互换),有: x
( x C , y A)
试举几对互为反函数的例子:
1 1 y log 1 x, y ; 2 2
x
2 y log a x, y a
对数函数的性质与图象(第一课时)-2023学年高一数学精品教学课件(人教B版2019 必修第二册)
练习1:
比较下列各题中两个值的大小:
(1) log106 < log108
(2) (3) (4)
llloooggg001...551601..65<> >lollgoo0gg.5014..5101..46
-1 1
0 0
2
y
描
2
点
1 11
42
0 1 23 4
连
-1
线
-2
2 4 ….. 1 2… -1 -2
y log 2 x
x
y log 1 x
2
想 一 想 ?
底数a对对数函数y=logax的 图象有什么影响?
y log a x
1
y log a x
1
y log a x
1
y log a x
(a 0且a 1, y 0, x R) 而习惯上自变量用x表示,y表示函数,所以 这个函数就写成 y loga x(a 0且a 1)
我们把 y loga x(a 0且a 1) 就叫作对数函数,
其中定义域是 0, ,值域是 R ,a 叫作对数函数
的底数.
10为底的对数函数 y=lgx
对数函数的图像和性质 y=log2x图象
列
x … 1 112 4 … 42
表 y log2 x … -2 -1 0 1 2 …
y
描2
Noy log2 x
Image 点 1 11
42
0 1 23 4
x
连 -1
线 -2
1 第1课时 对数函数的概念、图象及性质(共40张PPT)
4.若函数 y=loga(x+a)(a>0 且 a≠1)的图象过点(-1,0). (1)求 a 的值; (2)求函数的定义域.
解:(1)将点(-1,0)代入 y=loga(x+a)(a>0 且 a≠1)中,有 0=loga(-1+ a),则-1+a=1,所以 a=2. (2)由(1)知 y=log2(x+2),由 x+2>0,解得 x>-2,所以函数的定义域为 {x|x>-2}.
[注意] 对数函数解析式中只有一个参数 a,用待定系数法求对数函数解析 式时只须一个条件即可求出.
1.若函数 f(x)=log(a+1)x+(a2-2a-8)是对数函数,则 a=________.
a2-2a-8=0,
解析:由题意可知a+1>0,
解得 a=4.
a+1≠1,
答案:4
2.点 A(8,-3)和 B(n,2)在同一个对数函数图象上,则 n=________.
【答案】 C
角度二 作对数型函数的图象
画出下列函数的图象,并根据图象写出函数的定义域、值域以及单
调性:
(1)y=log3(x-2); (2)y=|log1x|.
2
【解】 (1)函数 y=log3(x-2)的图象如图①.其定义域为(2,+∞),值域为 R,在区间(2,+∞)上是增函数.
(2)y=|log12x|=lloogg122xx,,0x<>x1≤,1,其图象如图②. 其定义域为(0,+∞),值域为[0,+∞),在(0,1]上是减函数,在 (1,+∞)上是增函数.
()
解析:选 A.函数 y=log2|x|是偶函数,且在(0,+∞)上为增函数,结合图象 可知 A 正确.
3.点(2,4)在函数 f(x)=logax(a>0,且 a≠1)的反函数的图象上,则 f12= ________. 解析:因为点(2,4)在函数 f(x)=logax(a>0,a≠1)的反函数的图象上,所 以点(4,2)在函数 f(x)=logax(a>0,a≠1)的图象上,因此 loga4=2,即 4= a2,又 a>0,所以 a=2,所以 f(x)=log2x,故 f12=log212=-1. 答案:-1
北师大版必修第一册 4.3.3对数函数y=logax的图像和性质(第1课时) 课件(45张)
若0<x<1,则____;
(3)函数y=log2x与函数y=2x的图象
关于直线y=x对称.
课件制作老师:胡琪
y
o -1
1
2 345 6 7
8x
-2
-3 课件制作老师:胡琪
y
-1o 1 -2
-3
2 345 6 7
课件制作老师:胡琪
函数
y = log2 x
y = log 0.5 x
图像
定义域
R+
R+
值域
R
R
单调性
增函数
减函数
过定点
(1,0)
(1,0)
取值范围
0<x<1课时件,制y<作0老师:胡0琪<x<1时,y>0
x>1时,y>0
x>1时,y<0
课件制作老师:胡琪
y y log3 x 2
y log 2 x
1 11
42
0 1 23 4
x
-1
-2
课件制作老师:胡琪
课件制作老师:胡琪
课件制作老师:胡琪
课件制作老师:胡琪
经验二
求与对数函数有关的函数定义域时,除遵循前面已 学习过的求函数定义域的方法外,对这种函数自身 还有如下要求:一是要特别注意真数大于零;二是要 注意对数的底数;三是按底数的取值应用单调性,有 针对性地解不等式.-----这种类型在第3课时讲
1.判断下列说法是否正确,正确的在它后面的括号里画“√”,错
误的画“×”.
(1)若f(x)是对数函数,则f(1)=0.( √? )
4.4.2 对数函数的图象和性质(第一课时) 课件(共17张PPT)
⑵考察对数函数 y = log 0.3 x,因为它
y
的底数为0.3,即0<0.3<1,所以它
在(0,+∞)上是减函数,于是
0
log 0.31.8>log 0.32.7
log0.31.8 log0.32.7
y=log2x
3.4 8.5 x
1.8 2.7 x
y=log0.3x
当底数相同时,利用对数函数的单调性比较大小
loga5.1 0
y=logax (a>1) 5.1 5.9 x
当0<a<1时,函数y=log ax在 (0,+∞)上是减函数,于是
log a5.1>log a5.9
y
0 loga5.1 loga5.9
5.1 5.9 x
y=logax (0<a<1)
当底数a不确定时, 要对a与1的大小进行分类讨论.
(1)log2 3.4, log2 8.5 (2)log0.3 1.8, log0.3 2.7 (3)loga 5.1, loga 5.9(a 0且a 1)
解:⑴考察对数函数 y = log 2x,因为 它的底数2>1,所以它在(0,+∞) 上 是增函数,于是log 23.4<log 28.5
y log28.5 log23.4
y log 1 x
2
画一画:在同一坐标系中画出y log2 x和y log1 x的图象
2
x
1
…
4
1 2
1 24
…
y log2 x … -2
-1
0 12…
y log 1 x … 2
2
y
1
0 -1
-2 …
描 点
2
对数函数的概念 对数函数的图象与性质(第一课时) 高一上学期数学人教A版(2019)必修第一册
先通过列表、描点、连线的方法画具体的对数函数的图象,
再研究其性质,最后推广到一般.
与研究指数函数一样,我们首先画出y=log2x的图象,借助图象研
究性质。
列
表
描
点
连
线
作y=log2x图像
X
y=log2x
1/4 1/2
-2 -1
1
0
2
1
4
2
……
……
为此, 将x log a y(a 0, 且a 1)中的字母x和y对调, 写成y log a x(a 0,
且a 1).
定义:一般地, 函数y loga x(a 0, 且a 1)叫做对数函数,
其中x是自变量, 定义域是(0, ).
探索对数函数的图象与性质
指数函数的性质包括哪些?如何探索指数函数的性质?
例2 求下列函数的定义域:
(1)y log 3 x ;
(2) y log a (4 x ) (a 0, 且a 1)
2
你能类比y log 2 x与y log 1 x的图象
2
画出y log 3 x与y log 1 x的图象吗?
3
如图, 选取底数a的若干值, 用计算工具画图, 发现对数函数a的取值,
可分为0 a 1和a 1两种类型. 因此, 对数函数的性质也可以分
0 a 1和a 1两种情况进行研究.
1.知道对数函数的概念;
2.会求对数函数的定义域;
3.知道对数函数的图象.
三、自学指导(阅读课本130-132页回答下列问题。)
问题
1.指数函数y=2x的定义域、值域、单调性分别是什么?
4.3对数函数第一课时教学设计-2024-2025学年高一上学期数学北师大版(2019)必修第一册
1. 选择题:
- 判断对数函数的单调性。
- 判断对数函数的奇偶性。
- 判断对数函数是否过定点。
2. 填空题:
- 请写出对数函数的定义。
- 请写出对数函数的单调性。
- 请写出对数函数的奇偶性。
3. 解答题:
- 请应用对数函数解决实际问题,如人口增长问题。
- 请分析对数函数图像,并回答相关问题。
3. 对数函数在实际问题中的应用:提供实际问题情境,引导学生运用所学对数函数知识进行分析,培养学生数学建模的能力。
4. 针对对数函数性质的深入理解和实际问题中的灵活运用,可以组织小组讨论和分享,让学生在互动中加深对知识的理解,提高解题技巧。
四、教学方法与手段
教学方法:
1. 问题驱动法:通过提出问题,激发学生的好奇心,引导学生主动探究对数函数的定义与性质。
- 参观相关展览:组织学生参观数学博物馆或相关展览,让学生了解对数函数在历史和现实中的应用。
- 开展数学讲座:邀请数学专家或教师进行对数函数相关的讲座,让学生有机会聆听专业的讲解和分享。
九.课堂小结,当堂检测
课堂小结:
1. 对数函数的概念和性质:本节课我们学习了对数函数的概念,掌握了其单调性、奇偶性、过定点等性质。
2. 对数函数的应用:我们学习了如何将对数函数应用于实际问题,如人口增长、放射性衰变等,提高了数学建模的能力。
3. 自主学习与合作:通过小组讨论和实践活动,我们培养了自主学习能力,学会了与他人合作交流,共同解决问题。
4. 问题解决能力:通过解决实际问题,我们提高了问题解决能力,能够运用所学知识分析和解决实际问题。
5. 教学评价工具:运用教学评价工具,如问卷调查、学习报告等,了解学生学习情况,对教学方法和内容进行调整和改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般地,对数函数y=logax在a>1及0<a<1这两种情 况下的图象和性质如下表所示:
a>1
0<a<1
图
象 当0<x<1时,y<0
当0<x<1时,y>0
当x=1时,y=0
当x=1时,y=0
当x>1时,y>0
当x>1时,y<0
性 ⑴定义域(: 0,+∞)
⑵值域:R
质 ⑶过特殊点:过点(1,0),即x=1时y=0 ⑷单调性 :在(0,+∞)上是增函数 ⑷单调性:在(0,+∞)上是减函数
2001年10月23日
一、前提诊测:
1、对数的定义:
一般地,若ab=N(a>0,a≠1),则数b就叫 做以a为底N的对数,记做logaN=b
2、求函数y=2x+1的反函数。
y 2x 1
x y 1 2
y x 1 2
3、互为反函数的两个函数的图象有什么 关系?
关于直线y=x对称
二、对数函数的引入:
1 1 3x
的定义域为{x∣x<
1
3}
⑷因为x>0且 log3 x ≥0
所以函数 y log3 x 的定义域为{x∣x≥1}
1预习内容: 预习提纲:①同底数的两个对数如 何比较大小?
②不同底数的两个对数如何比较大小?
2挑战自己:
你能否尽可能完整地总结出指数函数和对数函数 的区别和联系?请试一试。
③对数函数的定义域、值域也就是指数函数的 值域、定义域
想一想:对数函数的定义域和值域分别是什么?
因为指数函数的定义域是R
值域是(0,+∞)
所以对数函数的定义域是(0,+∞) 值域是R
四、对数函数的图象和性质 对数函数y=log2x的图象
y y 2x y=x
y log2 x
x
先画y=2x的图象
对数函数y=log2x的图象
问题1:某种细胞分裂时,由1个分裂为2个,2个 分裂为4个……1个这样的细胞分裂x次后,得到的
细胞个数设为y,则y与x的函数关系式为:Y=2x
问题2:某种细胞分裂时,由1个分裂为2个,2个分 裂为4个……如果要求这种细胞经过多少次分裂,大约 可以得到1万个,10万个……细胞,那么分裂次数x就 是要得到的细胞个数y的函数。由对数的定义,这个
相同性质:都位于y轴右方,都经过点(1,0), 这说明这两个函数的定义域都是(0,+∞), 且x=1时y=0
不同性质:y=log3x的图象是上升的曲线, y=log x的图象是下降的曲线,这说明前者在 (0,+∞)是增函数,后者在(0,+∞)是减 函数。
2、求下列函数的定义域:
⑴ y log5(1 x) ⑵ y
所以函数y=loga(9-x2)的定义域是{x│-3<x<3}
六、课堂练习: 1、画出函数y=log3x及y=log x的图象,并且 说明这两个函数的相同性质和不同性质。
y=y=log3x
yx
y=log x
六、课堂练习: 1、画出函数y=log3x及y=log x的图象,并且 说明这两个函数的相同性质和不同性质。
函数可以写成:X=log2y
变化过程:Y=2x
X=log2y
Y=log2x
结论:函数y=log2x和指数函数y=2x互为反函数
三、对数函数的定义:
函数y=logax(a>0,a≠1)叫做对数函数
需注意的几点:
①对数函数y=logax和指数函数y=ax互为反函数 ②对数函数的解析式可由指数函数求反函数得到
解⑶:⑴y因为lo1g-7 1x>130x,即x<⑷1,y
1
log2 x
log3 x
所以函数y log5(1 x) 的定义域为{x∣x<1} ⑵因为x>0且log2 x ≠0
所以函数 y 1 的定义域为{x∣0<x<1,或x>1}
⑶因为
1
1 3x
log2 x
>0,即x<
1 3
所以函数
y
log 7
五、应用举例:
例1:求下列函数的定义域:
①y=logax2 ②y=loga(4-x) ③y=loga(9-x2) 分析:此题主要利用对数函数y=logax的定义域 为(0,+∞)求解。
解:①因为x2 >0,即x≠0,
所以函数y=logax2 的定义域是{x│x≠0} ②因为4-x>0,即x<4,
所以函数y=loga(4-x)的定义域是{x│x<4} ③因为9-x2>0,即-3<x<3,
y y 2x
y=x
y log2 x
x
四、对数函数的图象和性质
对数函数y=log x的图象
y (1)x
y
2
y=x
先画 y (1 )x 的图象
2
x
y=log x
对数函数y=log x的图象
y (1)x
y
2
y=x
x
y=log x
y=logax(a>1)的图象
y=logax(0<a<1)的图象