初中数学 等腰三角形与直角三角形
新人教版初中数学——等腰三角形与直角三角形-知识点归纳及典型题解析
新人教版初中数学——等腰三角形与直角三角形知识点归纳与典型题解析一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a 、b 的平方和等于斜边c 的平方,即:a 2+b 2=c 2. (2)勾股定理的逆定理:如果三角形的三条边a 、b 、c 有关系:a 2+b 2=c 2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为40°,则其余两个内角的度数分别为( ) A .40°,100° B .70°,70°C .60°,80°D .40°,100°或70°,70°【答案】D【解析】①若等腰三角形的顶角为40°时,另外两个内角=(180°–40°)÷2=70°; ②若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°–40°–40°=100°. 所以另外两个内角的度数分别为:40°、100°或70°、70°.故选D .【名师点睛】考查了等腰三角形的性质和三角形的内角和为180o ,解题关键是分情况进行讨论①已知角为顶角时;②已知角为底角时.典例2 如图,在ABC ∆中,AB =AC ,D 是BC 的中点,下列结论不正确的是( )A.AD BC B.∠B=∠CC.AB=2BD D.AD平分∠BAC【答案】C【解析】因为△ABC中,AB=AC,D是BC中点,根据等腰三角形的三线合一性质可得,A.AD⊥BC,故A选项正确;B.∠B=∠C,故B选项正确;C.无法得到AB=2BD,故C选项错误;D.AD平分∠BAC,故D选项正确.故选C.【名师点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.1.等腰三角形的周长为13cm,其中一边长为4cm,则该等腰三角形的底边为__________cm.考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC 的长为__________.【答案】4【解析】∵DE ⊥BC ,∠B =∠C =60°, ∴∠BDE =30°,∴BD =2BE =2,∵点D 为AB 边的中点,∴AB =2BD =4, ∵∠B =∠C =60°,∴△ABC 为等边三角形, ∴AC =AB =4,故答案为:4.【名师点睛】本题主要考查直角三角形的性质、等边三角形的判定和性质,利用直角三角形的性质求得AB =2BD 是解题的关键.3.如图,ABC ∆是等边三角形,点D 在AC 上,以BD 为一边作等边BDE ∆,连接CE . (1)说明ABD CBE ∆≅∆的理由; (2)若080BEC ∠=,求DBC ∠的度数.考向四 等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形 C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形 【答案】B【解析】A,∵∠A=∠B=∠C,∴△ABC是等边三角形,故正确;B,条件重复且条件不足,故不正确;C,∵∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形60°,故正确;D,根据有一个角是60°的等腰三角形是等边三角形可以得到,故正确.故选B.4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD 的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六 勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a 2+b 2=c 2时,斜边只能是c .若b 为斜边,则关系式是a 2+c 2=b 2;若a 为斜边,则关系式是b 2+c 2=a 2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 cm cm ,则这个直角三角形的周长为__________.【答案】【解析】∵直角边长为cm cm ,∴斜边(cm ),∴周长cm ).故答案为:【名师点睛】本题考查了二次根式与三角形边长,面积的综合运用.熟练掌握勾股定理的计算解出斜边是关键6.如图所示,在ABC ∆中,90B ∠=︒,3AB =,5AC =,D 为BC 边上的中点.(1)求BD 、AD 的长度;(2)将ABC ∆折叠,使A 与D 重合,得折痕EF ;求AE 、BE 的长度.1.直角三角形两直角边长分别为6和8,则此直角三角形斜边上的中线长是 A .3B .4C .7D .52.如图,ABC △是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为A .50°B .55°C .60°D .65°3.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10m ,AD 为支柱(即底边BC 的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于A .10mB .5mC .2.5mD .9.5m4.如图,ABC ∆是边长为1的等边三角形,BDC ∆为顶角120BDC ∠=︒的等腰三角形,点M 、N 分别在AB 、AC 上,且60MDN ∠=︒,则AMN ∆的周长为A.2 B.3 C.1.5 D.2.55.如图,△ABC中,D、E两点分别在AC、BC上,AB=AC,CD=DE.若∠A=40°,∠ABD:∠DBC=3:4,则∠BDE=A.24°B.25°C.30°D.35°6.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A .8个B .9个C .10个D .11个9.如图,Rt △ABC 中,∠B =90〬,AB =9,BC =6,,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段AN 的长等于A .5B .6C .4D .310.将一个有45°角的三角尺的直角顶点C 放在一张宽为3 cm 的纸带边沿上,另一个顶点A 在纸带的另一边沿上,测得三角尺的一边AC 与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A .6B .C .D .11.三角形的三边a ,b ,c (b ﹣c )2=0;则三角形是_____三角形. 12.如图,等腰△ABC 中,AB =AC =13cm ,BC =10cm ,△ABC 的面积=________.13.已知等腰三角形一腰上的高与另一腰的夹角为35°,则这个等腰三角形顶角的度数为__________. 14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠EFD=__________°.17.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为__________.18.如图,在Rt△ABC中,点E在AB上,把△ABC沿CE折叠后,点B恰好与斜边AC的中点D 重合.(1)求证:△ACE为等腰三角形;(2)若AB=6,求AE的长.19.如图,一架2.5 m 长的梯子斜立在竖直的墙上,此时梯足B 距底端O 为0.7 m .(1)求OA 的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.ABC ∆与DCE ∆有公共顶点C (顶点均按逆时针排列),AB AC =,DC DE =,180BAC CDE ∠+∠=︒,//DE BC ,点G 是BE 的中点,连接DG 并延长交直线BC 于点F ,连接,AF AD .(1)如图,当90BAC ∠=︒时, 求证:①BF CD =; ②AFD ∆是等腰直角三角形.(2)当60BAC ∠=︒时,画出相应的图形(画一个即可),并直接指出AFD ∆是何种特殊三角形.21.已知:如图,有人在岸上点C 的地方,用绳子拉船靠岸,开始时,绳长CB =10米,CA ⊥AB ,且CA =6米,拉动绳子将船从点B 沿BA 方向行驶到点D 后,绳长CD (1)试判定△ACD 的形状,并说明理由; (2)求船体移动距离BD 的长度.1.如图,在OAB △和OCD △中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为A .4B .3C .2D .12.在△ABC 中,AB =AC ,∠A =40°,则∠B =__________.3.如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为__________.4.如图,在四边形ABCD 中,AB CD ∥,连接AC ,BD .若90ACB ∠=︒,AC BC =,AB BD =,则ADC ∠=__________︒.5.腰长为5,高为4的等腰三角形的底边长为__________.6.若等腰三角形的一个底角为72︒,则这个等腰三角形的顶角为__________.7.如图,△ABC 中,AB =BC ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF ,若∠BAE =25°,则∠ACF =__________度.8.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.9.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .10.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .求证:(1)DBC ECB △≌△; (2)OB OC =.11.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F . (1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF ∥AC 叫AD 的延长线于点F .求证:FB =FE .12.在ABC △中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=.1.【答案】4cm 或5cm【解析】当长是4cm 的边是底边时,腰长是12(13–4)=4.5, 三边长为4cm ,4.5cm ,4.5cm ,等腰三角形成立;当长是4cm 的边是腰时,底边长是:13–4–4=5cm ,等腰三角形成立. 故底边长是:4cm 或5cm .故答案是:4cm 或5cm【名师点睛】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解. 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】(1)见解析;(2)20°.【解析】(1)由060ABC DBE ∠=∠=,得ABD CBE ∠=∠,由,AB BC BD BE ==, 得ABD CBE ∆≅∆(SAS );(2)由ABD CBE ∆≅∆,得060BCE A ∠=∠=,所以00000180180806040CBE BEC BCE ∠=-∠-∠=--=, 所以000060604020DBC CBE ∠=-∠=-=.【名师点睛】本题主要考查全等三角形的判定和性质以及三角形内角和定理,先证明三角形全等是解决本题的突破口. 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5.6.【答案】(1)BD =2,AD =2)136AE =,56BE = 【解析】(1)∵在ABC ∆中,90B ∠=︒,3AB =,5AC =, ∴在Rt ABC ∆中,222225316BC AC AB =-=-=, ∴4BC =,又∵D 为BC 边上的中点, ∴122BD DC BC ===, ∴在Rt ABD ∆中,222222133AD AB BD =+=+=,∴AD =(2)ABC ∆折叠后如图所示,EF 为折痕,连接DE ,设AE x =,则DE x =,3BE x =-,在Rt BDE ∆中,222BE BD DE +=,即()22232x x -+=,解得:136x =, ∴136AE =, ∴135366BE =-=. 【名师点睛】本题主要考查了勾股定理的应用,也考查了折叠的性质.是常见中考题型.1.【答案】D【解析】∵两直角边分别为6和8,∴斜边10=, ∴斜边上的中线=12×10=5,故选D . 【名师点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理的应用,熟记性质是解题的关键. 2.【答案】A 【解析】ABC △是等边三角形,AC AB BC ∴==,又BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒0180CBD BAD BDA ABC ∴∠=-∠-∠-∠0000018020206080=---=,BC BD =,∴11(180)(18080)5022BCD CBD ∠=⨯︒-∠=⨯︒-︒=︒,故选A .【名师点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 3.【答案】B【解析】∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°, ∵DE ⊥AB ,DF ⊥AC ,垂足为E ,F ,∴DE =12BD ,DF =12DC , ∴DE +DF =12BD +12DC =12(BD +DC )=12B C .∴DE +DF =12BC =12×10=5m .故选B . 【名师点睛】本题考查等腰三角形和直角三角形的性质,熟练掌握相关知识点是解题关键. 4.【答案】A【解析】如图所示,延长AC 到E ,使CE =BM ,连接DE ,∵BD =DC ,∠BDC =120°,∴∠CBD =∠BCD =30°, ∵∠ABC =∠ACB =60°,∴∠ABD =∠ACD =∠DCE =90°,在△BMD 和△CED 中,90BD CDDBM DCE BM CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BMD ≌△CED (SAS ),∴∠BDM =∠CDE ,DM =DE , 又∵∠MDN =60°,∴∠BDM +∠NDC =60°, ∴∠EDC +∠NDC =∠NDE =60°=∠NDM , 在△MDN 和△EDN 中,DM DEMDN NDE DN DN =⎧⎪∠=∠⎨⎪=⎩,∴△MDN ≌△EDN (SAS ), ∴MN =NE =NC +CE =NC +BM ,所以△AMN 周长=AM +AN +MN =AM +AN +NC +BM =AB +AC =2. 故选A.【名师点睛】本题考查全等三角形的判定和性质,做辅助线构造全等三角形,利用等边三角形的性质得到全等条件是解决本题的关键.5.【答案】C【解析】∵AB=AC,CD=DE,∴∠C=∠DEC=∠ABC,∴AB∥DE,∵∠A=40°,∴∠C=∠DEC=∠ABC=18040702,∵∠ABD:∠DBC=3:4,∴设∠ABD为3x,∠DBC为4x,∴3x+4x=70°,∴x=10°,∴∠ABD=30°,∵AB∥DE,∴∠BDE=∠ABD=30°,故答案为C.【名师点睛】本题主要考查了等腰三角形的性质:等边对等角和三角形内角和定理求解,难度适中.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD=4.故选C.8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt △ACH 中,∵AH =3,∠AHC =90°,∠ACH =30°,∴AC =2AH =6,在Rt △ABC 中,AB ==D .11.【答案】等边【解析】三角形的三边a ,b ,c 2()0b c -=,20,()0b c =-=,0,0a b b c ∴-=-=,解得:,a b b c ==,即a b c ==,则该三角形是等边三角形.故答案为:等边.【名师点睛】本题是一道比较好的综合题,考查了算术平方根的非负性、平方数的非负性、等边三角形的定义. 12.【答案】60cm 2.【解析】过点A 作AD ⊥BC 交BC 于点D , ∵AB =AC =13cm ,BC =10cm , ∴BD =CD =5cm ,AD ⊥BC ,由勾股定理得:AD (cm ), ∴△ABC 的面积=12×BC ×AD =12×10×12=60(cm 2).【名师点睛】本题考查的是等腰三角形的性质及勾股定理,能根据等腰三角形的“三线合一”正确的添加辅助线是关键. 13.【答案】55°或125°【解析】如图,分两种情况进行讨论:如图1,当高在三角形内部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; 如图2,当高在三角形外部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; ∴∠CAB =180°–55°=125°, 故答案为55°或125°.【名师点睛】本题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键. 14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形; ②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10. 15.【答案】24︒【解析】∵ADC ∠是三角形ABD 的外角,AED ∠是三角形DEC 的一个外角,CDE x ∠=︒, ∴ADC BAD B ADE EDC ∠=∠+∠=∠+∠,AED EDC C ∠=∠+∠,B BAD ADE x ∠+∠=∠+︒,AEDC x ∠=∠+︒,∵AB AC =,D 、E 分别在BC 、AC 上,AD AE =,CDE x ∠=︒,∴B C ∠=∠,20ADE AED C ∠=∠=∠+︒,∴C BAD C x x ∠+∠=∠︒++︒,∵12EDC ∠=︒,∴24BAD ∠=︒,故答案为:24︒.16.【答案】15【解析】∵△ABC 是等边三角形,∴∠ACB =60°,∠ACD =120°, ∵CG =CD ,∴∠CDG =30°,∠FDE =150°, ∵DF =DE ,∴∠E =15°.故答案为:15.17.【答案】【解析】如图,过点A 1作A 1M ⊥BC 于点M .∵点A 的对应点A 1恰落在∠BCD 的平分线上,∠BCD =90°,∴∠A 1CM =45°,即△AMC 是等腰直角三角形,∴设CM =A 1M =x ,则BM =7-x .又由折叠的性质知AB =A 1B =5,∴在直角△A 1MB 中,由勾股定理得A 1M 2=A 1B 2-BM 2=25-(7-x )2,∴25-(7-x )2=x 2,解得x 1=3,x 2=4,∵在等腰Rt △A 1CM 中,CA 1A 1M ,∴CA 1.故答案为:18.【答案】(1)见解析;(2)4.【解析】(1)∵把△ABC 沿CE 折叠后,点B 恰好与斜边AC 的中点D 重合, ∴CD =CB ,∠CDE =∠B =90°,AD =CD ,在△ADE 和△CDE 中,90AD CDADE CDE ED ED =⎧⎪∠=∠=⎨⎪=⎩,∴△ADE ≌△CDE (SAS ), ∴EA=EC ,∴△ACE 为等腰三角形; (2)由折叠的性质知:∠BEC =∠DEC , ∵△ADE ≌△CDE ,∴∠AED =∠DEC , ∴∠AED =∠DEC =∠BEC =60°,∴∠BCE =30°,∴12BE CE =, 又∵EA=EC ,∴11223BE AE AB ===,∴AE=4.【名师点睛】本题考查了折叠的性质、全等三角形的判定和性质、等腰三角形的定义和30°角的直角三角形的性质,属于常考题型,熟练掌握上述图形的性质是解题关键. 19.【解析】在直角△ABO 中,已知AB =2.5 m ,BO =0.7 m ,则AO , ∵AO =AA ′+OA ′,∴OA ′=2 m ,∵在直角△A ′B ′O 中,AB =A ′B ′,且A ′B ′为斜边, ∴OB ′=1.5 m ,∴BB ′=OB ′-OB =1.5 m -0.7 m=0.8 m . 答:梯足向外移动了0.8 m .20.【答案】(1)①详见解析;②详见解析;(2)详见解析;【解析】(1)证明:①∵//DE BC ,∴GBF GED ∠=∠. 又,BG EG FGB DGE =∠=∠, ∴(ASA)GBF GED ∆∆≌,∴BF ED =. 又CD ED =,∴BF CD =;②当90BAC ∠=︒时,45ABC ACB ∠=∠=︒, ∵180BAC CDE ︒∠+∠=,∴90CDE ︒∠=.∵//DE BC ,∴90,45BCD CDE ACD ︒︒∠=∠=∠=,∴ABF ACD ∠=∠;又,AB AC BF CD ==,∴()ABF ACD SAS ∆∆≌, ∴,AF AD BAF CAD =∠=∠, ∴BAF FAC CAD FAC ∠+∠=∠+∠ 即90BAC FAD ∠=∠=︒,∴AFD ∆是等腰直角三角形.(2)所画图形如图1或图②,此时AFD ∆是等边三角形.图1 图2 与(1)同理,可证ABF ACD ∆∆≌, ∴AF =AD ,60BAC FAD ∠=∠=︒, ∴△AFD 是等边三角形.【名师点睛】本题考查了等边三角形的判定,等腰三角形的判定和性质,以及全等三角形的判定和性质,平行线的性质,解题的关键是正确找到证明三角形全等的条件,利用全等三角形的性质得到边的关系,角的关系.21.【解析】(1)由题意可得:AC =6 m ,DCm ,∠CAD =90°,可得AD(m ), 故△ACD 是等腰直角三角形.(2)∵AC =6 m ,BC =10 m ,∠CAD =90°, ∴AB(m ), 则BD =AB -AD =8-6=2(m ). 答:船体移动距离BD 的长度为2 m .1.【答案】B【解析】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC △和BOD △中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD △≌△,∴OCA ODB AC BD ∠=∠=,,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠, ∴40AMB AOB ∠=∠=°,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=°,在OCG △和ODH △中,OCA ODBOGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴OCG ODH △≌△,∴OG OH =,∴MO平分BMC ∠,④正确,正确的个数有3个,故选B . 2.【答案】70°【解析】∵AB =AC ,∴∠B =∠C , ∵∠A +∠B +∠C =180°,∴∠B =12(180°-40°)=70°.故答案为:70°. 3.【答案】9【解析】∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,BAD CAE AB ACB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌△CAE , ∴BD =CE =9,故答案为:9. 4.【答案】105【解析】作DE AB ⊥于E ,CF AB ⊥于F ,如图所示,则DE CF =,∵CF AB ⊥,90ACB ∠=︒,AC BC =,∴12CF AF BF AB ===, ∵AB BD =,∴1122DE CF AB BD ===,BAD BDA ∠=∠, ∴30ABD ∠=︒,∴75BAD BDA ∠=∠=︒,∵AB CD ∥,∴180ADC BAD ∠+∠=︒,∴105ADC ∠=︒,故答案为:105.5.【答案】6或【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6; ②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴BC == ③如图3,当5AB AC ==,4CD =时,则3AD ==,∴8BD =,∴BC =∴此时底边长为6或【名师点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论. 6.【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.【名师点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 7.【答案】70【解析】∵∠ABC =90°,AB =AC ,∴∠CBF =180°–∠ABC =90°,∠ACB =45°, 在Rt △ABE 和Rt △CBF 中,AB CBAE CF=⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =25°,∴∠ACF =∠ACB +∠BCF =45°+25°=70°,故答案为:70.【名师点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 8.【解析】(1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.【名师点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键. 9.【解析】(1)∵AB =AC ,AD ⊥BC 于点D ,∴∠BAD =∠CAD ,∠ADC =90°,又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°. (2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD , ∵EF ∥AC , ∴∠F =∠CAD , ∴∠BAD =∠F ,∴AE =FE .10.【解析】(1)∵AB =AC ,∴∠ECB =∠DBC ,在DBC △与ECB △中,BD CE DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴DBC △≌ECB △.(2)由(1)DBC △≌ECB △, ∴∠DCB =∠EBC , ∴OB =OC .11.【解析】(1)∵AB AC =,∴C ABC ∠=∠,∵36C ∠=︒, ∴36ABC ∠=︒,∵D 为BC 的中点,∴AD BC ⊥,∴90903654BAD ABC ∠=-∠=-︒=︒︒︒. (2)∵BE 平分ABC ∠,∴ABE EBC ∠=∠, 又∵EF BC ∥,∴EBC BEF ∠=∠, ∴EBF FEB ∠=∠, ∴BF EF =.【名师点睛】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.【解析】(1)∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴AD BD DC ==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒, ∵2AB =,∴AD BD DC ===,∵30AMN ∠=︒,∴180903060BMD ∠=︒-︒-︒=︒, ∴30BMD ∠=︒,∴2BM DM =,由勾股定理得,222BM DM BD -=,即222(2)DM DM -=,解得DM =∴AM AD DM =-=(2)∵AD BC ⊥,90EDF ∠=︒,∴BDE ADF ∠=∠,在BDE △和ADF △中,B DAF DB DA BDE ADF ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BDE ADF △≌△, ∴BE AF =.(3)如图,过点M 作//ME BC 交AB 的延长线于E ,∴90AME ∠=︒,则AE =,45E ∠=︒,∴ME MA =,∵90AME ∠=︒,90BMN ∠=︒, ∴BME AMN ∠=∠,在BME △和AMN △中,E MAN ME MA BME AMN ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BME AMN △≌△,∴BE AN =,∴AB AN AB BE AE +=+==.【名师点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形 的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
等腰三角形与直角三角形
等腰三角形与直角三角形在数学中,三角形是一种基本的几何形状,根据其边长和角度的关系,可以分为不同的类型。
其中,等腰三角形和直角三角形是两个常见的三角形类型,它们在几何学和实际应用中都具有重要的意义。
一、等腰三角形等腰三角形是指具有两条边相等的三角形。
在等腰三角形中,两个底角的大小相等。
等腰三角形有很多性质和特点,下面我们来介绍几个重要的性质:1. 等腰三角形的底角相等。
无论等腰三角形的顶角是多少,只要两边相等,底角就会相等。
这是等腰三角形的一个重要性质。
2. 等腰三角形的高线相等。
等腰三角形的高线是从顶角到底边上的垂直线段,对于等腰三角形来说,高线的长度相等。
3. 等腰三角形的内角和为180度。
等腰三角形的两个底角相等,所以三角形的内角和为180度,这是三角形的基本性质。
二、直角三角形直角三角形是指具有一个角是90度的三角形。
直角三角形中最常用的性质就是毕达哥拉斯定理,即直角三角形斜边的平方等于两直角边的平方和。
除此之外,直角三角形还有以下性质:1. 直角三角形的两个锐角之和等于90度。
直角三角形中,最大的一个角是90度,所以其余两个角的和等于90度。
2. 直角三角形的两个直角边的比值为斜边的正切值。
直角三角形中,直角边与斜边的比值可以用正切函数计算,即tan(θ) = 对边/邻边。
3. 直角三角形的面积等于两直角边的乘积的一半。
直角三角形的面积可以通过两直角边的乘积再除以2来计算。
三、等腰三角形与直角三角形的联系等腰三角形和直角三角形在几何学中有一些联系和共同点。
首先,对于一个等腰直角三角形来说,它既是等腰三角形又是直角三角形。
其次,在等腰三角形中,如果顶角等于90度,那么这个等腰三角形就成为直角三角形。
此外,在计算等腰三角形和直角三角形的面积时,也可以使用相同的公式。
对于等腰三角形,可以使用底边和高线的乘积再除以2来计算面积;对于直角三角形,可以使用两条直角边的乘积再除以2来计算面积。
综上所述,等腰三角形和直角三角形是两种常见的三角形类型,它们在数学和几何学中具有重要的作用。
§4.3 等腰三角形与直角三角形
§4.3 等腰三角形与直角三角形§43 等腰三角形与直角三角形在数学的奇妙世界中,等腰三角形和直角三角形是两个非常重要的图形,它们有着独特的性质和广泛的应用。
让我们一起来深入了解一下它们。
等腰三角形,顾名思义,就是至少有两条边长度相等的三角形。
这两条相等的边被称为腰,剩下的那条边则被称为底边。
等腰三角形的两个底角也是相等的。
比如说,我们有一个等腰三角形 ABC,其中 AB 和 AC 是两条腰,BC 是底边。
因为 AB = AC,所以角 B 等于角 C。
这种相等的关系在解决很多几何问题时都非常有用。
等腰三角形的性质还体现在它的对称轴上。
等腰三角形沿着底边上的高对折,左右两部分能够完全重合,所以底边上的高所在的直线就是等腰三角形的对称轴。
我们通过一个简单的例子来感受一下等腰三角形性质的应用。
假设有一个等腰三角形,已知顶角为 80 度,那么根据三角形内角和为 180 度,以及两个底角相等的性质,我们可以很容易地算出每个底角的度数为 50 度。
接下来,我们再看看直角三角形。
直角三角形是一个有一个角为 90 度的三角形。
这个 90 度的角被称为直角,而构成直角的两条边被称为直角边,剩下的那条边则被称为斜边。
直角三角形中最著名的定理当属勾股定理。
勾股定理说的是,在一个直角三角形中,两条直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边分别为 a 和 b,斜边为 c,那么就有 a²+ b²= c²。
例如,一个直角三角形的两条直角边分别为 3 和 4,那么斜边的长度就可以通过勾股定理计算出来:3²+ 4²= 9 + 16 = 25,所以斜边的长度为 5。
直角三角形还有很多其他重要的性质和定理。
比如,在一个直角三角形中,如果一个锐角所对的直角边等于斜边的一半,那么这个锐角的度数就是 30 度。
此外,直角三角形的射影定理也很有用。
它指出,在直角三角形中,斜边上的高是两条直角边在斜边上的射影比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
初中数学 人教八年级等腰三角形和直角三角形
等腰三角形和直角三角形[知识梳理]1.等腰三角形的性质与判定2.直角三角形的性质与判定 [基础训练] 1.等腰三角形一底角为30°,底边上的高为9cm ,则这个等腰三角形的腰长是_____cm,顶角是_______. 2.等腰直角三角形一条直角边长1cm ,那么它斜边上的高是_______cm.3.在△ABC 中,AB=AC ,DM 是AB 的中垂线,△BCD 的周长为14cm ,BC=5cm ,则AB=_______cm.4.如果等腰三角形的两边分别长为3cm 和5cm ,那么它的周长为________cm.5.在Rt △ABC 中,CD 是斜边上的中线,CE 是高,AB=10cm,DE=2.5cm.则直角边AC 的长为_______cm.6.两个等腰三角形全等的条件是( )A.有两条边对应相等B.有两个角对应相等C.有一腰和底角对应相等.D.有一腰和一角对应相等.A.等腰三角形顶角的外角平分与底边平行.B.等腰三角形的高,中线,角平分线互相重合.C.顶角相等的两个等腰三角形全等.D.等腰三角形一边不可以是另一边的二倍.8.c b a ,,是三角形的三条边,如果ca bc ab c b a ++=++222,那么这个三角形是( )A.等腰(非等边)三角形B.等边三角形C.不等边直角三角形D.等腰直角三角形 [典型例析]例1.如图,等腰△ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形分成15和6两部分,求这个三角形的周长。
例2.如图,折叠矩形的一边AD ,点D 落在BC 边的点F 处,已知AB=8cm ,BC=10cm,求EC 的长.例3.已知在△ABC 中,∠C=90°,CD ⊥AB 于D ,设BC=a,AC=b,AB=c ,CD=h.求证:(1)c+h>a+b,(2)以a+b 、h 、c+h 为边的三角形是直角三角形.[发展探究]如图,△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 交于点O ,给出下列四个条件:①∠EBO=∠DCO ②∠BEO=∠CDO ③BE=CD ④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC 是等腰三角形(用序号写出所有情形)(2)选择第(1)小题中的一种情形,证明△ABC 是等腰三角形.[优化评价]1.等腰三角形的腰长为10cm,面积为25cm,则顶角的度数为_______2.等腰直角三角形的斜边是29cm,那么这个三角形的周长是_______3.如图,以等腰直角三角形ABC 的斜边AB 为边作等边△ABD ,连接DC ,以DCE ,B 、E 在CD 的同侧,若AB=2,则BE=_______ DC 为边作等边△4.已知△ABC 的∠ABC 、∠ACB 的平分线相交于F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E ,则BD+CE=_______ 腰上的高与腰之比为22,则顶角的度数为_______ 5.等腰三角形一6.等腰三角形一腰上的中线把周长分为63和36两部分,其腰长为( )A.24B.42C.21D.24或427.直角三角形两锐角的角平分线所成的角的度数是( )A.45°B.135°C.45°或135°D.都不对8.已知等腰△ABC 的底边BC=8cm,且BC AC -=2cm,则腰AC 的长为( )A.10cm 或6cmB.10cmC.6cmD.8cm 或6cm9.已知一个直角三角形的面积为12cm 2,周长为212cm,那么这个直角三角形外接圆的半径是________cm.10.阅读下面的解题过程:已知a 、b 、c 为△ABC 的三边,且满足442222b a c b c a -=-,试判断△ABC 的形状.解:∵442222b a c b c a -=- (A )∴))(()(2222222b a b a b a c -+=- (B )∴222b a c += (C )∴△ABC 是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:_____(2)错误的原因为_____________________(3)本题正确的结论是_________________11.如图,矩形ABCD ,折叠一边AD 使点D 落在BC 边的点F 处,折痕为AE ,已知AB=8cm,BC=10,以D 为原点,AD 、CD 分别为x 轴和y 轴,建立如图所示的直角坐标系,求经过A 、F 、E 三点的抛物线的函数解析式.。
中考讲义:等腰三角形与直角三角形,解直角三角形
中考讲义:等腰三角形与直角三角形,解直角三角形第一部分:等腰三角形一.基础知识1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.2.等边三角形的定义:有三条边相等的三角形叫做等边三角形.3.等腰三角形的性质:(1)两腰相等.(2)两底角相等.(3)“三线合一”,即顶角平分线、底边上的中线、底边上的高互相重合.(4)是轴对称图形,底边的垂直平分线是它的对称轴.线段的垂直平分线:性质定理:线段的垂直平分线上的点到线段的两个端点距离相等判定定理:与线段的两个端点距离相等的点在这条线段的垂直平分线上,线段的垂直平分线可以看做是和线段两个端点距离相等的所有点的集合.4.等腰三角形的判定:(1)有两条边相等的三角形是等腰三角形.(2)有两个角相等的三角形是等腰三角形.5.等边三角形的性质:三边都相等,三个角都相等,每一个角都等于60.6.等边三角形的判定:(1)三条边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60的等腰三角形是等边三角形.7.等腰直角三角形的性质:顶角等于90,底角等于45,两直角边相等.等腰直角三角形的判定:(1)顶角为90的等腰三角形.(2)底角为45的等腰三角形.8.等腰三角形的两大特性。
9.构造等腰三角形(两圆一线找等腰)。
第二部分:直角三角形基础知识1、勾股定理和它的逆定理:勾股定理:若 一 个直角三角形的两直角边为a 、b 斜边为c 则a 、b 、c 满足 逆定理:若一个三角形的三边a 、b 、c 满足 则这个三角形是直角三角形【名师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合 2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据, 3、勾股数,列举常见的勾股数三组 、 、 】 2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质: ⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它所对 边是 边的一半 3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:⑴定义法有一个角是 的三角形是直角三角形 ⑵有两个角 的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的 这个三角形是直角三角形【名师提醒:直角三角形的有关性质在四边形、相似图形、圆中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】第三部分,解直角三角形基础知识锐角三角函数的概念1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦, 记为sinA ,即casin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、都叫做∠A 的锐角三角函数3、一些特殊角的三角函数值三角函数30°45°60°sinα 21 22 23cos α 23 2221tan α33134、各锐角三角函数之间的关系 (1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A) ; (2)平方关系:1cos sin 22=+A A (3)倒数关系:tanA ∙tan(90°—A)=1 (4)弦切关系:tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小);(2)余弦值随着角度的增大(或减小)而减小(或增大);(3)正切值随着角度的增大(或减小)而增大(或减小);( 解直角三角形1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
第1讲等腰三角形与直角三角形-教案
第1讲等腰三角形与直角三角形-教案概述适用学科初中数学适用年级初中二年级适用区域北师版区域课时时长(分钟) 120知识点1.等腰三角形判定与性质2.直角三角形判定与性质1.理解等腰三角形的判定定理,并会运用其进行简单的证明.教学目标2.能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性教学重点特殊三角形的灵活应用教学难点特殊三角形的灵活应用.【教学建议】本节的教学重点是使学生能熟练掌握特殊三角形的性质与判定,这一节在本册书乃至整个初中数学几何部分占据非常重要的地位,在中考中出题的频率和分值都比较高,所以教师在教学过程中要注意结合中考题型进行拓展。
学生学习本节时可能会在以下几个方面感到困难:1. 等腰三角形及直角三角形的性质与判定。
2. 结合三角形全等的几何动点。
3.综合性解答题的思路与几何问题中的数学模型。
【知识导图】1等腰三角形与直角三角形等腰三角形判定与性质直角三角形判定与性质教学过程一、导入【教学建议】有关等腰三角形和直角三角形的考题,考查重点是几何动点以及几何类比探究的综合的题型,学生最开始接触时一定要把基础的性质与判定及常见的几何模型整理好,老师在授课过程中要注重方法的指导。
二、知识讲解知识点 1 等腰三角形判定与性质1.提请学生回忆并整理已经学过的8条基本事实中的5条:(1)两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条平行线被第三条直线所截,同位角相等;(3)两边夹角对应相等的两个三角形全等(SAS);(4)两角及其夹边对应相等的两个三角形全等(ASA);(5)三边对应相等的两个三角形全等(SSS);在此基础上回忆全等三角形的另一判别条件:(1)(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理2进行证明;(2)回忆全等三角形的性质。
2.等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。
等腰三角形和直角三角形
等腰三角形和直角三角形在我们的数学世界中,三角形家族成员众多,其中等腰三角形和直角三角形是非常重要的两类。
它们在几何的大舞台上各自展现着独特的魅力和特性,为解决各种数学问题和实际生活中的测量、设计等提供了关键的理论支持。
先来说说等腰三角形。
等腰三角形,顾名思义,就是至少有两条边长度相等的三角形。
这两条相等的边被称为腰,而剩下的那条边则被称为底边。
等腰三角形有一个非常重要的性质,那就是两腰所对的角相等,也就是“等边对等角”。
反过来,如果一个三角形有两个角相等,那么这两个角所对的边也相等,这就是“等角对等边”。
在等腰三角形中,还有一个很重要的线段,那就是顶角平分线、底边上的中线和底边上的高。
这三条线是重合的,我们把它叫做等腰三角形的“三线合一”。
这个性质在解决等腰三角形相关的问题时非常有用。
比如,已知等腰三角形的一个角的度数,要求其他角的度数,就可以利用“等边对等角”和三角形内角和等于 180 度的性质来计算。
再来看一个实际应用的例子。
假设要制作一个等腰三角形的风筝骨架,已知顶角为 80 度,那么底角的度数就可以通过(180 80)÷ 2 =50 度计算得出。
这样就能按照准确的角度来裁剪材料,制作出形状标准的风筝骨架。
接下来聊聊直角三角形。
直角三角形是指其中一个角为 90 度的三角形。
这个90 度的角被称为直角,而构成直角的两条边被称为直角边,剩下的那条边则被称为斜边。
直角三角形有一个非常著名的定理,那就是勾股定理。
它说的是直角三角形两条直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边分别用 a 和 b 表示,斜边用 c 表示,那么勾股定理就可以写成 a²+ b²= c²。
这个定理在数学和实际生活中的应用极其广泛。
比如,在建筑施工中,工人师傅要确定一个直角墙角是否标准,可以通过测量两条直角边的长度,然后计算它们的平方和是否等于斜边长度的平方来判断。
又比如,已知一个直角三角形的两条直角边分别为 3 和 4,那么斜边的长度就可以通过√(3²+ 4²) = 5 来计算得出。
等腰三角形与直角三角形PPT课件
B组 2015—202X年全国中考题组
考点一 等腰三角形
1.(202X内蒙古包头,10,3分)已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2-12x +m+2=0的两根,则m的值是 ( ) A.34 B.30 C.30或34 D.30或36
答案
A
由根与系数的关系可得
a b ab
m
12, 2,
当a=4时,b=8;
当b=4时,a=8.
这两种情况都不能构成三角形,
∴a=b=6,∴m=34,故选A.
易错警示 本题易错选C,原因是未考虑到a=4,b=8或b=4,a=8的情况下不能构成三角形.
2.(202X吉林,5,2分)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°, ∠C=36°,则∠DAC的度数是 ( )
中考数学
(安徽专用)
第四章 图形的认识
§ 4.(202X安徽,10,4分)如图,在Rt△ABC中,AB⊥BC,AB=6,BC=4.P是△ABC内部的一个动点,且满足∠PAB=∠ PBC.则线段CP长的最小值为 ( )
A. 3
2
C. 8 13
13
B.2 D.12 13
13
答案 B ∵∠PAB=∠PBC,∠PBC+∠ABP=90°,∴∠PAB+∠ABP=90°,∴∠P=90°.取AB的中点O,则P在以
AB为直径的圆上.当点O,P,C三点共线时,线段CP最短,
∵OB= 1 AB=3,BC=4,∴OC= 32 42 =5,又OP= 1 AB=3,∴线段CP长的最小值为5-3=2,故选B.
A.70° B.44° C.34° D.24° 答案 C 由作图知BA=BD,∴∠BAD=∠BDA=70°,∵∠BDA=∠C+∠DAC,∴∠DAC=∠BDA-∠C=34°,故 选C.
初中数学专题复习等腰三角形与直角三角形
初中数学专题复习等腰三角形与直角三角形在初中数学的学习中,等腰三角形和直角三角形是两个非常重要的几何图形。
它们不仅在各种数学问题中频繁出现,而且在实际生活中也有着广泛的应用。
接下来,让我们一起深入复习这两个重要的三角形。
一、等腰三角形1、定义等腰三角形是指至少有两边相等的三角形。
相等的两条边称为这个三角形的腰,另一边称为底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
2、性质(1)等腰三角形的两个底角相等(简写成“等边对等角”)。
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。
(3)等腰三角形是轴对称图形,对称轴为底边上的高(或顶角平分线或底边上的中线)所在的直线。
3、判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。
(2)有两条边相等的三角形是等腰三角形。
4、常见题型(1)利用等腰三角形的性质求角度。
例如,已知等腰三角形的一个顶角为 80°,求底角的度数。
因为等腰三角形两底角相等,三角形内角和为 180°,所以底角=(180° 80°)÷ 2 = 50°。
(2)利用等腰三角形的“三线合一”性质进行证明和计算。
比如,已知等腰三角形底边的中线也是底边的高,给出相关边长,求三角形的面积。
二、直角三角形1、定义有一个角为 90°的三角形,叫做直角三角形。
2、性质(1)直角三角形两直角边的平方和等于斜边的平方(即勾股定理)。
(2)在直角三角形中,两个锐角互余。
(3)直角三角形斜边上的中线等于斜边的一半。
3、判定(1)如果一个三角形的三边满足 a²+ b²= c²,其中 c 为最长边,那么这个三角形是直角三角形(勾股定理逆定理)。
(2)如果一个三角形中有一个角为 90°,那么这个三角形是直角三角形。
4、特殊的直角三角形(1)等腰直角三角形:两条直角边相等的直角三角形,其两个底角均为 45°。
第15节 等腰三角形与直角三角形
2.判定 (1)有两边相等的三角形是等腰三角形. (2)有③_两__角_____相等的三角形是等腰三角形.
3.面积:S=1 ah. 2
等边三角形的性质及判定
1.性质 (1)三条边相等. (2)三个内角相等,且每一个角都等于④__6_0_°___. (3)每条边上的高线、中线、角平分线均重合(“三线合一”). (4)是轴对称图形,有3条对称轴,对称轴为任一条边上的高(中线或角平分线)所 在的直线. 2.判定 (1)三边都相等的三角形是等边三角形. (2)三个角都相等的三角形是等边三角形. (3)有一个角是⑤_6_0_°____的等腰三角形是等边三角形.
分类讨论 例6 等腰三角形的一个角比另一个角大30°,则顶角为__8_0_°__或__4_0_°___. 例7 若直角三角形的两边长分别为6 cm,8 cm,则斜边上的中线长为_4_c_m_或__5_c_m_.
例8 如图,在△ABC中,∠C=90°,AC=6,BC=8,点D是BC上的中点, 点P是边AB上的动点,若要使△BPD为直角三角形,则BP=___5_或__15_6___.
(2)在△ABC中,若一边长为3,一边长为4,则△ABC的周长为__1_0_或__1_1__; 48
(3)若AB=10,BC=12,则△ABC的面积为_4_8___,边AC上的高为__5_____; (4)如图②,若∠ABC=60°,AB=8,点D为BC的中点,点E为AC的中点,连接 DE.则∠BAD的度数为______3_0_°___,DE的长为____4_,△ABC的面积为_1_6__3___;
(5)若∠B=60°,AD=3 3 ,则 AB=__6___,S△ABC=_1_8__3__,S△ABE=_9__3___;
(6)如图②,若∠B=60°,作 BF 平分∠ABC,交 AD 于点 F,AD=6,求 BF 的值.
九年级数学下册 等腰、等边及直角三角形知识点总结
第16讲等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求21P COBAPCO BADABC abccD。
《三角形》等腰三角形和直角三角形
《三角形》等腰三角形和直角三角形《三角形:等腰三角形和直角三角形》三角形,这一简单而又基础的几何图形,在我们的数学世界中占据着重要的地位。
其中,等腰三角形和直角三角形更是具有独特的性质和广泛的应用。
先来说说等腰三角形。
等腰三角形,顾名思义,就是至少有两边相等的三角形。
相等的这两条边被称为腰,另一条边则被称为底边。
两腰所夹的角称为顶角,腰与底边的夹角称为底角。
等腰三角形有一个非常重要的性质,那就是两底角相等。
这个性质在解决很多与等腰三角形相关的问题时都起着关键作用。
比如说,已知一个等腰三角形的顶角为 80 度,那么根据两底角相等以及三角形内角和为 180 度的定理,我们就可以很容易地算出底角的度数为(180 80)÷ 2 = 50 度。
等腰三角形的对称轴是其底边上的高(或顶角平分线或底边的中线)所在的直线。
这条对称轴使得等腰三角形具有很好的对称性,在美学和设计领域也有不少应用。
等腰三角形的判定也很重要。
如果一个三角形中有两个角相等,那么这个三角形就是等腰三角形。
这为我们判断一个三角形是否为等腰三角形提供了便捷的方法。
再看看直角三角形。
直角三角形是一个拥有一个直角的三角形,这个直角所对的边称为斜边,其余两条边称为直角边。
直角三角形有一个极其重要的定理——勾股定理。
即直角三角形两条直角边的平方和等于斜边的平方。
如果直角边分别为 a 和 b,斜边为 c,那么就有 a²+b²= c²。
勾股定理的应用非常广泛。
比如,已知一个直角三角形的两条直角边分别为 3 和 4,那么我们可以通过勾股定理算出斜边的长度为 5 。
在实际生活中,建筑工人在建造房屋时,常常会利用勾股定理来确保建筑物的角度和长度符合要求。
直角三角形的另一个重要性质是其两个锐角互余。
也就是说,两个锐角的和为 90 度。
这一性质在解决与直角三角形内角相关的问题时经常被用到。
除了勾股定理,直角三角形还有一些特殊的比例关系。
初中数学难点之八:等腰三角形、等边三角形、直角三角形
初中数学难点之八:等腰三角形、等边三角形、直角三角形等腰三角形、等边三角形、直角三角形是初中数学重点考察内容,也是学习的难点。
一、等腰三角形的概念1. 定义有两条边相等的三角形叫做等腰三角形。
两条相等的边叫做腰,所夹的角叫做顶角,另一边叫做底边,底边与腰形成的两个角叫做底角。
2. 性质(1)等腰三角形是轴对称图形,底边中线是对称轴(底边的高、顶角的角的角平分线都是对称轴)(2)等腰三角形两个底角相等,简称等边对等角。
(3)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)两内角相等的三角形叫做等腰三角形(2)两个边相等的三角形叫做等腰三角形二、等边三角形1. 定义三条边都相等的三角形叫做等边三角形。
2. 性质(1)等边三角形有三条对称轴,中线是对称轴(2)等边三角形三个角相等,每个角都为60º(3)等边三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形叫做等边三角形(3)有一个内角是60º的等腰三角形是等边三角形。
三、直角三角形1. 定义有一个角是直角的三角形叫做直角三角形2. 性质(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30º角所对的直角边等于斜边的一半(4)勾股定理:a2+b2=c2(a、b为直角边,c为斜边)3. 判定(1)有一个角是直角的三角形,或者两个锐角和为90º的三角形为直角三角形。
(2)一边的中线等于这条边的一半,这个三角形是直角三角形。
(3)勾股定理逆定理:如果有a2+b2=c2(a、b、c为三角形的三个边),则三角行为直角三角形四、基础题型1. 例题1如图,边长为4的等边ΔABC中,D、E分别为AB、BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为?解:连接DE,因为:EF⊥AC,∠C=60º所以∠FEC=30º,因为:ΔABC为等边三角形,DE为中位线所以有:2. 考察知识点(1)等边三角形及内角为60º(2)三角形中位线(3)直角三角形30度内角所对直角边等于斜边的一半(4)直角三角形勾股定理3. 解题思路和技巧DG是非常孤立的,既不是中位线,也不平行某一边,即不是三角形的某一边,也不是规则四边形的边,很难下手,因此必须画辅助线把DG融入某个三角形内,因为D、E分别是所在边的中点,连接起来是三角形的中位线,因此连接DE,尝试解题。
知识清单15 等腰三角形与直角三角形-2020年中考数学知识清单大全
21P COBA知识清单15:等腰三角形&直角三角形1. 等腰三角形2. 等边三角形3. 角平分线4. 垂直平分线5. 直角三角形的性质6. 直角三角形的判定1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB =AC ∠B =∠C ; ②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合; ③对称性:等腰三角形是轴对称图形,直线AD 是对称轴. (2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B =∠C ,则△ABC 是等腰三角形.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°. 即AB =BC =AC ,∠BAC =∠B =∠C =60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线) 所在的直线是对称轴. (2)判定①定义:三边都相等的三角形是等边三角形; ②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形,即若AB =AC ,且∠B =60°,则△ABC 是等边三角形.3.角平分线(1)性质:角平分线上的点到角的两边的距离相等. 如图,即若∠1 =∠2,PA ⊥OA ,PB ⊥OB ,则PA =PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平 分线上.名师点睛:等腰三角形 等边三角形(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.如:如上图,已知AD ⊥BC ,D 为BC 的中点,则三角形的形状是等腰三角形.(2)此外,等腰三角形两腰上的高线、角平分线、中线也相等.(3)当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC 的一个内角为30°,则另外两个角的 度数为30°、120°或75°、75°.(4)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(5)等边三角形有一个特殊的角60°,所以当等边三角 形出现高时,会结合直角三角形30°角的性质,即BD=12AB.(6)角平分线常见三种全等模型:△ACE ≌△AC 1E ,△ABE ≌△AB 1E ,△ADE ≌△AD 1E。
初中数学专题复习等腰三角形与直角三角形
初中数学专题复习等腰三角形与直角三角形初中数学专题复习:等腰三角形与直角三角形嘿,同学们!咱们今天要来好好唠唠初中数学里的等腰三角形和直角三角形。
这俩家伙可是考试中的常客,咱们可得把它们拿捏得死死的。
先来说说等腰三角形吧。
还记得有一次我在路上走着,看到一个小朋友拿着一个风筝,那风筝的骨架就是一个等腰三角形。
小朋友不小心把风筝掉到了地上,骨架有点变形了。
我就帮他捡起来,仔细一看,发现这等腰三角形的两条腰好像不相等了。
这让我想到了咱们数学里的知识,如果一个等腰三角形的两条腰不相等了,那它可就不是等腰三角形啦。
等腰三角形有个特别重要的性质,就是两腰相等,两底角也相等。
比如说,给你一个等腰三角形,其中一个底角是 50 度,那另一个底角不用想,肯定也是 50 度。
而且等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合,这叫“三线合一”。
这个性质在解题的时候可好用啦,能帮咱们快速找到解题的关键。
再讲讲直角三角形。
有一回我去工地,看到工人们在搭建一个架子,那架子的形状就是直角三角形。
我就在想,这直角三角形可真是坚固啊。
直角三角形有个勾股定理,大家可得记牢咯!就是两条直角边的平方和等于斜边的平方。
比如说,一个直角三角形的两条直角边分别是 3 和 4,那斜边肯定就是 5 啦,因为 3 的平方加上 4 的平方等于 5 的平方。
还有啊,直角三角形中,如果一个锐角是 30 度,那么它所对的直角边是斜边的一半。
这个性质也经常在题目中出现呢。
咱们来做几道题练练手。
比如说这道:已知一个等腰直角三角形的斜边是 10 厘米,求它的直角边长度。
这时候咱们就可以利用勾股定理啦,因为等腰直角三角形的两条直角边相等,设直角边为 x,那就是 x 的平方加上 x 的平方等于 10 的平方,解这个方程就能求出直角边的长度啦。
再看这道:在一个等腰三角形中,顶角是 80 度,求底角的度数。
这就简单啦,用(180 80)÷ 2 就能得出底角的度数。
初中复习方略数学第十七讲 等腰三角形、直角三角形
道按如图所作的直线 l 为线段 FG 的垂直平分线.下列说法正确的是( A )
A.l 是线段 EH 的垂直平分线 B.l 是线段 EQ 的垂直平分线 C.l 是线段 FH 的垂直平分线 D.EH 是 l 的垂直平分线
【提分要点】 1.“等边对等角”,可以证明两个角相等,也可以计算角的大小; 2.“三线合一”,利用这个性质可以证明线段相等、角相等、线段垂直,可以计算线 段的长度,角的大小.
2.等边三角形
定义 ___三__边____相等的三角形
性质
(1)等边三角形的三个内角都___相__等____,并且每一个内角都等于 ___6_0_°___ (2)等边三角形是轴对称图形,并且有___三____条对称轴 (3)等边三角形每边上的中线,该边上的高线,该边所对角的角平 分线互相重合
AC=_4__8_米.
考点四 直角三角形的性质 【典例 4】(2020·荆州中考)如图,在平面直角坐标系中,Rt△OAB 的斜边 OA 在第一
象限,并与 x 轴的正半轴夹角为 30°.C 为 OA 的中点,BC=1,则点 A 的坐标为( B )
A.( 3 , 3 ) C.(2,1)
B.( 3 ,1) D.(2, 3 )
1.(2021·乐山中考)如图,已知直线 l1,l2,l3 两两相交,且 l1⊥l3,若 α=50°,则 β
【特别提醒】勾股定理的逆定理是判断一个三角形是否是直角三角形的重要方法,应 先确定最长边,然后验证两条短边的平方和是否等于最长边的平方.
1.一条边等于另一条边的一半的三角形:若直角三角形的一条直角边等于斜边的一 半,则较短边所对的角是 30°;若直角三角形一条直角边等于另一条直角边的一半, 则不会有 30°的角;若此三角形不是直角三角形,也不会有 30°的角. 2.一条边上的中线等于这个边的一半的三角形:这个三角形一定是直角三角形.
中考数学专题特训 等腰三角形与直角三角形(含详细参考答案)
中考数学专题复习等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【赵老师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【赵老师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【赵老师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【赵老师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【赵老师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例 1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是.分析:此题需先根据题意画出当AB=AC时,当AB=BC时,当AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可.解:(1)当AB=AC时,∵∠A=30°,∴CD=12AC=12×8=4;(2)当AB=BC时,则∠A=∠ACB=30°,∴∠ACD=60°,∴∠BCD=30°,∴CD=cos∠BCD•BC=cos30°×8=43;(3)当AC=BC时,则AD=4,∴CD=tan∠A•AD=tan30°•4=433;故答案为:433或43或4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学
学习经历案(简要把教学过程呈现就行)1. 知识地位:
2.考点分析:
【一、知识梳理】
回忆并记录知识要点,
【二、考点突破:分类思想】
题组一:
1.等腰三角形两边长分别为3和4,其周长为__________.
2.等腰三角形两边长分别为2和4,其周长为__________.
3.直角三角形两边长分别为3和4,其周长为_______________.
4.等腰三角形一个内角的度数为50°,则这个三角形的顶角度
数为________________.
5.等腰三角形一个内角的度数为100°,则这个三角形的顶角度
数为________________.
总结:便不确定时,按边进行分类;角不确定时,按角进行分
类;图形不确定时,按形状进行分类。
【二、考点突破:平行加平分构造等腰三角形】
题组二:
7.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O 作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9.
8.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为2.
总结:注意利用题目中的关键条件,添加辅助线,构造等腰
三角形。
【二、考点突破:二合一解决问题】
题组三:
9.如图,等边△OAB的边长为2,则点B
的坐标为()
A.(1,1)B.(1,)
C.(,1)D.(,)
10.如图,在△ABC中,∠BAC=90°,
AD⊥BC,垂足为D,E是边BC的
中点,AD=ED=3,则BC的长为
()A.3B.3C.6 D.6
总结:等腰三角形利用“三线合一”得到直角三角形解决问题;直角三角形利用“斜边中线等于斜边一半”得到等腰三角形解决问题。
二者互相结合1+1.
【二、考点突破:等腰三角形存在性问题】
题组四:
11.如图,在直角坐标系中,O是原点,已知A(4,3),P是
坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有8个,写出其中一个点P的坐标是(5,0).
1.(2019 攀枝花)如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:
(1)点D在BE的垂直平分线上;
(2)∠BEC=3∠ABE.
【分析】(1)连接DE,根据垂直的定义得到∠ADC=∠BDC=90°,根据直角三角形的性质得到DE=CE,根据线段垂直平分线的性质即可得到结论;
(2)根据等腰三角形的性质和三角形的外角的性质即可得到结论.
1.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为
()
A.4B.5C.6D.7
2.如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()
A.B.C.D.2
3.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()
A.2a B.2a
C.3a D.
4.若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.
5.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.
某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.
五、总结反思(学生填写)
附:题组三补充练习解析
1.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,
15﹣5.
AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是
【解答】解:过点B作BM⊥FD于点M,
在△ACB中,∠ACB=90°,∠A=60°,AC=10,
∴∠ABC=30°,BC=10×tan60°=10 ,
∵AB∥CF,
∴BM=BC×sin30°==5,
CM=BC×cos30°=15,
在△EFD中,∠F=90°,∠E=45°,
∴∠EDF=45°,
∴MD=BM=5 ,
∴CD=CM﹣MD=15﹣5 .
故答案是:15﹣5.
【点评】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.
2.把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=﹣.
【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=,再利用勾股定理求出DF,即可得出结论.
【解答】解:如图,过点A作AF⊥BC于F,
在Rt△ABC中,∠B=45°,
∴BC=AB=2,BF=AF=AB=,
∵两个同样大小的含45°角的三角尺,
∴AD=BC=2,
在Rt△ADF中,根据勾股定理得,DF==,
∴CD=BF+DF﹣BC=+﹣2=﹣,
故答案为:﹣.
【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.。