2011年成人高考专升本高数复习资料

合集下载

2011年成考高等数学二复习汇总

2011年成考高等数学二复习汇总

多元函数微分学多元函数微积分学中的考试重点主要在二元函数的偏导数、全微分及多元函数极值计算上,对二元函数极限的计算与连续性的判断不做要求。

1、二元函数的偏导数和全微分二元函数的偏导数的计算和一元函数的导数计算有密切的关系:计算二元函数对的偏导数时,只需要把其中的看作常数,而看成是关于的函数,利用一元函数的求导法进行求导即可。

比如,在考试中,也会碰到上面的是其他变量的函数的情况,这就要求大家掌握复合函数的链式法则。

2、二元函数的极值考试大纲要求会求二元函数的极值与条件极值。

这个内容要求大家掌握二元函数极值的概念、极值存在的必要条件与充分条件。

必要条件很好理解,只需要跟一元函数极值存在的必要条件进行比较,就可以知道可微的二元函数在取得极值的必要条件。

概率论初步概率论在考试中占的比重较少,但我们也不能忽视这部分的内容。

考试大纲对概率论初步提出了如下要求:事件及其关系和运算要理解事件的概念,必须弄清楚随机想象的含义。

随机现象是指在一定条件下可能结果不止一个,而且事先无法确定某个结果发生的现象。

比如,投掷一枚硬币,有可能出现“正面”或“反面”。

对这样的现象进行观察与试验,就叫做随机试验。

随机试验的每个可能结果叫做基本事件,而他的全体基本事件构成的集合称为样本空间。

像投掷硬币的例子中,“出现正面”或“出现反面”是基本事件。

而在随机试验中,可能出现或可能不出现的结果称为随机事件,简称事件。

显然,基本事件是事件。

总之,随机事件是样本空间的某种子集。

由于随机事件是样本空间的某种子集,所以事件之间的关系及运算可以对应于集合之间的关系及运算。

因此,我们不再一一说明事件的包含、相等、对立、互斥关系及事件的并、交及差运算。

而且事件之间的运算满足所有集合运算满足的规律。

历年来,成人高考数学(二)的考试内容主要分为以下几块:一元函数微积分学、多元函数微分学(主要是二元函数)及概率论初步。

其中一元函数微积分学和多元函数微积分学在考试中分数占很大比重,因此这两大块是我们大家尤其要重视的重点。

2011年成人高考高中起点升专科、本科《数学》(理科)试卷及详解【圣才出品】

2011年成人高考高中起点升专科、本科《数学》(理科)试卷及详解【圣才出品】
A.1.625 B.1.5 C.1.325 D.1.25 【答案】D 【解析】记该篮球运动员投篮两次所得分数为 A,则 A 的分布列如下:
由于 x+0.5+0.375=1,解得 x=0.125,E(A)=0×0.125+1×0.5+2×0.375=1.25. 17.已知 A,B 是抛物线 y2=8x 上的两点,且此抛物线的焦点在线段 AB 上,若 A,B
D.
【答案】A
【解析】BD 两项,y=log2x 和
均为非奇非偶函数;C 项,y=x2-4 虽为
偶函数,但在(0,3)内为增函数;A 项,y=cosx 是偶函数,且在(0,π)内为减函数, 所以在(0,3)内也是减函数.
16.一位篮球运动员投篮两次,若两投全中得 2 分,若两投一中得 1 分,若两投全不 中得 0 分.已知该运动员两投全中的概率为 0.375,两投一中的概率为 0.5,则他投篮两次 得分的期望值是( ).
3 / 13
圣才电子书 十万种考研考证电子书、题库视频学习平台

系.
7.i 为虚数单位,若 i(m-i)=1-2i,则实数 m=( ). A.2 B.1 C.-1 D.-2 【答案】D 【解析】i(m-i)=im-i2=im+1=1+mi.即 1+mi=1-2i,可得 m=-2.
圣才电子书 十万种考研考证电子书、题库视频学习平台

2011 年成人高考高中起点升专科、本科《数学》(理科)试卷及详解
-、选择题:本大题共 17 小题,每小题 5 分,共 85 分。在每小题给出的四个选项中,
只有一项是符合题目要求的。
1.函数
的定义域是( ).
A.(-∞,0]
8 / 13
圣才电子书 十万种考研考证电子书、题库视频学习平台

2011年成人高考高等数学二复习资料.

2011年成人高考高等数学二复习资料.

高中生必备的20项作文技巧8----首当其冲的真情[UP落点]1. 写不好作文不是技巧不够,积累不足,而是“我”不在场。

2. 以生活画面的再现唤起记忆,找回忽略的细节感,营造感性氛围,聚合情感,复苏写作的灵感。

[链接]“感情真挚”考点解说“感情真挚”是作者在情感表达、展示的过程中做到:具体而不空泛,真实而不虚假,自然而不做作。

要求——◇在作文中能够自然地表达真情实感,使感情的流露能够给人以真实感、真诚感,而不是附加感、装饰感。

◇喜怒哀乐,真情表露,写实事,讲实话,抒实情,明实理,不人云亦云、随波逐流。

◇展开联想、想象要合情合理,抒发感情要恰如其分。

不要为了迎合阅卷老师而矫揉造作,夸大感情,更不能胡编滥造。

【作家在线】[作家范文]访兰父亲喜欢兰草,过些日子,就要到深山中一趟,带回些野兰来培栽。

几年间,家里庭院就有了百十余品种,像要作一个兰草园圃似的。

方圆十几里的人就都跑来观赏,父亲并不因此而得意,反而倒有几分愠怒。

以后又进山去,可不再带回那些野生野长的兰草了。

这事使我很奇怪,问他,又不肯说,只是有一次再进山的时候,要我和他一块:“访兰去吧!”我们走了半天,一直到了山的深处。

那里有一道瀑布,从几十丈高的山崖直直垂下,老远就听到了轰轰隆隆的响声,水沫扬起来,弥漫了半天,日光在上面浮着,晕出七彩迷丽的虚幻。

我们沿谷底走,便看见有很多野兰草,盈尺高的,都开了淡淡的兰花,像就地铺着了一层寒烟;香气浓烈极了,气浪一冲,站在峡谷的任何地方都闻到了。

我从未见过这么清妙的兰草,连声叫好,又动手要挖起一株来,想,父亲会培育这仙品的:以前就这么挖回去,经过一番培栽,就养出了各种各样的品类、形状的呢!父亲却把我制住了。

问道:“你觉得这里的兰草好呢,还是家里的那些好呢?”我说:“这里的好!”“怎么好呢?”我却说不出来。

家里的的确比这里的看着好看,这里的却比家里的清爽。

“是味儿好像不同吗?”“是的。

”“这是为什么?一样的兰草,长在两个地方就有两个味儿?”父亲说:“兰草是空谷的幽物,得的是天地自然的原气,长的是山野水畔的趣姿;一经培栽,便成了玩赏的盆景。

2011年成人高考专升本高等数学一考试真题及参考答案

2011年成人高考专升本高等数学一考试真题及参考答案

一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

第1题
参考答案:D
第2题
参考答案:C
第3题
参考答案:B
第4题
参考答案:A
第5题
参考答案:B 第6题
参考答案:D 第7题
参考答案:D 第8题
参考答案:A 第9题
参考答案:C
第10题
参考答案:A
二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

第11题
第12题
参考答案:1/2
第13题
参考答案:4x-2
第14题
第15题
参考答案:(-1,1)
第16题
参考答案:arctanx+C 第17题
参考答案:1
第18题
第19题
参考答案:0
第20题
三、解答题:本大翘共8个小题,共70分。

解答应写出推理,演算步骤。

第21题
第22题
第23题
第24题
第25题
第27题。

2011年成人高考专升本《高数一》试题及答案

2011年成人高考专升本《高数一》试题及答案

机动
目录
上页
下页
返回
结束
2.定义 设 是空间中一条有限长的光滑曲线, 义在 上的一个有界函数, 若通过对 的任意分割 和对 局部的任意取点, 下列“乘积和式极限”
( k ,k , k )
n
0
lim
f ( k ,k , k )sk
记作
k 1


f ( x, y , z ) d s
(由
1
f ( x, y , z ) d s
2
f ( x, y , z ) d s
组成)
( l 为曲线弧 的长度)
机动
目录
上页
下页
返回
结束
(5) 若在曲线弧 上,有
f ( x, y, z ) g ( x, y, z )

,则


f ( x , y , z ) ds

g ( x , y , z ) ds
机动
ds d y dx x x
上页 下页 返回 结束
目录
如果曲线 L 的方程为

则有
a
b
f ( x, ( x) ) 1 2 ( x) d x
如果方程为极坐标形式: L : r r ( ) ( ), 则


推广:

f ( r ( ) cos , r ( ) sin ) r 2 ( ) r 2 ( ) d
tk
k 1
t
(t ) (t ) d t
2 2
2
2

( k ) ( k ) t k ,

lim f [ ( k ) , ( k ) ]

2011年普通专升本高等数学真题汇总

2011年普通专升本高等数学真题汇总

2011年普通专升本高等数学真题一一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.函数()()x x x f cos 12+=是( ).()A 奇函数 ()B 偶函数 ()C 有界函数 ()D 周期函数2.设函数()x x f =,则函数在0=x 处是( ).()A 可导但不连续 ()B 不连续且不可导()C 连续且可导 ()D 连续但不可导3.设函数()x f 在[]1,0上,022>dxfd ,则成立( ). ()A ()()0101f f dxdf dxdf x x ->>== ()B ()()0110==>->x x dx df f f dxdf()C ()()0101==>->x x dxdf f f dxdf()D ()()101==>>-x x dxdf dxdf f f4.方程22y x z +=表示的二次曲面是( ).()A 椭球面 ()B 柱面()C 圆锥面 ()D 抛物面5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 至少有一条 ()B 仅有一条().C 不一定存在 ().D 不存在二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)考学校:______________________报考专业:______________________姓名: 准考证号: ----------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------2.设函数()x f 在1=x 可导, 且()10==x dx x df ,则()().__________121lim=-+→xf x f x .3.设函数(),ln 2x x f =则().________________________=dxx df4.曲线x x x y --=233的拐点坐标._____________________5.设x arctan 为()x f 的一个原函数,则()=x f ._____________________6.()._________________________2=⎰xdt t f dx d7.定积分().________________________2=+⎰-ππdx x x8.设函数()22cos y x z +=,则._________________________=∂∂x z9. 交换二次积分次序().__________________________,010=⎰⎰xdy y x f dx10. 设平面∏过点()1,0,1-且与平面0824=-+-z y x 平行,则平面∏的方程为._____________________三.计算题:(每小题6分,共60分)1.计算xe x x 1lim 0-→.2.设函数()()x x g e x f xcos ,==,且⎪⎭⎫⎝⎛=dx dg f y ,求dx dy .3.计算不定积分()⎰+.1x x dx4.计算广义积分⎰+∞-0dx xe x .5.设函数()⎩⎨⎧<≥=0,0,cos 4x x x x x f ,求()⎰-12dx x f . 6. 设()x f 在[]1,0上连续,且满足()()⎰+=12dt t f e x f x,求()x f .7.求微分方程xe dx dy dxy d =+22的通解. 8.将函数()()x x x f +=1ln 2展开成x 的幂级数.9.设函数()yx yx y x f +-=,,求函数()y x f ,在2,0==y x 的全微分. 10.计算二重积分,()⎰⎰+Ddxdy y x22,其中1:22≤+y x D .四.综合题:(本题共30分,其中第1题12分,第2题12分,第3题6分) 1.设平面图形由曲线xe y =及直线0,==x e y 所 围成,()1求此平面图形的面积;()2求上述平面图形绕x 轴旋转一周而得到的旋转体的体积.2.求函数1323--=x x y 的单调区间、极值及曲线的凹凸区间.3.求证:当0>x 时,e x x<⎪⎭⎫⎝⎛+11.__报考专业:______________________姓名: 准考证号------------------------------密封线---------------------------------------------------------------------------------------------------2011年普通专升本高等数学真题二一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.当0→x 时,1sec -x 是22x 的( )..A 高阶无穷小 .B 低阶无穷小 .C 同阶但不是等阶无穷小 D .等阶无穷小2.下列四个命题中成立的是( )..A 可积函数必是连续函数 .B 单调函数必是连续函数 .C 可导函数必是连续函数 D .连续函数必是可导函数 3.设()x f 为连续函数,则()⎰dx x f dx d等于( ). .A ()C x f + .B ()x f.C ()dx x dfD .()C dxx df + 4.函数()x x x f sin 3=是( )..A 偶函数 .B 奇函数.C 周期函数 D .有界函数5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 不存在 ()B 仅有一条 ().C 不一定存在 ().D 至少有一条二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)__________=a .2.()()().___________________311sin lim221=+--→x x x x3..___________________________1lim 2=++--∞→xx x x x 4.设函数()x f 在点1=x 处可导,且()11==x dx x df ,则()()._______121lim=-+→xf x f x5设函数()x x f ln 2=,则().____________________=dxx df6.设xe 为()xf 的一个原函数,则().___________________=x f 7.()._________________________2=⎰x dt t f dxd 8.._________________________0=⎰∞+-dx e x9.().________________________2=+⎰-ππdx x x10.幂级数()∑∞=-022n nnx 的收敛半径为.________________三.计算题:(每小题6分,共60分) 1.求极限()()()()()x b x a x b x a x ---+++∞→lim.2.求极限()nnnn n n 75732lim+-++∞→.3.设()b ax ey +=sin ,求dy .4.设函数xxe y =,求22=x dx yd .5.设y 是由方程()11sin =--xy xy 所确定的函数,求(1).0=x y ; (2).=x dx dy .6.计算不定积分⎰+dx x x132.7.设函数()⎩⎨⎧≤<≤≤=21,210,2x x x x x f ,求定积分()⎰20dx x f .8.计算()xdte ex t tx cos 12lim--+⎰-→.9.求微分方程022=+dxdydx y d 的通解. 10.将函数()()x x x f +=1ln 2展开成x 的幂级数.四.综合题:(每小题10分,共30分)1. 设平面图形由曲线xe y =及直线0,==x e y 所围成, (1)求此平面图形的面积;(2)求上述平面图形绕x 轴旋转一周而得到的旋转体的体积. 2.求过曲线xxey -=上极大值点和拐点的中点并垂直于0=x 的直线方程。

2011年成人高考专科起点升本科《高等数学(一)》真题及详解【圣才出品】

2011年成人高考专科起点升本科《高等数学(一)》真题及详解【圣才出品】

2设
,则 y =( )。
1 x5 A. 5
1 x3 B. 4 C. 4x3 D. x4 ln x
【答案】C
【解析】y=x4,则 y 4x41 4x3 。
1 / 12

3.设 y=x+lnx,dy=( )。 A.
B.
C. D. 【答案】B
【解析】y=x+lnx,则
4.设 y=sinx,则 y =( )。

2011 年成人高考专科起点升本科《高等数学(一)》真题及详解
一、选择题:(第 1~10 小题,每道小题 4 分,共 40 分。在每道小题给出的四个选项中, 只有一项是符合题目要求的,选出正确选项。)
1. A.0 B.1 C.2 D.3 【答案】D
( )。
【解析】由极限商的运算法则可得
z z 若点(x0,y0)为 z=f(x,y)的极值点,且 x , y 在点(x0,y0)处存在,则必有
20.微分方程 y ' =x+1 的通解为 y=_______。
【答案】
【解析】方程为可分离变量方程,
dy
(x
1)dx, 得y
x2 2
x
c
,等式两边分别积分,
三、解答题:(第 21~28 题,共 70 分。解答应写出推理、演算步骤。)
【 解 析 】 将 方 程 y = 2y 分 离 变 量 得 ,

二、填空题:(第 11~20 小题,每道小题 4 分,共 40 分。将答案填写在题中横线上。)
11. 【答案】e4 【解析】
______。
5 / 12

12.设函数
,在 x=0 处连续,则 a=_______。
【答案】 【解析】所求直线与已知平面垂直,因此直线的方向向量与平面法向量平行,可知直线方向 向量 s=(2, 2,3),由直线的点向式方程可知所求直线方程为

(A4)2011年成人高考考前辅导(专科数学)

(A4)2011年成人高考考前辅导(专科数学)

2011年成人高考(高中起点)考前复习指导资料数学第一章考试大纲第一部分代数一、集合和简易逻辑1。

了解集合的意义及其表达方法,了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号,,,,⊆⊄=∈∉的含义,并能运用这些符号表示集合与集合、元素与集合的关系.2.了解充分条件、必要条件、充分必要条件的概念。

二、函数1。

了解函数概念,会求一些常见函数的定义域.2.了解函数的单调性和奇偶性的概念,会判断一些常见函数的单调性和奇偶性。

3.理解一次函数、反比例函数的概念,掌握它们的图像和性质,会求它们的解析式。

4.理解二次函数的概念,掌握它的图像和性质以及函数y=ax²+bx+c(a≠0)与y=ax²(a≠0)的图象间的关系;会求二次函数的解析式及最大值或最小值。

能运用二次函数的知识解决有关问题.1。

理解分数指数幂的概念,掌握有理指数幂的运算性质。

掌握指数函数的概念、图象和性质. 2。

理解对数的概念,掌握对数的运算性质。

掌握对数函数的概念、图象和性质.三、不等式和不等式组1。

了解不等式的性质。

会解一元一次不等式、一元一次不等式组和可化为一元一次不等式组的不等式,会解一元二次不等式。

2。

会解形如|ax+b|≥c和|ax+b|≤c的绝对值不等式。

四、数列1。

了解数列及其通项、前n项和的概念。

2。

理解等差数列、等差中项的概念,会运用等差数列的通项公式,前n项和公式解决有关问题。

3.理解等比数列、等比中项的概念,会运用等比数列的通项公式,前n项和公式解决有关问题。

五、导数1.理解导数的概念及其几何意义。

)的导数公式,会求多项式函数的导数。

2。

掌握函数y=c(c为常数),y=x n(n∈ N+3。

了解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.4。

会求有关曲线的切线方程,会用导数求简单实际问题的最大值与最小值.第二部分三角一、三角函数及其有关概念1。

2011年成人高考高起专数学真题

2011年成人高考高起专数学真题

2011年成人高等学校招生全国统一考试数学一、选择题:本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)函数24x y -=的定义域是 ( )A. (]0,∞-B. []2,0C. []2,2-D. (][)+∞-∞-,22,(2)已知向量)4,2(=a ,b )1,(-=m ,且b a ⊥,则实数=m ( )A. 2B. 1C. 1-D. 2-(3)设角α是第二象限角,则 ( )A. 0cos <α, 且0tan >αB. 0cos <α,且0tan <αC. 0cos >α,且0tan <αD. 0cos >α,且0tan >α(4)一个小组共有4名男同学和3名女同学,4名男同学的平均身高为m 72.1,3名女同学的平均身高为m 61.1,则全组同学的平均身高约为(精确到m 01.0) ( )A. m 65.1B. m 66.1C. m 67.1D. m 68.1(5)已知集合{}4,3,2,1=A ,{}31<<-=x x B ,则=B A ( ) A. {}2,1,0 B. {}2,1 C. {}3,2,1 D. {}2,1,0,1- (6)二次函数142++=x x y ( )A. 有最小值3-B. 有最大值3-C. 有最小值6-D. 有最大值6-(7)不等式32<-x 的解集中包含的整数共有 ( )A. 8个B. 7个C. 6个D. 5个(8)已知函数)(x f y =的奇函数,且3)5(=-f ,则=)5(f ( )A. 5B. 3C. 3-D. 5-(9)若51=⎪⎭⎫ ⎝⎛ma ,则=-ma2 ( )A.251 B. 52C. 10D. 25 (10)=21log 4 ( )A. 2B. 21C. 21- D. 2-(11)已知25与实数m 的等比中项是1,则=m ( )A.251 B. 51C. 5D. 25 (12)方程800253622=-y x 的曲线是 ( )A. 椭圆B. 双曲线C. 圆D. 两条直线(13)在首项是20,公差为3-的等差数列中,绝对值最小的一项是 ( )A. 第5项B. 第6项C. 第7项D. 第8项(14)设圆048422=+-++y x y x 的圆心与坐标原点间的距离为d ,则 ( )A. 54<<dB. 65<<dC. 32<<dD.43<<d(15)下列函数中,既是偶函数,又在区间)3,0(为减函数的是 ( )A. x y cos =B. x y 2log =C. 42-=x y D. xy ⎪⎭⎫⎝⎛=31(16)一位篮球运动员投篮两次,两投全中的概率为375.0,两投一中的概率为5.0,则他两投全不中的概率为 ( )A. 6875.0B. 625.0C. 5.0D. 125.0(17)B A ,是抛物线x y 82=上两点,且此抛物线的焦点在线段AB 上,已知A ,B 两点的横坐标之和为10,则=AB ( )A. 18B. 14C. 12D. 10二、填空题:本大题共4小题,每小题4分,共16分. (18)直线023=--y x 的倾斜角的大小是 . (19)函数⎪⎭⎫⎝⎛+=621sin 2πx y 的最小正周期是 .(20)曲线322+=x y 在点)5,1(-处切线的斜率是 .(21)从某篮球运动员全年参加的比赛中任选五场,他在这五场比赛中的得分分别为21,19,15,25,20,则这个样本的方差为 .三、解答题:本大题共4小题,共49分,解答应写出推理、演算步骤.(22)已知角α的顶点在坐标原点,始边在x 轴正半轴上,点()22,1在α的终边上.(Ⅰ)求αsin 的值; (Ⅱ)求α2cos 的值.(23)已知等差数列{}n a 的首项与公差相等,{}n a 的前n 项的和记作n S ,且84020=S , (Ⅰ)求数列{}n a 的首项1a 及通项公式; (Ⅱ)数列{}n a 的前多少项的和等于84?(24)设椭圆1222=+y x 在y 轴正半轴上的顶点为M ,右焦点为F ,延长线段MF 与椭圆交于N 。

2011高数真题解析(2012所有考点)

2011高数真题解析(2012所有考点)

绝密★启用前2011年成人高等学校专升本招生全国统一考试高等数学(一)答案必须答在答题卡上指定的位置,答在试卷上无效。

一、选择题:1~10小题,每题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上。

1.解析:此题是极限的运算法则题型一:将极限值代入方程如果分母不得零,就将极限值直接带入方程求解。

(直接代入法) 题型二:将极限值代入方程如果分母得零,就不能用题型一的方法!先将方程因式分解或分子有理化等方法将式子中的零因子去除再将极限值代入求解。

例:a.00型因式分解去零因子 b. 00型分子有理化去零因子c.∞∞型式子中如果有高次幂就用最高次幂除分子分母d.∞-∞型一般处理方法是通分e.切记一定是00或∞∞可以用洛必达法则上下求导和无穷小量等价代换进行求解 【特殊角的三角函数值】(1)sin 00= (2)1sin62π=(3)sin 32π= (4)sin 12π=) (5)sin 0π= (1)cos 01= (2)cos 6π= (3)1cos 32π= (4)cos 02π=) (5)cos 1π=-(1)tan 00= (2)tan 63π= (3)tan 3π=(4)tan 2π不存在 (5)tan 0π=(1)cot 0不存在 (2)cot 6π= (3)cot 33π=(4)cot 02π=(5)cot π不存在重要公式(1)0sin lim 1x xx →= (2)()10lim 1xx x e →+= (2.1)e xxx =+∞→)11(lim (3))1n a o >= (4)1n = (5)lim arctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)lim arc cot 0x x →∞= (8)lim arc cot x x π→-∞= (9)lim 0xx e →-∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→=A.B. C.D.2.设,则解析:本题考导数此题和填空14题解析相同A.B.C.D.3.设,则解析:本题考微分求导后一定要加dx 微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1log ln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =-+ 微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭A. B.C.D.4.设,则解析:本题考高阶求导, 高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦ (4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑A.B.C.D.5.解析:本题考不定积分,解析和填空16题解析相同A.B.C.D.6.解析:本题考定积分用不定积分的方法积分后将上下值代入求解A.B.C.D.7.设,则解析:本题考偏导数,题型一:分母是y就对y求导把x看做常数求导。

2011年成人高考高等数学二试题专升本高等数学二串讲成考高数二笔记

2011年成人高考高等数学二试题专升本高等数学二串讲成考高数二笔记

太原理工大学联系电话0351 *******任老师1363345172严格依据大纲编写:《2011年成人高考专升本高等数学二考试大纲》笔记目录第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。

2.会求函数的间断点。

3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。

4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。

第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。

2.会求曲线上一点处的切线方程与法线方程。

3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。

4.掌握隐函数的求导法与对数求导法。

会求分段函数的导数。

5.了解高阶导数的概念。

会求简单函数的高阶导数。

6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。

第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。

2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。

会利用函数的单调性证明简单的不等式。

3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。

4.会判断曲线的凹凸性,会求曲线的拐点。

2011年河南专升本高数真题+答案解析

2011年河南专升本高数真题+答案解析

2011年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学一、选择题 (每小题2 分,共60 分) 1.函数()ln(2)2f x x x =-+的定义域是( )A .(,2)-∞B .(2,)-+∞C .(2,2)-D .(0,2)【答案】C【解析】202220x x x ->⎧⇒-<<⎨+>⎩,故函数()f x 的定义域是(2,2)-.2.设2(1)22f x x x +=++,则()f x =( )A .2xB .21x +C .256x x -+D .232x x -+【答案】B【解析】22(1)22(1)1f x x x x +=++=++,故()f x =21x +.3.设函数()f x 在R 上为奇函数,()g x 在R 上为偶函数,则下列函数必为奇函数的是( )A .()()f x g x ⋅B .[]()f g xC .[]()g f xD .()()f x g x +【答案】A【解析】由于奇函数与偶函数的乘积为奇函数,故()()f x g x ⋅为奇函数.4.01lim sinx x x→=( ) A .1- B .1 C .0 D .不存在【答案】C【解析】当0x →时,x 无穷小量,1sin 1x ≤,1sin x为有界函数,由于无穷小量与有界函数的乘积仍为无穷小量,故01lim sin0x x x→=.5.设()1f x '=,则0(2)(3)limh f x h f x h h→+--=( )A .4B .5C .2D .1【答案】B 【解析】000(2)(3)(2)()(3)()lim2lim 3lim 5()523h h h f x h f x h f x h f x f x h f x f x h h h→→→+--+---'=+==-.6.当0x →时,下列无穷小量与x 不等价的是( )A .2x x -B .321x e x --C .2ln(1)x x+D .sin(sin )x x +【答案】D 【解析】000sin(sin )sin 1cos limlim lim 21x x x x x x x xx x →→→+++===,故sin(sin )x x +与x 不等价.7.11,0()10,0x x f x e x ⎧≠⎪=⎨+⎪=⎩,则0x =是()f x 的( )A .可去间断点B .跳跃间断点C .连续点D .第二类间断点【答案】B 【解析】11lim 01x xe +→=+,101lim 11x xe -→=+,()f x 在0x =处的左、右极限存在但不相等,故0x =是()f x 的跳跃间断点.8.sin y x =的三阶导数是( )A .sin xB .sin x -C .cos xD .cos x -【答案】D【解析】(sin )cos x x '=,(sin )(cos )sin x x x '''==-,(sin )(sin )cos x x x ''''=-=-.9.设[]1,1x ∈-,则arcsin arccos x x +=( )A .2π B .4π C .0 D .1【答案】A【解析】22(arcsin arccos )011x x x x '+=--,故arcsin arccos x x +为常数,令22x =,可得arcsin arccos 442x x πππ+=+=.10. 若0()0f x '=,0()0f x ''>,则下述表述正确的是( ) A .0x 是()f x 的极大值点 B .0x 是()f x 的极小值点C .0x 不是()f x 的极值点D .无法确定0x 是否为()f x 的极值点【答案】B【解析】由极值的判定条件可知,0x 是()f x 的极小值点.11.方程1arcsin y x=所表示的曲线( )A .仅有水平渐近线B .仅有垂直渐近线C .既有水平渐近线,又有垂直渐近线D .既无水平渐近线,又无垂直渐近线【答案】A【解析】函数的定义域为(,1][1,)-∞-+∞,而1limarcsin0x x →∞=,故1arcsin y x=仅有水平渐近线. 12.1211dx x -=⎰( )A .0B .2C .2-D .以上都不对【答案】D 【解析】10101122211011111dx dx dx x x x x x---=+=---⎰⎰⎰,积分值不存在,故选D .13.方程sin 10x x +-=在区间(0,1)内根的个数是( )A .0B .1C .2D .3【答案】B【解析】令()sin 1f x x x =+-,()cos 1f x x '=+,所以()f x 在区间(0,1)上单调递增,又 (0)10f =-<,(1)sin10f =>,故sin 10x x +-=在区间(0,1)内只有一个根.14.设()f x 是cos x 的一个原函数,则()df x =⎰( )A .sin x C +B .sin xC -+C .cos x C -+D .cos x C +【答案】A【解析】由于()f x 是cos x 的一个原函数,故1()sin f x x C =+,()df x =⎰sin x C +.15.设2cos ()sin x t xF x e tdt π+=⎰,则()F x ( )A .为正常数B .为负常数C . 恒为零D .不为常数【答案】C 【解析】2cos cos 2cos cos ()sin 0x t tx x x xxF x e tdt e e e ππ++==-=-+=⎰.16.b txd te dt dx =⎰( )A .x xe -B .x xeC .b x e e -D .b x be xe -【答案】A 【解析】b txd te dt dx =⎰x xe -.17.由曲线sin (0)y x x π=≤≤与x 轴所围成的区域的面积为( )A .0B .2C 2D .π【答案】B【解析】0sin cos 2xdx xππ=-=⎰.18. 关于二阶常微分方程的通解,下列说法正确的是( ) A .一定含有两个任意常数 B .通解包含所有解C .一个方程只有一个通解D .以上说法都不对【答案】A【解析】微分方程的解中所含任意常数相互独立,且个数与方程的阶数相同,这样的解称为微分方程的通解,由通解的定义可得A 正确.19.微分方程3y y x '+=的通解是( ) A .221x y x Ce =++ B .1x y xe Cx =+-C .139x y x Ce =++D .31139x y x Ce -=+-【答案】D【解析】通解为3331139dx dxx y e xe dx C x Ce --⎛⎫⎰⎰=+=+- ⎪⎝⎭⎰,C 为任意常数.20.已知向量=++a i j k ,则垂直于a 且垂直于y 轴的向量是( )A .-+i j kB .--i j kC .+i kD .-i k【答案】【解析】设y 轴方向向量(0,1,0)=j ,而111()010⨯==--i j ka j i k ,与a ,j 都垂直的向量是()l =-c i k ,故选D .21.对任意两向量a ,b ,下列等式不恒成立的是( ) A .+=+a b b a B .⋅=⋅a b b aC .⨯=⨯a b b aD .()()2222⋅+⨯=⋅a b a b a b【答案】C【解析】由向量积运算法则可知⨯=-⨯a b b a ,故选C .22.直线110x y z ==-与平面2x y z +-=的位置关系是( )A .平行B .直线在平面内C .垂直D .相交但不垂直【答案】A【解析】(1,1,0)(1,1,1)0-⋅-=,得直线的方向向量与平面的法向量垂直,在直线上取一点(0,0,0),该点不在平面2x y z +-=上,故直线与平面平行.23.20limsin x y yxy →→的值为( )A .0B .1C .12D .不存在【答案】C 【解析】2220011limlim lim sin 2x x x y y y y xy xy x →→→→→===.24.函数(,)f x y 在00(,)x y 处两个偏导数00(,)x f x y ',00(,)y f x y '都存在是(,)f x y 在该点处连续的( ) A .充要条件 B .必要非充分条件C .充分非必要条件D .既非充分亦非必要条件【答案】D【解析】两个偏导数存在与连续没有关系,故选D .25.函数ln 1x z y ⎛⎫=+ ⎪⎝⎭在点(1,1)处的全微分(1,1)dz=( )A .0B .1()2dx dy -C .dx dy -D .11dx dy x y y-+【答案】B【解析】1111z x x y x y y∂=⋅=∂++,2211z x xxy y y xy y ⎛⎫∂=⋅-=- ⎪∂+⎝⎭+,(1,1)1122dzdx dy =-,故选B .26.设11220yI dy x y dx -=⎰,则交换积分次序后( ) A .11220xI dx x y dy -=⎰B .112203yI x y dy -=⎰C .2112203x I dx x y dy -=⎰⎰D .2112203x I dx x y dy +=⎰⎰【答案】C【解析】201010101y x y x x y ≤≤⎧≤≤⎧⎪⎨⎨≤≤-≤≤-⎪⎩⎩,交换积分次序后为21122003x I dx x y dy -=⎰⎰.27.设L 为三个顶点分别为(1,0)A -,(0,0)O 和(0,1)B 的三角形区域的边界,L 的方向为顺时针方向,则(3)(2)Lx y dx x y dy -+-=⎰( )A .0B .1C .2D .1-【答案】 【解析】28.设(,)0,114D x y x y π⎧⎫=≤≤-≤≤⎨⎬⎩⎭,则cos(2)Dy xy dxdy =⎰⎰( )A .12-B .0C .14D .12【答案】B【解析】111411111cos(2)cos(2)sin cos 0222Dy yy xy dxdy dy y xy dx dy ππππ---===-=⎰⎰⎰⎰⎰.29.若级数1n n a ∞=∑与1n n b ∞=∑都发散,则下列表述必正确的是( )A .1()n n n a b ∞=+∑发散B .1n n n a b ∞=∑发散C .1()n n n a b ∞=+∑发散D .221()n n n a b ∞=+∑发散【答案】C【解析】1n n a ∞=∑发散,则1n n a ∞=∑发散,n n n a b a +≥,由正项级数的比较判别法可知,1()nn n ab ∞=+∑发散.30.若级数1(2)n n n a x ∞=-∑在2x =-处收敛,则此级数在4x =处( )A .发散B .条件收敛C .绝对收敛D .敛散性不能确定【答案】C【解析】级数1(2)n n n a x ∞=-∑在2x =-处收敛,由阿贝尔定理知,对于所有满足24x -<的点x ,即26x -<<,幂级数1(2)n n n a x ∞=-∑绝对收敛,故此级数在4x =处绝对收敛.二、填空题 (每小题 2分,共 20分) 31.10lim(1)xx x →-=________.【答案】1e -【解析】[]11(1)100lim(1)lim 1()xxx x x x e ⋅---→→-=+-=.32.设()f x 为奇函数,则0()3f x '=时,0()f x '-=________. 【答案】3【解析】由于()f x 为奇函数,故()f x '为偶函数,故0()f x '-=0()3f x '=.33.曲线ln y x =上点(1,0)处的切线方程为________. 【答案】1y x =- 【解析】11x y ='=,故切线方程为01y x -=-,即1y x =-.34.1(1)dx x x =-⎰________.【答案】1lnx C x-+【解析】1111ln 1ln ln (1)1x dx dx dx x x C C x x x x x-=-=--+=+--⎰⎰⎰.35. 以2212x x C e C xe --+为通解的二阶常系数齐次线性方程为________. 【答案】440y y y '''++=【解析】由题意可知,2r =-为二阶常系数齐次线性微分方程所对应的特征方程的二重根,满足特征方程2440r r ++=,故所求方程为440y y y '''++=.36.点(1,2,3)关于y 轴的对称点是________. 【答案】(1,2,3)--【解析】点(1,2,3)关于y 轴的对称点,即y 不变,x ,z 取其相反数,故对称点为(1,2,3)--.37.函数x y z e +=在点(0,0)处的全微分(0,0)dz =________.【答案】dx dy + 【解析】x y x y z zdz dx dy e dx e dy x y++∂∂=+=+∂∂,故(0,0)dz =dx dy +.38.由1x y xy ++=所确定的隐函数()y y x =在1x =处导数为________. 【答案】12-【解析】方程两边同时关于x 求导得,10y y xy ''+++=,当1x =时,0y =,代入得1(1)2y '=-.39.函数22z x y =+在点(1,2)处沿从点(1,2)A 到(2,23)B +的方向的方向导数等于________.【答案】123+【解析】(1,2)2z x∂=∂,(1,2)4z y∂=∂,与(1,3)AB =同方向的单位向量为132⎛ ⎝⎭,故方向导数为(1,2)13241232z l∂=⋅+=+∂40.幂级数1nn x n∞=∑的收敛区间为________.【答案】(1,1)- 【解析】1lim lim 11n n n n a na n ρ+→∞→∞===+,11R ρ==,故收敛区间为(1,1)-.三、计算题 (每小题5 分,共50 分) 41.用夹逼准则求极限222lim 12n nn n n n n n →∞⎛⎫+++⎪+++⎝⎭. 【答案】1【解析】因为2221n n nn n n k n ≤≤+++,1,2,,k n =,所以2222211nk n n n n n n k n =≤≤+++∑, 又22lim 1n n n n →∞=+,22lim 11n n n →∞=+,由夹逼准则可知,222lim 112n nn n n n n n →∞⎛⎫+++= ⎪+++⎝⎭.42.讨论函数321sin ,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处的可导性. 【答案】【解析】3222001sin()(0)1(0)limlim lim sin 00x x x x f x f x f x x x x →→→-'====-,故函数()f x 在0x =处可导.43.求不定积分21xx e dx e +⎰.【答案】arctan x e C +【解析】()22arctan 11x xx x x e de dx e C e e ==+++⎰⎰.第 11 页 共 13 页44.求定积分10x xe dx ⎰.【答案】1【解析】11110(1)1x x xx xe dx xde xe e dx e e ==-=--=⎰⎰⎰.45.求微分方程32x y y y e '''++=的通解.【答案】21216x x x y C e C e e --=++,其中12,C C 为任意常数【解析】特征方程为2320r r ++=,解得11r =-,22r =-,1λ=不是特征方程的根, 可设x y ke =为方程的一个特解,代入得16k =, 故方程的通解为21216x x x y C e C e e --=++,其中12,C C 为任意常数.46.设2(,)z x y x ϕ=+,且ϕ具有二阶连续偏导数,求2zx y∂∂∂.【答案】11212x ϕϕ''''+ 【解析】122zx xϕϕ∂''=+∂,211212z x x y ϕϕ∂''''=+∂∂.47.求曲面:3z e z xy ∑-+=在点0(2,1,0)M 处的切平面方程. 【答案】240x y +-=【解析】令(,,)3z F x y z e z xy =-+-,则(2,1,0)1F x∂=∂,(2,1,0)2F y∂=∂,(2,1,0)0F z∂=∂,从而所求切平面的方程为(2)2(1)0x y -+-=,即240x y +-=.48.计算二重积分x y De d σ+⎰⎰,其中D 是由直线1x y +=和两条坐标轴所围成的闭区域.【答案】1【解析】{}(,)01,01D x y x y x =≤≤≤≤-,故第 12 页 共 13 页111100()()1xx yx y x x De d dx e dy e e dx ex e σ-++==-=-=⎰⎰⎰⎰⎰.49.计算(1)Lxdx ydy x y dz +++-⎰,其中L 是从点(1,1,1)A )到点(1,1,4)B 的直线段.【答案】3【解析】L 的参数方程为1x =,1y =,13(01)z t t =+≤≤,故1(1)33Lxdx ydy x y dz dt +++-==⎰⎰.50.将21()f x x =展开为(1)x +的幂级数. 【答案】11()(1)n n f x n x ∞-==+∑,(2,0)x ∈-【解析】011(1)1(1)n n x x x ∞=-==-+-+∑,(2,0)x ∈-,故1200111()(1)(1)(1)n n n n n n f x x x n x x x ∞∞∞-===''⎡⎤⎛⎫'⎡⎤==-=--+=+=+ ⎪⎢⎥⎣⎦⎝⎭⎣⎦∑∑∑,(2,0)x ∈-.四、应用题 (每小题6 分,共 12 分)51.求点(0,1)P 到抛物线2y x =上点的距离的平方的最小值. 【答案】34【解析】2222213(1)124d x y y y y ⎛⎫=+-=-+=-+ ⎪⎝⎭,故所求最小值为34.52.求几何体22444x y z ++≤的体积. 【答案】325π 【解析】令{}22(,)4D x y x y =+≤,则几何体22444x y z ++≤的体积为第 13 页 共 13 页222224224400032212124445Dx y r V d d dr r dr πσθππ+=-=-=-=⎰⎰⎰.五、证明题 (8分)52.设函数()f x ,()g x 均在区间[],a b 上连续,()()f a g b =,()()f b g a =,且()()f a f b ≠.证明:存在一点(,)a b ξ∈,使()()f g ξξ=.【解析】令()()()F x f x g x =-,则函数()F x 也在区间[],a b 上连续,且()()()F a f a g a =-,()()()F b f b g b =-.由于()()f a f b ≠,所以()()f a f b <或()()f a f b >, 当()()f a f b <时,()()()()()0F a f a g a f a f b =-=-<,()()()()()0F b f b g b f b f a =-=->, 于是由连续函数的零点定理知存在(,)a b ξ∈,使()0F ξ=,即()()f g ξξ=. 类似地可证()()f a f b >时结论也成立.。

2011年成人高考高起点数学(理)试题及答案

2011年成人高考高起点数学(理)试题及答案
24 24
x
1 1.004575
24
a (1 r ) x (1 r )
n
n 1
x (1 r )
n2
x (1 r ) x
ar (1 r )
n n
a (1 r )
n
x[(1 r ) 1]
n
x
r
贷 款年 限 1 3 5 10 15 月利率 (千分之) 4.425 4.425 4.425 4.65 4.65 每月应还本息合计
20
25 30
4.65
4.65 4.65
692.41
618.87 572.82
66177.60
85662.00 106214.40
240
300 360
三、分组练习:
第一组:方案A:分12次付清,即购买后1个月第一次付 款,再过1个月第二次付款,…,购买后12个月第12次 付款,求每次的付款金额及总的付款金额 第二组:方案B:分3次付清,即购买后4个月第一次付 款,再过4个月第二次付款,…,购买后4个月第3次付 款,求每次的付款金额及总的付款金额 解:第一组
n
n 1
n2
n 3
到贷款付清时,a元贷款的本金与它的利息之和是多少呢?
a (1 r ) 每期还x元. 各期所付款额到贷款全部付清时也会产生 利息(同样按月以复利计算). 各月所付款与它的利息之和 是多少呢? 各月所付款额与它的利息之和
n
第一次还x元 第二次还x元 第三次还x元 ········ ········ 第n-1次还x元 第n次还x元
2 n 1
a (1 r )
n
二、案例:
某银行设立了教育助学贷款,其中规定一年期以上贷 款月均等额还本付息(利息按月以复利计算). 如果贷款10 000元, 两年还清,月利率为0.4575%, 那 么每月应还多少钱呢?

2011年成人高考专升本高等数学(二)真题

2011年成人高考专升本高等数学(二)真题

2011年成人高等学校专升本招生全国统一考试高等数学(二)一、选择题:每小题4分,共40分.在每小题给出的四选项中,只有一项是符合题目要求.1. 211lim1x x x →-=-( ) A. 0 B. 1 C. 2 D. 3答案:C解析:()()21lim 111lim 11lim1121=+=--+=--→→→x x x x x x x x x 2. 已知函数()f x 的导函数2'()31f x x x =--, 则曲线()y f x =在2x =处 切线的斜率是( )A. 3B. 5C. 9D. 11 答案:C解析:将2=x 代入()132--='x x x f ,得()9122322=--⋅='=f k3. 设函数21y x =, 则'y =( ) A. 31x - B. 32x- C. 31x D. 1x答案:B 解析:221-==x x y ,32'--=x y 4. 已知函数()f x 在区间(,)-∞+∞单调增加,则使()(2)f x f >成立的x 的取值范围是( )A. (2,)+∞B. (,0)-∞C. (,2)-∞D. (0,2)答案:A5. 设函数cos 1y x =+, 则dy =( )A. (sin 1)x dx +B. (cos 1)x dx +C. sin xdx -D. sin xdx答案:C6.(sin )x x dx -=⎰( )A. 2cos x x C ++ B. 2cos 2x x C ++ C. 2sin x x C -+ D. 2sin 2x x C -+ 答案:B解析:()()C x x dx x dx x dx x x +--=-=-⎰⎰⎰cos 2sin sin 27.sin xdx ππ-=⎰( )A. 0B. 1C. 2D. π 答案:A解析:对称区间上奇函数的积分为零 8. 设函数33z x y =+, 则zy∂=∂ ( ) A. 23x B. 2233x y + C. 44y D. 23y答案:D9. 设函数23z x y =, 则22zx∂=∂( )A. 32yB. 26xyC. 26y D. 12xy 答案:A解析:32xy xz =∂∂,3222y x z =∂∂10. 随机事件A 与B 互不相容,则 ()=AB P ( )()()B P A P A +. ()()B P A P B . 1.C 0.D答案:D解析:A 与B 互不相容,则 ()0=AB P二、填空题:每小题4分,共40分. 11. 已知函数sin ,0()1,0x x f x x x ≤⎧=⎨+>⎩,则 (0)______f =.答案:0解析:()00sin 0==f 12. 2sin(2)lim_________.2x x x →-=-答案:1 解析:()()()122sin lim 22sin lim022=--=--→-→x x x x x x13.曲线22y x =在点(1,2)处的切线方程为___________y =. 答案:42x -解析:x y 4=',41='==x y k ,()142:-=-x y l 切14. 设函数sin y x =,则 '''______y =. 答案:cos x -解析:x y cos =',x y sin -='',x y cos -='''15. 函数22x y x =-的单调增加区间是___________. 答案:(1,)+∞16. 5x dx =⎰_____________.答案:C x +66解析:由基本积分公式C x a dx x a a ++=+⎰111可得 17.0(arctan )________xd t t dt dx+=⎰. 答案:arctan x x + 18.1321(cos )________x x x dx -+=⎰.答案:111323211122(cos )cos 033x x x dx x xdx x dx ---+=+=+=⎰⎰⎰解析:注意前一积分为零的依据是“对称区间上奇函数的积分为零”, 19. 设函数xz e y =+, 则____________dz =. 答案:+dx e x dy解析:xe x z =∂∂,1=∂∂y z ,=dz +∂∂dx xz dy y z ∂∂ 20. 设函数(,)z f x y =可微, 且00(,)x y 为其极值点,则00(,)________x y zx∂=∂.解析:由于在可微时,极值点一定是驻点,于是在该点的偏导数为0 三、解答题:共70分.解答应写出推理、演算步骤. 21. 计算20lim(1)xx x →+.解析:()221121020111lim 111lim 1lim e x x x xx xx xx =⎪⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫ ⎝⎛+=+⋅∞→⋅→→22. 设函数1sin x y x+=, 求'y . 解析:2(1)'sin (1)(sin )''(sin )x x x x y x +-+=2sin (1)cos sin x x xx-+=23.计算⎰.解析:21(1)2d x =-⎰3221(1)3x C =-+24. 设函数(,)z z x y =由sin()0zx y e ++=确定,求zx∂∂. 解析:解法1:设(,,)sin()zF x y z x y e =++,cos(),z F Fx y e x z∂∂=+=∂∂, 则cos()zFz x y x F x e z∂∂+∂=-=-∂∂∂ 解法2:等式两边对x 求导得,cos()0z zx y e x∂++⋅=∂, 则cos()zz x y x e ∂+=-∂ 25. 设A ,B 为两个随机事件,且()8.0=A P ,()3.0=AB P ,求()B A P -.解析:()()()()5.03.08.0=-=-=-=-AB P A P AB A P B A P 26. 求函数31()413f x x x =-+的单调区间、极值和曲线()y f x =的凹凸区间.(2011年)解析:函数的定义域为(,)-∞+∞,2'4,''2y x y x =-=,令'0y =,得2x =±。

2011高等数学2

2011高等数学2

2011年成人高等学校专升本招生全国统一考试高等数学(二)试题一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1=--→11lim 21x x x ( C )。

A 0 B 1 C 2 D 3 知识点:计算0型极限:解:=--→11lim21x x x 212lim 1=→x x ; 或=--→11lim 21x x x =-+-→1)1)(1(lim 1x x x x 2)1(lim 1=+→x x 2 已知函数)(x f 的导函数13)(2--='x x x f ,则曲线)(x f y =在2=x 处的切线斜率是(C ).A 3B 5C 9D 11 知识点:切线斜率 )()(00x f x y k '='=, 本题91212)2(=--='=f k3 设函数21x y =, 则='y ( B )。

A 31x -B 32x -C31x Dx 1知识点:幂函数导数公式1)(-='a aax x 。

解:332222)()1(x x x x y -=-='='='--4已知函数)(x f 在区间(-∞,+∞)内单调增加,则使)2()(f x f >成立的x 的取值范围是( A )A (2,+∞)B (-∞,0)C (-∞,2)D (0,2) 知识点:单调增加的定义:21x x >时有)()(21x f x f >;本题2>x 时有)2()(f x f >5 设函数1cos +=x y ,则=dy ( C )。

A dx x )1(sin +B dx x )1(cos +C xdx sin -D xdx sin知识点:导数公式,求导规则 v u v u '±'='±)(,微分公式6⎰=-dx x x )sin (( B )。

2011年专升本《高等数学》模拟题十套(142页).

2011年专升本《高等数学》模拟题十套(142页).

安徽省2011年普通高等学校专升本招生考试《高等数学》模拟试题十套安徽省2011年普通高校专升本高等数学考试纲要高等数学(一)微积分1.函数:函数的概念、函数的几种常见性态、反函数与复合函数、初等函数;2.极限与连续:极限的概念及运算、极限存在准则、两个重要极限、无穷大量与无穷小量、函数的连续性;3.导数与微分:导数的概念、基本公式与运算法则、隐函数的导数、高阶导数、函数的微分;4.导数的应用:微分中值定理(Rolle定理,Lagrange中值定理)洛比达法则、函数的单调性及其极值、函数的最大值和最小值、曲线的凹凸性与拐点;5.不定积分:不定积分的概念、性质与基本积分公式、换元积分法、分部积分法、简单的有理函数积分;6.定积分及其应用:定积分的概念、性质、定积分与不定积分的关系、定积分的换元积分法和分部积分法、无穷区间上的广义积分、定积分的应用(平面图形的面积、旋转体的体积);7.多元函数微分法:多元函数的概念、偏导数、全微分、复合函数的微分法;8.二重积分:二重积分的概念、性质与计算(直角坐标与极坐标);9.微分方程:微分方程的基本概念、一阶微分方程(分离变量、齐次、线性);10.无穷级数:数项级数的概念和性质、正项级数及其审敛法、幂级数的收敛半径及收敛域.(二)线性代数1.行列式与矩阵:行列式及其基本性质、行列式的按行(列)展开定理、矩阵及其基本运算、矩阵的初等变换与初等方阵、方阵的逆矩阵、矩阵的秩;2.线性方程组:线性方程组解的研究、n元向量组的线性相关性、齐次线性方程组的基础解系.(三)概率论初步1.随机事件:事件的概率、概率的加法公式与乘法公式、事件的独立性全概率公式和贝叶斯公式;2.一维随机变量及其分布:随机变量的概念、离散型、连续型随机变量、几种常用的离散分布与连续分布、分布函数;3.一维随机变量的数字特征:数学期望、方差.目录模拟试题(一) 1模拟试题(二) 11模拟试题(三) 23模拟试题(四) 35模拟试题(五) 47模拟试题(六) 59模拟试题(七) 73模拟试题(八) 87模拟试题(九) 101模拟试题(十) 115安徽省2007年普通高等学校专升本招生考试 127安徽省2008年普通高等学校专升本招生考试 135模拟试题(一)一、选择题:本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.10.设A,B,C是三个随机事件,在下述各式中,不成立的是 (二、填空题:本大题共10个小题,每小题3分,共30分.把答案填在题中横线上.三、解答题:本大题共12小题,共90分.解答应写出文字说明、证明过程或演算步骤..(6分)(6分).(6分).(7分).(7分)(7分)(7分)(8分)31.两台车床加工同样零件,甲车床出废品的概率为0.03,乙车床出废品的概率为0.02,加工出来的零件放在一起,且知甲乙车床产量之比是3:2,现从中任取一件是合格品的概率为多少?(8分32.设连续型随机变量X的概率密度为已知E(X=.试求:(1常数a,b的值;(2随机变量X的方差;(3概率P{X>0.5}.(10分模拟试题(二)一、选择题:本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.9.对n阶矩阵A,B和任意非零常数k,下列等式中正确的是()(A |kAB|=k|BA| (B |A+B|=| A| +|B|(C |kA|=k n A (D |B T A|=|A T B|二、填空题:本大题共10个小题,每小题3分,共30分.把答案填在题中横线上.三、解答题:本大题共11小题,共90分.解答应写出文字说明、证明过程或演算步骤..(6分)(6分).(7分).(7分)(6分)28.设两条抛物线x=2y2,x=1+y2所围成的平面图形记为D. (1求D的面积S;(2求D绕x轴旋转一周所得放置体的体积V.(10分).(9分)32.设随机变量X的概率密度为,(1求常数A;(2求E(X与D(X;(3求P{|X|1}.(9分)模拟试题(三)一、选择题:本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.二、填空题:本大题共10个小题,每小题3分,共30分.把答案填在题中横线上.三、解答题:本大题共12小题,共90分.解答应写出文字说明、证明过程或演算步骤.(6分(6分(6分(7分(7分(8分27.求二重积分,其中D是由抛物线y2=x与直线x=0, y=1所围成的区域.(7分28.(7分29.计算行列式(8分30.对于线性方程组,试问a取何值时,方程组有解,并求出其全部解.(10分31.甲袋中有6个红球4个白球,乙袋中有7个红球3个白球,在甲乙两袋分别各随机抽出一个球.求这两个球的颜色不同的概率.(8分)模拟试题(四)一、选择题:本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.二、填空题:本大题共10个小题,每小题3分,共30分.把答案填在题中横线上.三、解答题:本大题共12小题,共90分.解答应写出文字说明、证明过程或演算步骤.(6分(6分.(6分(7分(7分(7分.(8分.(8分(10分模拟试题(五)一、选择题:本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.二、填空题:本大题共10个小题,每小题3分,共30分.把答案填在题中横线上.三、解答题:本大题共12小题,共90分.解答应写出文字说明、证明过程或演算步骤.(6分(6分(6分.(7分(7分(7分30.已知线性方程组(1)证明上述方程组有解的充要条件是(2)在有解时,求出其解.(10分31.某校男女生比例为3:1,男生中身高1.70m以上的占60%,女生中身高1.70m以上的仅占10%,记者在校园内随机地采访一位学生.(1若这位学生的身高在1.70m以上,求这是一位女生的概率;(2若这位学生的身高不足1.70m,求这是一位男生的概率.(8分32.设随机变量X的概率密度为对X独立重复观察4次,Y表示观察值大于的次数,求Y的概率分布律.(10分模拟试题(六)一、选择题:本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.二、填空题:本大题共10个小题,每小题3分,共30分.把答案填在题中横线上.三、解答题:本大题共12小题,共90分.解答应写出文字说明、证明过程或演算步骤. 2(6分22.(6分23.(6分24.求函数的单调区间和极值.(6分25. (7分(8分30.(8分31.设某机器加工一种产品的次品率为0.1,检验员每天检验4次,每次随机地抽取5件产品检验,如果发现多于1件次品,就要调整机器,求一天中调整机器次数的概率分布及数学期望.(8分32.设随机变量X的概率密度为模拟试题(七)一、选择题:本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.二、填空题:本大题共10个小题,每小题3分,共30分.把答案填在题中横线上.三、解答题:本大题共12小题,共90分.解答应写出文字说明、证明过程或演算步骤.21.(6分23..(6分(7分27.(6分28.(6分29.(8分30.设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.(10分31.某物品成箱出售,每箱20件,假设各箱中含0,1件次品的概率分别为0.8和0.2,一顾客在购买时,他可以开箱,从箱中任取三件检查,当这三件都是合格品时,顾客才买下该箱物品,否则退贷.试求:(1顾客买下该箱的概率;(2现顾客买下该物品,问该箱确无次品的概率.(8分模拟试题(八)一、选择题:本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.二、填空题:本题共10小题,每小题3分,满分30分,把答案填在题中横线上..三、解答题:本大题共12小题,共90分.解答应写出文字说明、证明过程或演算步骤.21..(6分22..(6分23.(6分(6分25.(8分26.(6分27.设一平面图形是由直线,抛物线及x轴所围成.(1求此平面图形的面积;(2求此平面图形绕x轴旋转一周所成的旋转体的体积V.(12分29.计算行列式.(6分31.将3个小球任意地放入3只杯子中,设杯中球的最大个数为X,试求出X的概率分布,并求E(X与D(X.(6分模拟试题(九)一、选择题:本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.3.若函数有,则当时,该函数在处的微分为的 (二、填空题:本题共10小题,每小题3分,满分30分,把答案填在题中横线上.三、解答题:本大题共12小题,共90分.解答应写出文字说明、证明过程或演算步骤.21..(6分22.(6分23..(6分24.(8分.(6分26.(6分28. (8分29.计算行列式.(8分30.(10分31.设一盒中有5个纪念章,编号为1,2,3,4,5,在其中等可能地任取3个,用X表示取出的3个纪念章上的最小号码.求X的概率分布律.(6分32.设随机变量X的概率密度为模拟试题(十)一、选择题:本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。

2011年陕西省专升本(高等数学)真题试卷(题后含答案及解析)

2011年陕西省专升本(高等数学)真题试卷(题后含答案及解析)

2011年陕西省专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.下列极限存在的是( )A.B.C.D.正确答案:C解析:因为所以存在极限,选C。

2.设曲线y=x2+x一2在点M处的切线率为3,则点M的坐标是( ) A.(一2,0)B.(1,0)C.(0,一2)D.(2,4)正确答案:B解析:由题意可得:f’(x)=2x+1=3,把A、B、C、D代入上式,只有B项符合,故选B。

3.设函数f(x)=xex,则f11(x)=( )A.10xexB.11xexC.(x+10)exD.(x+11)ex正确答案:D解析:f’(x)=ex+xex=ex(1+x)f’’(x)=ex+ex+xex=ex(2+x)f’’(x)=ex+ex+ex+xex=ex(3+x)由此可得f’’(x)=ex(11+x) 选D4.下列级数绝对收敛的是( )A.B.C.D.正确答案:D解析:因为收敛所以原级数绝对收敛.5.设闭曲线L:x2+y2=4,则对弧长的曲线积分的值为( ) A.4πe2B.一4πe2C.2πe2D.一2πe2正确答案:A解析:由题意可知积分路径为0≤θ≤2π填空题6.已知函数则定积分的值等于___________.正确答案:解析:7.微分方程的通解为y=_________.正确答案:Cx解析:原微分方程可变为:变形为8.过点(1,1,0)并且与平面x+2y一3z=2垂直的直线方程为__________.正确答案:解析:由题可知平面的法向量为(1,2,一3)其法向量是平行于过点(1,1,0)的直线,所以过该点直线方程为:9.设函数f(x,y)=x3+3xy2,则函数f(x,y)在点(1,1)处的梯度为__________.正确答案:6i+6j解析:由题可知梯度公式为:gradf(x,y)=fx’i+fy’j所以f(x,y)在点(1,1)处梯度为6i+6j10.已知函数f(x)在[0,1]上有连续的二阶导数,且f(0)=1,f(1)=2,f’(1)=3,则定积分的值等于__________.正确答案:2解析:=3—2+1=2综合题11.求极限正确答案:12.设参数方程确定了函数y=y(x),求正确答案:13.设函数f(x)=2x3一9x2+12x一3,求f(x)的单调区间和极值.正确答案:f’(x)=6x2一18x+12=6(x一1)(x一2)令f’(x),得驻点x=1,x=2当x<1时,f’(x)>0;当1<x<2时,f’(x)<0当x>2时,f’(x)>0,故函数f(x)在区间(一∞,1)和(2,一∞)内单调增加;f(x)在区间(1,2)内单调减少f(x)在x=1处取得极大值f(1)=2,在x=2处取得极小值f(2)=114.设函数z=f(x,xlnx),其中f(u,v)具有二阶连续偏导数,求正确答案:15.计算不定积分正确答案:16.设函数f(x)在(_∞,+∞)内具有二阶导数,且f(0)=f’(0)=0,试求函数f(x)=的导数。

成人高考专升本《高等数学(一)》通关资料

成人高考专升本《高等数学(一)》通关资料

(特殊情况:对数求导法时,先两边同时取对数, 再求解)
一、求导方法
(七)对数函数求导法
利用对数函数的运算性质可以将原来的函数两边同时取对数后化简 然后利用隐函数求导法或复合求导法求导,因此称为对数求导法 通常解决函数类型为:
y u( x)v( x) 步骤为: (1)两边同时取对数得 ln y vx.lnu( x)
0,则函数f (x)在区间(a, b)内是递增的 0,则函数f (x)在区间(a, b)内是递减的 0不影响f (x)的单调性.
五、导数的应用
(四)函数的极值
1.极值的第一充分条件
设f (x)在x0的某领域内可导.
1 若x x0 时,f"(x) 0,x 0 x ," f (x) 0时则0 称x 为极大值点,0f (x )为极大
在连续的曲线上的凹弧与凸弧之间的分界点称为曲线的拐点。
五、导数的应用
(六)曲线的水平渐近线与铅直渐近线
定义:
若 lim f (x) A或 lim f (x) A或 lim f (x) A,
dt
三、导数
(六)隐函数的求导
解析法表示函数通常有两种: (1).y f(x)来表示的,称之为显函数。
如y sinwx,y xe ln(x 1 2 x ) (2).x与y之间的函数关系是由一 个方程F(x,y)
这种称之为隐函数,
0来确定
如2x y3 -1 0,xy -x e y e 0 对于隐函数的求导通常做法: 可直接在方程F(x,y) 0的两端同时对x求导,而把y 视为中间变量,利用复合函数求导法即可。
M (x0,f (x0 ))的切线方程为:
y - f (x ) "f (x )(x x )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

严格依据大纲编写:笔记目录第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。

2.会求函数的间断点。

3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。

4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。

第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。

2.会求曲线上一点处的切线方程与法线方程。

3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。

4.掌握隐函数的求导法与对数求导法。

会求分段函数的导数。

5.了解高阶导数的概念。

会求简单函数的高阶导数。

6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。

第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。

2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。

会利用函数的单调性证明简单的不等式。

3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。

4.会判断曲线的凹凸性,会求曲线的拐点。

5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。

2.熟练掌握不定积分的基本公式。

3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。

4.熟练掌握不定积分的分部积分法。

5.掌握简单有理函数不定积分的计算。

第二节定积分及其应用[复习考试要求]1.理解定积分的概念及其几何意义,了解函数可积的条件2.掌握定积分的基本性质3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。

4.熟练掌握牛顿—莱布尼茨公式。

5.掌握定积分的换元积分法与分部积分法。

6.理解无穷区间的广义积分的概念,掌握其计算方法。

7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。

第四章多元函数微分学[复习考试要求]1.了解多元函数的概念,会求二元函数的定义域。

了解二元函数的几何意义。

2.了解二元函数的极限与连续的概念。

3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。

掌握二元函数的二阶偏导数的求法,掌握二元函数的全微分的求法。

4.掌握复合函数与隐函数的一阶偏导数的求法。

5.会求二元函数的无条件极值和条件极值。

6.会用二元函数的无条件极值及条件极值解简单的实际问题。

第五章概率论初步[复习考试要求]1.了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。

2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系。

3.理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。

4.理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。

5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性。

6.了解随机变量的概念及其分布函数。

7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。

8.会求离散性随机变量的数学期望、方差和标准差。

第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

[主要知识内容](一)数列的极限1.数列定义按一定顺序排列的无穷多个数称为无穷数列,简称数列,记作{x n},数列中每一个数称为数列的项,第n项x n为数列的一般项或通项,例如(1)1,3,5,…,(2n-1),…(等差数列)(2)(等比数列)(3)(递增数列)(4)1,0,1,0,…,…(震荡数列)都是数列。

它们的一般项分别为(2n-1),。

对于每一个正整数n,都有一个x n与之对应,所以说数列{x n}可看作自变量n的函数x n=f(n),它的定义域是全体正整数,当自变量n依次取1,2,3…一切正整数时,对应的函数值就排列成数列。

在几何上,数列{x n}可看作数轴上的一个动点,它依次取数轴上的点x1,x2,x3,...x n,…。

2.数列的极限定义对于数列{x n},如果当n→∞时,x n无限地趋于一个确定的常数A,则称当n趋于无穷大时,数列{x n}以常数A为极限,或称数列收敛于A,记作比如:无限的趋向0,无限的趋向1否则,对于数列{x n},如果当n→∞时,x n不是无限地趋于一个确定的常数,称数列{x n}没有极限,如果数列没有极限,就称数列是发散的。

比如:1,3,5,…,(2n-1),…1,0,1,0,…数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列{x n}以A为极限,就表示当n趋于无穷大时,点x n可以无限靠近点A,即点x n与点A之间的距离|x n-A|趋于0。

比如:无限的趋向0无限的趋向1(二)数列极限的性质与运算法则1.数列极限的性质定理1.1(惟一性)若数列{x n}收敛,则其极限值必定惟一。

定理1.2(有界性)若数列{x n}收敛,则它必定有界。

注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。

比如:1,0,1,0,…有界:0,12.数列极限的存在准则定理 1.3(两面夹准则)若数列{x n},{y n},{z n}满足以下条件:(1),(2),则定理1.4若数列{x n}单调有界,则它必有极限。

3.数列极限的四则运算定理。

定理1.5(1)(2)(3)当时,(三)函数极限的概念1.当x→x0时函数f(x)的极限(1)当x→x0时f(x)的极限定义对于函数y=f(x),如果当x无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的极限是A,记作或f(x)→A(当x→x0时)例y=f(x)=2x+1x→1,f(x)→?x<1x→1x>1x→1(2)左极限当x→x0时f(x)的左极限定义对于函数y=f(x),如果当x从x0的左边无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的左极限是A,记作或f(x0-0)=A(3)右极限当x→x0时,f(x)的右极限定义对于函数y=f(x),如果当x从x0的右边无限地趋于x0时,函数f(x)无限地趋于一个常数A,则称当x→x0时,函数f(x)的右极限是A,记作或f(x0+0)=A例子:分段函数,求,解:当x从0的左边无限地趋于0时f (x)无限地趋于一个常数1。

我们称当x→0时,f(x)的左极限是1,即有当x从0的右边无限地趋于0时,f(x)无限地趋于一个常数-1。

我们称当x→0时,f(x)的右极限是-1,即有显然,函数的左极限右极限与函数的极限之间有以下关系:定理1.6当x→x0时,函数f(x)的极限等于A的必要充分条件是反之,如果左、右极限都等于A,则必有。

x→1时f(x)→?x≠1x→1f(x)→2 对于函数,当x→1时,f(x)的左极限是2,右极限也是2。

2.当x→∞时,函数f(x)的极限(1)当x→∞时,函数f(x)的极限y=f(x)x→∞f(x)→?y=f(x)=1+x→∞f(x)=1+→1定义对于函数y=f(x),如果当x→∞时,f(x)无限地趋于一个常数A,则称当x→∞时,函数f(x)的极限是A,记作或f(x)→A(当x→∞时)(2)当x→+∞时,函数f(x)的极限定义对于函数y=f(x),如果当x→+∞时,f(x)无限地趋于一个常数A,则称当x→+∞时,函数f(x)的极限是A,记作这个定义与数列极限的定义基本上一样,数列极限的定义中n→+∞的n是正整数;而在这个定义中,则要明确写出x→+∞,且其中的x不一定是正整数,而为任意实数。

y=f(x)x→+∞f(x)x→?x→+∞,f(x)=2+→2例:函数f(x)=2+e-x,当x→+∞时,f(x)→?解:f(x)=2+e-x=2+,x→+∞,f(x)=2+→2所以(3)当x→-∞时,函数f(x)的极限定义对于函数y=f(x),如果当x→-∞时,f(x)无限地趋于一个常数A,则称当x→-∞时,f(x)的极限是A,记作x→-∞f(x)→?则f(x)=2+(x<0)x→-∞,-x→+∞f(x)=2+→2例:函数,当x→-∞时,f(x)→?解:当x→-∞时,-x→+∞→2,即有由上述x→∞,x→+∞,x→-∞时,函数f(x)极限的定义,不难看出:x→∞时f(x)的极限是A充分必要条件是当x→+∞以及x→-∞时,函数f(x)有相同的极限A。

例如函数,当x→-∞时,f(x)无限地趋于常数1,当x→+∞时,f(x)也无限地趋于同一个常数1,因此称当x→∞时的极限是1,记作其几何意义如图3所示。

f(x)=1+y=arctanx不存在。

但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f(x)的极限存在,当x→+∞时,f(x)的极限也存在,但这两个极限不相同,我们只能说,当x→∞时,y=arctanx的极限不存在。

x)=1+y=arctanx不存在。

但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f(x)的极限存在,当x→+∞时,f(x)的极限也存在,但这两个极限不相同,我们只能说,当x→∞时,y=arctanx的极限不存在。

(四)函数极限的定理定理1.7(惟一性定理)如果存在,则极限值必定惟一。

定理1.8(两面夹定理)设函数在点的某个邻域内(可除外)满足条件:(1),(2)则有。

注意:上述定理1.7及定理1.8对也成立。

下面我们给出函数极限的四则运算定理定理1.9如果则(1)(2)(3)当时,时,上述运算法则可推广到有限多个函数的代数和及乘积的情形,有以下推论:(1)(2)(3)用极限的运算法则求极限时,必须注意:这些法则要求每个参与运算的函数的极限存在,且求商的极限时,还要求分母的极限不能为零。

相关文档
最新文档