线性变换练习题

合集下载

变换试题及答案

变换试题及答案

变换试题及答案一、选择题1. 下列哪个选项不是线性变换的特征?A. 可加性B. 齐次性C. 可逆性D. 保序性答案:C2. 线性变换的矩阵表示中,每一列代表什么?A. 变换后的基向量B. 变换前的基向量C. 变换的系数D. 变换的逆答案:A3. 一个线性变换是否总是可逆的?A. 是B. 否C. 只有在有限维空间中D. 只有在无限维空间中答案:B二、填空题4. 线性变换的______性保证了变换后的向量仍然保持原有的线性组合关系。

答案:可加性5. 一个变换如果是______的,那么它在矩阵表示中的每一列都应该是线性无关的。

答案:可逆6. 在二维空间中,一个线性变换的矩阵表示通常是一个______阶矩阵。

答案:2三、简答题7. 简述线性变换的保形性。

答案:线性变换的保形性指的是它保持了向量空间中向量之间的夹角和长度比不变。

这意味着,如果两个向量在变换前是正交的,那么它们在变换后也是正交的。

8. 为什么说线性变换是“线性”的?答案:线性变换被称为“线性”的,是因为它满足两个基本的线性性质:可加性和齐次性。

可加性意味着变换可以分开作用于向量的各个分量,然后合并结果;齐次性则意味着变换对于向量的标量倍数是封闭的。

四、计算题9. 给定线性变换 \( T \) 的矩阵表示为 \( A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \),计算 \( T \) 作用于向量\( \mathbf{v} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \) 的结果。

答案:\( T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 4+2 \\ 0+3 \end{bmatrix} = \begin{bmatrix}6 \\ 3 \end{bmatrix} \)。

线性变换例题

线性变换例题

我们有
λ1
Aεi = λiεi ⇒ A =
λ2 ...
,
λn
再取x = e = (1, . . . , 1)T,我们有Ae = λe,故λi = λ,因而A = λEn ⇒ A(α) = λα.
7.习题7-3,10 证明一:对矩阵A作数学归纳法。设x为A属于特征值λ的 特征向量,则将x扩充为整个空间的一组基,可得矩阵P1 = (x, x2, . . . , xn)可 逆,
2
n
a1λn−1 +· · ·+(−1)nan,则a1 = aii, an = |A|. 设λ1, . . . , λn为χA(λ)的
i=1 n
根,则a1 = λi, an = λ1λ2 · · · λn 记σ(A) = {λ1, . . . , λn}为A的谱。
i=1
在复数域上,n阶复方阵有且只有n个根,而对于实矩阵,其在复数域 上有同样结论,但复根是共轭成对出现。

En A
B λEm
,当m很小,例如m
=
1,通过计算σ(BA)来得出σ(AB)很
有利。
• 若λi为A的特征根,xi为特征向量,则φ(λi), xi为φ(A)的特征根与特征 向量,其中φ(λ)为任一多项式。若φ(A) = 0,则φ(λi) = 0. 零矩阵的特 征值全是零。
m
φ(λ) = ajλj, Axi = λixi,
5
这里B为一个上三角阵。 设(β2, . . . , βn) = (α2, . . . , αn)P1,则P1−1AP1 = B。
(α1, β2, . . . , βn) = (α1, α2, . . . , αn)
1 0
0 P1

线性变换练习题卷

线性变换练习题卷

线性变换(A 卷)(特征值与特征向量)一、填空题(3515''⨯=)1. 设A 是3阶矩阵,特征值是1, 2, 3,则2A E +的特征值是 ,2A E +的特征值是 ,*2(2)A E -的特征值是 .2. 设A 是n 阶矩阵,()R A n <,则A 必有特征值 ,且其重数至少是 .3. 已知-2是02222226A x --⎛⎫ ⎪=- ⎪⎪-⎝⎭的特征值,则x = .4. 设(1,2,3,4),(4,3,2,1),TTTA αβαβ===,则矩阵A 有非零特征值是 ,对应的特征向量可取为 .5. 已知矩阵12123001A a ⎛⎫⎪=-- ⎪ ⎪-⎝⎭有两个线性无关的特征向量,则a = .二、选择题(3515''⨯=)1. 设n 阶矩阵A 与B 相似,则 ( ). (A) E A E B λλ-=- (B) E A E B λλ-=-(C)E A E B λλ-- (D) A 和B 都相似于一个对角阵2. 设2λ=是可逆矩阵A 的一个特征值,则211()3A E -+的一个特征值是 ( ).(A) 73 (B) 13 (C) 74 (D) 523. 下列矩阵中不能相似对角化的是 ( ).(A) 120203030⎛⎫⎪ ⎪ ⎪⎝⎭(B)000000123⎛⎫⎪ ⎪ ⎪⎝⎭(C) 000010023⎛⎫⎪ ⎪ ⎪⎝⎭ (D) 000100023⎛⎫⎪ ⎪ ⎪⎝⎭4. 下列矩阵中,与矩阵000030003A ⎛⎫⎪= ⎪ ⎪⎝⎭相似的是( ) .(A) 003030000⎛⎫ ⎪⎪ ⎪⎝⎭ (B)010031003⎛⎫⎪ ⎪ ⎪⎝⎭ (C) 300000003⎛⎫⎪ ⎪ ⎪⎝⎭ (D) 010003030⎛⎫⎪ ⎪ ⎪⎝⎭5. 设A 是3阶矩阵,12,αα是AX =O 的一个基础解系,3α是属于特征值1λ=的特征向量, ( )一定不是A 的特征向量.(A) 123αα+ (B) 12αα- (C) 13αα+ (D) 32α三、计算题与证明题(6530''⨯=)1. 已知121230002A ⎛⎫⎪=-- ⎪ ⎪⎝⎭,求A 的特征值和特征向量,并判断A 能否对角化,说明理由.2. 已知122212221A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求A 的伴随矩阵A *的特征值与特征向量.3. 已知A 是3阶不可逆矩阵,-1和2是A 的特征值,22B A A E =--, 求B 的特征值,问B 能否相似对角化?说明理由.4. 若A 可逆,证明:(1) A 的特征值不是零;(2)若λ是A 的一个特征值,则1λ是1A -的一个特征值.5. 已知2,A O A O =≠,证明:A 不能相似对角化.四、(8')已知410013031A x --⎛⎫ ⎪= ⎪ ⎪⎝⎭可对角化,求可逆阵P 及对角阵Λ,使1P AP -=Λ. 五、(12')设3阶矩阵A 的特征值1231,2,3λλλ===对应的特征向量依次为1(1,1,1)Tα=,2(1,2,4)T α=,3(1,3,9)T α=(1)将向量(1,1,3)T β=用123,,ααα线性表示; (2)求n A β.六、(12')已知三阶矩阵A 的特征值为2,1,1-,对应的特征向量为(1,0,1)T -,(1,1,0)T-,(1,0,1)T ,试求矩阵A .七、(8')已知123,,λλλ是A 的特征值,123,,ααα是相应的特征向量且线性无关,若133ααα++仍是A 的特征向量,证明:123λλλ==.线性变换(A 卷)参考答案(特征值与特征向量)一、填空题1. 3,4,5; 2,5,10; 16,1,02. 0 ,n -r (A )3. -4 ;4. 20,(1,2,3,4)Tλξ== ; 5. -1二、选择题1. B ;2. C ;3. D ;4. C ;5. C 三、计算题与证明题1. 1232,1λλλ===-;12λ=的特征向量11(5,2,9)(0)Tk k -≠,231λλ==-的特征向量22(1,1,0)(0)T k k -≠,1λ=-二重特征根只对应一个线性无关特征向量,故A 不可对角化.2. A *的特征值为1,-5,-5; 11λ=的特征向量11(1,1,1)(0)Tk k ≠,235λλ==-的特征向量23(1,1,0)(1,1,0)T Tk k -+- (k 2, k 3不全为零)3. B 的特征值1230,2λλλ===-,且B 可以相似对角化. 4- 5.略.四、 2051101,10132P --⎛⎫⎛⎫ ⎪ ⎪=Λ= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭五、(1) 12322βααα=-+;(2)12132223223223n n n n n n +++++⎛⎫-+ ⎪-+ ⎪ ⎪-+⎝⎭; 六、⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----212323010232121;七、(略)。

第七章 线性变换 基础训练和答案.doc

第七章 线性变换 基础训练和答案.doc

第七章线性变换基础训练和答案%1.对下列的线性空间和线性变换,求线性变换0在给定基下的矩阵,并判断它们是否可逆. 1.V = P,的一组基为0 =(i.o.o), 6r2 =(o,i,o), a3 =(0,0,1).对任意的a = (x p x2,x3)G P3线性斐换'为oc = (2X| —羽—易,一工| + 2私一尤3,—工| —尤>+ 2易).X22.V = P[x]n的一组基为1,、,一,••・, ——,线性变换为求导运算疚对任意的f(x)eP[x]n,2! (〃一1)!仁/u)=r(x).(3 一3、3.V = P2x2的一组基为环,琮,&],乌,A= ;G P2x2,对任意的X e P*2,[-2 4 ).M/X = AX .%1.对上题中的线性变换求它们的核和值域的维数和一组基.%1.求上题中每一个线性变换的特征值和特征向量,并判断它们是否可以对角化.若可以对角化,求线性空间的一组基,使得该变换在此基下的矩阵为对角形.%1.判断1.设V是数域P上的n维线性空间,工/£ L(V),若线性无关则% ,•--/ %,•••,•,/ %也线性无关.2.若二/0, •:/%,...,.:/%线性无关,则0,《也线性无关.3.若一个线性变换有一个特征值为零,则该线性变换不可逆.4.一个线性变换的属于不同特征值的两个特征向景必线性无关.5.一个线性变换的特征值了空间一定是该线性变换的不变了空间.6.若线性变换可逆,则它可以对角化.7.若一个线性变换可以对角化,则它必可逆.8.可逆线性变换的特征值均非零.9.一个线性变换可逆的充要条件是它在这个线性空间任何基下的矩阵的行列式均非零.10.n维线性空间上的线性变换..‘7可以对角化的充要条件是n个互不相同的特征值.11.n维线性空间上的线性变换「7可以对角化的充要条件是二/有n个线性无关的特征向量.12.n维线性空间V上的线性变换./可以对角化的充要条件是V有一组以二/TKJ特征向量作成的基.13.若n阶矩阵A与B相似,则它们有相同的特征值.14.若n阶矩阵A与B有相同的特征值,则它们相似.15.若n阶矩阵A与B相似,则它们的每一个特征值都有有相同的特征向量.16.如果4为A的特征值,则人也为疽的特征值.17.设矩阵A可逆,且4为A的特征值,则!也是A的特征值.a\2 a\3a 22 %3,则在基《+勺,勺,勺下 a 32^33/K 的特征值为&则18. 设A 是n 阶矩阵,满足A 2 + 2A + 3£ = 0,则A 必可以对角化.19. 设L(V), V 是数域P 上的n 维线性空间,弓,《2,...,4是Ker,_-/的基,腐,是Im._r/ 的基则《,笑,…,4, 0\,伉‘•••‘Os 是V 的基.20, 设J /G L(V), V 是数域P 上的n 维线性空间,是Kerr/的基,*,腐,...,同是ImK 的基则r^s-n. %1. 填空&1. 设KEL®),逐基 %2,乌下的矩阵为人=。

线性变换练习

线性变换练习

1.设V为数域P上维线性空间,是V的基,是V
的线性变换,并且在基下的矩阵为,其中
,求的特征值与特征向量。


设是的属于特征值的特征向量,则
于是有
如果特征值则
矩阵的属于特征值的特征向量为的属于特
征值的特征向量
如果特征值则
是矩阵
的属于特征值0的特征向量,
是的属于特征值0的特
征向量。

2.设V是维线性空间,A是V的线性变换,证明A可以对角化的充要条件是V可分解成个一维不变子空间的直和。

b5E2RGbCAP
证中存在一组基使
令则
所以是A的不变子空间,V可以分解成个一维不变子空间的直
和。

设可以分解成个一维不变子空间的直和,
那么是的一组基。

因为是A的不变子空间,
A可以对角化。

3.设是的两个不同的特征值,证明:如果
,则是的属于特征值的特征向量。

证因为
所以又因为,因而是的属于特征值的特征向量。

4.设是阶实对称矩阵,是阶实反对称矩阵,如果

证因为则而且
是实反对称矩阵,的特征值只有0和纯虚数,-1不是它的特征值,所以
5. 证明:维欧氏空间中至多有个,
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

线性空间与线性变换练习题

线性空间与线性变换练习题

线性空间与线性变换练习题§1 线性空间1.设}|),,,({2121n n n x x x x x x V ===∈== R x 是否按向量的加法和数乘构成R 上的线性空间?若是,求出它的维数和一个基。

2.设⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+++∈⎪⎪⎭⎫ ⎝⎛=⨯022d c b a d c b a V R 是否按矩阵的加法和数乘构成R 上的线性空间?若是,求出它的维数和一个基。

3.证明n 阶实对称矩阵全体1V 和n 阶实反对称矩阵全体2V 均构成n n ⨯R 的子空间,并求它们的维数。

4.已知4R 中向量T )1,3,2,1(1=a , T )1,2,1,1(2-=a ,T )6,1,6,2(3---=a , T )1,7,4,3(4-=a ,求},,,Span{4321a a a a 的一个基和维数。

5.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=101102121k k k A ),,,(4321a a a a =(1)求A 的零空间}|{)(40Ax x A =∈=R N 的基与维数;(2)求T A 的零空间}|{)(30x A x A =∈=T T N R 的基与维数(3)求},,,Span{4321a a a a 一个基和维数。

6.已知3R 中的两组基为T )1,1,1(1=a ,T )1,0,1(2-=a ,T )1,0,1(3=a ,和T )1,2,1(1=b ,T )4,3,2(2=b ,T )3,4,3(3=b 。

(1)求向量T )4,2,2(=x 在基1a ,2a ,3a 下的坐标;(2)求从基1a ,2a ,3a 到基1b ,2b ,3b 的过渡矩阵;(3)求向量3212b b b z -+=在基1a ,2a ,3a 下的坐标;(4)求向量321424a a a y -+=在基1b ,2b ,3b 下的坐标。

7.已知3R 中的两组基为T )1,0,1(1=a ,T )1,1,1(2-=a ,T )1,1,1(3-=a ,和T )1,0,3(1=b ,T )0,0,2(2=b ,T )2,2,0(3-=b 。

线性变换选择题

线性变换选择题

1.下面所定义的变换中,线性变换的个数是():(1)在][x P 中,)1()(+=x f x Af ;(2)在3P 中,),,2(),,(13221321x x x x x x x x A +−=;(3)把复数域看成复数域上的向量空间,对任意复数α,定义αασ=)(;A .0B .1C .2D .32.下面所定义的变换中,线性变换的个数是():1)把复数域看成复数域上的向量空间,对任意复数α,定义αασ=)(;2)在3P 中,),,2(),,(13221321x x x x x x x x A +−=;3)在][x P 中,)()(0x f x Af =,其中P x ∈0是一固定的数;A .0B .1C .2D .33.下面所定义的变换中,线性变换的个数是():1)在][x P 中,)()(0x f x Af =,其中P x ∈0是一固定的数;2)在3P 中,),,2(),,(13221321x x x x x x x x A +−=;3)在][x P 中,)1()(+=x f x Af ;A .0B .1C .2D .34.下列四个命题中正确命题的个数是()命题1线性空间V 中的线性变换σ在V 的给定基下的矩阵是唯一的。

命题2线性空间V 中的线性变换σ在V 的给定基下的矩阵是可逆的。

命题3同一个线性变换在不同基下的矩阵可能相同。

命题4两个n 阶矩阵相似当且仅当它们的秩相等。

A .1B .2C .3D .45.设σ是线性空间V 中的线性变换,21W W ,是V 的σ的不变子空间,下列V 的四个子集中有()个是σ的不变子空间。

(1)21W W +;(2)21W W ∩;(3))()(21W W σσ+;(4)21W W ∪。

A .1B .2C .3D .46.下列四个命题中正确的个数是()命题1一个特征向量可能属于两个不同的特征植。

命题2一个特征向量只能属于一个特征植。

命题3两个特征向量的线性组合仍是特征向量。

高等代数习题线性变换

高等代数习题线性变换

所以 α + β ∈ W 。 (σ − λ ) n (kα ) = k ((σ − λ ) n α ) = 0 , 所以 kα ∈ W ,W 是 V 的子空间。 又对于 α ∈ W (σ − λ ) n (σα ) = σ (σ − x ) n (α ) = σ (0) = 0
∴σ (α ) ∈ W
= ( 2 x1 + x2 − x3 , x2 , x3 ) 。 (σ − τ )( x1, x2 , x3 ) = σ ( x1, x 2 , x3 ) − τ ( x1, x2 , x3 )
= ( x1 , x 2 , x1 + x 2 ) − ( x1 + x2 − x3 ,0, x3 − x1 − x2 )

即 λE − B ( A − tE) = λE − ( A − tE) B ,也就是 ( λE − BA) + tB = ( λE − AB) + tB ,对 于每一个固定的 λ 值,上式两端是两个关于 t 的次数不超过 n 的多项式。当 t > t 0 时,它们的值相等,由于 t 的个数大于 n ,所以上式两个关于 t 的多项式恒等,当
∴ 存在 u ( x ), v( x ) 使 u ( x ) f1 ( x ) + v ( x ) f 2 ( x ) = 1 ,从而有
u (τ ) f1 (τ ) + v (τ ) f 2 (τ ) = ε ∀α ∈ ker( f1 (τ ))
所以 u (τ ) f 1 (τ ) = ε (因为 f 2 (τ ) = 0 ) 得 α = 0 即 ker( f 1 (τ )) = {0}
第七章 线性变换
例 1. 在向量空间 R3 中,线性变换σ, τ 如下: σ (x1 , x2 , x3 )=(x1 , x2 , x1 +x 2 ) τ (x 1 , x2 , x 3 )=(x 1 +x2 -x 3 , 0, x3 -x 1 -x2 ) (1) 求στ, τσ, σ2 ; (2) 求σ+τ, σ -τ, 2σ。 解: (1) στ ( x1, x2 , x3 ) = σ ( x1 + x2 − x3 ,0, x3 − x1 − x2 ) = ( x1 + x2 − x3 , 0, x1 + x2 − x3 ) = τ ( x1, x2 , x3 ) ,∴ στ = τ . τσ ( x1, x2 , x3 ) = τ ( x1 , x2 , x1 + x2 ) = (0,0,0) ,∴ τσ = 0

高等代数线性空间与线性变换练习题

高等代数线性空间与线性变换练习题

第六章 线性空间一 判断题(1) 平面上全体向量对于通常的向量加法和数量乘法: ,,k k R αα=∈ 作成实数域R 上的向量空间. ( ) .(2) 平面上全体向量对于通常的向量加法和数量乘法: 0,,k k R α=∈ 作成实数域R 上 的向量空间. ( ).(3) 一个过原点的平面上所有向量的集合是3V 的子空间. ( ).(4) 所有n 阶非可逆矩阵的集合为全矩阵空间()n M R 的子空间. ( ).(5) 121{(,,,)|1,}nn i i i x x x x x R ==∈∑为n R 的子空间. ( ).(6)所有n 阶实反对称矩阵的集合为全矩阵空间()n M R 的子空间. ( ).(7)11{(,0,,0,)|,}n n x x x x R ∈为n R 的子空间. ( ).(8)若1234,,,αααα是数域F 上的4维向量空间V 的一组基, 那么122334,,,αααααα++ 是V 的一组基. ( ).(9)n 维向量空间V 的任意n 个线性无关的向量都可构成V 的一个基. ( ).(10)设12,,,n ααα是向量空间V 中n 个向量, 且V 中每一个向量都可由12,,,n ααα 线性表示, 则12,,,n ααα是V 的一组基. ( ).(11) 设12,,,n ααα是向量空间V 的一个基, 如果12,,,n βββ与12,,,n ααα等价, 则12,,,n βββ也是V 的一个基. ( ).(12) 3x 关于基332,,1,1x x x x x +++的坐标为(1,1,0,0). ( ).(13)设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++.若12dim dim dim s V V V n +++=, 则12s V V V +++为直和. ( ). (14)设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 若121230,()0,V V V V V =+=121,()0,S s V V V V −+++= 则12s V V V +++为直和.( ).(15) 设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 若(){0},i j j i V V ≠=∑ 则12s V V V +++为直和. ( ).(16)设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 若(){0},,i j V V i j =≠则12s V V V +++为直和. ( ).(17) 设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 零向量表法是唯一的, 则12s V V V +++为直和. ( ).(18) 设12,,,n ααα是向量空间V 的一个基, f 是V 到W 的一个同构映射, 则W 的一个基是12(),(),,()n f f f ααα. ( ). (19) 设V 是数域F 上的n 维向量空间, 若向量空间V 与W 同构, 那么W 也是数域F 上的n 维向量空间. ( ).(20) 把同构的子空间算作一类, n 维向量空间的子空间能分成n 类. ( ). 答案 (1)错误 (2)错误 (3)正确 (4)错误 (5)错误 (6)正确 (7)正确 (8)正确 (9)正确 (10)错误 (11)正确 (12)错误 (13)正确 (14)正确 (15)正确 (16)错误 (17)正确(18)正确 (19)正确 (20)错误二 填空题(1) 全体实对称矩阵, 对矩阵的________________作成实数域R 上的向量空间.(2) 全体正实数的集合R +,对加法和纯量乘法,,k a b ab k a a ⊕==构成R 上的向量空间.则此空间的零向量为___.(3) 全体正实数的集合R +,对加法和纯量乘法,,k a b ab k a a ⊕==构成R 上的向量空间. 则a R +∈的负向量为________.(4) 全体实二元数组对于如下定义的运算:2(,)(,)(,),(1)(,)(,),2a b c d a c b d ac k k k a b ka kb a ⊕=+++−=+ 构成实数域R 上的向量空间. 则此空间的零向量为___.(5) 全体实二元数组对于如下定义的运算:2(,)(,)(,),(1)(,)(,),2a b c d a c b d ac k k k a b ka kb a ⊕=+++−=+ 构成实数域R 上的向量空间. 则(,)a b 的负向量为________.(6) 数域F 上一切次数n ≤的多项式添加零多项式构成的向量空间[]n F x 维数等于_____.(7) 任一个有限维的向量空间的基________的, 但任两个基所含向量个数是________.(8) 复数域C 作为实数域R 上的向量空间, 维数等于______, 它的一个基为_______.(9) 复数域C 看成它本身上的向量空间, 维数等于______, 它的一个基为_______.(10) 实数域R 上的全体n 阶上三角形矩阵, 对矩阵的加法和纯量乘法作成向量空间, 它的维数等于_____.(11) 向量(0,0,0,1)ξ=关于基123(1,1,0,1),(2,1,3,1),(1,1,0,0)ααα===4(0,1,1,1)α=−−的坐标为__________.(12) 223x x ++关于3[]F x 的一个基332,,1,1x x x x x +++的坐标为__________.(13) 三维向量空间的基12(1,1,0),(1,0,1),αα== 则向量(2,0,0)β=在此基下的坐标为 _______.(14) V 和W 是数域F 上的两个向量空间, V 到W 的映射f 满足条件__________________________________________, 就叫做一个同构映射.(15) 数域F 上任一n 维向量空间V 都与向量空间______同构.(16) 设V 的子空间123,,,W W W 有1213230W W W W W W ===, 则123W W W ++ ________直和.答案(1)加法和数量乘法 (2)1 (3)1a(4)(0,0) (5)2(,)a a b −− (6)1n + (7)不唯一, 相等 (8)2;1,i (9)1;1 (10)(1)2n n + (11)(1,0,1,0)− (12)(0,0,1,2) (13)(1,1,1)− (14)f 是V 到W 的双射; 对任意,,()()()V f f f αβαβαβ∈+=+; 对任意,,()()a F V f a af ααα∈∈= (15)n F (16)不一定是三 简答题(1) 设().n V M R = 问下列集合是否为V 的子空间, 为什么?1) 所有行列式等于零的实n 阶矩阵的集合1W ;2) 所有可逆的实n 阶矩阵的集合2W ;(2) 设()L R 是实数域R 上所有实函数的集合, 对任意,(),,f g L R R λ∈∈ 定义()()()(),()()(),f g x f x g x f x f x x R λλ+=+=∈对于上述运算()L R 构成实数域R 上向量空间. 下列子集是否是()L R 的子空间? 为什么? 1) 所有连续函数的集合1W ;2) 所有奇函数的集合2W ;3) 3{|(),(0)(1)};W f f L R f f =∈=(3) 下列集合是否为n R 的子空间? 为什么? 其中R 为实数域.1) 11212{(,,,)|0,}n n i W x x x x x x x R α==+++=∈; 2) 21212{(,,,)|0,}n n i W x x x x x x x R α===∈; 3) 312{(,,,)|n W x x x α==每个分量i x 是整数};(4)设,,A X b 分别为数域F 上,1,1m n n m ⨯⨯⨯矩阵, 问AX b =的所有解向量是F 上的向量空间吗? 说明理由.(5) 下列子空间的维数是几?1) 3((2,3,1),(1,4,2),(5,2,4))L R −−⊆;2)22(1,1,)[]L x x x x F x −−−⊆(6) 实数域R 上m n ⨯矩阵所成的向量空间()m n M R ⨯的维数等于多少? 写出它的一个基.(7) 实数域R 上, 全体n 阶对称矩阵构成的向量空间的维数是多少?(8) 若12,,,n ααα是数域F 上n 维向量空间V 的一个基,122311,,,,n n n αααααααα−++++ 也是V 的一个基吗?(9) 1,2,(1)(2)x x x x −+−+是向量空间2[]F x 的一个基吗?(10) 取4R 的两个向量12(1,0,1,0),(1,1,2,0)αα==−.求4R 的一个含12,αα的基.(11) 在3R 中求基123(1,0,1),(1,1,1),(1,1,1)ααα==−=−到基123(3,0,1),(2,0,0),(0,2,2)βββ===−的过渡矩阵.(12) 在中4F 求向量(1,2,1,1)ξ=关于基123(1,1,1,1),(1,1,1,1),(1,1,1,1)ααα==−−=−− 4(1,1,1,1)α=−−的坐标.(13) 设1W 表示几何空间3V 中过原点之某平面1∏的全体向量所构成的子空间, 2W 为过原点之某平面2∏上的全体向量所构成的子空间, 则12W W 与12W W +是什么? 12W W +能不能是直和? (14) 设1123212(,,),(,),W L W L αααββ==求12W W 和12W W +. 其中123(1,2,1,2),(3,1,1,1),(1,0,1,1)ααα=−−==−; 12(2,5,6,5),(1,2,7,3).ββ=−=−−(15) 证明 数域F 上两个有限维向量空间同构的充分必要条件是它们维数相等.(16)设{|,,},{(,)|,},a b V a b c R W d e d e R b c ⎛⎫=∈=∈ ⎪⎝⎭都是实数域R 的向量空间.问V 与W 是否同构? 说明理由.(17) 设12,,,n ααα为向量空间的一个基, 令12,1,2,,i i i n βααα=+++=且 ()i i W L β=.证明 12n V W W W =⊕⊕⊕.答案(1)1)1W 不是V 的子空间. 若1,,||A B W A B ∈+若未必等于零, 1W 对加法不封闭. 2)2W 不是V 的子空间. 因为3,||0A W A ∈≠, 则||0A −≠, 但|()|0A A +−=, 对加法不封闭.(2)1) 1W 是()L R 的子空间. 因为两个连续函数的和及数乘连续函数仍为连续函数. 2) 2W 是()L R 的子空间. 因为两个奇函数的和及数乘奇函数仍为奇函数.3) 3W 是()L R 的子空间. 因为3W 非空, 且对任意3,,,f g W R λ∈∈有()(0)(0)(0)(1)(1)()(1);(0)((0))((1))()(1),f g f g f g f g f f f f λλλλ+=+=+=+=== 故3,.f g f W λ+∈(3)1) 是. 因1W 是齐次方程组120n x x x +++=的全体解向量.2) 2W 不是n R 的子空间. 因2W 对加法不封闭.3) 3W 不是子空间. 因对数乘运算不封闭.(4)当0b ≠时, AX b =的所有解向量不能构成F 上的向量空间. 因n 维零向量不是 AX b =的解向量. 当0b =时,0AX =的所有解向量能构成F 上的向量空间.(5)1) 维数是2. 因(2,3,1),(1,4,2)−线性无关, 而(5,2,4)2(2,3,1)(1,4,2)−=−+. 2) 维数是2. 因易证21,1x x −−线性无关, 但22(1)(1)()0x x x x −+−+−=.(6) 解 令ij E 表示i 行j 列位置元素是1其余是零的m n ⨯矩阵. 那么易证ij E 这m n ⨯个矩阵是线性无关的. 它们作成()m n M R ⨯的一个基, 故()m n M R ⨯的维数是m n ⨯.(7) ,,,1,2,3,,,,ii ij ji E E E i j n i j +=≠ 为全体n 阶对称矩阵构成的向量空间的一个基,其中共有12(1)n n ++++−个向量, 故此向量空间的维数(1)2n n +. (8) 解 由121112(,,,)(,,,)n n n n A ααααααααα−+++=. 得1||1(1)n A +=+−. 当n 为偶数时, ||0A =, 故12231,,n αααααα+++线性相关, 它不构成基. 当n 为奇数时, ||0,A ≠ 故12231,,n αααααα+++线性无关, 它构成一个基.(9) 解 在基21,,x x 之下有2122(1,2,(1)(2))(1,,)111001x x x x x x −−⎛⎫ ⎪−+−+= ⎪ ⎪⎝⎭. 因上式右方的3阶矩阵为可逆, 所以1,2,(1)(2)x x x x −+−+线性无关, 它是2[]F x 的一个基.(10) 解 取向量34(0,0,1,0),(0,0,0,1)εε==,由于1100010010,12100001−=−≠ 因此1234,,,ααεε线性无关, 所以向量组是4R 的一个基.(11) 解 由123123123123(,,)(,,),(,,)(,,)A B αααεεεβββεεε==推出 1123123(,,)(,,)A B βββααα−=因此所求过渡矩阵为10113201001100021112210211111122A B −⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=−= ⎪ ⎪ ⎪ ⎪ ⎪−− ⎪⎝⎭⎝⎭ ⎪−− ⎪⎝⎭. (12) 解 取4F 的标准基1234,,,εεεε. 由1234,,,εεεε到1234,,,αααα的过渡矩阵为1111111111111111A ⎛⎫ ⎪−− ⎪= ⎪−− ⎪ ⎪−−⎝⎭于是(1,2,1,1)ξ=关于基1234,,,αααα的坐标为1541124114114A −⎛⎫ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪− ⎪ ⎪ ⎪⎝⎭ ⎪−⎪ ⎝⎭. (13) 解 由于1W ,2W 皆过原点, 它们必相交, 因此或重合, 或不重合. 若1W 与2W 重合, 则 121121,W W W W W W =+=. 若1W 与2W 不重合, 则12W W 为一条过原点的直线, 而12W W V +=, 但12W W +不能是直和.(14) 解 设112233112212k k k t t W W γαααββ=++=+∈为交空间的任意向量.由 11223311220,k k k t t αααββ++−−=得齐次线性方程组123121212123121231232025206702530k k k t t k k t t k k k t t k k k t t +−−+=⎧⎪+−−=⎪⎨−++++=⎪⎪−++−−=⎩ 由行初等变换知方程组的系数矩阵的秩为4, 解空间的维数为1, 且求得方程组的一般解为122232424896,,,7777k t k t k t k t =−=−=−=−因此维12()1W W =, 维12()4W W +=. 取27t =,令1267ξββ=−+便有12()W W L ξ=, 另外显然121231(,,,)W W L αααβ+=.(15) 证明 设数域F 上两个有限维向量空间V 与W 的维数均为n , 因,n n V F W F ≅≅所以V W ≅.反之, 若V W ≅, 设dim 0,V n => 且f 是V 到W 的同构映射. 取V 的一个基 12,,,n ααα, 易证12(),(),,()n f f f ααα是W 的一个基, 故dim W n =.(16) V 与W 不同构. 因dim 3,dim 2V W ==, V 与W 的维数不相等.(17) 证明 任取V α∈, 若1122n n a a a αααα=+++, 那么12123211()()()n n n n n n n a a a a a a a a αβββαβ−−=−−−+−−−+−+因此12n V W W W =+++, 并且V 中向量依诸i W 表示唯一, 故12n V W W W =⊕⊕⊕四 计算题(1) 设由123(1,2,2,2),(1,3,0,1),(2,1,2,5)ααα=−=−−=−−, 生成4R 的子空间.W 试从向量组1234(3,1,0,3),(2,1,0,3),(3,4,2,16),(1,7,4,15)ββββ==−=−−=−中找出W 的生成元.(1) 解 以123,,ααα及1234,,,ββββ为列做成矩阵A , 在对A 的行施行初等变换.11232312311147202002421533161510011/20201001/21100111/2100000400A B −⎛⎫⎪−−−⎪=→⎪−− ⎪⎪−−−⎝⎭⎛⎫⎪−− ⎪= ⎪ ⎪ ⎪−⎝⎭由于行初等变换不改变列向量间的线性关系. 由矩阵B 知,113323412,,2βααβααβαα=+=−+=+从而134(,,).L W βββ⊆但由B 还知134,,βββ线性无关, 故134,,βββ为W 的一组生成元.(2) 在向量空间4R 中, 求由向量123(2,1,3,1),(4,5,3,1),(1,1,3,1)ααα=−=−=−−4(1,5,3,1)α=−生成的子空间的一个基和维数.(2) 解 对下述矩阵施行行的初等变换241106391515151533330126181111042600001302.00000213−−−−⎛⎫⎛⎫⎪ ⎪⎪ ⎪→→ ⎪ ⎪−−−−− ⎪ ⎪ ⎪ ⎪−−⎝⎭⎝⎭⎛⎫⎪⎪⎪ ⎪⎪⎝⎭此变换保持列向量间的线性关系, 由右方矩阵知13,αα是一个极大无关组, 因此1234(,,,)L αααα的维数实是2,而13,αα是它的一个基.(3) 在4R 中求出向量组12345,,,,ααααα的一个极大无关组,然后用它表出剩余的向量.这里123(2,1,3,1),(1,2,0,1),(1,1,3,0),ααα===−−45(1,1,1,1),(0,12,12,5)αα==−.(3) 解 对下述矩阵施行行的初等变换211101010********011230311230311211015110150001300013101121010500026000001101511002−−−⎛⎫⎛⎫⎪ ⎪−− ⎪ ⎪→→ ⎪ ⎪−−−− ⎪ ⎪⎪ ⎪⎝⎭⎝⎭−−⎛⎫⎛⎫ ⎪⎪−−− ⎪ ⎪→ ⎪ ⎪−− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.由右方矩阵知234,,ααα是一个极大无关组, 并且有 1235234,253ααααααα=−=++.(4) 求3()M F 中与矩阵A 可交换的矩阵构成的子空间的维数及一个基, 其中 100010.312A ⎛⎫⎪= ⎪ ⎪⎝⎭(4) 解 设这个子空间为,W 由于A I B =+, 这里 000000311B ⎛⎫ ⎪= ⎪ ⎪⎝⎭因此与A 可交换的3阶方阵, 就是与B 可交换的3阶方阵, 从而 3{()|}W X M F BX XB =∈=.任取,()ij C W C c ∈=. 由BC CB =, 可得1323112131330,33,c c c c c c ==++=122232333c c c c ++=,于是C W ∈当且仅当C 的元素为齐次线性方程组2111313322123233333c c c c c c c c =−−+⎧⎨=−−+⎩的解. 于是我们得到如下矩阵100010000300,030,100000000100⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪−−− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 000000010,310010001⎛⎫⎛⎫ ⎪ ⎪− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭它们构成W 的一个基, 故W 的维数是5.(5) 求实数域上关于矩阵A 的全体实系数多项式构成的向量空间V 的一个基与维数.其中2100100,.200A ωωω⎛⎫−+ ⎪== ⎪ ⎪⎝⎭(5) 解 因31ω=, 所以22311,11A A I ωω⎛⎫⎛⎫ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭易证2,,I A A 线性无关. 于是任何多项式()(()[])f A f x R x ∈皆可由2,,I A A 线性表示, 故2,,I A A 为的一个基, dim 3V =.(6) 设1234(,,,)x x x x 为向量ξ关于基12(1,0,0,1),(0,2,1,0),αα==3(0,0,1,1),α=4(0,0,2,1)α=的坐标; 1234(,,,)y y y y 是ξ关于基1234,,,ββββ的坐标, 其中11y x =,221332442,,.y x x y x x y x x =−=−=−求基1234,,,ββββ.(6) 解 因1122123412343344(,,,)(,,,)x y x y x y x y ξααααββββ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且111222333444100011000110011y x x y x x P y x x y x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪− ⎪ ⎪ ⎪ ⎪== ⎪ ⎪⎪ ⎪− ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭⎝⎭⎝⎭则1122123412343344(,,,)(,,,)x x x x P x x x x ααααββββ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭于是 12341234(,,,)(,,,)P ααααββββ=, 即 112341234(,,,)(,,,)P ββββαααα−=故所求的基为1234(1,2,4,3),(0,2,4,2),(0,0,1,1),(0,0,2,1)ββββ====.(7) 设12,,,n ααα是n 维向量空间V 的一个基,11212,,,n αααααα++++也是V 的一个基,又若向量ξ关于前一个基的坐标为(,1,,2,1)n n −, 求ξ关于后一个基的坐标.(7) 解 基12,,,n ααα到后一个基的过渡矩阵为111101110011001P ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭. 那么12111001101101120001211000111n n n y n n y P y −−⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪−−− ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪=== ⎪ ⎪⎪⎪ ⎪− ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故ξ关于后一个基的坐标为(1,1,,1).(8) 已知3R 的一个基为123(1,1,0),(0,0,2),(0,3,2)ααα===. 求向量(5,8,2)ξ=−关于这个基的坐标.(8) 解 设112233x x x ξααα=++, 的方程组 11323538222x x x x x =⎧⎪+=⎨⎪+=−⎩解得1235,2,1x x x ==−=. 故ξ关于基123,,ααα的坐标(5,2,1)−.(9) 已知1234(2,1,1,1),(0,3,1,0),(5,3,2,1),(6,6,1,3)αααα=−===是4R 的一个基.求4R 的一个非零向量ξ, 使它关于这个基的坐标与关于标准基的坐标相同.(9) 解 由标准基1234,,,εεεε到基1234,,,αααα的过渡矩阵为 2056133611211013P ⎛⎫ ⎪⎪= ⎪− ⎪ ⎪⎝⎭设ξ关于两个基的坐标为1234(,,,)x x x x , 则11223344,x x x x P x x x x ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即得齐次线性方程组134133412341345602360020x x x x x x x x x x x x x x ++=⎧⎪+++=⎪⎨−+++=⎪⎪++=⎩解得1234x x x x ===−, 令40,x k k R =≠∈, 则(,,,)k k k k ξ=−−−即为所求.(10)已知4R 的一个基123(2,1,1,1),(0,3,1,0),(5,3,2,1)ααα=−==4(6,6,1,3)α=.求1234(,,,)x x x x ξ=关于基1234,,,αααα的坐标.(10) 解 由标准基到所给基的过渡矩阵为 2056133611211013P ⎛⎫ ⎪⎪= ⎪− ⎪ ⎪⎝⎭那么11221123412343344(,,,)(,,,)x x x x P x x x x ξεεεεαααα−⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故ξ关于基1234,,,αααα的坐标为1234(,,,)y y y y , 这里11122213334444/91/3111/91/274/91/323/271/3002/37/271/91/326/27y x x y x x P y x x y x x −−−⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪−− ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−−⎝⎭⎝⎭⎝⎭⎝⎭.五 证明题(1) 设12,W W 为向量空间()V F 的两个子空间. 1)证明: 12W W 是V 的子空间.2)12W W 是否构成V 的子空间, 说明理由. (1) 证明1) 显然120W W ∈, 即12W W ≠Φ, 任取1212,,W W k F αα∈∈, 易知1212112,W W k W W ααα+∈∈, 故12W W 是V 的子空间.2) 不一定. 当12W W ⊆或21W W ⊆时, 12W W 是V 的子空间. 但当1W 与2W 互不包含时,12W W 不是V 的子空间. 因为总存在1112,W W αα∈∉及2221,W W αα∈∉使1212,W W αα∈, 而1212W W αα+∉, 因为这时121122,W W αααα+∉+∉, 否则与选取矛盾.(2) 设12,W W 为向量空间V 的两个子空间. 证明: 12W W +是V 的即含1W 又含2W 的最小子空间.(2) 证明 易知12121122{|,}W W W W αααα+=+∈∈为V 的子空间, 且112212,.W W W W W W ⊆+⊆+设W 为V 的包含1W 与2W 的任一子空间, 对任意1122,W W ξξ∈∈,有12W ξξ+∈, 即12W W W +⊆, 故12W W +是V 的即含1W 又含2W 的最小子空间..(3) 设12,W W 为向量空间()V F 的两个子空间. ,αβ是V 的两个向量, 其中2W α∈, 但1W α∉, 又2W β∉. 证明: 1)对任意2,k F k W βα∈+∉;2)至多有一个,k F ∈使得1k W βα+∈. (3) 证明1) 任意,k F ∈若2k W βα+∈, 则2()k k W ββαα=+−∈矛盾, 故1)成立.2) 当1W β∈时, 仅当0k =时, 有1k W βα+∈; 当1W β∉时, 若存在1212,,k k F k k ∈≠使得111221,k W k W αβααβα=+∈=+∈, 则12121()k k W ααα−=−∈, 因此1W α∈, 矛盾, 故2)成立.(4) 设12,W W 为向量空间V 的两个子空间. 证明 若1212W W W W +=, 则12W W ⊆或21W W ⊆.(4) 证明 因12W W 含1W 与2W 中所有向量, 12W W +含一切形如121122(,)W W αααα+∈∈的向量, 因为1212W W W W +=, 所以121W αα+∈或122W αα+∈. 若121W αα+∈, 令12ααβ+=, 则21αβα=−, 故21W W ⊆; 若122W αα+∈, 令12ααγ+=, 则12αγα=−, 故12W W ⊆.(5) 证明: n 维向量空间V 中, 任意n 个线性无关的向量都可作为V 的一个基.(5) 证明 设12,,,n ααα是V 中线性无关的向量, 取V 的单位向量12,,,n εεε, 则12(,,,)n V L εεε=, 且12,,,n ααα中每一个可由12,,,n εεε线性表示. 由替换定理知12,,,n ααα与12,,,n εεε等价, 所以V 中每一个向量可由12,,,n ααα线性表示, 又 12,,,n ααα线性无关, 故12,,,n ααα可作为V 的一个基.(6) 设V 为n 维向量空间, V 中有m 组线性无关的向量, 每组含t 个向量, 证明: V 中存在n t −个向量与其中任一组组成V 的一个基.(6) 证明 设V 中m 组线性无关的向量分别为12,,,(1,2,,),i i it i m t n ααα=≤. 令12(,,,)i i i it V L ααα=, 则dim i V t n =<. 因存在1,(1,2,,)i V i m ξ∉=, 使121,,,,i i it αααξ线性无关, 若1t n +<,令/121(,,,,)i i i it V L αααξ=, 则/i V 也为V 的非平凡子空间, 同理存在/2,1,2,,i V V i m ξ=−=, 而且1212,,,,,i i it αααξξ线性无关, 如此继续下去, 可找到12,,,n t ξξξ−使得12,,,,i i it ααα12,,,n t ξξξ−线性无关, 故对每个i ,它们都是V 的一个基.(7) 设n 维向量空间V 的向量组12,,,n ααα的秩为r , 使得11220n n k k k ααα+++=全体n 维向量12(,,,)n k k k 的集合为W . 证明W 是n F 的n r −维子空间.(7) 证明 显然12dim (,,,)n L r ααα=, 今设每个i α在12(,,,)n L ααα的某个基下的坐标为12[]i i i ir a a a α⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,1,2,,i n =那么由11220n n k k k ααα+++=可得1122[][][]0n n k k k ααα+++=.它决定了一个含n 个未知量12,,,,n k k k r 个方程的齐次线性方程组, 其系数矩阵12([],[],,[])n ααα的秩为r , 故解空间即W 的维数为n r −.(8) 设12,,,n a a a 是数域F 中n 个不同的数, 且12()()()()n f x x a x a x a =−−−. 证明多(8) 证明 因1dim []n F x n −=, 所以只需证12,,n f f f 线性无关. 设有12,,,n k k k F ∈,使1220n n k f k f k f +++= (*)由()0,,()0j i i i f a i j f a =≠≠, 因此将i a 带入(*)得()0i i i k f a =, 从而0,(1,2,)i k i n ==故12,,n f f f 线性无关, 为1[]n F x −的一个基.(9) 设W 是n R 的一个非零子空间, 而对于W 的每一个向量12(,,,)n a a a 来说, 或者120n a a a ====, 或者每一个i a 都不等于零. 证明: dim 1.W =(9) 证明 由W 非零, 我们总可以取12(,,,)n b b b W β=∈, 且0β≠, 那么每个0i b ≠且β线性无关. 今对任意12(,,,)n a a a W α=∈, 若0α=当然α可由β线性表示; 若0α≠而11a W b αβ−∈, 由于其第一个分量为0, 由题设知11ab αβ=. 故β可作为W 的一个基,且dim 1.W =(10) 证明: 22,,1x x x x x +−+是2[]F x 的一个基, 并求2273x x ++关于这个基的坐标.(10) 证明: 2dim []3,F x =22,,1x x x x x +−+由基21,,x x 表示的演化矩阵为 001111110A ⎛⎫ ⎪=− ⎪ ⎪⎝⎭但A 可逆, 故22,,1x x x x x +−+是2[]F x 的一个基.2273x x ++关于这个基的坐标(3,1,3)−,因为13371.23A −⎛⎫⎛⎫⎪ ⎪=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(11) 若123,,W W W 都是V 的子空间, 求证:11231213(())()()W W W W W W W W +=+.(11) 证明: 任意1123(())W W W W α∈+, 则1W α∈, 且123()W W W α∈+, 因此1311233,,W W W ααααα=+∈∈, 但1W α∈, 知313W W α∈, 故 1213()()W W W W α∈+.反之, 任意1213()()W W W W β∈+, 12112213,,W W W W βββββ=+∈∈, 则1W β∈, 且123()W W W β∈+, 故1123(())W W W W β∈+.(12) 设12,,,s W W W 是n 维向量空间V 的子空间. 如果12s W W W +++为直和.证明:{0},,,1,2,,ij W W i j i j s =≠=.(12) 证明: 由12s W W W +++为直和, 有(){0},,,1,2,,ij i jW W i j i j s ≠=≠=∑, 而(){0},,,1,2,,i j ij i jW W W W i j i j s ≠⊆=≠=∑. 故{0},,,1,2,,i j W W i j i j s =≠=.(13) 设12,W W 分别是齐次线性方程组120n x x x +++=与12n x x x ===的解空间.证明: 12n F W W =+.(13) 证明 因120n x x x +++=的解空间的维数为1n −, 且一个基为12(1,1,0,,0),(1,0,1,0,,0),αα=−=−1,(1,0,,0,1)n α−=−, 又12n x x x ===即方程组12231000n n x x x x x x −−=⎧⎪−=⎪⎨⎪⎪−=⎩的系数矩阵的秩为1n −, 其解空间的维数为1, 且一个基为(1,1,,1)β=, 但121,,,n αααβ−线性无关, 它是n F 的一个基, 且12dim dim dim n F W W =+, 故12n F W W =+.(14) 证明 每一个n 维向量空间都可以表成n 个一维子空间的直和. (14) 证明: 设12,,,n ααα是n 维向量空间V 的一个基, 那么12(),(),,()n L L L ααα都是一维子空间.显然 12()()()n V L L L ααα=+++于是由V 中向量在此基下表示唯一, 立得结论.(15) 证明n 维向量空间V 的任意一个真子空间都是若干个1n −维子空间的交.(15) 证明: 设W 是V 的任一子空间, 且设12,,,s ααα为W 的一个基, 将其扩充为V 的一个基12,,,s ααα1,,,s n αα+, 那么令12111(,,,,,,,,,)i s s s i s i n W L ααααααα++−++=于是这些,1,2,i W i n s =−, 均为1n −维子空间, 且12n s W W W W −=.(16)设:f V W →是数域F 上向量空间V 到W 的一个同构映射, 1V 是V 的一个子空间.证明: 1()f V 是W 的一个子空间.(16) 证明: 因1(0)()f f V ∈, 所以1()f V 非空. 对任意//1,()f V αβ∈, 由于f 是1V 到1()f V 的满射, 因此存在1,V αβ∈, 使//(),()f f ααββ==, 对任意,a b F ∈, 有 1a b V αβ+∈, 于是//1()()()()f a b af bf a b f V αβαβαβ+=+=+∈, 故1()f V 是W的一个子空间.(17) 证明: 向量空间[]F x 可以与它的一个真子空间同构.(17) 证明: 记数域F 上所有常数项为零的多项式构成的向量空间V , 显然[]V f x ⊂, 且V 中有形式()xf x , 这里()f x ∈[]F x .定义:[];F x V σ()()f x xf x →, 显然σ是[]F x 到V 的双射, 且对于任意(),()f x g x ∈[],,,F x a b F ∈(()())(()())()()(())(())af x bg x x af x bg x axf x bxg x a f x b g x σσσ+=+=+=+故σ是[]F x 到V 的同构映射. 从而V 是[]F x 的一个真子空间, []F x V ≅.(18) 设,αβ是复数, {()[]|()0},{()[]|()0}V f x R x f W g x R x g αβ=∈==∈=,证明: ,V W 是R 上的向量空间, 并且V W ≅.(18) 证明: 易证,V W 是R 上的向量空间,设V 中次数最低的多项式为()h x , 则对任意()f x V ∈, 都有()[]s x R x ∈, 使()()()f x h x s x =, 因此{()()|()[]}V h x s x s x R x =∈同理, 设W 中次数最低的多项式为()k x , 则{()()|()[]}W k x s x s x R x =∈. 定义:()()()()h x s x k x s x σ易证σ是V 到W 的同构映射, 故V W ≅.(19) 证明 实数域R 作为它自身上的向量空间与全体正实数集R +对加法: a b ab ⊕=, 与纯量乘法: kk a a =构成R 上的向量空间同构.(19) 证明: 定义:(1)x xa a σ>显然σ是R 到R +的映射.1),x y R ∈, 若x y ≠, 则x y a a ≠, 所以σ为单射;任意b R +∈, 因log ,log ba b a b a R =∈, 则(log )ba b σ=, 即σ为满射.从而σ为双射.2) 任,,()()()x y x y x y x y R x y a a a a a x y σσσ+∈+===⊕=⊕. 3) 任,()()()kx x k x k R kx a a k a k x σσ∈====,于是σ是R 到R +的同构映射. 故R R +≅.(20) 设V 是数域F 上无限序列12(,,)a a 的集合, 其中i a F ∈, 并且只有有限i a 不是零.V 的加法及F 中的数与V 中元的纯量乘法同n F , 则V 构成F 上的向量空间. 证明: V 与[]F x 同构.(20) 证明: 取[]F x 的一个基21,,,x x , 则[]F x 中任一多项式01()n n f x a a x a x =+++关于这个基有唯一确定的坐标01(,,,,0,)n a a a V ∈.定义:()f x σ01(,,,,0,)n a a a则σ是[]F x 到V 的一个同构映射, 故[]F x V ≅.线性变换一 判断题(1) 在向量空间3R 中, 1231223(,,)(2,,)x x x x x x x σ=−, 则σ是3R 的一个线性变换. ( ). (2) 在向量空间[]n R x 中, 2(())()f x f x σ=, 则σ是[]n R x 的一个线性变换. ( ). (3) 取定()n A M F ∈, 对任意的n 阶矩阵()n X M F ∈, 定义()X AX XA σ=−, 则σ是()n M F 的一个线性变换. ( ).(4) σ是向量空间V 的线性变换, 向量组12,,,m ααα线性相关, 那么12(),(),,()m σασασα也线性相关. ( ).(5) 在向量空间[]n R x 中, 则微商'(())()f x f x σ=是一个线性变换. ( ). (6) 在向量空间3R 中, 已知线性变换1231223312313(,,)(,,),(,,)(,0,).x x x x x x x x x x x x x στ=++=则12321233(2)(,,)(,,)x x x x x x x x στ−=−+−. ( ).(7) 对向量空间V 的任意线性变换σ, 有线性变换τ, 使(στιι=是单位变换). ( ). (8) 向量空间2R 的两个线性变换σ,τ为12121(,)(,)x x x x x σ=−;12122(,)(,)x x x x x τ=−则212212()(,)(,).x x x x x στσ−=−+(9) 在实数域F 上的n 维向量空间V 中取定一组基后, V 的全体线性变换和F 上全体n阶矩阵之间就建立了一个一一对应. ( ).(10)在取定基后, V 的每个可逆线性变换对应于可逆矩阵, 但逆变换未必对应于逆矩阵.( ).(11) 线性变换在不同基下对应的矩阵是相似的. ( ). (12) 相似矩阵不一定是同一线性变换在不同基下的矩阵. ( ). (13) 域F 上的向量空间V 及其零子空间, 对V 的每个线性变换来说, 都是不变子空间.( ).(14) 除零变换外, 还存在向量空间V 的线性变换, 能使V 的任意子空间对该变换不变.( )(15) 向量空间V 的线性变换1σ的不变子空间W , 也是V 的另一线性变换2σ的不变子空间, 这里21σσ≠. ( ).(16) 向量空间V 的线性变换σ的象与核都是σ的不变子空间. ( ). (17) 线性变换σ的特征向量之和, 仍为σ的特征向量. ( ). (18) 属于线性变换σ同一特征根0λ的特征向量的线性组合仍是σ的特征向量. ( ). (19) 数域F 中任意数λ都是F 上的向量空间V 的零变换的特征根. ( ). (20) σ在一个基下可以对角化, 则σ在任何基下可以对角化. ( ).参考答案:(1)正确 (2)错误 (3)正确 (4)正确 (5)正确 (6)正确 (7)错误 (8)正确 (9)正确 (10)错误 (11)正确 (12)错误 (13)正确 (14)正确 (15)错误 (16)正确 (17)错误 (18)正确 (19)错误 (20)错误二 填空题(1) 设V 和W 是数域F 上的向量空间, 而:V W σ→是一个线性映射, 那么σ是单射的充要条件是____________.(2) 设V 和W 是数域F 上的向量空间, 而:V W σ→是一个线性映射, 那么σ是满射的充要条件是____________.(3) σ是向量空间V 的线性变换, 若满足________________, 则称σ是可逆变换. (4) 向量空间V 的任意线性变换σ, 都有(0)_______,()______.σσα=−=(5)σ是n 维向量空间V 的一个位似变换: (),k σξξ=那么σ关于V 的__________基的矩阵是kI .(6) 在3V 的基123{,,}εεε下σ的矩阵是 111213212223313233a a a A a a a aa a ⎛⎫⎪= ⎪ ⎪⎝⎭那么σ关于基3121{,,2}εεεε+的矩阵是_____________.(7) 在3F 中的线性变换12312231(,,)(2,,)x x x x x x x x σ=−+, 那么σ关于基123(1,0,0),(0,1,0),(0,0,1)εεε===的矩阵是________________.(8)设12,σσ分别是向量空间2R 中绕原点逆时针旋转12,θθ角的线性变换, 那么21σσ关于基12(1,0),(0,1)αα==的矩阵是___________________.(9) 对于域F 上向量空间V 的数乘变换来说______________不变子空间. (10)2维平面上的旋转变换σ,_________非平凡的不变子空间.(11) 若线性变换σ与τ是_____________, 则τ的象与核都是σ的不变子空间. (12) 相似矩阵有_____的特征多项式.(13)0()0I A X λ−=的___________都是A 的属于0λ的特征向量. (14) A 与对角阵相似, ()[]f x F x ∈, 则()f A 必与某一______________. (15) 设V 是数域F 上的n 维向量空间, (),L V σσ∈的不同的特征根是12,,,t λλλ, 则σ可对角化的充要条件是_____________.(16) 设σ是实数域F 上的n 维向量空间V 的线性变换, 如果V 的任意一维子空间都是σ的不变子空间, 那么σ可以_____________.(17) 设σ是实数域F 上的n 维向量空间V 的线性变换, σ可对角化的充要条件是 1)σ的特征多项式的根都在F 内; 2)_______________________________;(18) 设()n A M F ∈, 如果A 的特征多项式在F 内有______________, 那么A 可对角化. (19) 设σ是实数域F 上的n 维向量空间V 的线性变换, λ是σ的一个特征根, 则dim ____V λλ的重数.(20) 矩阵327024005⎛⎫ ⎪⎪ ⎪⎝⎭的特征根是______________.答案(1)ker(){0}σ= (2)Im()W σ= (3)存在V 的线性变换τ, 使σττσι== (4)0,α−(5)任意 (6)131112112321222133313231222a a a a a a a a a a a a +⎛⎫⎪+ ⎪ ⎪+⎝⎭ (7)210011100−⎛⎫⎪ ⎪ ⎪⎝⎭(8)12121212cos()sin()sin()cos()θθθθθθθθ+−+⎛⎫⎪++⎝⎭ (9)每个子空间都是 (10)没有 (11)可交换的(12)相同 (13)非零解向量 (14)对角阵相似 (15)1dim i ti V n λ==∑ (16)对角化 (17)对于σ的特征多项式的每一个根λ, 特征子空间V λ的维数等于λ的重数 (18)n 个不同的 单根 (19)≤ (20)3, 2, 5三. 单选题:1.向量空间()n V F 的零变换θ的象及核的维数分别是( )。

线性变换习题精练

线性变换习题精练

线性变换习题1、设三维线性空间V 上的线性变换σ在基123,,εεε下的矩阵为()33ijA a ⨯=,则σ在基231,,εεε下的矩阵为 。

解:设基123,,εεε到基231,,εεε下的矩阵为X ,即有231123(,,)(,,)X εεεεεε=。

而123123(,,)(,,)A σεεεεεε=,231231(,,)(,,)B σεεεεεε=,则1B X AX -=,得到222321323331121311a a a B a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭。

2、设φ是n 维线性空间V 上的线性变换,Im φ与ker φ分别表示φ的值域与核,证明下列条件等价:(1)Im ker V φφ=⊕; (2)Im ker 0φφ⋂=;(3)若12,,,r ααα 是Im φ的一组基,则12(),(),,()r φαφαφα 是2Im φ的一组基; (4)秩()φ=秩2()φ.(注:表示Im ker φφ⊕直和) 证明:1)2)⇒显然成立2)1)⇒令dimker r φ=,设ker φ的一组基为1,,r αα ,并扩充为V 的一组基11,,,,,r r n αααα+ ,1Im (,,)r n L φφαφα+= 。

由于I mk e r φφ⋂=,dimIm dimker n φφ+=,则d i m I m n r φ=-,即1,,r n φαφα+ 线性无关,从而11,,,,,r r n ααφαφα+ 线性无关。

则11(,,,,,)r r n V L ααφαφα+= ,故1)成立。

1)3)⇒令110r r k k φαφα++= ,则11()0r r k k φαα++= 。

存在ker αφ∈,使得11r r k k ααα=++ 。

又因为12,,,r ααα 是Im φ的一组基,则存在12,,,r ξξξ ,满足i i φξα=,1,,i r = 。

把12,,,r ααα 扩充为V 的一组基11,,,,,r r n αααα+ ,则1,,r n αα+ 为ker φ的一组基。

线性变换练习题

线性变换练习题

线性变换一、填空题:1.设λ是A 的特征值,则1-A 的特征值为 *A 的特征值为 m A 的特征值为 。

2.设3阶方阵A 的特征值为1231,2,λλλ=-==则2)(I A -的特征值为 。

3.在4R 中与向量T )1,1,1,1(-,T )1,1,1,1(--,T )3,1,1,2(都正交的一个单位向量为 。

4.若A I A 则,2=的特征值为 。

二、选择题:1、方阵⎥⎦⎤⎢⎣⎡2011相似于矩阵( )。

(A)1002-⎡⎤⎢⎥-⎣⎦(B) ⎥⎦⎤⎢⎣⎡2211 (C) ⎥⎦⎤⎢⎣⎡2001 (D) ⎥⎦⎤⎢⎣⎡1011 2、n 阶方阵A 具有n 个不同的特征值是A 与对角阵相似的 。

(A )充要条件(B )充分而非必要条件(C )必要而非充分条件(D )非充分非必要条件3、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10021411x A 且A 的特征值为0,1,2,则x =( )。

(A) 1 (B) 2 (C) 3 (D) 44、对于n 阶矩阵A ,以下正确的结论是( )。

(A) 一定有n 个不同的特征值 (B) 存在可逆阵B ,使得AB B 1-为对角阵(C) 它的特征值一定是正数 (D) 属于不同特征值的特征向量一定线性无关三、求下列矩阵的特征值与特征向量:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------011101110 四、设3阶方阵的特征值为1,0,1321-===λλλ,而且对应的特征向量分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=212,122,221321P P P ,求A 。

五、设方阵A 与B 相似,其中200200001,0001001A B y x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求: (1)与x y (2)可逆阵B AP P P =-1,使得。

六、设3阶方阵A 的特征值为1,-1,2, 235A A B -=,求(1)B 的特征值;(2)I A B 5-及。

第七章线性变换

第七章线性变换

第七章 线性变换习题1.1).,,()()(),0()().2).,(),V V k P k k k k k k k k k V V V ξξααξξαξξαξαξξξααηβηβαηβ=+∈=+≠=+=+≠≠=∈+=+=A =A A A A A =A A A 判别下面所定义的变换,哪些是线性的哪些不是。

在线性空间中,其中是属于的一固定向量;解:否;存在使得于是当时,在线性空间中,,其中是属于的一固定向量;解:否;对于任意,有而322123123322221231231233222212312331233003).(,,)(,,);,((,,))(,,)(,,)(,,)(,,)(,,).4)P x x x x x x x k P k x x x kx kx kx k x kx kx k x k x x x k x x x x kx kx kx kx αααα+≠==+∈==+=+=+A A A A ,于是当时,所定义变换不是线性的,当时是线性的。

在中,解:否;存在使得而3123122311231223112231123123123112233.(,,)(2,,)..((,,))(2,,)(2,,)(,,); .((,,)(,,))(,,)P x x x x x x x x i k x x x kx kx kx kx kx k x x x x x k x x x ii x x x a a a x a x a x a =-+=-+=-+=+=+++A A A A A 在中,解:是;11222233111223112231 (2()(),,) (2,,)(2,,) x a x a x a x a x a x x x x x a a a a a =+-+++++=-++-+12312300 (,,)(,,).5).[]()(1);.(())(1)(),.(()())(1)(1)()().6).[]()(),x x x a a a P x f x f x i kf x kf x k f x ii f x g x f x g x f x g x P x f x f x x P =+=+=+=+=+++=+=∈A A A A A A A A A 在中,解:是;在中,是一固定的数;解000 .(())()(),.(()())()()()().7).,().8).(), .(n n n n i kf x kf x k f x ii f x g x f x g x f x g x k i k k k i k P X BXC B C P i X ξξξξξξξ⨯⨯==+=+=+==∈===-=-=A A A A A A =A =A A A :是;把复数域看做复数域上的线性空间,;解:否;取显然有:在中,其中,是属于的两个固定的矩阵。

线性变换测验试题

线性变换测验试题

线 性 变 换 测 验 试 题姓名________ 班级______ 学号_______ 成绩_____1、设n n P ⨯是数域P 上全体n 阶方阵组成的线性空间,,A B 是两个n 阶矩阵,定义n n P⨯上的变换A X=AXB , n n X P ⨯∈, 求证: (1)A 是n n P ⨯上的线性变换。

(2)A 是可逆变换的充分必要条件是A B 和都是可逆矩阵。

2、设A 是数域P 上1)nn >(维线性空间V 上的线性变换,若存在P 中的n 个数12,,,,n a a a 使 --++++= 1110n n n n A a A a A a E ,其中E 是表示恒等变换,假定≠0n a ,证明A 是可逆的,并写出-1A 的表示式。

3、在实四维线性空间V 中,线性变换A 在基1234,,,εεεε下的矩阵为1021014221012112A -⎡⎤⎢⎥-⎢⎥=-⎢⎥⎢⎥--⎣⎦求证:12234(2)(2)L L εεεεε+++及是A 的不变子空间。

4、设A 是数域P 上的n 维线性空间V 上的线性变换,12W W 、是V 的子空间,且12V W W =⊕,若A 12W W ⊂, A 21W W ⊂, 证明:A 的秩dim =A 1W +dim A 2W其中A {i W ξξ==A },1,2i W i ηη∈=.5、设A 是数域P 上的n 维线性空间V 上的线性变换,且A 2=A ,则必存在V 的子空间1,W 使1W α∀∈,有A αα=;又若A 的秩n <,则必存在V 上的非零子空间2W ,使得A 2{0}W =,并且12V W W =⊕.6、利用第5题的结论证明:设n n A B P ⨯∈、,22,A A B B ==,并且秩(A )= 秩(B ), 求证:必存在可逆矩阵n n C P⨯∈,使CB AC = 7、已知:11120024202033500A B y -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭与相似, (1)求y 的值;(2)求一个满足1P AP B -=的可逆矩阵P ;(3)求k A 的表示式(其中k 是正整数)。

线性空间与线性变换练习题

线性空间与线性变换练习题

线性空间与线性变换练习题§1 线性空间1.设}|),,,({2121n n n x x x x x x V ===∈== R x 是否按向量的加法和数乘构成R 上的线性空间?若是,求出它的维数和一个基。

2.设⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+++∈⎪⎪⎭⎫ ⎝⎛=⨯022d c b a d c b a V R 是否按矩阵的加法和数乘构成R 上的线性空间?若是,求出它的维数和一个基。

3.证明n 阶实对称矩阵全体1V 和n 阶实反对称矩阵全体2V 均构成n n ⨯R 的子空间,并求它们的维数。

4.已知4R 中向量T )1,3,2,1(1=a , T )1,2,1,1(2-=a ,T )6,1,6,2(3---=a , T )1,7,4,3(4-=a ,求},,,Span{4321a a a a 的一个基和维数。

5.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=101102121k k k A ),,,(4321a a a a =(1)求A 的零空间}|{)(40Ax x A =∈=R N 的基与维数;(2)求T A 的零空间}|{)(30x A x A =∈=T T N R 的基与维数(3)求},,,Span{4321a a a a 一个基和维数。

6.已知3R 中的两组基为T )1,1,1(1=a ,T )1,0,1(2-=a ,T )1,0,1(3=a ,和T )1,2,1(1=b ,T )4,3,2(2=b ,T )3,4,3(3=b 。

(1)求向量T )4,2,2(=x 在基1a ,2a ,3a 下的坐标;(2)求从基1a ,2a ,3a 到基1b ,2b ,3b 的过渡矩阵;(3)求向量3212b b b z -+=在基1a ,2a ,3a 下的坐标;(4)求向量321424a a a y -+=在基1b ,2b ,3b 下的坐标。

7.已知3R 中的两组基为T )1,0,1(1=a ,T )1,1,1(2-=a ,T )1,1,1(3-=a ,和T )1,0,3(1=b ,T )0,0,2(2=b ,T )2,2,0(3-=b 。

线性变换练习题

线性变换练习题

线性变换练习题线性变换习题⼀、填空题1. 设σ是3P 的线性变换,(,,)(2,4,3)a b c b c a b a σ=+-,,,a b c P ?∈,1(1,0,0),ε= 2(0,1,0),ε=3(0,0,1)ε=是3P 的⼀组基,则σ在基123,,εεε下的矩阵为_______________,⼜3123,P αεεε=-+∈则()σα=_________。

2. 设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间nP 的线性变换σ:()A σξξ=,n P ξ∈,则()1dim (0)σ-=,()dim ()n P σ=。

3. 设P 上三维列向量空间V 的线性变换σ在基123,,ααα下的矩阵是11220 1121-??-,则σ在基213,,ααα下的矩阵是。

4. 如果矩阵A 的特征值等于1,则⾏列式||A E -= 。

5. 设A =211121112,()X AX σ=是P 3上的线性变换,那么σ的零度= 。

6. 若n nA P∈,且2A E =,则A 的特征值为。

7. 在[]n P x 中,线性变换D (()f x )'()f x =,则D 在基211,,,,n x x x -下的矩阵为。

8. 在22P中,线性变换10:20A A σ??→在基121001,,0000E E300,10E ??= 40001E ??= 下的矩阵是。

9. 设321502114A ?? ?= ? ???的三个特征值为1λ,2λ,3λ,则1λ+2λ+3λ= ,1λ2λ3λ= 。

10. 数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为维线性空间,它与同构。

11. 已知n 阶⽅阵A 满⾜2A A =,则A 的特征值为。

12. 已知3阶矩阵A 的特征值为1,2,3,则=||A 。

13. 设σ为数域P 上的线性空间V 的线性变换,若σ是单射,则1(0)σ-= 。

14. 设三阶⽅阵A 的特征值为1,2,-2,则|2|A = 。

线性变换练习习题

线性变换练习习题

第四章线性变换习题精解1.鉴别下边所定义的变换那些是线性的,那些不是:1)在线性空间 V 中,A, 此中V 是一固定的向量;2)在线性空间 V 中,A此中V 是一固定的向量;3)在P3中,A ( x1, x2, x3)( x12 , x2x3 , x32 ) ;4)在P3中,A( x1 , x2 , x3 )(2x1x2 , x2x 3 , x1 ) ;5)在 P[ x ] 中,A f (x) f (x 1)6)在 P[ x ] 中,A f (x) f (x),此中x0P 是一固定的数;7)把复数域上看作复数域上的线性空间,A8)在 P n n中,A X=BXC此中 B,C Pn n是两个固定的矩阵 .解 1)当0时,是;当0时,不是.2) 当0时,是;当0时,不是.3) 不是 . 比如当(1,0,0) ,k 2 时, k A()( 2,0,0) , A (k ) (4,0,0) , A(k)k A() .4) 是 . 因取( x1 , x2 , x3 ),( y1 , y2 , y3 ) ,有A() = A ( x1y1 , x2y2 , x3 y3 )=( 2x1 2 y1x2y2 , x2y2x3y3 , x1 y1 )=( 2x1x2 , x2x3 , x1 ) (2 y1y2 , y2 y3 , y1 )= A+ AA(k) A ( kx1, kx2,kx3)(2kx1kx2 , kx2kx3 , kx1 )(2kx1kx2 , kx2kx3 , kx1 )=k A( )故 A是P3上的线性变换.5)是.因任取f (x)P[ x], g( x) u( x) f ( x)g( x) 则A( f (x)g( x)) =A u( x) = u( x 再令 v( x) kf (x) 则A(kf ( x))故 A 为P[ x]上的线性变换.6) 是 . 因任取f ( x) P[ x], g(x)P[ x] ,并令1) = f (x 1) g( xA (v( x))v( xP[ x] 则.1) =A f (x) + A ( g(x))1) kf (x 1) k A( f (x))A( f (x)g( x)) =f ( x0)g (x0)A( f (x))A( g(x) ) A( kf( x))kf ( x0)k A( f (x))7) 不是. 比如取a=1,k=I,则A(ka)=-i , k(A a)=i,A( ka)k A(a)8) 是 . 因任取二矩阵 X , Y P n n , 则A X Y) B(XY)C BXC BYC A XA(+A X)=B(kX ) k( BXC )k A X(k故 A 是 P n n 上的线性变换 .2. 在几何空间中 , 取直角坐标系 oxy, 以 A 表示将空间绕 ox 轴由 oy 向 oz 方向旋转 90 度的变换,, 以 B 表示绕 oy 轴向 ox 方向旋转90 度的变换 , 以 C 表示绕 oz 轴由 ox 向 oy 方向旋转 90度的变换 . 证明 :A 4 =B 4 =C 4 =E,AB BA,A 2 B 2 =B 2 A 2并查验 ( AB ) 2 =A 2 B 2 能否建立 .解 任取一直量 a=(x,y,z), 则有1)由于A a=(x,-z,y), A 2 a=(x,-y,-z) A 3 a=(x,z,-y),A 4 a=(x,y,z)a=(z,y,-x),2a=(-x,y,-z)BBB 3 a=(-z,y,x), B 4 a=(x,y,z)C a=(-y,x,z), C 2 a=(-x,-y,z) C 3 a=(y,-x,z),C 4 a=(x,y,z)所以A 4 =B 4 =C 4 =E2) 由于AB (a)= A (z,y,-x)=(z,x,y) BA (a)= B (x,-z,y)=(y,-z,-x)所以AB BA3) 由于A 2B 2 (a)= A 2 (-x,y,-z)=(-x,-y,z)B 2 A 2 (a)= B 2 (x,-y,-z)=(-x,-y,z)所以A 2B 2 =B 2 A 23)由于( AB) 2 (a)=( AB)( AB(a))_= AB(z,x,y)=(y,z,x) 22A B (a)=(-x,-y,z)( ) 22B 2AB A3. 在 P[x] 中, A f ( x) f ' ( x), B f (x) xf (x)证明 : AB-BA=E证任取 f ( x) P[x],则有( AB-BA) f ( x) =AB f ( x)-BA f ( x)=A( xf (x)) - B( f'( x)) = f ( x)xf ; ( x) - xf ' ( x) = f ( x)所以AB-BA=E4.设 A,B 是线性变换,假如 AB-BA=E,证明:A k B-BA k = k A k 1(k>1)证采纳数学概括法.当 k=2 时A 22222 B-BA =(A B-ABA)+(ABA-BA )=A(AB-BA)+(AB-BA)A=AE+EA=A结论建立 .概括假定k m 时结论建立,即 A m B-BA m=m A m 1 . 则当k m 1时有,A m 1 B-BA m 1 =(A m 1 B-A m BA)+(A m BA-BA m 1 )=A m (AB-BA)+(A m B-BA m )A=A m E+m A m 1 A= ( m1) A m即 k m 1 时结论建立.故对全部 k 1结论建立.5. 证明 : 可逆变换是双射 .证设 A 是可逆变换, 它的逆变换为 A 1 .若a b , 则必有A a A b,否则设Aa=A b,两边左乘A 1 ,有a=b, 这与条件矛盾.其次 , 对任一直量b, 必有 a 使A a=b, 事实上, 令 A 1 b=a即可.所以 , A是一个双射.6. 设 1 , 2 ,,n 是线性空间V 的一组基,A 是V 上的线性变换。

最新第七章线性变换练习题参考答案整理

最新第七章线性变换练习题参考答案整理

第七章线性变换练习题参考答案一、填空题1.设123,,是线性空间V 的一组基,V 的一个线性变换在这组基下的矩阵是33112233(),,ij Aa xxxV 则在基321,,下的矩阵B =1,T AT 而可逆矩阵T =0010101满足1,B TAT 在基123,,下的坐标为123x A x x . 2.设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间nP 的线性变换:(),n A P ,则1(0)=|0,nAP,1dim(0)=n r ,dim()nP =r .3.复矩阵()ij n n Aa 的全体特征值的和等于1nii i a ,而全体特征值的积等于||A .4.设是n 维线性空间V 的线性变换,且在任一基下的矩阵都相同,则为__数乘__变换 .5.数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为2n 维线性空间,它与n n P 同构.6.设n 阶矩阵A 的全体特征值为12,,,n,()f x 为任一多项式,则()f A 的全体特征值为12(),(),,()nf f f .7.设2231A,则向量11是A 的属于特征值 4的特征向量.8.若1001011A与1010101k Bk相似,则k = -1/2 .9.设三阶方阵A 的特征多项式为322)(23f ,则||A 3 .10.n 阶方阵A 满足A A 2,则A 的特征值为 0和1 .11.线性空间3R 上的线性变换为A ),,(321x x x 132321(2,33,2)x x x x x x ,变换A 在基)1,0,0(),0,1,0(),0,0,1(321下的矩阵为10203321.二、判断题1.设是线性空间V 的一个线性变换,12,,,sV 线性无关,则向量组12(),(),,()s也线性无关. (错)2.设为n 维线性空间V 的一个线性变换,则由的秩+的零度=n ,有1()(0).VV (错)未必有1()(0).VV 3.在线性空间2R 中定义变换:(,)(1,)x y x y ,则是2R 的一个线性变换.(错)零向量的像是(1,0)4.若为n 维线性空间V 的一个线性变换,则是可逆的当且仅当1(0)={0}.(正确)是可逆的当且仅当是双射.5.设为线性空间V 的一个线性变换,W 为V 的一个子集,若()W 是V 的一个子空间,则W 必为V 的子空间. (错)如平面上的向量全体在x 轴上的投影变换,W 为终点在与x 轴平行而不重合的直线上的向量全体,()W 为x 轴上的向量全体,是V 的一个子空间,但W 不是V 的子空间.6.n 阶方阵A 至少有一特征值为零的充分必要条件是0||A .(正确)7.已知1PBP A,其中P 为n 阶可逆矩阵,B 为一个对角矩阵.则A 的特征向量与P 有关.(正确)1P APB ,P 的列向量为A 的特征向量.8.为V 上线性变换,n,,,21为V 的基,则)(,),(),(21n线性无关.(错)当可逆时无关,当不可逆时相关.9.为V 上的非零向量,为V 上的线性变换,则})(|{)(1是V 的子空间.(错)不含零向量.三、计算与证明1.判断矩阵A 是否可对角化?若可对角化,求一个可逆矩阵T ,使1T A T 成对角形.133313331A解:先求矩阵A 的特征值与特征向量.2133313(7)(2)331EA.矩阵A 的特征值为12,37,2.当17时,解方程组1231231236330,3630,3360.x x x x x x x x x 得矩阵A 属于特征值7的线性无关特征向量为1(1,1,1)'.当2,32时,解方程组1231231233330,3330,3330.x x x x x x x x x 得矩阵A 属于特征值-2的线性无关特征向量为23(1,1,0)',(1,0,1)'.矩阵A有三个线性无关的特征向量.因此矩阵A 可对角化,取矩阵11111011T有1722T AT2.在线性空间n P 中定义变换:122(,,,)(0,,,)n n x x x x x (1)证明:是nP 的线性变换.(2)求()nP 与1(0).(1)证明:112222(,,,)(0,,,)nn n n x y x y x y x y x y 221212(0,,,)(0,,,)(,,,)(,,,)n n n n x x y y x x x y y y12122((,,,))(,,,)(0,,,)n n n k x x x kx kx kx kx kx 212(0,,,)(,,,)n n k x x k x x x .所以是n P 的线性变换.(2)2()(0,,,)|,2,,.n n iP x x x P i n .111(0)(,0,,0)|.x x P 3.设aA33242111与bB00020002相似.(1)求b a,的值;(2)求可逆矩阵,使B APP 1.解:(1)由矩阵A 与B 相似可得,矩阵A 与B 有相同的迹与行列式,因此有45,46 6.b a ba 所以5,6ab.(2)先求矩阵A 的特征值与特征向量.2111||242(6)(2)335EA 特征值为1,232,6.当1,22时,解方程组1231231230,2220,3330.x x x x x x x x x 得矩阵A 属于特征值-2的线性无关特征向量为12(0,1,1)',(1,0,1)'.当16时,解方程组12312312350,2220,330.x x x x x x x x x 得矩阵A 属于特征值7的线性无关特征向量为1(1,2,3)'.因此可取矩阵011102113P,有B AP P 1.4.令nn P 表示数域P 上一切n 级方阵所成的向量空间,取定,n n A B P ,对任意的nn PX,定义()''X A XAB XB .证明是nn P上的一个线性变换.证明:对任意的,,n n X YP k P ,有()'()'()''''()(),XY A X Y A B X Y BA XAB XB A YA B YBX Y ()'()'()('')()kX A kX A B kX Bk A XAB XB k X .因此是n n P 上的一个线性变换.。

第七章-线性变换-综合练习

第七章-线性变换-综合练习

第七章 线性变换综合练习一.判断题1.数域上的向量空间的线性变换的集合对线性变换的加法与数乘运算构成一个向量空间( F )2.在向量空间中, , 则是的一个线性变换. ( )).3R 1231223(,,)(2,,)x x x x x x x σ=-σ3R 3.在向量空间中, , 则是的一个线性变换. ( )[]n R x 2(())()f x f x σ=σ[]n R x 4.两个向量空间之间的同构映射的逆映射还是同构映射. ( )σ1-σ5.取定, 对任意的阶矩阵, 定义,n n A F ⨯∈n n n X F ⨯∈()X AX XA σ=-则是的一个线性变换.σn n F ⨯6.向量空间的可逆线性变换的核是空集.( )V σ)(σKer 7.在向量空间中, 已知线性变换 3R 1231223312313(,,)(,,),(,,)(,0,).x x x x x x x x x x x x x στ=++=则. ( )12321233(2)(,,)(,,)x x x x x x x x στ-=-+-8.设为维向量空间上的线性变换,则.( )σn V Im()ker()V σσ+=9.向量空间的两个线性变换,为;2R στ12121(,)(,)x x x x x σ=-12122(,)(,)x x x x x τ=-则( )212212()(,)(,).x x x x x στσ-=-+10.在取定基后, 的每个可逆线性变换对应于可逆矩阵, 但逆变换未必对应于逆矩阵. ()V 11.数域上的向量空间及其零子空间, 对的每个线性变换来说, 都是不变子空间. () F V V 12.若都是数域上的方阵的属于特征根的特征向量,那么任取 21,ααF A 0λ也是的属于的特征向量.( )221121,,ααk k F k k +∈A 0λ13. 线性变换的本征向量之和, 仍为的本征向量. ( )σσ14.属于线性变换同一本征值的本征向量的线性组合仍是的本征向量. ( )σ0λσ15.线性变换在一个基下可以对角化, 则在任何基下可以对角化. ( ).σσ16.复数域看作实数域上的向量空间是1维的. ( )17.是向量空间的线性变换, 向量组线性无关,σV 12,,,m αααL 那么也线性无关. ( )12(),(),,()m σασασαL 18.向量空间的线性变换的值域与的核都是的不变子空间. ( )V σIm()σσker()σσ19.若矩阵与具有相同的特征多项式,则与相似. ( )A B A B 20.向量空间中子集构成的一维子空间. ( )n P (){}P a a a a ∈,,,L n P 21.若向量是线性变换的属于本征值的本征向量,则由生成的子空间为的不变子空ξσλξσ间.( )22. 是向量空间的线性变换, 向量组线性相关,σV m ααα,,,21L 那么也线性相关. ( ))(,),(),(21m ασασασL 23. 为V 上线性变换,为V 的基,则线性无关.σn ααα,,,21L )(,),(),(21n ασασασL 24. 在中,定义变换:,则是的线性变换.( )][x P σ)1())((+=x f x f σσ][x P 25. 向量空间中任意两个子空间的并集一定不是的子空间. ( )V V 26. 向量空间的每一个线性变换都有本征值. ( )27. 是向量空间的一个变换,,若 ,有,则是的线性变换. ( σV V ∈αV ∈∀ξa +=ξσξσV )28. 如果阶矩阵可逆,则矩阵与一定相似.( ).n A AB BA 29. 阶方阵A 至少有一特征值为零的充分必要条件是.n 0||=A 30. 为V 上的非零向量,为V 上的线性变换,则是V 的子空间.ασ})(|{)(1αησηασ==-二、单选题1.维向量空间的线性变换有个不同的特征值,是与对角矩阵相似的( ).n V σn σ A .充分而非必要条件; B .必要而非充分条件;C .充分必要条件; D. 既非充分也非必要条件.2.矩阵相似,则下列描述中不正确的是( )B A 与A .; B . 是数域上的多项式,则;B A =)(x f P ()()B f A f ~C .;D .一定相似于对角形矩阵.()()R A R B =B A 与3. 阶矩阵有个不同的特征根是与对角矩阵相似的 ( ).n A n A A .充分而非必要条件; B 必要而非充分条件;C .充分必要条件; D. 既非充分也非必要条件.4. 令是R 3的任意向量,则映射( )是R 3的线性变换。

线性变换习题

线性变换习题

线性变换习题(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章 线性变换习题精解1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;2)在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3)在P 3中,A),,(),,(233221321x x x x x x x +=; 4)在P 3中,A ),,2(),,(13221321x x x x x x x x +-=; 5)在P[x ]中,A )1()(+=x f x f6)在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)把复数域上看作复数域上的线性空间, A ξξ=8)在P n n ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是.3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α.4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A βA =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α故A 是P 3上的线性变换.5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换.6)是.因任取][)(],[)(x P x g x P x f ∈∈则.A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g )A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则A (ka)=-i , k(A a)=i, A (ka )≠k A (a) 8)是.因任取二矩阵Y X ,n n P ⨯∈,则A (=+=+=+BYC BXC C Y XB Y X )()A X +A YA (k X )=k BXC k kXB ==)()(A X 故A 是n n P ⨯上的线性变换.2.在几何空间中,取直角坐标系oxy,以A 表示将空间绕ox 轴由oy 向oz 方向旋转90度的变换,,以B 表示绕oy 轴向ox 方向旋转90度的变换,以C 表示绕oz 轴由ox 向oy 方向旋转90度的变换.证明: A 4=B 4=C 4=E,AB ≠BA,A 2B 2=B 2A 2 并检验(AB )2=A 2B 2是否成立. 解 任取一向量a=(x,y,z),则有 1) 因为A a=(x,-z,y), A 2a=(x,-y,-z) A 3a=(x,z,-y), A 4a=(x,y,z)B a=(z,y,-x), B 2a=(-x,y,-z) B 3a=(-z,y,x), B 4a=(x,y,z)C a=(-y,x,z), C 2a=(-x,-y,z) C 3a=(y,-x,z), C 4a=(x,y,z) 所以 A 4=B 4=C 4=E 2) 因为AB (a)=A (z,y,-x)=(z,x,y) BA (a)=B (x,-z,y)=(y,-z,-x) 所以 AB ≠BA 3)因为A 2B 2(a)=A 2(-x,y,-z)=(-x,-y,z) B 2A 2(a)=B 2(x,-y,-z)=(-x,-y,z) 所以A 2B 2=B 2A 2 3) 因为(AB )2(a)=(AB )(AB (a))_=AB (z,x,y)=(y,z,x) A 2B 2(a)=(-x,-y,z) 所以 (AB )2≠A 2B 23.在P[x] 中,A ')(f x f =),(x B )()(x xf x f = 证明:AB-BA=E证 任取∈)(x f P[x],则有(AB-BA ))(x f =AB )(x f -BA )(x f =A ())(x xf -B ('f ))(x =;)(xf x f +)(x -'xf )(x =)(x f 所以 AB-BA=E4.设A,B 是线性变换,如果AB-BA=E,证明: A k B-BA k =k A 1-k (k>1) 证 采用数学归纳法. 当k=2时A 2B-BA 2=(A 2B-ABA)+(ABA-BA 2)=A(AB-BA)+(AB-BA)A=AE+EA=2A 结论成立.归纳假设m k =时结论成立,即A m B-BA m =m A 1-m .则当1+=m k 时,有 A 1+m B-BA 1+m =(A 1+m B-A m BA)+(A m BA-BA 1+m )=A m (AB-BA)+(A m B-BA m )A=A m E+m A 1-m A=)1(+m A m即1+=m k 时结论成立.故对一切1>k 结论成立. 5.证明:可逆变换是双射.证 设A 是可逆变换,它的逆变换为A 1-.若a ≠b ,则必有A a ≠A b,不然设Aa=A b,两边左乘A 1-,有a=b,这与条件矛盾. 其次,对任一向量b,必有a 使A a=b,事实上,令A 1-b=a 即可. 因此,A 是一个双射.6.设1ε,2ε, ,n ε是线性空间V 的一组基,A 是V 上的线性变换。

推荐-20XX线性变换习题库 精品

推荐-20XX线性变换习题库 精品

线性变换习题1、设三维线性空间V 上的线性变换σ在基123,,εεε下的矩阵为()33ijA a ⨯=,则σ在基231,,εεε下的矩阵为 。

解:设基123,,εεε到基231,,εεε下的矩阵为X ,即有231123(,,)(,,)X εεεεεε=。

而123123(,,)(,,)A σεεεεεε=,231231(,,)(,,)B σεεεεεε=,则1B X AX -=,得到222321323331121311a a a B a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭。

2、设φ是n 维线性空间V 上的线性变换,Im φ与ker φ分别表示φ的值域与核,证明下列条件等价:(1)Im ker V φφ=⊕; (2)Im ker 0φφ⋂=; (3)若12,,,r ααα是Im φ的一组基,则12(),(),,()r φαφαφα是2Im φ的一组基;(4)秩()φ=秩2()φ.(注:表示Im ker φφ⊕直和) 证明:1)2)⇒显然成立2)1)⇒令dimker r φ=,设ker φ的一组基为1,,r αα,并扩充为V 的一组基11,,,,,r r n αααα+,1Im (,,)r n L φφαφα+=。

由于Im ker 0φφ⋂=,dimIm dimker n φφ+=,则dimIm n r φ=-,即1,,r n φαφα+线性无关,从而11,,,,,r r n ααφαφα+线性无关。

则11(,,,,,)r r n V L ααφαφα+=,故1)成立。

1)3)⇒令110r r k k φαφα++=,则11()0r r k k φαα++=。

存在ker αφ∈,使得11r r k k ααα=++。

又因为12,,,r ααα是Im φ的一组基,则存在12,,,r ξξξ,满足i i φξα=,1,,i r =。

把12,,,r ααα扩充为V 的一组基11,,,,,r r n αααα+,则1,,r n αα+为ker φ的一组基。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档