1大学物理习题_机械振动机械波

合集下载

机械振动与机械波 答案

机械振动与机械波 答案

衡水学院 理工科专业《大学物理B 》机械振动 机械波 习题解答命题教师:杜晶晶 试题审核人:杜鹏一、填空题(每空2分)1、一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取坐标原点。

若t =0时质点第一次通过x =-2cm 处且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为23s 。

2、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

(a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为cos(2//2)x A t T ππ=-。

(b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为cos(2//3)x A t T ππ=+。

3、频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距 0.5 m 。

4、一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。

5、产生机械波的条件是有 波源 和 连续的介质 。

二、单项选择题(每小题2分)(C )1、一质点作简谐振动的周期是T ,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间为( )(A )T /12 (B )T /8 (C )T /6 (D ) T /4( B )2、两个同周期简谐振动曲线如图1所示,振动曲线1的相位比振动曲线2的相位( )图1(A )落后2π (B )超前2π (C )落后π (D )超前π ( C )3、机械波的表达式是0.05cos(60.06)y t x ππ=+,式中y 和x 的单位是m ,t 的单位是s ,则( )(A )波长为5m (B )波速为10m ⋅s -1 (C )周期为13s (D )波沿x 正方向传播( D )4、如图2所示,两列波长为λ的相干波在p 点相遇。

机械振动、机械波练习题(答案)

机械振动、机械波练习题(答案)

机械振动、机械波练习题(参考答案)3. 【答案】B【解析】由单摆周期公式知,T 1=2πL 1g =0.6π s ,T 2=2π L 2g =π s ,摆球从左到右的时间为t =T 1+T 24=0.4π s 。

4. 【答案】 BD5. 【答案】A6. 【答案】AC9. 【答案】AB10.【答案】C11.【答案】A【解析】 由题意得知,该波的周期为T=4s ,则波长λ=vT=1×4m=4mA 、ac 间距离等于一个波长,则波由a 传到c 的时间为4s ,c 起振方向向上,则在4秒<t <5秒这段时间内,c 点从平衡位置向上运动,加速度逐渐增大.故A 正确.B 、由于周期为4s ,所以在4秒<t <5秒这段时间内,质点a 从平衡位置向上运动,速度逐渐减小.故B 错误.C 、ad 间距离等于3/4 波长,则波由a 传到d 的时间为3s ,d 起振方向向上,则在4秒<t <5秒这段时间内,d 点从波峰向平衡位置运动,即向下运动.故C 错误.D 、af 间距离等于1.25个波长,波传到f 点需要5s 时间,所以在4秒<t <5秒这段时间内,f 还没有振动.故D 错误.12.【答案】ABE【解析】两列波相遇后不改变波的性质,所以振幅不变,振幅仍然为2cm ,A 正确;由图知波长λ=0.4m ,由v =λT 得,波的周期为T =λv =1s ,两质点传到M 的时间为34T ,当t =1s 时刻,两波的波谷恰好传到质点M ,所以位移为-4cm ,B 正确,C 错误;质点不随波迁移,只在各自的平衡位置附近振动,所以质点P 、Q 都不会运动到M 点,C 错误;由波的传播方向根据波形平移法可判断出质点的振动方向:两列简谐横波分别沿x 轴正方向和负方向传播,则质点P 、Q 均沿y 轴负方向运动,故E 正确。

13.【答案】AB【解析】图示时质点a 处是波峰与波谷相遇,两列波引起的位移正负叠加的结果是总位移为零,A 正确,质点b 是波峰与波峰相遇,c 点是波谷与波谷相遇,振动都增强,振幅最大,振幅是一列波振幅的两倍,振动最强 ,B 正确。

机械振动与机械波(含答案)

机械振动与机械波(含答案)

25、质量为m 的质点与劲度系数为k 的弹簧构成弹簧振子,忽略一切非保守力做功,则其振动角频率ω26、质量为m 的质点与劲度系数为k 的弹簧构成弹簧振子,忽略一切非保守力做功,则振子位移为振幅A 的4/5时,体系动能占总能量的_9/25___。

27、质量为m 的质点与劲度系数为k 的弹簧构成弹簧振子,忽略一切非保守力做功,若振幅为A ,体系的总机械能为_ kA 2/2 ___。

28、质量为m 的质点与劲度系数为k 的弹簧构成弹簧振子,忽略一切非保守力做功,若振幅为A ,则振子相对于平衡位置位移为A /2时,其速度是最大速度的_。

29、质量为m 的质点与劲度系数为k 1,k 2的串联弹簧构成弹簧振子,忽略一切非保守力做功,则振子的振动角频率。

30、 一质点沿x 轴作简谐振动,振幅A=0.2,周期T=7,t=0时,位移x 0 = 0.1,速度v 0>0,则其简谐振动方程表达式为___x=0.22cos()73t ππ-__________________________________。

31、质量为m 的质点与劲度系数为k 1,k 2的并联弹簧构成弹簧振子,忽略一切非保守力做功,则振子的振动频率ν32、质量为m 的质点与劲度系数为k 1,k 2的并联弹簧构成弹簧振子,忽略一切非保守力做功,则振子的振动角频率ω=____33、两个同方向同频率的简谐振动,其振动表达式分别为:x 1 = 0.3cos(6πt+π/6),x 2=0.3cos(6πt-5π/6)。

它们的合振动的振辐为____0________,初相为____0________。

机械波填空题34、假定两列平面波满足基本的相干条件,波长λ = 8m ,振幅分别为A 1 = 0.1,A 2 = 0.4。

则位相差∆Φ = 2π时,叠加点振幅A=__0.5______________;波程差∆ = 40m 时,叠加点振幅A=_____0.5___________。

成都大学_大学物理(2)综合练习题及参考答案1(振动波光近代)

成都大学_大学物理(2)综合练习题及参考答案1(振动波光近代)
合振动方程x A cos(t 0 ) 0.05 2 cos(t )( SI ) 2

.一质点同时参与了两 个同方向的简谐振动, 它们的振动 9 0.05 cos(t 1 )( SI ),x2 0.05 cos(t )( SI ), 方程分别为 x1 4 12 其合成运动的运动方程 为x __________ __________ ____ .
8
解法三: 旋转矢量法
由旋转矢量图知, A1 A2 ,
A A1 A2 0.05 2 (m)
2 2
0

4


4


2
合振动方程x A cos(t 0 ) 即x 0.05 2 cos(t )( SI ) 2

光学
一、选择题
1.在双缝干涉实验中,屏幕E上的P点处是明纹.若将缝S 2盖住, 并在S1S 2连线的垂直平分面处放一高折射率介质反射面M,如图所示, 则此时( ).
2 2 3 C. x2 A cos(t ) D. x2 A cos(t ) 2
由题意作两简谐振动的旋转矢量图如下 解:
要写出质点2的振动方程, 应先求出其初相 2
2 ( )
2

x2 A cos(t 2 ) A cos[t ( )] A cos(t ) 2 2 (选B)
t , 解: 由图可知, 2s时 x 0
2 2 v A A 6 3 (cm s 1 ) T 4
答案: 3cm.s 0;
1
7
.一弹簧振子系统具有 1.0 J的振动能量、 0.10 m的振幅和
×1的最大速率,则弹簧的 劲度系数为 _____ ,振子的振动 1.0 m s 频率为 _______ . 1 2 E 2 1.0 解: E kA2 , 得k 2 由 200( N .m 1 ), 2 A 0.12

机械振动和机械波测试题及答案

机械振动和机械波测试题及答案

机械振动和机械波一、单选题(每小题提供的四个选项中,只有一个是正确的,每小题5分)1.单摆振动的回复力是 [ ]A.摆球所受的重力B.摆球重力在垂直悬线方向上的分力C.悬线对摆球的拉力D.摆球所受重力和悬线对摆球拉力的合力2.一个做简谐运动的质点,它的振幅是4cm,频率是2.5Hz。

该质点从平衡位置开始经过0.5s后,位移的大小和所通过的路程分别为[ ]A.4cm,10cmB.4cm,20cmC.0,24cmD.100cm,100cm3.图为一列简谐横波在介质中传播的波形图。

在传播过程中,某一质点在10s内运动的路程是16m,则此波的波速是[ ]A.1.6m/sB.2.0m/sC.40m/sD.20m/s4.若单摆的摆长不变,摆球的质量增加为原来的4倍,摆球经过平衡位置时的速度减为原来的1/2,则单摆振动的[ ] A. 频率不变,振幅不变 B.频率改变,振幅变大C.频率改变,振幅不变D.频率不变,振幅变小5. 一列横波沿x轴传播,到达坐标原点时的波形如图。

当此波到达P点时,处于O点处的质点所通过的路程和该时刻的位移是[ ]A.40.5cm,1cmB.40.5cm,-1cmC.81cm,1cmD.81cm,-1cm二、多选题每个题提供的四个选项中至少有一个是正确的(每小题6分,共30分)6.一列波在不同介质中传播,保持不变的物理量是[ ]A. 波长B. 波速C. 频率D. 振幅7.一列机械波在某一时刻的波形如实线所示,经过△t 时间的波形如虚线所示。

已知波的传播速率为1m/s,则下列四个数据中△t的可能值为[ ]A.1sB.8sC.9sD.20s8.图示为简谐横波在某一时刻的波形图线。

已知波的传播速度为2m/s,质点a的运动方向如图。

则下列说法中正确的是[ ]A. 波沿x的负方向传播B. 质点d再经过0.5s第一次到达波峰C. 过去此刻之后,质点b比质点c先回到平衡位置D. 该时刻质点e运动的加速度为零9.一列简谐横波沿x轴正方向传播在t=0的波形如图。

高考物理《机械振动和机械波》真题练习含答案

高考物理《机械振动和机械波》真题练习含答案

高考物理《机械振动和机械波》真题练习含答案1.[2023·新课标卷]船上的人和水下的潜水员都能听见轮船的鸣笛声.声波在空气中和在水中传播时的()A.波速和波长均不同B.频率和波速均不同C.波长和周期均不同D.周期和频率均不同答案:A解析:声波的周期和频率由振源决定,故声波在空气中和在水中传播的周期和频率均相同,但声波在空气和水中传播的波速不同,根据波速与波长关系v=λf可知,波长也不同,故A正确,B、C、D错误.故选A.2.[2024·浙江1月]如图1所示,质量相等的小球和点光源,分别用相同的弹簧竖直悬挂于同一水平杆上,间距为l,竖直悬挂的观测屏与小球水平间距为2l,小球和光源做小振幅运动时,在观测屏上可观测小球影子的运动.以竖直向上为正方向,小球和光源的振动图像如图2所示,则()A.t1时刻小球向上运动B.t2时刻光源的加速度向上C.t2时刻小球与影子相位差为πD.t3时刻影子的位移为5A答案:D解析:以竖直向上为正方向,根据图2可知,t1时刻,小球位于平衡位置,随后位移为负值,且位移增大,可知,t1时刻小球向下运动,A错误;t2时刻,光源的位移为正值,光源振动图像为正弦式,表明其做简谐运动,根据F回=-kx=ma可知,其加速度方向与位移方向相反,位移方向向上,则加速度方向向下,B错误;根据图2可知,小球与光源的振动步调总是相反,由于影子是光源发出的光被小球遮挡后,在屏上留下的阴影,可知,影子与小球的振动步调总是相同,即t2时刻小球与影子相位差为0,C错误;根据图2可知,t3时刻,光源位于最低点,小球位于最高点,根据光沿直线传播,光源能够在屏上留下影子的位置也处于最高点,影子位于正向最大位移处,根据几何关系有ll+2l =A+AA+x影子,解得x影子=5A,即t3时刻影子的位移为5A,D正确.3.[2024·吉林卷]某同学自制双缝干涉实验装置:在纸板上割出一条窄缝,于窄缝中央沿缝方向固定一根拉直的头发丝形成双缝,将该纸板与墙面平行放置,如图所示.用绿色激光照双缝,能够在墙面上观察到干涉条纹.下列做法可以使相邻两条亮条纹中央间距变小的是()A.换用更粗的头发丝B.换用红色激光照射双缝C.增大纸板与墙面的距离D.减小光源与纸板的距离答案:A解析:由于干涉条纹间距Δx=ldλ可知,换用更粗的头发丝,双缝间距d变大,则相邻两条亮条纹中央间距Δx变小,故A正确;换用红色激光照双缝,波长变长,则相邻两条亮条纹中央间距Δx变大,故B错误;增大纸板与墙面的距离l,则相邻两条亮条纹中央间距Δx 变大,故C错误;减小光源与纸板的距离,不会影响相邻两条亮条纹中央间距Δx,故D错误.故选A.4.[2024·浙江1月](多选)在如图所示的直角坐标系中,xOz平面为介质Ⅰ和Ⅱ的分界面(z轴垂直纸面向外).在介质Ⅰ中的P(0,4λ)处有一点波源,产生波长为λ、速度为v的波.波传到介质Ⅱ中,其速度为2v.图示时刻介质Ⅱ中仅有一个波峰,与x轴和y轴分别交于R 和S点,此时波源也恰好位于波峰.M为O、R连线的中点,入射波与反射波在O点相干加强,则()A .介质Ⅱ中波的频率为2v λB. S 点的坐标为(0,-2 λ)C .入射波与反射波在M 点相干减弱D. 折射角α的正弦值sin α=352 答案:BD解析:波从一种介质到另一种介质,频率不变,故介质Ⅱ中波的频率为f =v λ,A 错误;在介质Ⅱ中波长为λ′=2v f=2 λ,由于图示时刻介质Ⅱ中仅有一个波峰,与x 轴和y 轴分别交于R 和S 点,故S 点的坐标为(0,-2 λ),B 正确;由于S 为波峰,且波传到介质Ⅱ中,其速度为2 v .图示时刻介质Ⅱ中仅有一个波峰,与x 轴和y 轴分别交于R 和S 点,则R 也为波峰,故P 到R 比P 到O 多一个波峰,则PR =5λ,则OR =3λ,由于||MO -PM≠2n ·λ2 或(2n +1)λ2 (n =0,1,2,…),故M 点不是减弱点,C 错误;根据n =λ′λ=2 ,则n =sin αOR PR,解得sin α=352 ,D 正确. 5.[2021·天津卷]一列沿x 轴正方向传播的简谐横波,传播速度v =10 m/s ,t =0时位于坐标原点的质点从平衡位置沿y 轴正方向运动,下列图形中哪个是t =0.6 s 时的波形( )答案:B解析:由图中可以看出该波的波长为λ=4 m ,根据v =λT可知该列波的周期为T =0.4 s ,又因为t=0时位于坐标原点的质点从平衡位置沿y轴正方向运动,当t=0.6 s时经历了1.5 T,所以此时位于坐标原点的质点从平衡位置沿y轴负方向运动,结合图像可知B正确.6.[2023·湖南卷]如图(a),在均匀介质中有A、B、C和D四点,其中A、B、C三点位于同一直线上,AC=BC=4 m,DC=3 m,DC垂直AB.t=0时,位于A、B、C处的三个完全相同的横波波源同时开始振动,振动图像均如图(b)所示,振动方向与平面ABD垂直,已知波长为4 m.下列说法正确的是()A.这三列波的波速均为2 m/sB.t=2 s时,D处的质点开始振动C.t=4.5 s时,D处的质点向y轴负方向运动D.t=6 s时,D处的质点与平衡位置的距离是6 cm答案:C解析:由图(b)的振动图像可知,振动的周期为4 s,故三列波的波速为v=λT=4 m4 s=1m/s,A错误;由图(a)可知,D处距离波源C最近的距离为3 m,故开始振动后波源C处的横波传播到D处所需的时间为t C=DC v=3 m1 m/s=3 s故t=2 s时,D处的质点还未开始振动,B错误;由几何关系可知AD=BD=5 m,波源A、B产生的横波传播到D处所需的时间为t AB=ADv=5 m1 m/s=5 s故t=4.5 s时,仅波源C处的横波传播到D处,此时D处的质点振动时间为t1=t-t C =1.5 s由振动图像可知此时D处的质点向y轴负方向运动,C正确;t=6 s时,波源C处的横波传播到D处后振动时间为t2=t-t C=3 s由振动图像可知此时D处为波源C处传播横波的波谷;t=6 s时,波源A、B处的横波传播到D处后振动时间为t3=t-t AB=1 s由振动图像可知此时D处为波源A、B处传播横波的波峰.根据波的叠加原理可知此时D处质点的位移为y=2A-A=2 cm故t=6 s时,D处的质点与平衡位置的距离是2 cm,D错误.故选C.。

机械振动_机械波课后习题

机械振动_机械波课后习题

习题5 •机械振动5.1选择题(1) 一物体作简谐振动,振动方程为x=Acos(,t ),则该物体在t=0时刻2的动能与t二T/8(T为振动周期)时刻的动能之比为:(A) 1: 4 ( B) 1:2 (C) 1:1 (D) 2:1(2) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA2(B) kA2/2(C) kA2//4(D)0(3)谐振动过程中,动能和势能相等的位置的位移等于(A),4(C) 一3A2(B)冷(D) - 2A5.2填空题(1) 一质点在X轴上作简谐振动,振幅A = 4cm,周期T = 2s,其平衡位置取作坐标原点。

若t= 0时质点第一次通过x = —2cm处且向X轴负方向运动,则质点第二次通过x= —2cm处的时刻为___ So(2) —水平弹簧简谐振子的振动曲线如题 5.2(2图所示。

振子在位移为零,速度为—呱、加速度为零和弹性力为零的状态,对应于曲线上的______________ 点。

振子处在位移的绝对值为A、速度为零、加速度为--2A和弹性力为-KA的状态,则对应曲线上的_____________ 点。

题5.2(2)图(3) —质点沿x轴作简谐振动,振动范围的中心点为x轴的原点,已知周期为T,振幅为A。

(a) 若t=0时质点过x=0处且朝x轴正方向运动,则振动方程为x= __________________ 。

(b) 若t=0时质点过x=A/2处且朝x轴负方向运动,则振动方程为x= ________________ 。

5.3符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:⑴拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题5.3图题5.3图(b)5.4弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大?5.7质量为10 10:kg的小球与轻弹簧组成的系统,按x = 0.1cos(8t,空)(SI)的规律3作谐振动,求:(1) 振动的周期、振幅和初位相及速度与加速度的最大值;(2) 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?⑶t2 =5S与t1 =1s两个时刻的位相差;5.8 一个沿x轴作简谐振动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表示•如果t =0时质点的状态分别是:(1) x o = -A ;(2) 过平衡位置向正向运动;A(3) 过x二一处向负向运动;2A(4) 过x A处向正向运动.V2试求出相应的初位相,并写出振动方程.5.9 —质量为10 10^kg的物体作谐振动,振幅为24cm,周期为4.0s,当t =0时位移为24cm .求:(1) t =0.5s时,物体所在的位置及此时所受力的大小和方向;(2) 由起始位置运动到x = 12cm处所需的最短时间;(3) 在x =12cm处物体的总能量.5.10有一轻弹簧,下面悬挂质量为1.0g的物体时,伸长为4.9cm .用这个弹簧和一个质量为8.0g的小球构成弹簧振子,将小球由平衡位置向下拉开 1.0cm后,给予向上的初速度V。

大学物理波动篇机械波复习题及答案课件

大学物理波动篇机械波复习题及答案课件
如图所示, 两列平面简谐相干横波在两
种不同的媒质中传播, 在分界面上的 P 点
相遇, 频率n = 200Hz, 振幅A1=A2=2.00 10-
2m, S2 的位相比 S1 落后 /2。在媒质1中
波速 u1= 800 m s-1, 在媒质2中波速 u2=
1000 m s-1 , S1P=r1=4.00m,
静止的点。求两波的波长和两波源间最 小位相差。
o
S1
S2
x
d
29
解: 设S1 和 S2的振动初位相分别为 1 和 2在 x1点两波引起的振动位相差
2 2 d x1/ 1 2 x1 / 2k 1
2 1 2 d 2 x1/ 2k 1 (1)
在x2点两波引起的振动位相差
2 2 d x2/ 1 2 x2 / 2k 3
波分别通过图中的 o1和 o2 点,通过 o1 点 的简谐波在 M1M2 平面反射后,与通过 o2 点的简谐波在 P 点相遇,假定波在M1M2平 面反射时有半波损失,o1 和 o2 两点的振动
方程为,y10=Acos(2t) 和 y20=Acos(2t) , 且 o1m+mp=16,o2P = 6 (为波长) 求:
(A)波速为C/B; (B)周期为 1/B;
(C)波长为C/2 ; (D)圆频率为 B。
[]
5
5.一平面简谐波沿正方相传播, t=0 时刻的
波形如图所示, 则 P 处质点的振动在 t=0 时
刻的旋转矢量图是
y
u
A
x
o
P
( A)
o
x
A
(B)
o
x
A
(C ) A o
x
A
(D)

《大学物理》习题册题目及答案第16单元 机械波

《大学物理》习题册题目及答案第16单元 机械波

第16单元 机械波(一)学号 姓名 专业、班级 课程班序号一 选择题[ C ]1.在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的 (B) 波源振动的速度与波速相同 (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后 (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前[ A ]2. 一横波沿绳子传播时的波动方程为)104cos(05.0t x y ππ-= (SI),则(A) 其波长为0.5 m (B) 波速为5 m ⋅s -1(C) 波速为25 m ⋅s -1 (D)频率为2 Hz[ C ]3. 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。

设t = T /4时刻的波形如图所示,则该波的表达式为: (A) )/(cos u x t A y -=ω (B) ]2/)/([cos πω+-=u x t A y (C) )/(cos u x t A y +=ω (D) ])/([cos πω++=u x t A y[ D ]4. 一平面简谐波沿x 轴正向传播,t = T/4时的波形曲线如图所示。

若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 (A) 0点的初位相为00=ϕ(B) 1点的初位相为 21πϕ-=(C) 2点的初位相为 πϕ=2(D) 3点的初位相为 23πϕ-=[ D ]5. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能。

(B) 它的势能转换成动能。

(C) 它从相邻的一段质元获得能量其能量逐渐增大。

(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小。

二 填空题1.频率为100Hz 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的相位差为52π. 2. 一简谐波沿x 轴正向传播。

1x 和2x 两点处的振动曲线分别如图(a)和(b)所示。

大学物理习题

大学物理习题

(机械振动与机械波)一、选择题 (25分)1 一质点作周期为T 的简谐运动,质点由平衡位置正方向运动到最大位移一半处所需的最短时间为( D ) (A )T/2 (B )T/4 (C)T/8 (D )T/122 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的( E )(A )7/16 (B )9/16 (C )11/16 (D )13/16 (E )15/16 3一质点作简谐运动,其振动方程为)32cos(24.0ππ+=t x m,试用旋转矢量法求出质点由初始状态运动到 x =-0.12 m,v <0的状态所经过的最短时间。

(C ) (A )0.24s (B )31 (C )32 (D )214 一平面简谐波的波动方程为:)(2cos λνπx t A y -=,在ν1=t 时刻,431λ=x 与 42λ=x 两处质点速度之比:( B )(A )1 (B )-1 (C )3 (D )1/35 一平面简谐机械波在弹性介质中传播,下述各结论哪个正确?( D ) (A)介质质元的振动动能增大时,其弹性势能减小,总机械能守恒. (B)介质质元的振动动能和弹性势能都作周期性变化,但两者相位不相同 (C)介质质元的振动动能和弹性势能的相位在任一时刻都相同,但两者数值不同. (D)介质质元在其平衡位置处弹性势能最大. 二、填空题(25分)1 一弹簧振子,弹簧的劲度系数为0.32 N/m ,重物的质量为0.02 kg ,则这个系统的固有频率为____0.64 Hz ____,相应的振动周期为___0.5π s______.2 两个简谐振动曲线如图所示,两个简谐振动的频率之比 ν1:ν2 = _2:1__ __,加速度最大值之比a 1m :a 2m = __4:1____,初始速率之比 v 10 :v 20 = _2:1__ ___.三、计算题(1 一质点作简谐振动,速度的最大值 v m =5cm/s ,振幅=2 cm .若令速度具有正最大值的那一时刻为t =0,求振动表达式.解:据题意,设振动表达式为:)cos(2ϕω+=t x ,则振子速度为:)sin(2ϕωω+-==t dtdxvω2=m v ω=2.5 rad/s又因:速度正最大值的那个时刻是t=0,即,振子在平衡位置,沿着x 正向运动。

机械振动·机械波课后习题

机械振动·机械波课后习题

习题5·机械振动选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为:(A)1:4 (B )1:2 (C )1:1 (D) 2:1(2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2(C)kA 24A ±2A ±23A ±22A ±kg 10103-⨯20.1cos(8)(SI)3x t ππ=+s 52=t s 11=t x AT 0=t A x -=02A x =2A x -=kg 10103-⨯cm 24s 0.40=t cm 24+s 5.0=t cm 12=x cm 12=x g 0.1cm 9.4g 0.8cm 0.1s /cm 0.50=v t x -k M m h m0.1=l kg 10103-⨯=m s /m kg 100.14⋅⨯=∆-t F )0(=t m 20.06πm 173.0⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x ⎪⎩⎪⎨⎧+=+=cm )343cos(5cm )33cos(521ππt x t x x cm 2cos 6t x π=y (B)它的势能转化为动能.(C)它从相邻的一段质元获得能量其能量逐渐增大.(D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.(2) 某时刻驻波波形曲线如图所示,则a,b 两点位相差是(A)π (B)π/2(C)5π/4 (D)0(3) 设声波在媒质中的传播速度为u,声源的频率为v s .若声源S不动,而接收器R相对于媒质以速度V B 沿着S、R连线向着声源S运动,则位于S、R连线中点的质点P的振动频率为(A)s v (B)s B v uV u + (C)s Bv V u u + (D) s B v V u u - 填空题 (1)频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距____m 。

大学物理-习题-简谐振动和波-学生版

大学物理-习题-简谐振动和波-学生版

大学物理-习题-简谐振动和波-学生版一.选择题《机械振动和机械波》模块习题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?---------------------------------- 【C 】 (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。

2. 一个质点作简谐运动,振幅为 A,在起始时刻质点的位移为- A ,且向 x 轴正方向运动, 2 代表此简谐运动的旋转矢量为---------------------------------------------------------------------【B 】3. 一质点沿 x 轴作简谐振动,振动方程为x = 0.04 cos(2p t +1 p ) (SI),从 t = 0 时刻起, 3 到质点位置在 x = -0.02 m 处,且向 x 轴正方向运动的最短时间间隔为--------- 【D 】 1 1 1 1 (A) s ; (B) s ; (C) s ; (D) s 8 64 2 4 一弹簧振子,振动方程为x=0.1cos(πt-π/3)·m,若振子从 t=0 时刻的位置到达 x=-0.05m处,且向 X 轴负向运动,则所需的最短时间为------------------------【D 】(A)s/3;(B) 5s/3;(C) s/2;(D) 1s。

1 5. 频率为 100 Hz,传播速度为 300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为 p ,则此两点相距 --------------------------------------------------------------【C 】 3 (A) 2.86 m (B) 2.19 m (C) 0.5m (D) 0.25 m T 6. 一平面简谐波,沿 x 轴负方向传播,角频率为ω,波速为 u.设t = 时刻的波形如图(a) 4 所示,则该波的表达式为---------------------------------------------------------------------【】é æ x ö ùé æ x ö p ù (A)y = A cos êw ç t - u ÷ + p ú (B) y= A cos êw ç t - u ÷ + 2 ú ë è ø û ë è ø û é æx ö p ù é æ x ö ù (C)y = A cos êw ç t + u ÷ - 2ú (D)y = A cos êw ç t + u ÷ + p ú ë è ø û ë èø û 7. 在简谐波传播过程中,沿传播方向相距为l/2 ,(l为波长)的两点的振动速度必定:【A 】 (A) 大小相同,而方向相反; (B) 大小和方向均相同; (C) 大小不同,方向相同; (D) 大小不同,而方向相反。

机械振动与机械波经典习题(含答案)

机械振动与机械波经典习题(含答案)

七、机械振动 机械波水平预测双基型★1.简谐运动属于下列运动中的( ).(A)匀速直线运动 (B)匀加速直线运动(C)匀变速直线运动 (D)非匀变速直线运动答案:D(提示:作简谐运动物体的同复力与位移的大小成正比、方向与其相反,故其加速度时刻变化)★★★5.如图所示,一轻弹簧上端悬于顶壁,下端挂一物体,在AB 之间作简谐运动,其中O 点为它的平衡位置,物体在A 时弹簧处于自然状态.若v 、x 、F 、a 、E k 、E p 分别表示物体运动到某一位置的速度、位移、回复力、加速度、动能和势能,则( ).(A)物体在从O 点向A 点运动过程中,v 、E p 减小向而x 、a 增大(B)物体在从B 点向O 点运动过程中,v 、E k 增大而x 、F 、E p 减小(C)当物体运动到平衡位置两侧的对称点时,v 、x 、F 、a 、E k 、E p 的大小均相同(D)当物体运动到平衡位置两侧的对称点时,v 、x 、F 、a 、E k 的大小均相同,但E p 的大小不同 答案:BC(提示:简谐运动具有各量关于平衡位置对称、运动过程机械能守恒等特点,注意该题振子运动到某一位置的势能等于重力势能与弹性势能之和).★★★6.如图所示是两列相干波的干涉图样,实线表示波峰,虚线表示波谷,两列波的振幅都为10cm,波速和波长分别为1m/s 和0.2m,C 点为AB 连线的中点,则图示时刻A 、B 两点的竖直高度差为______cm,图所示五点中振动加强的点是_____,振动减弱的点是_____,c 点此时的振动方向_____(选填”向上”或”向下),从图示时刻再经过0.65s 时,C 点的位移为_____cm,O 点经过的路程_____cm.答案:40,A 、B 、C,D 、E,向下,-20,260(提示:利用叠加原理画出各质点从图示时刻开始的振动图像)★★★★8.一列横波在x 轴上传播着,在t 1=0和t 2=0.005s 时的波形曲线如图所示.(1)由图中读出波的振幅和波长.(2)设周期大于(t 2-t 1),如果波向右传,波速多大?如果波向左传,波速又多大?(3)设周期小于(t 2-t 1].并且波速为6000m/s,求波的传播方向.答案:(1)0.2m,8m(2)右传:在Δt 时间内波传播距离2m,波速为400m/s;左传:在Δt 时间内波传播距离6m,波速为1200m/s(3)由于Δt >T,故若左传,则T )43n (t +=∆;若右传,则T )41n (t +=∆,且n >1,由v =λ/T 可得n 值,计算结果右传时n 为非整数,左传时n 为整数,故该情况为左传. ★★★★9.在核物理中,研究核子与核子关联的最有效途径是”双电荷交换反应”,这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C 沿轨道以速度v 0向B 球运动,如图所示.C 与B 发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后A 球与挡板P 发生碰撞,碰撞后A 、B 都静止不动,A 与P 接触而不粘连,过一段时间,弹簧突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m.试求:(1)弹簧长度刚被锁定后A 球的速度.(2)在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能.(2000年全国高考试题)答案:(1)设B 、C 碰撞形成D 时速度为v 1,锁定时速度为v 2,P 处解除锁定并恢复原长时D 的速度为v 2,之后当弹簧为最大长度时又一次同速,此速度为v 4,首次锁定时弹簧最大弹性势能为E p1,A 离开挡板后弹簧最大弹性势能为E p2,则有针对不同过方程:mv 0=2mv 1,①2mv 1=3mv 2,②2221p 3mv 212mv 21E 1⨯-⨯=;③23p 2mv 21E 1⨯=,④2mv 3=3mv 4,⑤可得v 2=v 0/3,12mv E 20p 1=,04v 93v =v 0,36m v 3m v 21E E 2024p p 12=⨯-= 简谐运动 受迫振动★★3.作简谐运动的物体,回复力和位移的关系图是下图所给四个图像中的( ).【0.5】答案:D★★★9.把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它的转动会给筛子形成一个周期性的驱动力,这样就做成了一个共振筛,筛子自由振动时每次全振动用时2s,在某电压下电动偏心轮转速为36r/min,若增大电压可以使偏心轮转速提高,增加筛子质量,可以增大筛子的固有周期,那么,要使筛子的振幅变大,可采取的措施有(1)_________、(2)_________.【1】 答案:(1)减小电压(2)减小筛子质量★★★12.如图所示,有一脉冲波在a 、b 之间传播,下列说法中,正确的有( ).【3】(A)如果传播方向从a 到b,则a 、b 之间各个质点起始振动方向均朝上(B)如果传播方向从a 到b,则a 、b 之间各个质点起始振动方向均朝下(C)a 、b 之间各个质点起始振动速度为零(D)a 、b 之间各个质点起始振动方向与波的传播方向无关答案:B★★★15.一个质点在平衡位置O 点的附近作简谐运动,某时刻过O 点后经3s 时间第一次经过M 点,再经2s 第二次经过M 点.该质点再经______第三:次经过M 点.若该质点由O 点出发后在20s 内经过的路程是20cm,则质点振动的振幅为_________.【3】答案:Δt 1=14s 、Δt 2=10/3s,A 1=4cm 、A 2=4/3cm★★★18.作简谐运动的弹簧振子,其质量为m,最大速率为v.下列说法中正确的是( ).【4】(A)从某时刻算起,在半个周期的时间内,弹力做的功一定为零(B)从某时刻算起,在半个周期的时间内,弹力做的功可能是0~21mv 2之间的某个值 (C)从某时刻算起,在半个周期的时间内,弹力的冲量大小一定为零(D)从某时刻算起,在半个周期的时间内,弹力的冲量大小可能是0~2mv 间的某个值 答案:AD★★★★19.如图所示,一个弹簧振子在A 、B 两点之间作简谐运动,某时刻物体正经过C 点向上运动,速度大小为v C 已知OC=a,物体的质量为M 振动周期为T,则从此时刻开始的半个周期内( ).【4】(A)重力做功2mga (B)重力冲量为2mgT (C)回复力做功为零 (D)回复力的冲量为2mv C答案:ABCD★★★★21.如图所示是一个单摆的共振曲线,读图回答下列问题:(1)该单摆摆长多大?(2)共振时单摆振幅多大?(3)共振时摆球的最大加速度、最大速度多大?【6】答案:(1)1m(2)8cm(3)0.8m/s 2,0.25m/s单摆振动图像★3.若单摆的摆长不变,摆球的质量增加为原来的4倍,摆球经过平衡位置时的速度减为原来的1/2,则单摆振动的( ).【0.5】(A)频率不变,振幅不变 (B)频率改变,振幅变大(C)频率改变,振幅不变 (D)频率不变,振幅变小答案:D★★7.一弹簧振子作简谐运动,其振动图像如图所示,那么在(t 2T ∆-)和(t 2T ∆+)两个时刻,振子的:①速度相同;②加速度相同;③相对平衡位置的位移相同;④振动的能量相同.以上选项中正确的是( ).【1】(A)①④ (B)②③ (C)③④ (D)①②答案:A★★★14.盛砂漏斗与悬线构成砂摆在竖直平面摆动.其下方有一薄板垂直摆动平面匀速拉动,可画出振动图像,若砂摆有两种不同摆长而薄板也分别以v 1、v 2两种速度拉动,且v 2=2v 1,得到如图所示的两种图像,则其振动周期丁.T 1和T 2的关系为( ).【4】(A)T 2=T 1(B)T 2=2T 1. (C)T 2=4T 1(D)T 2=T 1/4 答案:A★★★16.两个行星的质量之比为P,半径之比为Q,两个相同的单摆分别置于两个行星的表面,那么它们的振动周期之比为( ).【2】(A)PQ 2 (B)P Q (C)Q P (D)P Q答案:D★★★17.如图所示,绝缘线长L,一可视为质点的摆球带正电并用该线悬于O 点摆动,当摆球过竖直线OC 时,便进入或离开一个匀强磁场,磁场方向垂直摆动平面.摆球沿ACB 圆弧来回摆动且摆角小于5°,下列说法中正确的是( ).【3】(A)A 、B 处于同一水平线上(B)球在A 、B 点时线的拉力大小不等(C)单摆的周期T=g l 2π (D)单摆向左或向右运动经过D 点时线的拉力大小相等 答案:AC★★★21.在用单摆测重力加速度的实验中,从下列器材中选用最合适的(填写器材代号) ________.【2】(A)小铁球 (B)小塑料球 (C)30cm 长的摆线(D)100cm 长的摆线 (E)150cm 长的摆线 (F)手表(G)秒表 (H)米尺 (I)铁架台答案:ADGHI★★★24.一单摆摆长为l,摆线离开平衡位置的最大夹角为θ,摆球质量为m,当摆球从最大位移处运动到平衡位置的过程中,重力做功为_____,合外力冲量的大小为______.【4】 答案:Mgl(1-cosθ),()θcos l 2gl m -★★★25.图中各摆中线的长度都已知,摆球视为质点,且均作小角摆动.求它们的周期.【8】T a=________;T b=_______;T c=________;T d=________;T e=________;T f=_________.答案:g sin l l 221απ+,g a l 2+π,g l 2π,mg Eq ml 2+π,gl 2π,mg -F ml 2π ★★★★31.有一水平轨道AB,在B 点处与半径为300m 的光滑弧形轨道BC 相切,一质量为0.99㎏的木块静止于B 处,现有一颗质量为10g 的子弹以500m/s 的水平速度从左边射入木块且未穿出,如图所示.已知木块与该水平轨道AB 间的动摩擦因数μ=0.5,g 取10m/s 2.,试问子弹射入木块后,木块需经多长时间停止运动(cos5°=0.996)?【6】答案:(1+π30)s★★★★★34.如图所示是一种记录地震相关情况的装置,有一质量为m的球固定在边长为l 、质量可忽略不计的等边三角形的顶点A 上,它的对边BC 跟竖直线成夹角α,球可绕固定轴BC 摆动,求摆球作微小摆动时的周期.【10】答案:απ2gsin 3l 2T = 机械波波的图像双基训练★1.下列关于波的图像和振动图像正确的是( ).【0.5】(A)波的图像表示某一时刻某质点的位移(B)振动图像表示某一质点在各个时刻的位移(C)波的图像表示各个时刻各个质点的位移(D)振动图像表示某一质点在某一时刻的位移答案:B★★★★8.如图所示分别为一列横波在某一时刻的图像和在x=6m处的质点从该时刻开始计时的振动图像,则这列波( ).【3】(A)沿x轴的正方向传播(B)沿x轴的负方向传播(C)波速为100m/s(D)波速为2.5m/s答案:BC★★★9.如图所示为一列沿x轴正方向传播、频率为50Hz的简谐横波在t=0时刻的波形,此时P点恰好开始振动.已知波源的平衡位置在O点,P、Q两质点平衡位置坐标分别为P(12,0)、Q(56,0),则( ).【4】(A)波源刚开始振动时的运动方向沿+y方向(B)这列波的波速为600m/s(C)当t=0).11s时,Q点刚开始振动(D)Q点刚开始振动时,P点恰位于波谷答案:C★★★10.一列波沿绳子传播时、绳上有相距3m的P点和Q点,它们的振动图线如图所示.其中实线为P点的图线,虚线为Q点的图线,则该列波的波长和波速的可能值为( ).【2】(A)6m,30m/s (B)6m,12m/s(C)2m,12m/s (D)2m,10m/s答案:A★★★11.如图所示为一列向某方向传播的简谐横波在某时刻的波形图,在波的传播方向上有一质点P在该时刻的振动方向如图.由图可知( ).【2】(A)波向右传播(B)波向左传播(C)P点在该时刻前1/4周期时和后3/4周期时运动情况相同(D)P点在该时刻前1/4周期时和后1/4周期时运动情况相反答案:BCD★★★12.一列横波以10m/s的波速沿水平方向向右传播,某时刻的波形图如图中的实线所示,经过时间后波形如图中虚线所示,由此可知Δt的可能值是( ).【3】(A)0.3,s (B)0.5s (C)0.6s (D)0.7s答案:B★★★14.如图是一列向右传播的横波,波速为0.4m/s,M点的横坐标x=10m,图示时刻波传到N点,现从图示时刻开始计时,问:(1)经过多长时间,M点第二次到达波谷?(2)这段时间里,N点经过的路程为多少?【4】答案:(1)29s(2)145cm★★★★16.一列横波沿直线ab,向右传播,ab=2m,a、b两点的振动情况如图所示,下列说法中正确的是( ).【5】(A)波速可能是2/43m/s (B)波长可能是8/3m(C)波速可能大于2/3m/s (D)波长可能大于8/3m答案:CD★★★★17.机械横波在某时刻的波形图如图实线所示,已知波的传播速度大小为1m/s.经过一段Δt后,波形变成图中虚线所示,则Δt的可能值为( ).【4】(A)1s (B)3s (C)5s (D)7s答案:ABCD★★★★18.在波的传播直线上有两个介质质点A、B,它们相距60cm,当A质点在平衡位置处向上振动时,B质点处于波谷位置.若波速的大小为24m/s,则波的频率可能值是( ).【6】(A)30Hz (B)410Hz (C)400Hz (D)490Hz答案:ABD★★★★20.如图所示,实线是一列简谐横波在t1时刻的波形图,虚线是在t2=(t1+0.2)s的波形图.(1)若波速为35m/s,求质点M在t1.时刻的振动方向.(2)在t1到t2的时间内,如果M通过的路程为1m,那么波的传播方向怎样?波速多大?【5】答案:(1)向下(2)右传,5m/s干涉衍射声波★★5.关于波的干涉现象,下列说法中正确的是( ).【1】(A)在振动削弱的区域,质点不发生振动(B)在振动削弱的区域,各质点都处于波谷(C)在振动加强的区域,各质点都处于波峰(D)在振动加强的区域,有时质点的位移也等于零答案:D★★6.两列波叠加,在空间出现稳定的干涉图样,下列说法中正确的是( ).【1】(A)振动加强的区域内各质点都在波峰上(B)振动加强区域内各质点都有位移为零的时刻(C)振动加强是指合振动的振幅变大,振动质点的能量变大(D)振动加强和减弱区域的质点随波前进答案:BC★★7.如图所示是波遇到小孔或障碍物后的图像,图中每两条实线间的距离表示一个波长,其中正确的图像是( ).【2】答案:B★★8.宋代科学家沈括所著《梦溪笔谈》中有这样一段话”古法以牛黄为矢眼(箭壶),卧以为枕,取其中虚,附地枕之,数里外有人马声,则闻之.”这是利用了_______的原理.【1】答案:声音的共振★★★9.两列振幅、波长相同的简谐横波,以相同的速率沿相反方向在同一介质中传播,如图所示为某一时刻的波形图,其中实线为向右传播的波.虚线为向左传播的波,a、b、c、d、e为五个等距离的质点,两列波传播的过程中,下列说法中正确的是( ).【3】(A)质点a、b、c、d、e始终静止不动(B)质点b、d始终静止不动(C)质点a、c、e始终静止不动(D)质点a、c、e以振幅2A作简谐运动答案:BD★★★10.如图所示为两列相向传播的振幅、波长都相同的简谐横波(脉冲波),当它们相遇后,下列图像中可能存在的是( ).【3】答案:BD★★★11.如图所示是声波1和声波2在同一种介质中传播时某时刻的波形图,则( ).【1】(A)波1速度比波2速度大(B)波2的音品比波1好(C)波2响度比波1响度大(D)波2音调比波1高答案:D横向拓展★★★★12.将两端开口的玻璃管竖直插入深水槽中,今敲击一个固有频率为500Hz的音叉并同时把它放在管口上端,逐渐上提玻璃管,测得该过程中产生第一、二次共振的空气柱长度相差34cm,求声速.【10】答案:340m/s★★★★13.如图7—49所示,广场上有一个半径为45m的圆,AB是直径,在圆心O点和A点处分别安装两个有相同声源的扬声器,它们发出的声波波长是10m.有一人站在B处几乎听不到声音,他沿着圆周逆时针向A走,在走到A之前,他还有几次几乎听不到声音?【10】答案:8次★★★★★14.将一根长为100多厘米的均匀弦线,沿水平的x轴放置,拉紧并使两端固定,现对离固定的右端25cm处(取该处为原点O,如图(a)所示)的弦上一点施加一个沿垂直于弦线方向(即y轴方向)的扰动,其位移随时间的变化规律如图(b)所示.该扰动将沿弦线传播而形成波(孤立的脉冲波).已知该波在弦线中的传播速度为 2.5cm/s,且波在传播和反射过程中都没有能量损失.。

机械振动机械波课后习题

机械振动机械波课后习题

习题5·机械振动5.1选择题1一物体作简谐振动;振动方程为)2cos(πω+=t A x ;则该物体在0=t 时刻的动能与8/T t =T 为振动周期时刻的动能之比为:A1:4 B1:2 C1:1 D 2:12弹簧振子在光滑水平面上作简谐振动时;弹性力在半个周期内所作的功为AkA 2 B kA 2/2C kA 2//4 D03谐振动过程中;动能和势能相等的位置的位移等于 A 4A ± B 2A ± C 23A ±D 22A ± 5.2 填空题1一质点在X 轴上作简谐振动;振幅A =4cm;周期T =2s;其平衡位置取作坐标原点..若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动;则质点第二次通过x =-2cm 处的时刻为____s..2一水平弹簧简谐振子的振动曲线如题5.22图所示..振子在位移为零;速度为- A 、加速度为零和弹性力为零的状态;对应于曲线上的____________点..振子处在位移的绝对值为A 、速度为零、加速度为- 2A 和弹性力为-KA 的状态;则对应曲线上的____________点..题5.22 图3一质点沿x 轴作简谐振动;振动范围的中心点为x 轴的原点;已知周期为T;振幅为A..a 若t=0时质点过x=0处且朝x 轴正方向运动;则振动方程为x=___________________..b 若t=0时质点过x=A/2处且朝x 轴负方向运动;则振动方程为x=_________________..5.3 符合什么规律的运动才是谐振动分别分析下列运动是不是谐振动:1拍皮球时球的运动;2如题5.3图所示;一小球在一个半径很大的光滑凹球面内滚动设小球所经过的弧线很 短.题5.3图 题5.3图b5.4 弹簧振子的振幅增大到原振幅的两倍时;其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化5.5单摆的周期受哪些因素影响 把某一单摆由赤道拿到北极去;它的周期是否变化5.6简谐振动的速度和加速度在什么情况下是同号的 在什么情况下是异号的 加速度为正值时;振动质点的速率是否一定在增大5.7 质量为kg 10103-⨯的小球与轻弹簧组成的系统;按20.1cos(8)(SI)3x t ππ=+的规律作谐振动;求:1振动的周期、振幅和初位相及速度与加速度的最大值;2最大的回复力、振动能量、平均动能和平均势能;在哪些位置上动能与势能相等3s 52=t 与s 11=t 两个时刻的位相差;5.8 一个沿x 轴作简谐振动的弹簧振子;振幅为A ;周期为T ;其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:1A x -=0;2过平衡位置向正向运动;3过2A x =处向负向运动; 4过2Ax -=处向正向运动. 试求出相应的初位相;并写出振动方程.5.9 一质量为kg 10103-⨯的物体作谐振动;振幅为cm 24;周期为s 0.4;当0=t 时位移为cm 24+.求: 1s 5.0=t 时;物体所在的位置及此时所受力的大小和方向;2由起始位置运动到cm 12=x 处所需的最短时间;3在cm 12=x 处物体的总能量.5.10 有一轻弹簧;下面悬挂质量为g 0.1的物体时;伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子;将小球由平衡位置向下拉开cm 0.1后 ;给予向上的初速度s /cm 0.50=v ;求振动周期和振动表达式.5.11 题5.11图为两个谐振动的t x -曲线;试分别写出其谐振动方程.题5.11图5.12 一轻弹簧的倔强系数为k ;其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起;于是盘子开始振动.1此时的振动周期与空盘子作振动时的周期有何不同2此时的振动振幅多大3取平衡位置为原点;位移以向下为正;并以弹簧开始振动时作为计时起点;求初位相并写出物体与盘子的振动方程.5.13 有一单摆;摆长m 0.1=l ;摆球质量kg 10103-⨯=m ;当摆球处在平衡位置时;若给小球一水平向右的冲量s /m kg 100.14⋅⨯=∆-t F ;取打击时刻为计时起点)0(=t ;求振动的初位相和角振幅;并写出小球的振动方程.5.14 有两个同方向、同频率的简谐振动;其合成振动的振幅为m 20.0;位相与第一振动的位相差为6π;已知第一振动的振幅为m 173.0;求第二个振动的振幅以及第一、第二两振动的位相差.题5.14图5.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅: 1 ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x 2⎪⎩⎪⎨⎧+=+=cm )343cos(5cm )33cos(521ππt x t x 5.16 一质点同时参与两个在同一直线上的简谐振动;振动方程为试分别用旋转矢量法和振动合成法求合振动的振动幅和初相;并写出谐振方程..*5.17 如题5.17图所示;两个相互垂直的谐振动的合振动图形为一椭圆;已知x 方向的振动方程为cm 2cos 6t x π=;求y 方向的振动方程.题5.17图习题6·机械波6.1选择题1一平面简谐波在弹性媒质中传播;在媒质质元从平衡位置运动到最大位移处的过程中:A 它的动能转化为势能.B 它的势能转化为动能.C 它从相邻的一段质元获得能量其能量逐渐增大.D 它把自己的能量传给相邻的一段质元;其能量逐渐减小.2 某时刻驻波波形曲线如图所示;则a;b 两点位相差是Aπ Bπ/2C5π/4 D03 设声波在媒质中的传播速度为u;声源的频率为v s .若声源S不动;而接收器R相对于媒质以速度V B 沿着S、R连线向着声源S运动;则位于S、R连线中点的质点P的振动频率为A s vB s B v uV u + C s B v V u u + D s Bv V u u - 6.2填空题1频率为100Hz;传播速度为300m/s 的平面简谐波;波线上两点振动的相位差为π/3;则此两点相距____m ..2一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π;则振幅是____;波长是____;频率是____;波的传播速度是____..3 设入射波的表达式为])(2cos[1πλνπ++=xt A y ;波在x =0处反射;反射点为一固定端;则反射波的表达式为________________;驻波的表达式为____________________;入射波和反射波合成的驻波的波腹所在处的坐标为____________________..6.3产生机械波的条件是什么 两列波叠加产生干涉现象必须满足什么条件 满足什么条件的两列波才能叠加后形成驻波 在什么情况下会出现半波损失答:产生机械波必须具备两个条件:有作机械振动的物体即波源;有连续的介质..两列波叠加产生干涉现象必须满足三个相干条件:频率相同;振动方向相同;在相遇点的位相差恒定..两列波叠加后形成驻波的条件除频率相同、振动方向相同、在相遇点的位相差恒定三个相干条件外;还要求两列波振幅相同;在同一直线上沿相反方向传播..出现半波损失的条件是:波从波疏媒质入射并被波密媒质反射;对于机械波;还必须是正入射..6.4波长、波速、周期和频率这四个物理量中;哪些量由传播介质决定 哪些量由波源决定答:波速由传播介质决定;周期和频率由波源决定..6.5波速和介质质元的振动速度相同吗 它们各表示什么意思 波的能量是以什么速度传播的 答:波速和介质质元的振动速度不相同..波速是振动状态在介质中的传播速度;而质元的振动速度是质元在其平衡位置附近运动的速度..波的能量传播的速度即为波速..6.6振动和波动有什么区别和联系 平面简谐波波动方程和简谐振动方程有什么不同 又有什么联系 振动曲线和波形曲线有什么不同 行波和驻波有何区别答: a 振动是指一个孤立的系统也可是介质中的一个质元在某固定平衡位置附近所做的往复运动;系统离开平衡位置的位移是时间的周期性函数;即可表示为)(t f y =;波动是振动在连续介质中的传播过程;此时介质中所有质元都在各自的平衡位置附近作振动;因此介质中任一质元离开平衡位置的位移既是坐标位置x ;又是时间t 的函数;即),(t x f y =.b 在谐振动方程)(t f y =中只有一个独立的变量时间t ;它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量;即坐标位置x 和时间t ;它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律. 当谐波方程)(cos ux t A y -=ω中的坐标位置给定后;即可得到该点的振动方程;而波源持续不断地振动又是产生波动的必要条件之一.c 振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律;因此;其纵轴为y ;横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置;随时间变化的规律;其纵轴为y ;横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律;即只能给出某一时刻的波形图;不同时刻的波动曲线就是不同时刻的波形图.d 两列频率相同、振动方向相同、在相遇点的位相差恒定、振幅相同、在同一直线上沿相反方向的行波叠加后才会形成驻波..行波伴随有能量的传播;而驻波没有能量的传播..6.7 波源向着观察者运动和观察者向着波源运动都会产生频率增高的多普勒效应;这两种情况有何区别解: 波源向着观察者运动时;波面将被挤压;波在介质中的波长;将被压缩变短;如题6.7图所示;因而观察者在单位时间内接收到的完整数目λ'/u 会增多;所以接收频率增高;而观察者向着波源运动时;波面形状不变;但观察者测到的波速增大;即B v u u +=';因而单位时间内通过观察者完整波的数目λu '也会增多;即接收频率也将增高.简单地说;前者是通过压缩波面缩短波长使频率增高;后者则是观察者的运动使得单位时间内通过的波面数增加而升高频率.题6.7图 多普勒效应6.8 已知波源在原点的一列平面简谐波;波动方程为y =A cos Cx Bt -;其中A ;B ;C 为正值恒量.求: 1波的振幅、波速、频率、周期与波长;2写出传播方向上距离波源为l 处一点的振动方程;3任一时刻;在波的传播方向上相距为d 的两点的位相差.6.9 沿绳子传播的平面简谐波的波动方程为y =0.05cos10x t ππ4-;式中x ;y 以米计;t 以秒计.求: 1绳子上各质点振动时的最大速度和最大加速度;2求x =0.2m 处质点在t =1s 时的位相;它是原点在哪一时刻的位相这一位相所代表的运动状态在t =1.25s 时刻到达哪一点6.10 如题6.10图是沿x 轴传播的平面余弦波在t 时刻的波形曲线.1若波沿x 轴正向传播;该时刻O ;A ;B ;C 各点的振动位相是多少2若波沿x 轴负向传播;上述各点的振动位相又是多少解: 1波沿x 轴正向传播;则在t 时刻;有题6.10图6.11 一列平面余弦波沿x 轴正向传播;波速为5 m/s;波长为2m;原点处质点的振动曲线如题6.11图所示. 1写出波动方程;2作出t =0时的波形图及距离波源0.5m 处质点的振动曲线.题6.11图a6.12 如题6.12图所示;已知t =0时和t =0.5s 时的波形曲线分别为图中曲线a 和b ;周期T>0.5s;波沿x 轴正向传播;试根据图中绘出的条件求:1波动方程;2P 点的振动方程.题6.12图6.13 一列机械波沿x 轴正向传播;t =0时的波形如题6.13图所示;已知波速为10 m/s 1;波长为2m;求: 1波动方程;2 P 点的振动方程及振动曲线;3 P 点的坐标;4 P 点回到平衡位置所需的最短时间.6.14 如题6.14图所示;有一平面简谐波在空间传播;已知P 点的振动方程为P y =A cos 0ϕω+t . 1分别就图中给出的两种坐标写出其波动方程;2写出距P 点距离为b 的Q 点的振动方程.题6.14图6.15 已知平面简谐波的波动方程为)24(cos x t A y +=πSI .1写出t =4.2 s 时各波峰位置的坐标式;并求此时离原点最近一个波峰的位置;该波峰何时通过原点题6.15图6.16 题6.16图中a 表示t =0时刻的波形图;b 表示原点x =0处质元的振动曲线;试求此波的波动方程;并画出x =2m 处质元的振动曲线.题6.16图6.17 一平面余弦波;沿直径为14cm 的圆柱形管传播;波的强度为18.0×10-3J/m 2·s;频率为300 Hz;波速为300m/s;求波的平均能量密度和最大能量密度.6.18 如题6.18图所示;1S 和2S 为两相干波源;振幅均为1A ;相距4λ;1S 较2S 位相超前2π;求: 1 1S 外侧各点的合振幅和强度;2 2S 外侧各点的合振幅和强度6.19 如题6.19图所示;设B 点发出的平面横波沿BP 方向传播;它在B 点的振动方程为t y π2cos 10231-⨯=;C 点发出的平面横波沿CP 方向传播;它在C 点的振动方程为)2cos(10232ππ+⨯=-t y ;本题中y 以m 计;t 以s 计.设BP =0.4m;CP =0.5 m;波速u =0.2m/s;求: 1两波传到P 点时的位相差;2当这两列波的振动方向相同时;P 处合振动的振幅;题6.19图6.20 一平面简谐波沿x 轴正向传播;如题6.20图所示.已知振幅为A ;频率为ν;波速为u .1若t =0时;原点O 处质元正好由平衡位置向位移正方向运动;写出此波的波动方程;2若从分界面反射的波的振幅与入射波振幅相等;试写出反射波的波动方程;并求x 轴上 因入射波与反射波干涉而静止的各点的位置.题6.20图6.21 一驻波方程为y =0.02cos20x cos750t SI;求:1形成此驻波的两列行波的振幅和波速;2相邻两波节间距离.6.22 在弦上传播的横波;它的波动方程为1y =0.1cos13t +0.0079x SI试写出一个波动方程;使它表示的波能与这列已知的横波叠加形成驻波;并在x =0处为波节.6.23 两列波在一根很长的细绳上传播;它们的波动方程分别为1y =0.06cos t x ππ4-SI; 2y =0.06cos t x ππ4+SI .1试证明绳子将作驻波式振动;并求波节、波腹的位置;2波腹处的振幅多大x =1.2m 处振幅多大6.24 汽车驶过车站时;车站上的观测者测得汽笛声频率由1200Hz 变到了1000 Hz;设空气中声速为330m/s;求汽车的速率.6.25 两列火车分别以72km/h 和54 km/h 的速度相向而行;第一 列火车发出一个600 Hz 的汽笛声;若声速为340 m/s;求第二列火车上的观测者听见该声音的频率在相遇前和相遇后分别是多少。

大学物理机械波振动题目

大学物理机械波振动题目

0318一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?解:(1) 小物体受力如图. 设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正)ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分 A = 10 cm ,N/m 3.060=k 有50/==m k ω rad ·s -1 2分系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-== 2分6.19/2-=-=ωg x cm 1分即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得 2/ωg A >=19.6 cm . 1分3014一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置6 cm 处速度是24cm/s ,求(1)周期T ;(2)当速度是12 cm/s 时的位移.解:设振动方程为t A x ωcos =,则 t A ωωsin -=v(1) 在x = 6 cm ,v = 24 cm/s 状态下有t ωcos 126=t ωωsin 1224-=解得 3/4=ω,∴ 72.2s 2/3/2=π=π=ωT s 2分(2) 设对应于v =12 cm/s 的时刻为t 2,则由t A ωωsin -=v得 2sin )3/4(1212t ω⨯⨯-=,解上式得 1875.0sin 2-=t ω相应的位移为 8.10sin 1cos 222±=-±==t A t A x ωω cm 3分3021一木板在水平面上作简谐振动,振幅是12 cm ,在距平衡位置6 cm 处速率是24 cm/s .如果一小物块置于振动木板上,由于静摩擦力的作用,小物块和木板一起运动(振动频率不变),当木板运动到最大位移处时,物块正好开始在木板上滑动,问物块与木板之间的静摩擦系数μ为多少?解:若从正最大位移处开始振动,则振动方程为)cos(t A x ω=, t A x ωωsin -= N mg在6=x cm 处,24=xcm/s ∴ 6 =12|cos ω t |, 24=|-12 ω sin ω t |,解以上二式得 3/4=ωrad/s 3分t A x ωωcos 2-=, 木板在最大位移处x 最大,为 2ωA x= ① 2分 若mA ω2稍稍大于μmg ,则m 开始在木板上滑动,取2ωμmA mg = ② 2分∴ 0653.0/2≈=g A ωμ ③ 1分 3022一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解:由旋转矢量图和 |v A | = |v B | 可知 T /2 = 4秒,∴ T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方.t = 0时, 5-=x cm φcos A =t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分25cos /==φx A cm 1分∴ 振动方程 )434cos(10252π-π⨯=-t x (SI) 1分 (2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分 3027在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T= 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板?解:选平板位于正最大位移处时开始计时,平板的振动方程为t A x π=4cos (SI)t A x π4cos π162-=(SI) 1分 (1) 对物体有 x m N mg=- ① 1分 t A mg x m mg N ππ+=-=4cos 162(SI) ② 物对板的压力为 t A mg N F ππ--=-=4cos 162 (SI)t ππ--=4cos 28.16.192 ③ 2分x(2) 物体脱离平板时必须N = 0,由②式得 1分04cos 162=ππ+t A mg (SI)A q t 2164cos π-=π 1分 若能脱离必须 14cos ≤πt (SI)即 221021.6)16/(-⨯=π≥g A m 2分3264 一质点作简谐振动,其振动方程为 )4131cos(100.62π-π⨯=-t x (SI) (1) 当x 值为多大时,系统的势能为总能量的一半?(2) 质点从平衡位置移动到上述位置所需最短时间为多少?解:(1) 势能 221kx W P = 总能量 221kA E = 由题意,4/2122kA kx =, 21024.42-⨯±=±=A x m 2分 (2) 周期 T = 2π/ω = 6 s从平衡位置运动到2Ax ±=的最短时间 ∆t 为 T /8.∴ ∆t = 0.75 s . 3分3265在一轻弹簧下端悬挂m 0 = 100 g 砝码时,弹簧伸长8 cm .现在这根弹簧下端悬挂m = 250g 的物体,构成弹簧振子.将物体从平衡位置向下拉动4 cm ,并给以向上的21 cm/s 的初速度(令这时t = 0).选x 轴向下, 求振动方程的数值式.解: k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯= N/m 11s 7s 25.025.12/--===m k ω 2分 5cm )721(4/2222020=+=+=ωv x A cm 2分 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad 3分)64.07cos(05.0+=t x (SI) 1分3273一弹簧振子沿x 轴作简谐振动(弹簧为原长时振动物体的位置取作x 轴原点).已知振动物体最大位移为x m = 0.4 m 最大恢复力为F m = 0.8 N ,最大速度为v m = 0.8π m/s ,又知t =0的初位移为+0.2 m ,且初速度与所选x 轴方向相反.(1) 求振动能量;(2) 求此振动的表达式.解:(1) 由题意 kA F m =,m x A =,m m x F k /=.16.021212===m m m x F kx E J 3分 (2) π===2mm m x A v v ω rad /s 2分 O x由 t = 0, φcos 0A x ==0.2 m , 0sin 0<-=φωA v可得π=31φ 2分 则振动方程为 )312cos(4.0π+π=t x 1分 3391在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2 cm 而平衡.再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数 0/l mg k =. 选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得 220d /d )(t x m x l k mg =+- 将 0/l mg k = 代入整理后得 0//d d 022=+l gx t x∴ 此振动为简谐振动,其角频率为. 3分π===1.958.28/0l g ω 2分设振动表达式为 )cos(φω+=t A x 由题意: t = 0时,x 0 = A=2102-⨯m ,v 0 = 0,解得 φ = 0 1分 ∴ )1.9cos(1022t x π⨯=- 2分3827 质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 2分(2) )318sin(1042π+π⨯π-==-t x v (SI) )318cos(103222π+π⨯π-==-t x a (SI) 2分 (3) 2222121A m kA E E E P K ω==+==7.90×10-5 J 3分 (4) 平均动能 ⎰=T K t m T E 02d 21)/1(v ⎰π+π⨯π-=-Tt t m T 0222d )318(sin )104(21)/1( = 3.95×10-5 J = E 21+x )同理 E E P 21== 3.95×10-5 J 3分 3828一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.解:(1) 1s 10/-==m k ω 1分63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分 ∵ x 0 > 0 ,∴ π=31φ (3) )3110cos(10152π+⨯=-t x (SI) 2分 3834一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ·m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求 (1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.解:(1) 221kA E E E p K =+= 2/1]/)(2[k E E A p K +== 0.08 m 3分(2)222121v m kx = )(sin 22222φωωω+=t A m x m)(sin 222φω+=t A x 2222)](cos 1[x A t A -=+-=φω 222A x =, 0566.02/±=±=A x m 3分(3) 过平衡点时,x = 0,此时动能等于总能量221v m E E E p K =+= 8.0]/)(2[2/1±=+=m E E p K v m/s 2分3835在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm .(1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x 0 则 02020)/(x x A =+=ωv 2分 又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分(2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分 2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分 解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ), kA F = 2分 2224νωπ==m m k ,ν = 1.5 Hz 2分∴ F = 0.444 N 1分 (2) 总能量 221011.12121-⨯===FA kA E J 2分 当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分 ∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分5191一物体作简谐振动,其速度最大值v m = 3×10-2 m/s ,其振幅A = 2×10-2 m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求:(1) 振动周期T ;(2) 加速度的最大值a m ;(3) 振动方程的数值式.解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5×10-2 m/s 2 2分 (3) π=21φ 5511如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )cos(φω+=t A x . 恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J .2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即: OF x m5.0212=kA J , ∴ A = 0.204 m . 2分 A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分x = 0.02)215.1cos(π+t (SI) 3分 3078一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式. 解:(1) 设x = 0 处质点的振动方程为 )2cos(φν+π=t A y由图可知,t = t '时 0)2cos(=+'π=φνt A y 1分0)2sin(2d /d <+'ππ-=φννt A t y 1分所以 2/2π=+'πφνt , t 'π-π=νφ221 2分 x = 0处的振动方程为 ]21)(2cos[π+'-π=t t A y ν 1分 (2) 该波的表达式为 ]21)/(2cos[π+-'-π=u x t t A y ν 3分 3082如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为t y π⨯=-4cos 1032 (SI).(1) 以A 点为坐标原点写出波的表达式; (2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式. 解:(1) 坐标为x 点的振动相位为)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π= 2分波的表达式为 )]20/([4cos 1032x t y +π⨯=- (SI) 2分(2) 以B 点为坐标原点,则坐标为x 点的振动相位为 ]205[4-+π='+x t t φω (SI) 2分 波的表达式为 ])20(4cos[1032π-+π⨯=-x t y (SI) 2分 3083一平面简谐纵波沿着线圈弹簧传播.设波沿着x 轴正向传播,弹簧中某圈的最大位移为3.0 cm ,振动频率为25 Hz ,弹簧中相邻两疏部中心的距离为24 cm .当t = 0时,在x = 0处质元的位移为零并向x 轴正向运动.试写出该波的表达式.解:由题 λ = 24 cm, u = λν = 24×25 cm/s =600 cm/s 2分A = 3.0 cm , ω = 2πν = 50 π/s 2分y 0 = A cos φ = 0, 0sin 0>-=φωA yx u O t =t ′yA B x uπ-=21φ 2分 ]21)6/(50cos[100.32π--π⨯=-x t y (SI) 2分 3084一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O 点分别为λ / 8和3λ / 8 两处质点的振动方程. (3) 求距O 点分别为λ / 8和3λ / 8 两处质点在t = 0时的振动速度.解:(1) 以O 点为坐标原点.由图可知,该点振动初始条件为0cos 0==φA y , 0sin 0<-=φωA v所以 π=21φ波的表达式为 ]21)/(cos[π+-=u x t A y ωω4分 (2) 8/λ=x 处振动方程为]21)8/2(cos[π+π-=λλωt A y )4/cos(π+=t A ω1分 8/3λ=x 的振动方程为]218/32cos[π+-=λλπωt A y )4/cos(π-=t A ω1分 (3) )21/2sin(/d d π+π--=λωωx t A t yt = 0,8/λ=x 处质点振动速度]21)8/2sin[(/d d π+π--=λλωA t y 2/2ωA -=1分 t = 0,8/3λ=x 处质点振动速度]21)8/32sin[(/d d π+⨯π--=λλωA t y 2/2ωA =1分 3108两波在一很长的弦线上传播,其表达式分别为:)244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=- (SI)求: (1) 两波的频率、波长、波速;(2) 两波叠加后的节点位置;(3) 叠加后振幅最大的那些点的位置.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得:ν = 4 Hz , λ = 1.50 m ,各1分 波速 u = λν = 6.00 m/s1分 (2) 节点位置 )21(3/4π+π±=πn x x u Oy)21(3+±=n x m , n = 0,1,2,3, … 3分(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, … 2分3109设入射波的表达式为 )(2cos 1Tt xA y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式;(3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 ])//(2cos[2π+-π=T t x A y λ 3分(2) 驻波的表达式是 21y y y +=)21/2cos()21/2cos(2π-ππ+π=T t x A λ 3分 (3) 波腹位置: π=π+πn x 21/2λ, 2分 λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ 2分 λn x 21= , n = 1, 2, 3, 4, (3110)一弦上的驻波表达式为 t x y ππ⨯=-550cos )6.1(cos 1000.32 (SI).(1) 若将此驻波看作传播方向相反的两列波叠加而成,求两波的振幅及波速;(2) 求相邻波节之间的距离;(3) 求t = t 0 = 3.00×10-3 s 时,位于x = x 0 = 0.625 m 处质点的振动速度.解:(1) 将 t x y ππ⨯=-550cos 6.1cos 1000.32与驻波表达式 )2cos()/2cos(2t x A y νλππ= 相对比可知:A = 1.50×10-2 m, λ = 1.25 m , ν = 275 Hz波速 u = λν = 343.8 m/s 5分(2) 相邻波节点之间距离 λ21=∆x = 0.625 m 2分 (3) 2.4600,-=∂∂=t y t x v m/s 3分 3111 如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为])/(2cos[1φλν+-π=x t A y 2分 则反射波的表达式是 ])(2cos[2π++-+-π=φλνxDP OP t A y 2分 合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分 在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分 因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分 3138某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.解:(1) 振动方程 )22cos(06.00π+π=t y )cos(06.0π+π=t (SI) 3分 (2) 波动表达式 ])/(cos[06.0π+-π=u x t y 3分])21(cos[06.0π+-π=x t (SI) (3) 波长 4==uT λ m 2分 3141图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式;(2) P 处质点的振动方程. 解:(1) O 处质点,t = 0 时0cos 0==φA y ,0sin 0>-=φωA v所以 π-=21φ 2分 又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2cos[04.0π--π=x ty (SI) 4分 (2) P 处质点的振动方程为]2)4.02.05(2cos[04.0π--π=t y P )234.0cos(04.0π-π=t (SI) 2分 3142 (m) -图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =, φωsin 00A -=<v , 故 π-=21φ 2分 又t = 2 s ,O 处质点位移为 )214cos(2/π-π=νA A 所以 π-π=π-21441ν, ν = 1/16 Hz 2分振动方程为 )218/cos(0π-π=t A y (SI) 1分 (2) 波速 u = 20 /2 m/s = 10 m/s波长 λ = u /ν = 160 m 2分波动表达式 ]21)16016(2cos[π-+π=x t A y (SI) 3分 3143如图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求 (1) 该波的表达式; (2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式. 解:(1) 由P 点的运动方向,可判定该波向左传播. 原点O 处质点,t = 0 时φcos 2/2A A =, 0sin 0<-=φωA v所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y (SI) 3分 由图可判定波长λ = 200 m ,故波动表达式为]41)200250(2cos[π++π=x t A y (SI) 2分 (2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y 1分 振动速度表达式是 )45500cos(500π+ππ-=t A v (SI) 2分 3144一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.(1) 求P 处质点的振动方程;(2) 求此波的波动表达式;t (s)0-A 1y P (m)(3) 若图中 λ21=d ,求坐标原点O 处质点的振动方程. 解:(1) 由振动曲线可知,P 处质点振动方程为])4/2cos[(π+π=t A y P )21cos(π+π=t A (SI) 3分 (2) 波动表达式为 ])4(2cos[π+-+π=λd x tA y (SI) 3分(3) O 处质点的振动方程 )21cos(0t A y π= 2分 3158在均匀介质中,有两列余弦波沿Ox 轴传播,波动表达式分别为)]/(2cos[1λνx t A y -π= 与 )]/(2cos[22λνx t A y +π= ,试求Ox 轴上合振幅最大与合振幅最小的那些点的位置.解:(1) 设振幅最大的合振幅为A max ,有φ∆⋅++=cos 22)2(222max A A A A A式中 λφ/4x π=∆,又因为 1/4cos cos =π=∆λφx 时,合振幅最大,故π±=πk x 2/4λ合振幅最大的点 λk x 21±= ( k = 0,1,2,…) 4分 (2) 设合振幅最小处的合振幅为A min,有 φ∆⋅++=cos 22)2(222min A A A A A因为 1cos -=∆φ 时合振幅最小且 λφ/4x π=∆故 π+±=π)12(/4k x λ 合振幅最小的点 4/)12(λ+±=k x ( k = 0,1,2,…) 4分3335一简谐波,振动周期21=T s ,波长λ = 10 m ,振幅A = 0.1 m .当 t = 0时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求:(1) 此波的表达式;(2) t 1 = T /4时刻,x 1 = λ /4处质点的位移;(3) t 2 = T /2时刻,x 1 = λ /4处质点的振动速度.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) 3分 (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T ym 1.0)818/1(4cos 1.0=-π= 2分(3) 振速 )20/(4sin 4.0x t t y -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 x O P d26.1)21sin(4.02-=π-ππ-=v m/s 3分 3410一横波沿绳子传播,其波的表达式为 )2100cos(05.0x t y π-π= (SI)(1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度.(3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.解:(1) 已知波的表达式为)2100cos(05.0x t y π-π= 与标准形式)/22cos(λνx t A y π-π= 比较得A = 0.05 m , ν = 50 Hz , λ = 1.0 m 各1分u = λν = 50 m/s 1分(2) 7.152)/(max max =π=∂∂=A t y νv m /s 2分322max 22max 1093.44)/(⨯=π=∂∂=A t y a ν m/s 2 2分(3) π=-π=∆λφ/)(212x x ,二振动反相 2分3476一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π=求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212cos(1π-π=t A y ν , )212cos(22π+π=t A y ν 2分 ∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的 初相一样为π21. 4分 合振动方程 )212cos(π+π=t A y ν 1分 (2) x = λ /4处质点的速度 )212sin(2/d d π+ππ-== v t A t y νν )2cos(2π+ππ=t A νν 3分 5199有一沿x 轴正方向传播的平面简谐波,其波速u = 400 m/s ,频率ν = 500 Hz .(1) 某时刻t ,波线上x 1处的相位为φ 1,x 2处的相位为φ 2,试写出 x 2 - x 1与φ 2 - φ 1的关系式,并计算出当x 2 - x 1 = 0.12 m 时φ 2 - φ 1的值.(2) 波线上某定点 x 在t 1时刻的相位为1φ',在t 2时刻的相位为2φ', 试写出t 2 - t 1与12φφ'-'的关系式,并计算出t 2 - t 1 = 10-3 s 时12φφ'-'的值. 解:该波波长 λ = u /ν = 0.8 m(1) x 2点与x 1点的相位差为λφφ/)(2)(1212x x -π=--λφφ/)(21212x x -π-=- 3分当=-12x x 0.12 m 时 π-=-3.012φφ rad 1分(2) 同一点x ,时间差12t t -,相应的相位差T t t /)(21212-π='-'φφ)(212t t -π=ν 3分 当 31210-=-t t s 时,π='-'12φφ rad 1分5319已知一平面简谐波的表达式为 )24(cos x t A y +π= (SI).(1) 求该波的波长λ ,频率ν 和波速u 的值;(2) 写出t = 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;(3) 求t = 4.2 s 时离坐标原点最近的那个波峰通过坐标原点的时刻t .解:这是一个向x 轴负方向传播的波.(1) 由波数 k = 2π / λ 得波长 λ = 2π / k = 1 m 1分由 ω = 2πν 得频率 ν = ω / 2π = 2 Hz 1分 波速 u = νλ = 2 m/s 1分(2) 波峰的位置,即y = A 的位置.由 1)24(cos =+πx t有 π=+πk x t 2)24( ( k = 0,±1,±2,…)解上式,有 t k x 2-=.当 t = 4.2 s 时, )4.8(-=k x m . 2分所谓离坐标原点最近,即| x |最小的波峰.在上式中取k = 8,可得 x = -0.4的波峰离坐标原点最近. 2分(3) 设该波峰由原点传播到x = -0.4 m 处所需的时间为∆t ,则 ∆t = | ∆x | /u = | ∆x | / (ν λ ) = 0.2 s 1分 ∴ 该波峰经过原点的时刻 t = 4 s 2分 5516平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.解:设x = 0处质点振动的表达式为 )cos(0φω+=t A y ,已知 t = 0 时,y 0 = 0,且 v 0 > 0 ∴π-=21φ ∴ )2cos(0φν+π=t A y )21100cos(1022π-π⨯=-t (SI) 2分 由波的传播概念,可得该平面简谐波的表达式为 )/22cos(0u x t A y νφνπ-+π=)2121100cos(1022x t π-π-π⨯=- (SI) 2分 x = 4 m 处的质点在t 时刻的位移)21100cos(1022π-π⨯=-t y (SI) 1分 该质点在t = 2 s 时的振动速度为 )21200sin(1001022π-π⨯⨯-=-πv 2分 = 6.28 m/s 1分5519在绳上传播的入射波表达式为)2cos(1λωxt A y π+=,入射波在x = 0处绳端反射,反射端为自由端.设反射波不衰减,求驻波表达式.解:入射波在x = 0处引起的振动方程为 t A y ωcos 10=,由于反射端为自由端,所以反射波在O 点的振动方程为 t A y ωcos 20= 2分∴反射波为 )2cos(2λωxt A y π-= 3分合成的驻波方程为 21y y y +=)2cos(λωx t A π+=)2cos(λωx t A π-+ t x A ωλcos )2cos(2π= 3分5520 在绳上传播的入射波表达式为)2cos(1λπωx t A y +=,入射波在x = 0处反射,反射端为固定端.设反射波不衰减,求驻波表达式. 解:入射波在x = 0处引起的振动方程为 t A y ωcos 10=,由于反射端为固定端,∴反射波在 x = 0处的振动方程为)cos(20π+=t A y ω 或 )cos(20π-=t A y ω 2分 ∴反射波为 )2cos(2λωxt A y π-π+=或 )2cos(2λωxt A y π-π-=3分 驻波表达式为 21y y y += )2cos(λωxt A π+=)2cos(λωxt A π-π-+)21cos()212cos(2π+π-π=t xA ωλ3分 或 )21cos()212cos(2π-π+π=t xA y ωλ。

1大学物理习题_机械振动机械波

1大学物理习题_机械振动机械波

机械振动机械波一、选择题1.对一个作简谐振动的物体,下面哪种说法是正确的(A )物体处在运动正方向的端点时,速度和加速度都达到最大值; (B )物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C )物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D )物体处在负方向的端点时,速度最大,加速度为零。

2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A v -=; (B )φωsin A v =; (C )φωcos A v-=; (D )φωcos A v =。

3.一物体作简谐振动,振动方程为⎪⎭⎫⎝⎛+=4cos πωt A x 。

在4T t =(T 为周期)时刻,物体的加速度为 (A )2221ωA -; (B )2221ωA ; (C )2321ωA -; (D )2321ωA 。

4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相(A )落后2π; (B )超前2π;(C )落后π; (D )超前π。

5.一质点沿x 轴作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+⨯=-ππ312cos 1042t x (SI )。

从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 (A )s 8/1; (B )s 4/1; (C )s 2/1; (D )s 3/1。

6.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为7.一个简谐振动的振动曲线如图所示。

此振动的周期为(A )s 12; (B )s 10;(C )s 14; (D )s 11。

8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是(A )动能为零,势能最大; (B )动能为零,机械能为零; (C )动能最大,势能最大; (D )动能最大,势能为零。

大学物理机械振动与机械波综合练习题(含答案)

大学物理机械振动与机械波综合练习题(含答案)
则合振动的振幅为 (A) A = 61 cm ; (B) A = 11 cm ; (C) A = 11cm ; (D) A = 61cm 。
解: A1 = 5cm , A2 = 6 cm ,1 = 0.75 , 2 = 0.25
A = A12 + A22 + 2 A1 A2 cos( 2 − 1 ) = 52 + 62 + 2 5 6 cos(0.25 − 0.75 )
= 120 Hz ,另一列火车 B 以 u2 = 25 m/s 的速度行驶。当 A 、B 两车相向而行时,B 的 司机听到汽笛的频率 为137 Hz ;当 A 、 B 两车运行方向相同时,且 B 车在 A 车前方, B 的司机听到汽笛的频率 为118 Hz 。
解:波源与观察者相向运动: = u + vR = 331+ 20 120 = 137 H z
A
=
2.00 cm
。x
= 10cm
处有一点 a
在t
=
3s

ya
=
0
,d y dt
|a
0
;当 t
=
5s
时,x
=
0处
的位移 y0 = 0 ,此刻该点速度 v = − 6.28 cm/s 。
解:
y0
=
A cos( 2 T
t
+0),
ya
=
Acos[2 ( t T

x
)
+

0
]
x = 10 cm , t = 3s , = vT = 10 cm
= 61cm

u
5.图为 t = 0 时刻,以余弦函数表示的沿 x 轴

大学物理习题

大学物理习题

机械振动 机械波 练习题1(3003) 轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为(A ) g m x m T 122∆π=. (B ) gm xm T 212∆π=. (C ) g m xm T 2121∆π=. (D ) gm m x m T )(2212+π=∆.2(5186) 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A )222cos()33x t ππ=+. (B ) 222cos()33x t ππ=-.(C )422cos()33x t ππ=+. (D )422cos()33x t ππ=-.(E ) 412cos()34x t ππ=-.3(3028) 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A ) E 1/4. (B ) E 1/2.(C ) 2E 1. (D ) 4 E 1 .4(3562) 图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A ) 32π. (B ) π.(C ) 12π. (D ) 0.5(3066) 机械波的表达式为y = 0.03cos6?(t + 0.01x )(SI ) ,则(A ) 其振幅为3 m . (B ) 其周期为s 31.(C ) 其波速为10 m/s . (D ) 波沿x 轴正向传播.6(5204)一平面余弦波在t = 0时刻的波形曲线如图所示,则O点的振动初相??为:(A) 0.(B)12π.(C)?.(D)32π(或12π-).7(3382)在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振动的周期之比为_______________________.8(3819)两质点沿水平x轴线作相同频率和相同振幅的简谐振动,平衡位置都在坐标原点.它们总是沿相反方向经过同一个点,其位移x 的绝对值为振幅的一半,则它们之间的相位差为______________.9(3033)一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_________;? =_________;? =_________.10(5314)一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为)41cos(05.01π+=t x ω (SI ), )129cos(05.02π+=t x ω (SI ) 其合成运动的运动方程为x = __________________________.11(3135) 如图所示为一平面简谐波在t = 2 s 时刻的波形图,该简谐波的表达式是__________________________________;P 处质点的振动方程是____________________________.(该波的振幅A 、波速u 与波长? 为已知量)12(3344) 一简谐波沿Ox 轴负方向传播,x 轴上P 1点处的振动方程为()10.04cos /2P y t ππ=- (SI),x 轴上P 2点的坐标减去P 1点的坐标等于3/4λ(λ为波长),则P 2点的振动方程为__________________________________________.13(5517) S 1,S 2为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距λ23(?为波长)如图.已知S 1的初相为π21.(1) 若使射线S 2C 上各点由两列波引起的振动均干涉相消,则S 2的初相应为________________________.(2) 若使S 1 S 2连线的中垂线MN 上各点由两列波引起的振动均干涉相消,则S2的初位相应为_______________________.14(5506)一物体质量m= 2 kg,受到的作用力为F= -8x(SI).若该物体偏离坐标原点O的最大位移为A = 0.10 m,则物体动能的最大值为多少15(5189)一物体同时参与两个同方向的简谐振动:11 0.04cos(2)2x tππ=+(SI),20.03cos(2)x tππ=+(SI)求此物体的振动方程.16(3265)在一轻弹簧下端悬挂m0= 100 g砝码时,弹簧伸长8 cm.现在这根弹簧下端悬挂m= 250 g的物体,构成弹簧振子.将物体从平衡位置向下拉动4 cm,并给以向上的21 cm/s的初速度(令这时t= 0).选x轴向下, 求振动方程的数值式.17(3384)一台摆钟每天快1分27秒,其等效摆长l= 0.995 m,摆锤可上、下移动以调节其周期.假如将此摆当作质量集中在摆锤中心的一个单摆来考虑,则应将摆锤向下移动多少距离,才能使钟走得准确18(3825)有一单摆,摆长为l = 100 cm,开始观察时(t = 0 ),摆球正好过 x 0 = -6 cm 处,并以v 0 = 20 cm/s 的速度沿x 轴正向运动,若单摆运动近似看成简谐振动.试求(1) 振动频率; (2) 振幅和初相. 19(3335) 一简谐波,振动周期21T s ,波长? = 10 m ,振幅A = 0.1 m .当 t = 0时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求:(1) 此波的表达式;(2) t 1 = T /4时刻,x 1 = ? /4处质点的位移;(3) t 2 = T /2时刻,x 1 = ? /4处质点的振动速度.20(3860) 一振幅为 10 cm ,波长为200 cm 的简谐横波,沿着一条很长的水平的绷紧弦从左向右行进,波速为 100 cm/s .取弦上一点为坐标原点,x 轴指向右方,在t = 0时原点处质点从平衡位置开始向位移负方向运动.求以SI 单位表示的波动表达式(用余弦函数)及弦上任一点的最大振动速度.21(3138) 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求 (1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点); (3) 该波的波长.22(3140) 如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,若P 处质点的振动方程为 )cos(φω+=t A y P ,求(1) O 处质点的振动方程; (2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些质点的位置.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械振动机械波
一、选择题
1.对一个作简谐振动的物体,下面哪种说法是正确的?
(A )物体处在运动正方向的端点时,速度和加速度都达到最大值; (B )物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C )物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D )物体处在负方向的端点时,速度最大,加速度为零。

2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为
(A )φωsin A v -=; (B )φωsin A v =; (C )φωcos A v
-=; (D )φωcos A v =。

3.一物体作简谐振动,振动方程为⎪⎭⎫


+=4cos πωt A x 。

在4
T t =(T 为周期)时刻,物体的加速度为 (A )2221ωA -
; (B )2221
ωA ; (C )232
1
ωA -
; (D )2321ωA 。

4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相
(A )落后2π; (B )超前2π; (C )落后π; (D )超前π。

5.一质点沿x 轴作简谐振动,振动方程为⎪⎭
⎫ ⎝⎛
+⨯=-ππ312cos 10
42
t x (SI )。

从0=t 时刻
起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 (A )s 8/1; (B )s 4/1; (C )s 2/1; (D )s 3/1。

6.一个质点作简谐振动,振幅为
A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运
动,代表此简谐振动的旋转矢量图为
7.一个简谐振动的振动曲线如图所示。

此振动的周期为
(A )s 12; (B )s 10;
(C )s 14; (D )s 11。

8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是
(A )动能为零,势能最大; (B )动能为零,机械能为零; (C )动能最大,势能最大; (D )动能最大,势能为零。

9.一个弹簧振子做简谐振动,已知此振子势能的最大值为1600J 。

当振子处于最大位移的1/4时,此时的动能大小为
(A )250J ; (B )750J ; (C )1500J ; (D ) 1000J 。

10.当质点以频率ν作简谐振动时,它的动能的变化频率为 (A )ν; (B )ν2 ; (C )ν4; (D )
2
ν。

11.一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 (A )T /4; (B )T/2; (C )T ; (D )2T 。

12.两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个振
动的相位差为
(A )π/3; (B )π/3; (C )2π/3; (D )5π/6。

13.已知一平面简谐波的波动方程为()bx at A y -=cos ,(a 、b 为正值),则
x
(A ) (B )(C )(D )
)s
2
1
-
(A )波的频率为a ; (B )波的传播速度为a b /; (C )波长为b /π; (D )波的周期为a /2π。

14.一个波源作简谐振动,周期为0.01s ,以它经过平衡位置向正方向运动时为计时起点,若此振动的振动状态以s m u 400=的速度沿直线向右传播。

则此波的波动方程为
(A )⎥⎦⎤⎢⎣
⎡+⎪⎭⎫ ⎝
⎛-
=23400200cos ππx t A y ; (B ) ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛
+=23400200cos ππx t A y ; (C )⎥⎦⎤⎢⎣
⎡+⎪⎭⎫ ⎝
⎛+
=2400200cos ππx t A y ; (D )⎥⎦⎤⎢⎣
⎡+⎪⎭⎫ ⎝⎛
-=2400200cos ππx t A y 。

15.当波从一种介质进入另一种介质中时,下列哪个量是不变的
(A )波长; (B )频率; (C )波速; (D )不确定。

16.一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图所示,则该时刻 (A )A 点相位为π; (B )B 点静止不动; (C )C 点向下运动; (D )D 点向下运动。

17.一简谐波沿x 轴正方向传播,4/T t =时的波形曲线如图所示。

若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 (A )0点的初位相为00=φ;
(B )1点的初位相为2/1πφ-=;
(C )2点的初位相为π
φ=2;
(D )3点的初位相为2/3
πφ-=。

18.频率为Hz 100,传播速度为s m /300的平面简谐波,波线上两点振动的相位差为3/π,则此两点相距
(A )m 2; (B )m 19.2; (C )m 5.0; (D )m 6.28。

二、填空题
1.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示。

若0=t 时,
(1)振子在负的最大位移处,则初位相为______________________;
u
O
Y
X
1 2 3 4
第题图
(2)振子在平衡位置向正方向运动,则初位相为________________; (3)振子在位移为2/A 处,且向负方向运动,则初位相为______。

2.一物体作余弦振动,振幅为m 21015-⨯,圆频率为1
6-s π,初相为π5.0,则振动方程
为=x ________________________(SI )。

3.一放置在水平桌面上的弹簧振子,振幅为
A ,周期为T 。

当0=t 时,物体在2
/A x =处,且向负方向运动,则其运动方程为 。

4.一物体沿x 轴作简谐运动,振幅为cm 10,周期为s 0.4。

当0=t 时物体的位移为
cm x 0.50-=,且物体朝x 轴负方向运动。

则s t 0.1=时,此物体的位移为 m 。

5.一简谐运动曲线如图(a )所示,图(b )是其旋转矢量图,则此简谐振动的初相位为 ;s t 1=与0=t 的相位差φ∆= ;运动周期是 。

6.两列满足相干条件的机械波在空间相遇将发生干涉现象,其中相干条件包括:(1)频率_____________;(2)振动方向_____________和相差恒定。

7.两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简
谐运动的相位差为___________。

8.同方向同频率振幅均为
A ,相位差为2
π
的两个简谐运动叠加后,振幅为________。

9.一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为 ()6/2cos 10421
π+⨯=-t x ,()6/52cos 10322π-⨯=-t x (SI )
则其合成振动的振幅为___________,初相为_______________。

10.两个同方向同频率的简谐振动,其合振动的振幅为cm 20,与第一个简谐振动的位相差为6/1πφφ=-。

若第一个简谐振动的振幅为cm cm 3.17310
=,则第二个简谐振动的
振幅为__________cm ,第一、二两个简谐振动的位相差21φφ-为__________。

11.一平面简谐波沿x 轴正方向传播,波速s m u /100=,0=t 时刻的波形曲线如图所示。

波长=λ____________; 振幅=A _____________;频率=ν____________。

12.惠更斯原理表明,介质中波动传播到的各点都可以看作是发射子波的波源,而在其后的任意时刻,这些子波的_______________就是新的波前。

包络(包迹或包络面)
13.干涉型消声器结构原理如图所示,
利用这一结构可以消除噪声。

当发动机排气噪声声波经管道到达点
A 时,分成两路而在点
B 相遇,声波因干涉
而相消。

已知声波速度为s m /340,如果要消除频率为Hz 300的发动机排气噪声,则图中弯道与直管长度差至少应为____________。

三、判断题
1.对于给定的振动系统,周期(或频率)由振动系统本身的性质决定,而振幅和初相则由初始条件决定。

2.对于一定的谐振子而言,振动周期与振幅大小无关。

3.简谐振动的能量与振幅的平方成正比。

4.在简谐振动的过程中,谐振子的动能和势能是同相变化的。

5.两个同方向同频率简谐运动合成的结果必定是简谐运动。

6.在简谐波传播过程中,沿传播方向相距半个波长的两点的振动速度必定大小相同,方向相反
7.在平面简谐波传播的过程中,波程差和相位差的关系是21122x ∆=
∆λ
π
φ。

8.频率相同、传播方向相同、相差恒定的两列波在空间相遇会发生干涉。

1r
2r
第题图
A
B
· ·
· · ()m Y
()m X
· 0.2 0.4 0.6 1.0
20-
2.0

O。

相关文档
最新文档