触摸屏技术是谁发明的_触摸屏技术的发展历程
触摸屏技术的原理及应用
触摸屏技术的原理及应用一、概述1. 触摸屏技术的发展历程触摸屏技术,作为一种直观、便捷的人机交互方式,已逐渐渗透到我们生活的各个角落。
其发展历程可谓是一部科技创新的史诗,从最初的电阻式触摸屏到现代的电容式、光学式以及声波式触摸屏,每一步的进展都极大地推动了人机交互方式的进步。
早在20世纪70年代,电阻式触摸屏就已出现。
这种触摸屏由两层导电材料组成,中间以隔离物隔开。
当用户触摸屏幕时,两层导电材料在触摸点处接触,形成电流,从而确定触摸位置。
电阻式触摸屏具有成本低、寿命长等优点,但触摸反应速度较慢,且不支持多点触控,限制了其在高端设备上的应用。
随着科技的进步,电容式触摸屏在20世纪90年代开始崭露头角。
电容式触摸屏通过在屏幕表面形成一个电场,当手指触摸屏幕时,会改变电场分布,从而确定触摸位置。
电容式触摸屏具有反应速度快、支持多点触控等优点,因此在智能手机、平板电脑等设备上得到了广泛应用。
进入21世纪,光学式触摸屏开始受到关注。
光学式触摸屏利用摄像头捕捉屏幕表面的光线变化,从而确定触摸位置。
这种触摸屏具有分辨率高、触摸体验好等优点,但由于其成本较高、易受环境光干扰等因素,目前在市场上的应用相对较少。
近年来,声波式触摸屏作为一种新型技术开始崭露头角。
这种触摸屏通过在屏幕表面产生声波,当手指触摸屏幕时,会改变声波的传播路径,从而确定触摸位置。
声波式触摸屏具有抗干扰能力强、使用寿命长等优点,未来有望在更多领域得到应用。
触摸屏技术的发展历程是一部不断创新、不断突破的历史。
从电阻式到电容式,再到光学式和声波式,每一种新技术的出现都为我们带来了更便捷、更高效的人机交互体验。
随着科技的不断发展,我们有理由相信,未来的触摸屏技术将会更加先进、更加普及,为我们的生活带来更多可能。
2. 触摸屏技术在现代生活中的重要性在现代生活中,触摸屏技术的重要性日益凸显。
随着智能手机、平板电脑、智能电视等设备的普及,触摸屏已经成为我们日常互动的主要界面。
触摸屏辉煌40年
触摸屏辉煌40年编者按:触摸屏起源于20世纪70年代,早期多被装于工控计算机、POS机终端等工业或商用设备之中。
2007年,第一台采用multi touch多点触摸屏设计的苹果iPhone发布;2010年,全球采用触摸屏设计的产品销量将达3.6亿台,触摸屏已经覆盖了几乎所有IT领域,从手机、PMP播放器、数码相机/摄像机,到平板电脑、GPS、MID,直至提款机、触控信息机、工业设备等。
1971-2010年,40年探索征途,小巧轻薄的触摸屏,正在改写人机交互的面貌,创造更加巨大的影响力。
1971年,美国的Samuel Hurst博士发明了世界第一个触摸传感器,具备了触摸屏的雏形;1972年,PLATO IV触摸屏问世,它应用于电脑辅助教育系统的终端,其最初的设计具有16×16的触摸分辨率,这一触控技术是如今红外触控技术的前身,时至今日,红外触控技术仍在使用;1974年,Samuel Hurst博士设计了第一款透明的触摸屏;1977年,电子制图及五线电阻触摸屏发明并申请专利,触摸屏技术得到了很大的改善,逐渐得到广泛使用。
1982年,柔性触控界面问世,这是第一个为电脑系统设计的多点触摸人机交互系统,它由一个玻璃面板构成,这种面板具有的光学特性可以让置于其后的摄像头记录下与手指在白色背景上的压力大小相关的黑点,这种特性和简单的图像处理结合就可以实现基于多点触摸的画图功能。
1984年,第一个多点触摸屏诞生,它用一个透明的电容传感器阵列覆盖在CRT显示器上,可以通过手指操控图形物体,具有很快的的响应速度,同期,美国贝尔实验室有很多涉及触摸屏技术的研发(包括光学与电容)陆续取得突破。
1991年,早期的前置投影桌面系统问世,它采用光学和声学技术检测手/手指和其他物体,特别是基于纸张的控制和数据,这项技术已经清楚的演示了多点触控的概念,比如用两个手指缩放和转换图形物体,使用pinch手势等,同年,触摸屏技术被引入国内。
触摸屏技术起因与市场
触摸屏技术起因与市场如果说1964年鼠标的发明,把电脑操作带入了一个新的时代,那么触摸屏的出现,则使图形化的人机交互界面变得更为直观易用,触摸屏维修的市场跟着日益庞大。
1971年,美国人SamHurst发明了世界上第一个触摸传感器。
虽然这个仪器和我们今天看到的触摸屏并不一样,却被视为触摸屏技术研发的开端。
一、触摸屏技术的发展随着计算机技术的发展和普及,在20世纪90年代初,出现了一种全新的人机交互技术,利用这种技术用户只需要在显示屏上的图标或文字上轻轻一点,计算机就能按照我们的指示进行相关的各种操作,完全摆脱了键盘和鼠标的束缚,使人机交互更为直截了当。
在我们的日常生活中,无论你是在商场购物,还是在银行存取款,触摸式的自动服务器将能为你提供了方便快捷的服务,而这种技术就是日新月异的触摸屏技术。
二、触摸屏技术的过渡和PC从286、386发展到奔腾机一样,触摸屏的技术经历了从低档向高档发展的历程,从1974开始出现世界最早的电阻式触摸屏以来,随着科技的发展和应用需求的增长,各种触摸技术相继诞生以适应各种行业和层次的应用。
如今,已经形成了商业化的触摸屏技术包括:电阻技术触摸屏、表面电容技术触摸屏、投射式电容技术触摸屏、红外线技术触摸屏、表面声波(SA W)技术触摸屏、光学触摸屏、弯曲波技术触摸屏和主动数字转换器技术触摸屏,并已应用到了零售业、公共信息查询、多媒体信息系统、医疗仪器、工业自动控制、娱乐与餐饮业、自动售票系统、仿真与培训系统、教育系统等许多领域。
此外,一些新奇的触摸屏技术也不断产生,包括N-trig、索尼、夏普、TMD和三星几大厂商都在推出的新型触摸屏技术,这些技术包括像素光传感器(photo sensor in pixel)、聚合物波导(polymer waveguide)、分布光(distributed light)、应变仪(strain gauge)、多触点(multi-touch)、双重力触摸(dual-force touch)、激光点激发触摸(laser-point activated touch)和3D触摸等。
触屏技术简介
应用: 居家 电脑 手机//游戏
发展: 1973年,美国《工业研究》杂志将触 摸屏技术评为“最重要的100项新技术 产品”之一,并预言这种技术将得到广 泛运用。
浴室喷头的 人性化设计, 更符合现代 人的享受需 求
。
触屏手机玩游戏 更给力:
比如“切水果游 戏”
未 来
未来
功能分类红外线式触屏ຫໍສະໝຸດ 电容式触屏 电阻式触屏 表面声波触摸屏
技术分类
红外线式触屏
红外线触摸屏原理很简单,只是在显示器上 加上光点距架框, 在屏幕表面形成一个红外线网用户以手指触摸 屏幕某一点 , 计算机便可即时算出触摸点位置红外触摸屏不 受电流电压和静电干扰, 由于只是在普通屏幕增加了框架,在使用过程 中架框四周的红外线发射管及接收管很容易损 坏,且分辨率较低
1. 简介
起源: 1971年,在美国一所大学当讲师的山姆· 赫斯特在自家小 作坊里制作出最早的触摸屏。
工作原理: 为了操作上的方便,人们用触摸屏来代替鼠标戒键盘工作时 ,我们必须首先用手指戒其它物体触摸安装在显示器前端的 触摸屏,然后系统根据手指触摸的图标戒菜单位置来定位选 择信息输入触摸屏由触摸检测部件和触摸屏控制器组成;触 摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置 ,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从 触摸点检测装置上接收触摸信息,并将它转换成触点坐标, 再送给CPU,它同时能接收CPU发来的命令并加以执
电容式触屏
电容式触摸屏的构造主要是在玻璃屏幕上 镀一层透明的薄膜体层,再在导体层外加 上一块保护玻璃,双玻璃设计能彻底保护 导体层及感应器 就算屏幕沾有污秽尘埃戒油渍,电容式触 摸屏依然能准确算出触摸位置.
电阻触屏
触摸屏的屏体部分是一块与显示器表面非 常配合的多层复合薄膜,由一层玻璃或有 机玻璃作为基层,表面涂有一层透明的导 电层(OTI,氧化铟), 上面再盖有一层外表面硬化处理光滑防刮 的塑料层,它的内表面也涂有一层OTI, 在两层导电层之间有许多细小(小于千分之 一英寸)的透明隔离点把它们隔开绝缘当手 指接触屏幕 ,导电玻璃的工艺使其的寿命得到极大的 提高,并且可以提高透光率
技术前沿:触控技术——万物交互起源
技术前沿:触控技术——万物交互起源触控是人与人,人与机器,甚至机器与机器间的一种广泛应用交互技术,是数字化时代的核心技术之一。
通常认为,英国马尔文皇家雷达研究所的约翰逊(E.A. Johnson)是第一个提出触摸显示概念的人。
1965年,约翰逊在《电子通报(Electronics Letters)》杂志上发表一篇简短论文,题为《触摸显示:一种新的电脑输入/输出设备(TouchDisplay-A novel input/output device for computers)》,文中提出一种作为输入/输出装置的触摸显示设想:用手指在一块复合玻璃屏(内表面涂覆氧化铟锡(ITO)类的透明金属氧化物层,四角有四个电极)上的触摸产生感应静电电容,通过电容变化的测量实现对玻璃屏触摸动作的计算(后来被称为电容式触摸屏)。
1967年,约翰逊将自己的设想变成了现实,制造出人类历史上第一块触摸屏。
他在《人体工程学(Ergonomics)》杂志上发表了题为《触摸显示:编程人机界面(Touch Displays: A Programmed Man-Machine Interface)》的论文,并附上了第一块触摸屏的照片和原理图。
约翰逊的发明在1969年被授予美国专利(US patent3482241)。
再到1970年由两位CERN(European Council for Nuclear Research)的两位工程师在1970年代初期发明的透明触控面板,并且与1973年投入使用。
再后来到1975年一个美国人George Samuel Hurst发明了电阻式触控面板并拿到美国专利(#3,911,215),并于1982年投入商用。
SPS则于1976年6月开始运行,它的控制室配备了触摸屏——这是世界上第一个使用这种电容式触摸屏的大型装置。
这类触摸屏还被用于其它大型装置以及规模更大的大型正负电子对撞机的现代化控制系统。
神奇的是:有的触摸屏居然运行了20-30年,直到2008年CERN为规模更大的大型强子对撞机(LHC)安装了新的控制室。
触摸屏技术发展前景分析
触摸屏技术发展前景分析摘要:触摸屏技术作为一种直观、人机交互方式的重要形式,正逐渐渗透到我们的日常生活中。
本文通过对触摸屏技术的发展历程、应用领域以及未来前景进行分析,旨在揭示触摸屏技术在未来的发展趋势和可能的应用场景。
1. 引言触摸屏技术的发展与智能手机、平板电脑的普及密切相关,而目前触摸屏技术已经迈过了初始阶段,逐渐成为各类电子设备的必备功能之一。
本文将对触摸屏技术的历程、应用和未来前景进行探究与分析。
2. 发展历程触摸屏技术起源于20世纪60年代,最初是在实验室环境中开发出来的,随着技术的进步和市场对于人机交互方式的需求,触摸屏技术逐渐得到商业化的应用。
从最早的电阻式触摸屏,到后来的电容式触摸屏、超声波触摸屏、红外线触摸屏等不同类型的技术陆续出现,以满足不同用户对触摸屏技术的需求。
3. 应用领域触摸屏技术已经广泛应用于智能手机、平板电脑、电子阅读器、数字签名板等消费电子产品中,同时也在医疗、交通、教育、娱乐等各个领域得到了应用。
特别是在教育领域,触摸屏技术改变了传统的教学方式,使得学生能够更加主动地参与学习。
4. 技术发展趋势触摸屏技术在未来的发展中,有几个明显的趋势值得关注:4.1 灵敏度和精度的提升目前的触摸屏技术已经能够识别多点触控,未来将进一步提升触摸屏的灵敏度和精度,实现更加精确的手势识别,提供更好的用户体验。
4.2 可弯曲触摸屏柔性触摸屏技术的发展将使得触摸屏能够具备弯曲的特性,这将有利于其应用于可穿戴设备、汽车等领域,增加触摸屏的应用场景。
4.3 无物理触摸随着电磁感应和声波感应等技术的发展,未来的触摸屏可能会实现无物理触摸,用户只需在规定范围内进行手势操作即可完成交互。
4.4 触摸屏与其他技术的结合触摸屏技术与虚拟现实、增强现实等技术的结合将带来全新的用户体验,比如触摸屏技术与人脸识别、眼球追踪等技术的结合,将开启更广阔的应用领域。
5. 应用前景由于触摸屏技术的广泛应用和不断创新,其未来前景十分广阔。
triz创新方法案例
triz创新方法案例TRIZ创新方法案例。
TRIZ(Theory of Inventive Problem Solving)是一种用于解决技术问题和推动创新的方法。
它源于俄罗斯,由发明家格里戈里·阿尔图诺维奇·阿尔图什创建,并在过去的几十年中得到了广泛的应用和发展。
TRIZ的核心理念是通过研究和分析已有的创新案例和解决问题的方法,来寻找通用的创新原则和方法论。
下面将介绍几个使用TRIZ方法取得成功的案例,以便更好地理解和应用这一创新方法。
案例一,苹果公司的触摸屏技术。
苹果公司在开发iPhone时,面临着如何设计一种用户友好、直观的操作界面的问题。
通过应用TRIZ方法,他们分析了触摸屏技术的发展历程和各种不同的操作方式,最终提出了一种全新的多点触控技术。
这种技术不仅简化了用户的操作流程,还大大提高了用户体验。
最终,苹果公司成功地将这一技术应用到了iPhone等产品中,成为了市场的领导者。
案例二,通用电气的发动机创新。
通用电气在研发新型飞机发动机时,遇到了提高燃烧效率和减少排放的难题。
通过TRIZ方法的应用,他们对各种发动机的结构和工作原理进行了深入的分析和比较,最终提出了一种新型的双喷嘴燃烧室设计。
这种设计大大提高了燃烧效率,同时降低了排放,使得通用电气的发动机在性能上有了质的飞跃。
案例三,三星的柔性屏幕技术。
三星公司在开发新型手机时,希望能够设计出更加轻薄、便携的手机。
通过TRIZ方法的应用,他们分析了各种不同的屏幕材料和结构,最终提出了一种柔性屏幕技术。
这种技术使得手机屏幕可以折叠和弯曲,大大提高了手机的便携性和耐用性。
最终,三星成功地将这一技术应用到了旗下的手机产品中,成为了市场的领先者。
以上案例充分展示了TRIZ方法在推动创新和解决技术问题方面的巨大潜力。
通过对已有案例的分析和总结,我们可以发现一些通用的创新原则和方法,这些原则和方法可以帮助我们更好地应对各种挑战,推动技术的进步和创新的发展。
触摸屏发展历史
触摸屏发展历史触摸屏的发展历史可以追溯到20世纪70年代,经历了几个重要的里程碑事件。
在70年代初,约翰逊教授在《Electronics Letters》上发表了一篇论文,描述了他所发明的电容式触摸屏。
这种触摸屏可以在没有物理接触的情况下,通过改变电流的传输来感应手指的触摸,从而实现了触摸屏的基本原理。
这项技术的发明为触摸屏的发展奠定了基础。
到了70年代末,萨姆·赫斯特教授在肯塔基大学发明了另一种基于压力改变电流传输的电阻式触控技术。
尽管这种技术在当时并没有立即应用于商业生产,但赫斯特博士认为,只要对其进行进一步的改良,这项技术与计算机屏幕的结合将会替代鼠标成为控制计算机更加便捷的方式。
进入80年代后,电阻式触控技术开始逐渐受到关注。
1982年,美国ULTRAHaptics公司的拉尼尔(Bob Lanier)发明了一种基于红外技术的触摸屏。
这种触摸屏由一个红外发射器和接收器组成,通过接收器检测手指或其他物体在屏幕上的位置来实现触摸功能。
这种技术在当时具有较高的准确性和稳定性,因此在90年代初得到了广泛应用。
随着个人电脑和智能手机的普及,电阻式触控技术也得到了广泛应用。
在90年代末期,诺基亚公司推出了一款支持电阻式触控屏幕的智能手机,引起了轰动。
随后,苹果公司也推出了自己的智能手机iPhone,采用了更加先进的电容式触控技术。
这种技术具有更高的灵敏度和更好的用户体验,成为了智能手机市场的主流技术。
进入21世纪后,触摸屏技术得到了飞速发展。
随着智能手机、平板电脑、智能家居等智能设备的普及,触摸屏的应用越来越广泛。
如今,无论是手机、电脑还是各种智能设备,几乎都采用了触摸屏技术。
触摸屏技术的发展经历了多个阶段,从最初的电阻式触控技术到现在的电容式触控技术,以及苹果公司的多点触控技术等。
随着技术的不断进步和应用领域的扩展,触摸屏已经成为人们日常生活中不可或缺的一部分。
触摸屏的发展历史
触摸屏的发展历史科幻作家们都没能想象到的触摸屏,被科学家们抢先制造出来了。
很多人都没有想到,在几十年前,触摸屏这种技术就算是在科幻世界内都是天方夜谭。
今天,它已经成为了无处不在的日常科技:手机、平板、柜员机、车站或者电影院里的售票机……在这些便利的背后,有着怎样的发明故事呢?最早的触摸屏于1967年诞生于美国,这个发明恐怕是对科幻界的一个巨大嘲讽:就算是当时最疯狂的科幻作家,都想不到触摸屏这种东西。
红遍全世界、以前沿科技著称的科幻连续剧《星球大战》直到1987年才提到触摸屏的概念,比现实的科学家们足足落后了20年。
现在我们熟知的触摸屏(网络图)1967年:第一块触摸屏诞生人们普遍认为,美国马文镇皇家雷达研究所的约翰逊(E.A. Johnson)是世界上第一个提出触摸屏概念的人。
1965年,这位普通的计算机研究员在《电子通报(Electronics—Letters)》杂志上发表了一篇简短的论文《触摸面板:一种新的电脑输入设备》,并在里面描述了自己对电容式触摸屏的设想:屏幕的主体是一块复合的玻璃屏,内表面涂有一层名为ITO的金属氧化物,四角有四个电极。
当手指头触碰到玻璃屏的时候,由于人体自带的电场,会令手指头和玻璃内层的金属层形成一个电容,从而“吸走”该位置的少量电流。
这个“泄漏”的电流是从四个电极流出来的,而且理论上流经不同电极的部分与手指头到电极的距离成正比。
通过控制器的精密计算,就可以准确地得到手指头的位置。
两年后,约翰逊将这个设想变成了现实,制造出了人类历史上第一块触摸屏,并将这块触摸屏的照片和触摸屏基本原理图发表在了一本名为《工效学(Ergonomics)》的杂志上。
这是一块虽然笨重但很令人耳目一新的屏幕,在约翰逊的设计下,甚至有种魔术般的效果:无论手指头点到哪里,屏幕就会在该处发出亮光。
约翰逊的触摸屏(网络图)当然,约翰逊的这个发明也有着致命的缺点:首先,它只能计算一个手指头的位置,如果屏幕上有多处接触,控制器的计算就会变得混乱;另外,这块屏幕对接触的感应是“非黑即白”的,它只记录两种信息:有接触,或者没有接触。
触控科技:未来的交互方式
触控科技:未来的交互方式随着科技的不断进步,我们的生活方式和互动方式正在快速变化。
在这个数字化的时代,触控科技作为一种重要的交互方式,正以其便捷性和直观性吸引着越来越多的用户。
本文将深入探讨触控科技的发展历程、应用领域、所面临的挑战以及未来的发展趋势。
1. 触控科技的发展历程触控科技的起源可以追溯到20世纪70年代。
第一个触摸屏幕是由阿特·阿基曼(Atari)在1970年代初期开发出的,并首次应用于一些简单的游戏设备。
然而,真正使触控技术走入大众视野的是苹果公司在2007年推出的iPhone。
iPhone引入了多点触控功能,允许用户通过手指同时进行多项操作,这种方式彻底改变了人们与设备之间的交互模式。
从那时起,触控科技迅速发展,逐渐渗透到各个领域。
智能手机、平板电脑、柔性显示器和智能家居设备等都纷纷采用了触控技术,使得这一科技成为现代人生活中不可或缺的一部分。
2. 触控科技的主要应用领域2.1 智能手机和平板设备我们日常最常接触到的应用就是智能手机和平板电脑。
触控界面使得我们可以通过轻触、滑动、捏合等手势轻松操作各种应用。
从浏览网页到玩游戏,再到视频通话,触控技术提升了用户体验,使得互动更加直观和高效。
2.2 家庭自动化与智能家居近年来,智能家居设备也开始普遍采用触控界面。
从智能音箱、灯光控制系统到安全监控设备,用户只需通过触摸或者滑动就能够轻松管理家庭环境。
这种技术不仅提升了操作便利性,还增强了个性化定制体验,使得每个家庭都可以根据自身需求来打造智能化的生活场景。
2.3 医疗设备在医疗领域,触控技术同样发挥着重要作用。
例如,现代医疗设备与电子病历系统的软件界面通常设计为触控式,使得医生在处理病人的信息时,可以迅速获取所需的数据,提高工作效率。
此外,在年轻患者(如儿童)的治疗中,使用互动式触摸屏可减轻他们对医疗过程的恐惧,通过游戏化的方式引导他们配合治疗。
2.4 教育行业教育行业也是触控科技深度应用的重要领域。
触摸屏的发展历程
触摸屏的发展历程触摸屏的发展历程可以追溯到20世纪60年代初,当时贝尔实验室的研究人员首次提出了触摸屏的概念。
然而,在那个时候,触摸屏的技术还十分初级,只能通过放置一个透明的导电面板在CRT显示器上来实现用户的触摸操作。
随着时间的推移,触摸屏的技术得到了不断的改进。
1971年,发明家埃利斯分发明了第一个在计算机频谱上使用的触摸屏。
这种触摸屏技术基于电容感应原理,通过在显示屏上放置一层导电物质层,当用户触摸屏幕时,导电物质层检测到电流变化,进而确定用户的操作。
然而,由于当时的计算机技术还相对落后,触摸屏的应用十分有限。
直到1982年,美国约瑟夫·海曼(Joseph Harman)发明了一种用于触摸屏的电阻式传感器,才让触摸屏有了更广泛的应用。
1990年代,随着个人计算机的普及以及移动设备的兴起,触摸屏技术开始得到更大范围的应用。
1993年,日本的Fujitsu公司推出了第一款商用化的电容式触摸屏产品。
同年,Apple公司在Newton MessagePad上首次使用了电阻式触摸屏,这也是第一款商用智能手机。
随后,Palm和Nokia等手机制造商也相继推出了触摸屏手机产品,将触摸屏技术引入了手机领域。
2000年代,随着电容式触摸屏技术的进一步改进,触摸屏在移动设备领域得到了广泛应用。
2007年,苹果公司推出了第一代iPhone,搭载了多点触摸屏幕,这一创新引领了智能手机的潮流,使得触摸屏成为移动设备的标配。
在接下来的几年里,触摸屏手机和平板电脑的销量迅速增长,取代了传统的按键式手机,成为主流。
随着触摸屏技术的不断发展,其应用范围也不断扩大。
商场和银行等公共场所广泛使用触摸屏ATM机,使操作更加简便。
自助查询机、自助购物机等设备也广泛应用触摸屏技术,提供了便利的服务。
此外,触摸屏在教育、医疗、工业控制等领域也发挥着重要作用。
至今,触摸屏技术已经达到了一个新的高度。
除了常规的电阻式和电容式触摸屏,还涌现出了更加先进的技术,如声表面波触摸屏、压力感应触摸屏和虚拟现实技术等。
触摸屏技术的发展和应用前景
触摸屏技术的发展和应用前景一、前言随着科技不断发展,触摸屏技术也已经成为了一种非常普遍的操作方式,它已经在各种设备中被广泛应用。
本文将探讨触摸屏技术的发展历程,以及它在未来的应用前景。
二、触摸屏技术的发展历程1、早期触摸屏技术早期触摸屏技术是一种基于电子压力感应的技术,由于其响应速度比较慢,其应用范围非常有限。
除此之外还有基于电阻感应的技术,也就是在屏幕和显示器之间覆盖一层高阻抗透明膜,当操作者通过手指、笔等物品轻轻按压屏幕时,就能够完成相应的交互操作。
虽然这种技术响应速度较快,但因为需要覆盖一层高阻抗透明膜,所以光透过率会受到影响,并不能达到十分清晰的效果。
2、电容感应技术电容感应技术是目前较为流行的一种技术,它通过测量手指或其他外部物品在电容屏幕上的电容变化,来判断其位置和操作。
机身尺寸更小,更加轻便,使用更方便,而且操作速度也更快。
今天,已经有许多消费电子产品及工业设备使用电容式触摸屏。
除此之外还有双层电容式电阻技术,这种技术采用了双层电容膜来代替单层电容膜,提高了对触摸的灵敏度。
同时,还避免了细菌在触控屏上滋生的问题。
这种技术在医疗健康、机场航空等行业应用广泛。
3、超声波触摸技术超声波触摸技术则跑了一些不一样的路线,它通过振荡晶片发射出的高频声波,同时在屏幕收集反弹回来的声波来确定触摸位置。
这种技术响应速度快,精度高,同时对触摸手势的识别也更加稳定。
三、触摸屏技术的应用前景1、智能手机随着智能手机的普及,触摸屏技术也已经成为了与之不可分割的一部分。
现代智能手机依靠触摸屏技术的高效操作和导航功能,让我们可以轻松实现各种功能的调用。
2、平板电脑平板电脑依托更大的屏幕和更高了成本的触摸屏技术,成为了移动生产力的重要工具。
触摸屏技术允许我们可以通过手势对屏幕进行操作,实现更好的使用体验。
3、车载导航随着触摸屏技术的发展,汽车中的触摸屏也得到了广泛应用,如呼叫、音乐、导航等功能,汽车触摸屏使汽车变得更加智能化。
触摸屏发展历程
触摸屏发展历程
触摸屏发展历程可以追溯到20世纪60年代。
在那个时候,计算机科学家开始研究如何实现人机交互的方式,并且希望能够找到一种更直观、更方便的输入方式。
最早的触摸屏使用的是电阻式技术。
这种技术利用两层薄膜夹层之间的电阻变化来感应触摸。
当手指触摸屏幕上的位置时,屏幕会测量电流的变化,并确定触摸点的位置。
电阻式触摸屏的优点是价格较低,但缺点是不够灵敏,并且易受物体的压力影响。
随后,表面声波技术的触摸屏开始出现。
这种技术利用了超声波传感器来感应触摸。
当手指触摸屏幕时,超声波传感器测量触摸点的位置。
表面声波技术的触摸屏比电阻式触摸屏更灵敏,但仍然存在问题,比如易受环境噪声的干扰。
1990年代,电容式触摸屏开始普及。
这种触摸屏利用电容变
化来感应触摸。
当手指触摸屏幕时,触摸屏会测量电容变化,并确定触摸点的位置。
电容式触摸屏相对于之前的技术来说更加灵敏和准确,同时还具有耐用性和透明度高的优点。
随着智能手机的兴起,多点触摸技术也成为了发展的方向。
多点触摸技术可以同时感应屏幕上多个触摸点的位置,从而实现更多的手势和操作方式。
这种技术在触摸屏移动设备上得到了广泛应用,并推动了触摸屏的发展。
近年来,触摸屏还迎来了更多的创新,比如无边框设计、压力
感应技术、手写识别等。
这些创新让触摸屏在用户体验和功能方面有了更多的提升。
触摸屏已经成为了现代计算设备的标配,不仅在智能手机、平板电脑上广泛应用,也逐渐进入了汽车、家电等领域。
我们可以期待,在未来触摸屏技术将继续发展,为我们的生活带来更多的便利和创新。
计算机人机交互技术发展历史解析
计算机人机交互技术发展历史解析计算机人机交互技术是指人类与计算机之间进行信息交流和互动的技术。
它的发展经历了多个阶段和重要的里程碑,本文将对其发展历史进行解析。
第一阶段:早期终端计算机人机交互技术的发展可以追溯到1950年代,当时的计算机只能通过早期终端与人类进行交互。
早期终端通常由一个键盘和一台显示器组成,用户通过键盘输入指令,计算机在显示器上输出结果。
这种交互方式非常简单,只能实现基本的命令输入和结果输出,用户体验非常差。
第二阶段:图形用户界面随着计算机硬件和软件的发展,图形用户界面(GUI)被引入到计算机人机交互技术中。
1970年代,施乐帕洛阿尔托研究中心开发了第一个图形用户界面系统,被称为“阿尔托”。
阿尔托系统引入了窗口、图标、菜单等元素,大大提高了用户与计算机之间的交互效率和便利性。
1980年代,苹果公司推出了Macintosh计算机,搭载了一套先进的图形用户界面系统,让计算机普及化成为可能。
第三阶段:触摸屏技术触摸屏技术的发展标志着计算机人机交互技术进入了一个新的阶段。
触摸屏技术可以有效地减少硬件设备的数量,让用户可以直接通过触摸屏幕进行交互操作。
1990年代初,IBM推出了第一款商用触摸屏计算机,进一步提升了人机交互的便利性和效率。
随着移动设备的普及,触摸屏技术在智能手机和平板电脑上得到了广泛应用。
第四阶段:虚拟现实和增强现实虚拟现实(VR)和增强现实(AR)技术的出现为计算机人机交互技术带来了革命性的突破。
虚拟现实技术可以为用户创造出一个完全虚拟的环境,用户可以通过头戴式显示器和动力手套等设备进行身临其境的交互体验。
增强现实技术则将虚拟元素与现实世界相融合,为用户提供丰富的交互体验。
这些技术在游戏、教育、医疗等领域有着广泛的应用前景。
第五阶段:自然语言处理和人工智能随着人工智能和自然语言处理技术的迅速发展,计算机人机交互技术进入了一个全新的阶段。
通过语音识别、深度学习和自然语言处理等技术,计算机可以理解和回应人类的语言,使得人机交互更加自然和智能化。
触摸屏控制实验设计报告
触摸屏控制实验设计报告序随着中国工业化的快速发展,对工业自动化控制的要求也在不断提高和完善。
触摸屏作为一种可视化的人机界面,以其体积小、可靠性高的特点逐渐取代传统的按钮控制和仪表控制,成为工业控制中人机界面的主流。
本文分析了触摸屏设备的特点、国外现状和发展趋势,设计了一种基于嵌入式实时操作系统WinCE5.0和ARM9系列AT91SAM9261为核心处理器的大型触摸屏控制器。
考虑到触摸屏设备的功能需求,提出了本课题的设计指标,制定了触摸屏控制器的总体设计方案,具体体现在控制器硬件设计和操作系统移植两个方面。
硬件平台采用模块化、结构化的思想进行设计和实现。
分析了触摸屏控制器中的主要硬件模块,包括处理器核心模块、存储模块、触摸屏模块、键盘模块、以太网模块和USB主从模块,并给出了硬件设计方法和电路实现。
硬件测试环境的建立是为了调试我弟弟的硬件模块。
基于搭建的硬件平台,本文重点研究了嵌入式操作系统WinCE 5.0的移植和BSP的开发。
分析了WinCE 5.0操作系统的架构和移植原理,在了解了三星公司的S3C2410 BSP之后,给出了基于AT91SAM9261的WinCE 5.0 BSP的开发过程。
详细分析了WinCE 5.0 Bootloader的工作原理和体系结构。
根据触摸屏系统的功能需求和硬件资源的分配,设计了触摸屏设备的Bootloader,并给出了具体的开发步骤。
深入研究了OAL的功能和原理,详细给出了OAL开发中的重要功能和主要模块。
针对触摸屏控制器的主要硬件模块,在分析WinCE 5.0中断模型和中断机制的基础上,开发了触摸屏驱动程序、矩阵键盘驱动程序和USB主机驱动程序。
在开发的BSP的基础上,利用WinCE 5.0操作系统定制工具Plarform Builder 对操作系统内核进行定制和编译,并对操作系统的性能进行测试。
测试结果表明,WinCE 5.0操作系统能够成功移植到触摸屏控制器上,能够满足工业现场的实时性要求。
触摸你的世界
触摸技术人们并不陌生,银行的取款机大多有触摸屏功能,很多医院、图书馆等的大厅都有这种触控技术的电脑,支持触摸屏的手机、MP3、数码相机也很多。
定义:多点触控(又称多重触控、多点感应、多重感应,英译为Multitouch或Multi-touch)是一项由电脑使用者透过数只手指达至图像应用控制的输入技术。
是采用人机交互技术与硬件设备共同实现的技术,能在没有传统输入设备(如鼠标、键盘等)的情况下进行计算机的人机交互操作。
发展过程:多点触控技术始于1982年由多伦多大学发明的感应食指指压的多点触控屏幕。
同年贝尔实验室发表了首份探讨触控技术的学术文献。
1984年,贝尔实验室研制出一种能够以多于一只手控制改变画面的触屏。
同时上述于多伦多大学的一组开发人员终止了相关硬件技术的研发,把研发方向转移至软件及界面上,期望能接续贝尔实验室的研发工作。
1991年此项技控取得重大突破,研制出一种名为数码桌面的触屏技术,容许使用者同时以多个指头触控及拉动触屏内的影像。
1999年,“约翰埃利亚斯”和“鲁尼韦斯特曼”生产了的多点触控产品包括iGesture板和多点触控键盘。
经过多年维持专利的iGesture板和多点触控键盘。
2006年,Siggraph大会上,纽约大学的Jefferson Y Han教授向众人演示最新成果,其领导研发的新型触摸屏可由双手同时操作,并且支持多人同时操作。
利用该技术,Jefferson Y Han在36英寸×27英寸大小的屏幕上,同时利用多只手指(姆指似乎还无法感应到),在屏幕上画出了好几根线条。
与普通的触摸屏技术所不同的是,它同时可以有多个触摸热点得到响应,而且响应时间非常短——小于0.1秒。
特点:1、多点触控是在同一界面上的多点或多用户的交互操作模式,摒弃了键盘、鼠标的单点操作方式。
2、用户可通过双手进行单点触摸,也可单击、双击、平移、按压、滚动以及旋转等不同手势触摸屏幕,实现随心所欲地操控,从而更好的更全面的了解对象的相关特征(文字、录像、图片、卫片、三维模拟等信息)3、可根据客户需求,订制相应的触控板,触摸软件以及多媒体系统;可以与专业图形软件配合使用识别手势方向:我们现在看到最多的是Multi-Touch Gesture,即两个手指触摸时,可以识别到这两个手指的运动方向,但还不能判断出具体位置,可以进行缩放、平移、旋转等操作。
触摸技术
1、触摸屏简介:
1971年美国SamHurst发明了第一个触摸传感器,被认为是触摸屏开端。
他发明是为了解决处理图形数据而产生,这种最早叫“AccuTouch”
后来SamHurst成立公司主研发触摸屏技术,并与西门子合作完善此技术,于1982年安装了33台电视上,从此开始触摸技术全面扩展运用触摸屏于1991年进行中国,于1996年中国自主研发触摸自助一体机投入生产
2、触摸技术瓶颈--透光率
用户需求屏显更加鲜艳清晰图像,这就对显示屏提出了很高的要求,目前透光性最好的材料是玻璃,但光线穿过后两个表面将分别有3%的
反射光损失,即单层玻璃取大透光率只有94%,故到达人眼的光线受损。
现运用主要为电阻屏和电容屏,都需在玻璃表面上加盖几层导电涂层,可见透光率更低图像损失更高。
一般电阻屏透光率为75%,电容屏稍高,也不能达到商家宣称95%-98%,商家提到是依据红外线通过触摸屏的透光率,而不是图像发出的光线。
故触摸操作越灵敏,图像逼真度就越低。
A-3601的按键就是电容感应式
3、触摸技术的发展
以往手机触摸屏采用电阻式,一次只能感知一个位置的触摸,APPLE在iphone率先采用“多点触摸”即电容屏,达配配套软件,同时可处理
多个手指指令,使触摸技术提升一个台阶。
由于触摸到玻璃屏,部份使用者反馈键盘手感不好,无传统按键回弹力,故现在开发“力反馈触摸屏”,使手指触摸时有反震力,增加手感。
4、名词:
LCD触摸技术:LCD touch screen technlogy
触摸式按键:touchkey
触摸式滚动条:touch-slider
触摸式平板(Touchpad)
高,。
德普特工程师谈触摸屏技术与发展
德普特工程师谈触摸屏技术与发展(上)2013-01-30王阔《微型计算机》2013年1月下无论是智能手机、平板还是笔记本电脑,无论装载的是Android、iOS或者Windows 操作系统,几乎所有的数码设备现在都不约而同地与一种人机交互界面有关。
你应该猜到我想说的是什么了吧?没错,触摸屏就像那个交响乐团的指挥家,影响着行业的走向。
远到苹果率先启用具有多点触控功能的屏幕,一举成为智能手机执牛耳者;近到最近Windows 8电脑拥抱触摸屏,触摸屏实现了在电脑上的抢滩登陆。
那么,表面简单的触摸屏背后有没有什么大学问呢?接下来我们就来一探究竟。
触摸屏的发展历程说了这么久的触摸屏到底是什么呢?触摸屏(Touch Screen,也经常称作Touch Panel)是可接收触头(手指或者指点笔)等输入信号的感应式设备。
它利用传感设备来定位,当判断触头接触到屏幕上显示的按钮时,就可根据预先设定好的程序做出相应的操作。
简单来说,触摸屏取代了鼠标和键盘,令人机交互更为直观有趣。
因此,得到了用户的广泛认可。
触摸屏最早起源于上世纪六十年代。
1965年,E·A·约翰逊在一篇文章中展示了自己在电容式触摸屏上的研究。
CERN(欧洲核子研究组织)的Bent Stumpe在同时期对透明触摸屏的研发也取得了进展;随后,他在同事Frank Beck的帮助下,率先在上世纪七十年代初研发出了透明触摸屏的原型产品,并在1973年制造出了实物。
电阻触摸屏则在1982年由美国人G·Samuel·Hurst发明并生产。
一经问世,触摸屏凭借直观的操作和良好的人机交互特性获得了市场的认可。
举个例子,1979年~1985年期间比较流行的Fairlight CMI工作站便应用了触摸屏技术,这款当时高端的音乐后期重采样和合成工作站,借助这个技术可以让用户在操作界面上定位并控制采样和合成数据,并能通过触摸操作访问操作系统的菜单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
触摸屏技术是谁发明的_触摸屏技术的发展历程
什么是触摸屏技术为了操作上的方便,人们用触摸屏来代替鼠标或键盘。
触摸屏由触摸检测部件和触摸屏控制器组成,触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,然后将相关信息传送至触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再传送给CPU。
它同时能接收CPU发来的命令并加以执行。
触摸屏由安装在显示器屏幕前面的检测部件和触摸屏控制器组成。
当手指或其它物体触摸安装在显示器前端的触摸屏时,所触摸的位置由触摸屏控制器检测,并通过接口(如RS232串行口,USB等)送到主机。
目前触摸屏已经由单点触屏发展到实现多点触屏了。
触摸屏技术的发展历程1971年,美国人SamHurst发明了世界上第一个触摸传感器。
虽然这个仪器和我们今天看到的触摸屏并不一样,却被视为触摸屏技术研发的开端。
当年,SamHurst在肯尼迪大学当教师,因为每天要处理大量的图形数据而不胜其烦,就开始琢磨怎样提高工作效率,用最简单的方法搞定这些图形。
他把自己的三间地下室改造成了车间,一间用来加工木材,一间制造电子元件,一间用来装配这些零件,并最终制造出了最早的触摸屏。
这种最早的触摸屏被命名为AccuTouch,由于是手工组装,一天生产几台设备。
1973年,这项技术被美国《工业研究》杂志评选为当年100项最重要的新技术产品之一。
不久,SamHurst成立了自己的公司,并和西门子公司合作,不断完善这项技术。
直到1982年,Sam Hurst的公司在美国一次科技展会上展出了33台安装了触摸屏的电视机,平民百姓才第一次亲手摸到神奇的触摸屏。
从此,触摸屏技术开始广泛应用于公共服务领域和个人娱乐设备。
人们逐渐习惯用摸的方式,在电子售货机上选购商品,在卡拉OK机上点播歌曲,在银行、医院、图书馆、机场查询自己需要的信息。
触摸屏早期多被装于工控计算机、POS机终端等工业或商用设备之中。
2007年iPhone手。