最新高考数列递推公式题型归纳解析完整答案版
最新高考数列递推公式题型归纳解析完整答案版
最新高考数列递推公式题型归纳解析完整答案版类型1)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
变式1.1:(2004,全国I ,个理22.本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k ,其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.解:Θk k k a a )1(122-+=-,kk k a a 3212+=+∴k k k k k k a a a 3)1(312212+-+=+=-+,即k k k k a a )1(31212-+=--+∴)1(313-+=-a a ,2235)1(3-+=-a a …………k k k k a a )1(31212-+=--+将以上k 个式子相加,得]1)1[(21)13(23])1()1()1[()333(22112--+-=-+⋅⋅⋅+-+-++⋅⋅⋅++=-+k k k k k a a将11=a 代入,得1)1(21321112--+⋅=++kk k a ,1)1(21321)1(122--+⋅=-+=-k k k k k a a 。
经检验11=a 也适合,∴⎪⎪⎩⎪⎪⎨⎧--⋅+⋅--⋅+⋅=-+)(1)1(21321)(1)1(21321222121为偶数为奇数n n a nn n n n类型2n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例3:已知31=a ,n n a n n a 23131+-=+)1(≥n ,求n a 。
解:123132231232)2(31)2(32)1(31)1(3a n n n n a n +-•+⨯-⨯•⋅⋅⋅•+---•+---=3437526331348531n n n n n --=⋅⋅⋅⋅=---L 。
高考数学专题59 由递推关系求数列的通项(解析版)
专题59 由递推关系求数列的通项一、题型选讲题型一 、 由连续两项之间的关系确定数列的通项 利用数列的递推公式求解数列的通项公式的策略: 1、对于递推关系转化为〔常数〕或〔常数〕可利用等差、等比数列的通项公式求解; 2、对于递推关系式可转化为的数列,通常采用叠加法〔逐差相加法〕求其通项公式;3、对于递推关系式可转化为的数列,并且容易求数列前项积时,通常采用累乘法求其通项公式;4、对于递推关系式形如的数列,可采用构造法求解数列的通项公式.例1、数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
【解析】解法一:121(2),n n a a n -=+≥112(1)n n a a -∴+=+ 又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =- 解法二:121(2),n n a a n -=+≥121n n a a +∴=+两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……例2、在数列{n a }中,1a =21,1121+++=n n n a a 求n a 【解析】: 由递推式得:1121++=-n n n a a1n n a a d +-=1n na q a +=1()n n a a f n +-=1()n na f n a +={()}f n n 1n n a pa q +=+即: 21221=-a a 32321=-a a43421=-a a……………..)2(211≥=--n a a n n n 以上各式相加:nn a a 21.....2121321++++= =n 21.....21212132++++ =211)211(21--n =n 211- )2(≥n 当1=n 时 1a =1—21211= 所以n a =n 211-例3、n n a n n a a 2313,311+-==+ 求n a【解析】:由递推式得23131+-=+n n a a n n 即:21311312+⨯-⨯=a a =5222312323+⨯-⨯=a a =85 11823313334=+⨯-⨯=a a ………………………13432)1(31)1(31--=+-⨯--⨯=-n n n n a a n n )2(≥n以上各式相乘:1361321-=-=n a n a n )2(≥n 当1=n 时 1a =1136-⨯=3所以: 136-=n a n题型二、由连续三项确定数列的通项原递推式可化为211()() n n n n a a p a a λλλ++++=++的形式,比拟系数可求得λ,数列{}1n n a a λ++为等比数列。
题型最全的递推数列求通项公式的习题[1]
高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。
类型1)(1n f a a nn解法:把原递推公式转化为)(1n f a a nn ,利用累加法(逐差相加法)求解。
例1. 已知数列na 满足211a ,nna a nn211,求n a 。
变式:已知数列1}{1a a n 中,且a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2nna n f a )(1解法:把原递推公式转化为)(1n f a a n n ,利用累乘法(逐商相乘法)求解。
例1:已知数列na 满足321a ,n na n na 11,求n a 。
例2:已知31a ,nna nna 23131)1(n,求n a 。
变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32nna na a a a (n ≥2),则{a n }的通项1___na 12n n类型3q paa nn1(其中p ,q 均为常数,)0)1((ppq )。
解法(待定系数法):把原递推公式转化为:)(1t a p ta nn,其中pq t1,再利用换元法转化为等比数列求解。
例:已知数列na 中,11a ,321n na a ,求n a .变式:(2006,重庆,文,14)在数列na 中,若111,23(1)nna a a n,则该数列的通项n a _______________变式:(2006.福建.理22.本小题满分14分)已知数列na 满足*111,21().nna a a n N (I )求数列na 的通项公式;(II )若数列{b n }滿足12111*444(1)(),n nb bb bna nN 证明:数列{b n }是等差数列;(Ⅲ)证明:*122311...().232n na a a n nn N a a a 类型4nnnq paa 1(其中p ,q 均为常数,)0)1)(1((q ppq )。
递推数列求通项公式-高考数学一题多解
递推数列求通项公式-高考数学一题多解一、攻关方略数列学习中难度较高的一个内容是递推数列,由递推关系求通项公式是一种十分重要的题型,解题方法丰富多彩,注重分析递推式的结构特点,合理构造得到等差或等比等常见数列是解题的重要策略.下面对一些常见的由递推关系求通项公式的求法做一些归纳.第一类:型如()1n n a a f n +=+的一阶递推式,可改写为()1n n a a f n +-=的形式,左端通过“累加”可以消项;右端()f n 是关于n 的函数,可以求和.故运用“累加法”必定可行,即()()()112132111()n n n n k a a a a a a a a a f k --==+-+-+⋅⋅⋅+-=+∑.第二类:型如1()n n a g n a +=的递推式,可改写为1()n na g n a +=的形式.左端通过“迭乘”可以消项;右端通常也可以化简,故运用“迭乘法”必定可行,即3211121(1)(2)(1)(2)n n n a a a a a a n n g g a a a -=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅-≥.第三类:型如1n n a pa q +=+(1p ≠,0q ≠)的递推式,可由下面两种构造法求通项公式.构造法一:由1n n a pa q +=+及1n n a pa q -=+,两式相减得()11n n n n a a p a a +--=-,得{}1n n a a +-是首项为21a a -,公比为p 的等比数列,先求{}1n n a a +-的通项公式,再利用“累加法”求{}n a 的通项公式.构造法二:若1p =,则显然是以1a 为首项、q 为公差的等差数列;若1p ≠,0p ≠,0q ≠,则构造数列{}n a λ+,满足()1n n a p a λλ++=+.运用待定系数法,解得1q p λ=-,则1n q a p ⎧⎫+⎨⎬-⎩⎭是首项为11q a p +-,公比为p 的等比数列.第四类:型如1nn n pa a a q+=+(0p ≠,0q ≠,0n a ≠)的递推式,运用取倒数,构造数列1n a ⎧⎫⎨⎬⎩⎭,满足111n n q a pa p +=+,运用换元法,即令1n n b a =,得11n n q b b p p +=+,从而转换为第三类.第五类:型如1rn n a pa +=(0p >,0r ≠,1r ≠)的递推式,运用两边取对数法得1lg lg lg n n a r a p +=+,令lg n n b a =,转化为1lg n n b rb p +=+型,即第三类,再运用待定系数法.第六类:型如1n n a pa qn r +=++(1p ≠,0p ≠,0q ≠)的递推式,可构造数列{}n a n λμ++,满足()1(1)n n a n p a n λμλμ++++=++,运用待定系数法解得1q p λ=-,21(1)r qp p μ=+--,从而由等比数列求通项公式;进一步推广,若递推式中包含n 的二次项、三次项,则构造的数列中也同样包含对应次数项.第七类:型如1()n n a pa f n +=+(1p ≠,0p ≠)的递推式,可在等式两边同除以1n p +,构造数列nn a p ⎧⎫⎨⎬⎩⎭,满足111()n n n n n a a f n p p p +++=+,令n n n a b p =,则转化为11()n n n f n b b p ++=+,即第一类,再利用“累加法”求通项公式.第八类:型如满足:11a m =,22a m =,21n n n a pa qa ++=+(p 、q 是常数)的递推式,则称数列{}n a 为二阶线性递推数列,可构造数列{}1n n a a λ+-,满足()11n n n n a a a a λμλ+--=-,则,,p q λμλμ+=⎧⎨=-⎩即λ,μ为方程20x px q --=的两个根,此方程称之为特征方程,则数列{}n a 的通项公式n a 均可用特征根求得(即转化为第七类进一步求解).第九类:型如1n n n ra sa pa q++=+(0p ≠,0q ≠,0r ≠,0s ≠)的递推式,利用不动点法,其中rx sx px q +=+的根为该数列的不动点,若该数列有两个相异的不动点μ,则n n a a v μ⎧⎫-⎨⎬-⎩⎭为等比数列;若该数列有唯一的不动点μ,即方程等根时,1n a μ⎧⎫⎨⎬-⎩⎭为等差数列,这就是不动点求递推数列通项公式的方法.除上述9种类型之外还有换元法、数学归纳法(归纳一猜想一论证)等.给出相类似的递推式必有相应的破解之道,这是模型思想的运用,对所给的递推式借助于变形、代换、运算等方法转化为等差数列、等比数列这两类基本数列(模型)而求解.切变形、代换、运算的手段都是构造法的体现,真可谓:递推数列变化无穷,变形、代换方法众多.模型思想是根主线,合理构造顿显坦途.【典例】(2021·全国甲卷T17)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213a a =.注:若选择不同的组合分别解答,则按第一个解答计分.选①②作条件证明③:(一)待定系数法解法一:【解析】待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.解法二:【解析】待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d =-,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a ==.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n +-=所以是等差数列.选②③作条件证明①:(二)定义法解法一:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43ab =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a =-<不合题意,舍去.综上可知{}n a 为等差数列.解法二:求解通项公式因为213a a ===也为等差数列,所以公差1d =()11n d =-=,故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进而由等差数列定义进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a1d =11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.【针对训练】(2022年全国高考乙卷)1.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <2.设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明;(2)求数列{2nan }的前n 项和Sn .3.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.4.已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .(2022全国甲卷)5.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.6.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.7.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.8.对负整数a ,数43a +、77a +、283a a ++依次成等差数列.(1)求a 的值;(2)若数列{}n a 满足()112n n n a aa n *++=-∈N ,1a m =,求{}n a 的通项公式;(3)在(2)的条件下,若对任意n *∈N ,有2121n n a a +-<,求m 的取值范围.9.设0b >,数列{}n a 满足1a b =,()1121n n n nba a n a n --=≥+-(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,121n n a b +≤+.10.设数列{}n a 满足:11a =,12n n n a a -=-+(2n ≥),数列{}n b 满足:1(1)3n n n b a +=-⋅.求数列{}n b 的通项公式.参考答案:1.D【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,47b b <故D 正确.2.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可.【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;[方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+.[方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=.由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯,……1114(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯+-⨯⎢⎥⎣⎦ ,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++ ()()()()2132431n n b b b b b b b b +=-+-+-++- 11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122n n n pn q p S S ----=+,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠- ,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦' ,所以12n b b b +++L 21122322n n -=+⋅+⋅++⋅ 1(2)12(1)2n n f n n +==+-+'⋅.故234(2)2222nn S f =++'+++ ()1212412(1)212n n n n n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解;方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式;方法三:由134n n a a n +=-化简得1114333n n n n n a a n +++-=-,根据累加法即可求出数列{}n a 的通项公式;方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式.(2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法;方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠- 的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.3.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-=.[方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列.从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯++⨯+⨯=.【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质;方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.4.(1)2n n a =;(2)100480S =.【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2n n a =,所以数列{}n a 的通项公式为2n n a =.(2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15] ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31] ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63] ,则3233635b b b ====L ,即有52个5;6465100,,,b b b L 对应的区间分别为(0,64],(0,65],,(0,100] ,则64651006b b b ====L ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =.【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.5.(1)证明见解析;(2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时,()min 78n S =-.[方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.6.(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【分析】(1)由已知212n nS b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n ∈N 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;[方法二]【最优解】:由已知条件知1231-⋅=⋅⋅⋅⋅ n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥ n n b S S S S n .②由①②得1nn n b S b -=.③又212n nS b +=,④由③④得112n n b b --=.令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n nS b +=,得22=-n n n S b S ,且0n S ≠,0n b ≠,1n S ≠.又因为111--=⋅⋅=⋅ n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S .故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+.下面用数学归纳法证明.当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S 331(1)1222k k k k ++⋅==+++.综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b n S b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【整体点评】(1)方法一从212n nS b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n nS b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论.(2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;7.(1)11()3n n a -=,3n nn b =;(2)证明见解析.【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.(2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S ,230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++ 111233---+n n n n .设0121111101212222Γ3333------=++++ n n n ,⑧则1231111012112222Γ33333-----=++++ n n n .⑨由⑧-⑨得1121113312111113322Γ132********--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n nn n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n .因此10232323--=-=-<⨯⨯n n n n nS n n nT .故2nn S T <.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(14323n n nn T =--⋅,所以2n n S T -=3131(1)(1043234323n nn n n n ----=-<⋅⋅,所以2nn S T <.[方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦,则12121(1)()123(1)+-+-+=++++='- n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.8.(1)2a =-(2)()()()1212n nn a m n -=⋅-+-⋅-(3)163m <【分析】(1)根据等差中项的性质可出关于a 的等式,结合a 为负整数可得出a 的值;(2)推导出数列()2n n a ⎧⎫⎪⎪⎨-⎪⎪⎩⎭为等差数列,确定该数列的首项和公差,即可求得数列{}n a 的通项公式;(3)由2121n n a a +-<对*n ∈N 恒成立结合参变量分离法可得出1243n m +<,求出1243n +的最小值,可得出实数m 的取值范围.【详解】(1)解:由题意可得()21414383a a a a +=++++,整理可得2280a a --=,a 为负整数,解得2a =-.(2)解:因为()1122n n n a a ++=-+-,等式两边同时除以()12n +-可得()()11122n nn n a a ++-=--,所以,数列()2n n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭是首项为2m -,公差为1的等差数列,故()()122n n a m n =-+--,因此,()()()1212n n n a m n -=⋅-+-⋅-.(3)解:由2121n n a a +-<对*n ∈N 恒成立得()()()()()()22122212222222n n n n m n m n +--⋅-+-<⋅--⋅⋅+-对n *∈N 均成立.()2220n --> ,不等式两边同除()222n --,得()()()482222m n m n +-⋅<+-⋅-,得1243n m +<对n *∈N 恒成立,当1n =时,1243n +取最小值163,163m ∴<.9.(1)11(1)011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明见解析【分析】(1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【详解】(1)()1121n n n nba a n a n --=≥+- 1111(2)n n n n n a b b a --∴=+⨯≥当1b =时,11(2)1n n n n n a a -=+≥-,∴数列n n a ⎧⎫⎨⎬⎩⎭是以11a 为首项,以1为公差的等差数列,1(1)1n n n n a ∴=+-⨯=,即1n a =,当0b >,且1b ≠时,11111(2)11n n n n n a b b b a -⎛⎫-+=+≥ --⎝⎭即数列11n n a b ⎧⎫+⎨⎬-⎩⎭是以11111(1)a b b b +=--为首项,公比为1b 的等比数列,111111(1)(1)n n n n a b b b b b b -⎛⎫∴+=⨯= ⎪---⎝⎭即(1)1n n nnb b a b -=-,∴数列{}n a 的通项公式是()111011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明:当1b =时,不等式显然成立当0b >,且1b ≠时,(1)1n n nnb b a b -=-,要证对于一切正整数n ,121n n a b +≤+,只需证1(1)211n n n nb b b b+-⨯≤+-,即证()11121011n nn n b b nb b b b +--≤+⨯>--)()1111n n b bb +-+⨯- ()1111n n b b b +-=+⨯-()()11211n n n b b b b +--=+⨯++⋯++()()22121121n n n n n n b b b b b b b -++--=++⋯+++++⋯++()12211111n n n n n b b b b b b bb b --⎡⎤⎛⎫=++⋯+++++⋯++ ⎪⎢⎥⎝⎭⎣⎦(222)2n n b nb ≥++⋯+=∴不等式成立,综上所述,对于一切正整数n ,有121n n a b +≤+,【点睛】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.10.223n n b =-⋅.【分析】利用辅助法,对于数列{}n a 的递推公式,两边同时除以2n ,根据数列构造法,可得答案.【详解】∵12n n n a a -+=,两边同时除以2n 得1111222n n n n a a --+⋅=.令2n n n a c =,则1112n n c c -=-+.两边同时加上23-得1212323n n c c -⎛⎫-=-⋅- ⎪⎝⎭.∴数列23n c ⎧⎫-⎨⎬⎩⎭是以123c -为首项,12-为公比的等比数列.∴112211133232n n n c c -⎛⎫⎛⎫⎛⎫-=-⋅-=⋅- ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴211332n n c ⎛⎫=+⋅- ⎪⎝⎭.∴2122(1)33n n n n n a c ==⋅+⋅-⋅.又∵1(1)3n n n b a +=-⋅,∴12(1)233n n n n b a =⋅--=-⋅,。
数列的递推公式和通项公式总结
数列的递推公式和通项公式总结一、数列的概念1.数列:按照一定顺序排列的一列数。
2.项:数列中的每一个数。
3.项数:数列中数的个数。
4.首项:数列的第一项。
5.末项:数列的最后一项。
6.公差:等差数列中,相邻两项的差。
7.公比:等比数列中,相邻两项的比。
二、数列的递推公式1.等差数列的递推公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的递推公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的递推公式:an = an-1 + an-2–an:第n项–an-1:第n-1项–an-2:第n-2项三、数列的通项公式1.等差数列的通项公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的通项公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的通项公式:an = (1/√5) * [((1+√5)/2)^n - ((1-√5)/2)^n]–an:第n项四、数列的性质1.收敛性:数列的各项逐渐接近某个固定的数。
2.发散性:数列的各项无限增大或无限减小。
3.周期性:数列的各项按照一定周期重复出现。
五、数列的应用1.数学问题:求数列的前n项和、某项的值、数列的收敛性等。
2.实际问题:人口增长、贷款利息计算、等差数列的求和等。
六、数列的分类1.有限数列:项数有限的数列。
2.无限数列:项数无限的数列。
3.交错数列:正负交替出现的数列。
4.非交错数列:同号连续出现的数列。
5.常数数列:所有项都相等的数列。
6.非常数数列:各项不相等的数列。
综上所述,数列的递推公式和通项公式是数列学中的重要知识点,通过这些公式,我们可以求解数列的各种问题。
同时,了解数列的性质和分类,有助于我们更好地理解和应用数列。
习题及方法:1.习题一:已知等差数列的首项为3,公差为2,求第10项的值。
答案:a10 = 3 + (10-1) * 2 = 3 + 18 = 21解题思路:利用等差数列的递推公式an = a1 + (n-1)d,将给定的首项和公差代入公式,求得第10项的值。
新教材高中数学4数列4.1.2数列的递推公式课时作业含解析新人教A版选择性必修第二册
课时功课(二) 数列的递推公式[练根底]1.数列2,4,6,8,10 , …的递推公式是( )A .a n =a n -1+2(n ≥2)B .a n =2a n -1(n ≥2)C .a 1=2 , a n =a n -1+2(n ≥2)D .a 1=2 , a n =2a n -1(n ≥2)2.设数列{a n }的前n 项和S n =n 2+1 , 那么a 8的值为( )A .15B .16C .17D .183.已知数列{a n }中 , a 1=1 , a n +1=2a n +1 , 那么数列{a n }的一个通项公式是( )A .a n =nB .a n =n +1C .a n =2nD .a n =2n -14.如以下图的是一系列有机物的布局简图 , 图中的〞小斑点〞表现原子 , 两点之间的〞短线〞表现化学键 , 按图中布局 , 第n 个图有化学键( )A .6n 个B .(4n +2)个C .(5n -1)个D .(5n +1)个5.设数列{a n }的前n 项和为S n , S n =3n -1 , 那么a n =________.6.在数列{a n }中 , a 1=2 , a 9=66 , 通项公式是关于n 的一次函数.(1)求数列{a n }的通项公式 ;(2)2020能否为数列{a n }中的项 ?[提本领]7.数列{a n }中 , a 1=7 , a 9=8 , 且(n -1)a n =a 1+a 2+…+a n -1(n ≥3) , 那么a 2即是________.8.雪花曲线是一种容貌乖僻的曲线 , 但它是真实存在的.这条曲线可以从一个等边三角形最先来画.你可以想象 , 有一位可爱的小天使正在画雪花曲线.她把一个蓝色的等边三角形的每边分成相似的三份 , 再在中心的谁人三分之一上向外画出一个粉赤色的等边三角形 , 如许一来就做成了一个六角星 , 六角星的每一条边再向外画一个绿色等边三角形 , … , 以此类推.设第n 个雪花曲线的边数为a n , 那么a 3=________ , a n +1与a n 的干系是________.9.已知数列{a n }中 , a 1=1 , S n 表现{a n }的前n 项和 , 且S n =n +23a n .(1)求a 2 , a 3 ;(2)求{a n }的通项公式.[战疑难]10.(多项选择题)假设数列{a n }知足a 1=1 , a 2=2 , a n a n -2=a n -1(n >3) , 记数列{a n }的前n 项积为T n , 那么以下说法准确的选项是( )A .T n 无最大值B .a n 有最大值C .T 2 019=4D .a 2 019=2课时功课(二) 数列的递推公式1.剖析 : A , B 中没有申明某一项 , 没法递推 , D 中a 1=2 , a 2=4 , a 3=8 , 不切合 , 应选C.谜底 : C2.剖析 : 由a n =S n -S n -1(n ≥2) , 得a 8=S 8-S 7=82+1-72-1=(8+7)(8-7)=15.应选A.谜底 : A3.剖析 : 由题a 1=1 , a 2=3 , a 3=7 , a 4=15 , 履历证 , 选D.谜底 : D4.剖析 : 由题中图形知 , 各图中〞短线〞个数挨次为6,6+5,6+5+5 , … , 假设把6看作1+5 , 那么上述数列为1+5,1+2×5,1+3×5 , … , 于是第n 个图形有(5n +1)个化学键.应选D.谜底 : D5.剖析 : 由a n =S n -S n -1(n ≥2)得a n =S n -S n -1=3n -1-(3n -1-1)=3n -3n -1=3n -1·2(n ≥2).当n =1时 , a 1=S 1=2 , 知足上式 , 故a n =2·3n -1.谜底 : 2·3n -16.剖析 : (1)设a n =kn +b (k ≠0) , 那么⎩⎪⎨⎪⎧k +b =29k +b =66解得⎩⎪⎨⎪⎧ k =8b =-6.∴a n =8n -6.(2)由8n -6=2 020得n =1 0134∉N * 故2 020不是数列{a n }中的项.7.剖析 : 由(n -1)a n =a 1+a 2+…+a n -1(n ≥3) ,得na n +1=a 1+a 2+…+a n ,两式相减 , 得na n +1-(n -1)a n =a n .∴n ≥3时 , na n +1=na n , 即a n +1=a n .又a 9=8 , ∴a 3=8.又2a 3=a 1+a 2 , a 1=7 , ∴a 2=2a 3-a 1=9.谜底 : 98.剖析 : a 1=3 , a 2=3×4=12 ,a 3=3×42=48 , … ,a n +1=4a n .谜底 : 48 a n +1=4a n9.剖析 : (1)由S 2=43a 2 , 得3(a 1+a 2)=4a 2 , 解得a 2=3a 1=3. 由S 3=53a 3 , 得3(a 1+a 2+a 3)=5a 3 , 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时 , 有a n =S n -S n -1=n +23a n -n +13a n -1 , 清算得a n =n +1n -1a n -1. 于是a 2=31a 1 , a 3=42a 2 , … , a n -1=n n -2a n -2 , a n =n +1n -1a n -1. 将以上n -1个等式中等号两头划分相乘 , 清算得a n =n n +12. 综上可知 , {a n }的通项公式a n =n n +12. 10.剖析 : ∵a 1=1 , a 2=2 , a n a n -2=a n -1(n >3)∴a 3=2 , a 4=1 , a 5=12 , a 6=12, a 7=1 , a 8=2 , … 因此数列{a n }是周期为6的周期数列 , a n +6=a n , ∴a n 有最大值2 , a 2 019=a 3=2 , 又由于T 1=1 , T 2=2 , T 3=4 , T 4=4 , T 5=2 , T 6=1 , T 7=1 , T 8=2 , … , 以是{T n }是周期为6的周期数列 , T n +6=T n ,∴T n 有最大值4 , T 2 019=T 3=4.应选BCD.谜底 : BCD。
2022高考数学二轮复习 数列中的复杂递推式问题(解析版)
微专题06 数列中的复杂递推式问题秒杀总结1.叠加法:+-=1()n n a a f n ; 2.叠乘法:+=1()n na f n a ;3.构造法(等差,等比):①形如+=+1n n a pa q (其中,p q 均为常数-≠(1)0pq p )的递推公式,()+-=-1n n a t p a t ,其中=-1qt p,构造+-=-1n n a t p a t ,即{}-n a t 是以-1a t 为首项,p 为公比的等比数列. ②形如+=+1n n n a pa q (其中,p q 均为常数,-≠()0pq q p ),可以在递推公式两边同除以+1n q ,转化为+=+1n n b mb t 型. ③形如++=-11n n n n a a d a a ,可通过取倒数转化为等差数列求通项.4.取对数法:+=1t n n a a . 5.由n S 和n a 的关系求数列通项(1)利用-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n ,化n S 为n a .(2)当n a 不易消去,或消去n S 后n a 不易求,可先求n S ,再由-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n 求n a .6.数列求和:(1)错位相减法:适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和=⋅n n n c a b 型 (2)倒序相加法(3)裂项相消法典型例题例1.已知数列{}n a 满足14a =且121n n a a a a +++⋯+=,设2log n n b a =,则122320172018111b b b b b b ++⋯+的值是( ) A .20174038B .30254036C .20172018D .20162017【解答】解:数列{}n a 满足14a =且121n n a a a a +++⋯+=,① 可得214a a ==,当2n 时,可得121n n a a a a -++⋯+=,② ①-②可得1n n n a a a +=-, 即12n n a a +=,则2422n n n a -==,2n , 可得2log (2)n n b a n n ==, 则122320172018111111122233420172018b b b b b b ++⋯+=+++⋯+⨯⨯⨯⨯ 11111113130254233420172018420184036=+-+-+⋯+-=-=, 故选:B .例2.已知数列{}n a 的通项公式为*)n a n N =∈,其前n 项和为n S ,则在数列1S ,2S ,⋯,2019S 中,有理数项的项数为( ) A .42B .43C .44D .45【解答】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-, 212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 例3.对于*n N ∈,2314121122232(1)2n n n n +⨯+⨯+⋯+⨯=⨯⨯+ 11(1)2nn -+ . 【解答】解:由已知中的等式: 1311112222⨯=-⨯⨯; 2231411112223232⨯+⨯=-⨯⨯⨯; 2333141511112223234242⨯+⨯+⨯=-⋯⨯⨯⨯⨯ 由以上等式我们可以推出一个一般结论: 对于*n N ∈,231412111122232(1)2(1)2n nn n n n +⨯+⨯+⋯+⨯=-⨯⨯++.故答案为:231412111122232(1)2(1)2n nn n n n +⨯+⨯+⋯+⨯=-⨯⨯++. 例4.设曲线1()n y x n N ++=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201712017220172016log log log x x x ++⋯+的值为 .【解答】解:由1n y x +=,得(1)n y n x '=+,1|1x y n =∴'=+,∴曲线1*()n y x n N +=∈在(1,1)处的切线方程为1(1)(1)y n x -=+-,取0y =,得1111n nx n n =-=++, 12201612201612320172017x x x ∴⋯=⨯⨯⋯⨯=, 则2017120172201720162017122016log log log log ()x x x x x x ++⋯+=⋯ 20171log 12017==-. 故答案为:1-.例5.在数1和2之间插入n 个正数,使得这2n +个数构成递增等比数列,将这2n +个数的乘积记为n A ,令2log n n a A =,*n N ∈. (1)数列{}n a 的通项公式为n a = ;(2)2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋯+⋅= .【解答】解:(1)设在数1和2之间插入n 个正数,使得这2n +个数构成递增等比数列为{}n b , 则11b =,1221n n b q ++==⨯,即12n q +=,q 为此等比数列的公比. (1)(2)22231123(1)12221()2n n n n n n n n A q q q qqqq++++++++⋯+++∴=⋅⋅⋅⋯====,22log 2n n n a A +∴==, 故答案为:22n +. (2)由(1)可得22log 2n n n a A +==,又tan(1)tan tan1tan[(1)1]1tan(1)tan n n n n n +-=+-=++,tan(1)tan tan(1)tan 1tan1n nn n +-∴+=-,222tan(2)tan(1)tan tan tan(1)tan(2)1tan1n n n n a a n n ++-+∴⋅=++=-,*n N ∈.2446222tan3tan 2tan 4tan3tan5tan 4tan(2)tan(1)tan tan tan tan tan tan (1)(1)(1)(1)tan1tan1tan1tan1n n n n n T a a a a a a +---+-+=⋅+⋅+⋯+⋅=-+-+-+⋯+- tan(2)tan 2tan1n n +-=-,*n N ∈,故答案为:tan(2)tan 2tan1n n +--.例6.数列{}n a 中,*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2310n ta n n++恒成立,则实数t 的取值范围是 . 【解答】解:*1()(1)(1)nn n na a n N n na +=∈++,∴1(1)(1)11(1)n n n nn na n n n a na na +++++==++, 即1111(1)n nn a na +-=+,又1121a =, ∴数列1{}nna 是以2为首项,1为公差的等差数列, ∴12(1)1nn n na =+-=+, 1(1)n a n n ∴=+.不等式2310nta n n ++化为:3(4)t n n-++. 334244n n n n ++⨯+=+,当且仅当3n n=时取等号, 由*n N ∈,则当2n =时,34n n ++取最小,最小值为152152t ∴-, 故答案为:15[2-,)+∞.过关测试一.选择题(共23小题)1.设数列{}n a 为正项数列,数列{}n a 满足12a =,22112(2)0n n n n na a a n a ++--+=,若[]x 表示不超过x 的最大整数,(例如[1.6]1=,[ 1.6]2)-=-则222122019232020[][][](a a a ++⋯⋯+= ) A .2018B .2019C .2020D .2021【解答】解:数列{}n a 满足12a =,22112(2)0n n n n na a a n a ++--+=,整理得11[(2)]()0n n n n na n a a a ++-++=,由于数列为正项数列,所以1(2)n n na n a +=+,整理得12n n a n a n ++=,111n n a n a n -+=-,122n n a na n --=⋯-,422143,21a a a a ==,各式相乘得到1(1)12n a n n a ⨯+=⨯,所以(1)n a n n =+. 则2(1)1n n n a n ++=,2(1)1[][]1n n n a n++== 所以222122019232020[][][]220182020a a a ++⋯⋯+=+=. 故选:C .2.已知数列{}n a 满足11a =,*11()(1)n n n n a a a a n N n n ++-=∈+,则n na 的最小值是( )A .0B .12C .1D .2【解答】解:*11()(1)n n n n a a a a n N n n ++-=∈+,两边同时除以1n n a a +,得 111111(1)1n n a a n n n n +-==-++, 111111111112121232n a n n n n n =-+-+⋯+-+-+=----, 故221121(1)1n n na n n==---+, 故最小值为1n =时,n na 的最小值是1, 故选:C .3.已知数列{}n a 满足:*2121(,2)2n n n n n a a a n N n a a ----=∈>-,若1231,7a a ==,2019(a = )A .38075B .36054C .56058D .54036【解答】解:由题意数列{}n a 满足:*2121(,2)2n n n n n a a a n N n a a ----=∈>-,可得21112n n n a a a --+=,所以数列1{}na 是等差数列, 211174133d a a =-=-=, 所以14411(1)33n n n a -=+-=,2019334201918075a ==⨯-.故选:A .4.已知数列{}n a 满足11a =-,212a =,1122(21)(21)n n n n a a a a ++-=--,2n ,*n N ∈,记数列{}n a 前n 项和为n S ,则( ) A .202178S <<B .202189S <<C .2021910S <<D .20211011S <<【解答】解:由112?2(2?1)(2?1)n n n n a a a a ++=可得11(2?1)?(2?1)(2?1)(2?1)n n n n a a a a ++=. 化简得?1111(2)2?12?1n na a n =, 累加求和得211?22?12?1n a a n =,化简得1212111?22?1n a n =+=++,(0,1)∈, 所以112(1,1)1n a n n∈+++, 即2221log log ,21n n n a n n n++<<+. 122222214522log log log log log 23416n n n n S a a a n ++=+++>++++=+, 122222213411log log log log log 2234n n n n S a a a n ++=+++<++++=, 12222134log log log 223n n S a a a =+++<+++,所以892220212220231011log 2log log log 262S <<<<, 即202189S <<. 故选:B .5.已知数列{}n a 的首项10a =,11n n a a +=+,则20(a = ) A .99B .101C .399D .401【解答】解:数列{}n a 的首项10a =,11n na a +=+, 则:1111n n a a ++=++, 整理得:221)=, 1=, 1=(常数),所以数列1=为首项,1为公差的等差数列.1(1)n n =+-=,整理得:21n a n =-(首项符合通项), 则:21n a n =-,所以:204001399a =-=. 故选:C .6.若以2为公比的等比数列{}n b 满足2221log log 23n n b b n n +-=+,则数列{}n b 的首项为() A .12B .1C .2D .4或18【解答】解:2221log log 23n n b b n n +-=+,公比为2,222log (log 1)23n n b b n n ∴+-=+, 1n =时,22121log log 24b b +-=,解得:21log 3b =-或2.14b ∴=或18.故选:D .7.已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足21324(2)n n S S n n n -+=++,若对任意的*n N ∈,1n n a a +<恒成立,则正整数a 的值是( ) A .5B .6C .7D .8【解答】解:依题意2121220S S a a +=+=, 1a a =为整数,故2202a a =-为偶数又12a a a =<, 320a ∴<,即203a <, 又2213220a a a >+=,∴2203a >, 又323212237S S a a a +=++=, 322172a a a ∴+=>,∴2172a <, ∴2201732a <<, 28a ∴=,16a a ∴==故选:B .8.已知函数1()2sin()2f x x x =+-,则122018()()()201920192019f f f ++⋯+的值等于( )A .2019B .2018C .20192D .1009【解答】解:函数1()2sin()2f x x x =+-,11()(1)2sin()12sin()122f x f x x x x x ∴+-=+-+-+-=,∴122018()()()201920192019f f f ++⋯+ 1201812=⨯⨯ 1009=.故选:D . 9.已知函数()cos x f x x lnxππ=+-,若22018()()()1009()(0201920192019f f f a b ln a ππππ++⋯+=+>,0)b >,则222a b a ++的最小值为( ) A .72B .3C .6D .7【解答】解:因为当n N ∈,12018n 时,22220192019201920192019()()cos cos 2019201920192019201920192019n n n n n n f f ln lnn n ππππππππππππ---+=+++--- 2019cos()cos()201920192019n n n n ln lnn n ππππππ-=+-++- 2cos()cos()20192019n n ln πππ=-+ 2ln π=,所以220182018()()()220182019201920192f f f ln ln πππππ++⋯+==, 1009()2018a b ln ln ππ+=,(0,0)a b >>,所以2a b +=,即2a b =-,(02)b <<,2222222372(2)2(2)2682(3)82()22a b a b b b b b b b b ++=-++-=-+=-+=-+,所以当32b =时,222a b a ++最小值为72. 故选:A .10.设等差数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,已知511a =,10120S =,11n n n b a a +=⋅,若17k T =,则正整数k 的值为( )A .9B .8C .7D .6【解答】解;设等差数列{}n a 的公差为d ,由51011120a S =⎧⎨=⎩,得114111045120a d a d +=⎧⎨+=⎩,解得132a d =⎧⎨=⎩,所以32(1)21n a n n =+-=+,则111111()(21)(23)22123n n n b a a n n n n +===-++++, 所以1111111111()()2355721232323n T n n n =-+-+⋯+-=-+++,令1111()33237k T k =-=+,得2321k +=,解得9k =.故选:A .11.已知数列满足11a =,121n n a a +=+,设数列2{log (1)}n a +的前n 项和为n S ,若12111n nT S S S =+⋯+,则与9T 最接近的整数是( ) A .5 B .4 C .2 D .1【解答】解:数列满足11a =,121n n a a +=+, 即有112(1)n n a a ++=+, 即1121n n a a ++=+, 可得111(1)22n n n a a -+=+=; 22log (1)log 2n a +=n n =,1(1)2n S n n =+,12112()(1)1n S n n n n ==-++, 则12111111112(1)2231n n T S S S n n =+⋯+=-+-+⋯+-+ 12(1)1n =-+, 9992105T =⨯=, 则与9T 最接近的整数是2. 故选:C .12.已知数列{}n a 是首项为1,公差为2的等差数列,数列{}n b 满足关系:312123112n n n a a a a b b b b +++⋯+=-,数列{}n b 的前n 项和为n S ,则5S 的值为( ) A .454 B .450 C .446 D .442【解答】解:由题意可得:12(1)21n a n n =+-=-.312123112n n n a a a a b b b b +++⋯+=-, 2n ∴时,311211231112n n n a a a a b b b b ---+++⋯⋯+=-, 相减可得:12n n n a b =,可得(21)2n n b n =-. 1n =时,11112a b =-,可得12b =. 则23455232527292454S =+⨯+⨯+⨯+⨯=. 故选:A .13.已知数列{}n a 满足:当0n a ≠时,2112n n na a a +-=;当0n a =时,10n a +=;对于任意实数1a ,则集合{|0n n a ,1n =,2,3,}的元素个数为( ) A .0个 B .有限个C .无数个D .不能确定,与1a 的取值有关【解答】解:当10a =时,根据题意,则2340a a a ===⋯=,则集合的元素有无数个; 当11a =±时,则20a =,根据题意,则340a a ==⋯=,则集合的元素有无数个; 当11a ≠±且10a ≠时,111()2n n na a a +=⨯-, 若1n a >,则10n a +>;若01n a <<,则10n a +<;若10n a -<<,则10n a +>;若1n a <-,则10n a +<.而11111()()22n n n n n n na a a a a a a +-=⨯--=-+,则0n a >时,数列递减且无下限(※);0n a >时,数列递增且无上限(*).(1)若11a >,则10n n a a +->,根据(※)可知,在求解1a ,2a ,⋯的迭代过程中,终有一项会首次小于0,不妨设为(1,)k a k K Z >∈; (2)若1k a <-,则10k a +<;①若11k a +<-,则20k a +<,接下来进入(2)或(3);②若110k a +-<<,接下来进入(3);(3)若10k a -<<,则10k a +>,接下来进入(1)或 (4); (4)若01k a <<,则10k a +<,接下来进入(2)或(3). 若101a <<,则进入(4). 若110a -<<,则进入②. 若11a <-,则进入①.如此会无限循环下去,会出现无限个负数项.综上:集合{|0n n a ,1n =,2,3,}⋯的元素个数为无数个. 故选:C .14.已知数列{}n a 和{}n b 首项均为1,且1(2)n n a a n -,1n n a a +,数列{}n b 的前n 项和为n S ,且满足1120n n n n S S a b +++=,则2019(S = ) A .2019B .12019C .4037D .14037【解答】解:1(2)n n a a n -,1n n a a +, 1n n n a a a +∴, 1n n a a +∴=,另外:121a a a ,可得211a a ==, 1n a ∴=.1120n n n n S S a b +++=,1120n n n S S b ++∴+=,1120n n n n S S S S ++∴+-=,∴1112n nS S +-=. ∴数列1{}nS 是等差数列,首项为1,公差为2. ∴112(1)21nn n S =+-=-, 121n S n ∴=-. 201914037S ∴=. 故选:D .15.已知数列{}n a 满足11(1)(1)3()n n n n a a a a ++--=-,152a =,设22()4n n n a c n λ=-+,若数列{}n c 是单调递减数列,则实数λ的取值范围是( )A .1(6,)+∞B .1(3,)+∞C .1(2,)+∞D .(1,)+∞【解答】解:由11(1)(1)3()n n n n a a a a ++--=-得:11(1)(1)3[(1)(1)]n n n n a a a a ++--=---,∴11(1)(1)1(1)(1)3n n n n a a a a ++---=--,即1111113n n a a +-=--,∴数列1{}1n a -是首项为11213a =-,公差为13的等差数列, ∴12111(1)13333n n n a =+-=+-, ∴311n a n -=+,即41n n a n +=+, 42212()2()41n n n n n c n n λλ+⋅+∴=-=-++,数列{}n c 是单调递减数列,∴对于*n N ∀∈,1n n c c +<,即1222()2()21n n n n λλ+-<-++, 即4221n n λ>-++,∴只需42()21max n n λ>-++,令42()(1)21f x x x x =-++,222222222422(2)4(1)42()(2)(1)(2)(1)(2)(1)x x x f x x x x x x x +-+-'∴=-+===++++++, ()f x ∴在上单调递增,在,)+∞上单调递减,又f (1)13=,f (2)13=,∴当*n N ∈时,()f n 的最大值为f (1)f =(2)13=, 即421()213max n n -=++, ∴13λ>, 即实数λ的取值范围是1(3,)+∞,故选:B .16.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x R =用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数.在数列{}n a 中,记[]n a 为不超过n a 的最大整数,则称数列{[]}n a 为{}n a 的取整数列,设数列{}n a 满足11a =,12[]1[]3n n a a ++=,记数列{}n a 的前n 项和为n S ,则数列21211n n S S -+⎧⎫⎨⎬⎩⎭的前1010项和为( ) A .5042021B .5052021C .10102021D .5042022【解答】解:根据题意,易知1n a =,则2121n S n +=+,则212111111()(21)(21)22121n n S S n n n n -+==--+-+,所以数列21211n n S S -+⎧⎫⎨⎬⎩⎭的前1010项和为133557201920211111111111111010(1)()()232352201920212021S S S S S S S S ++++=-+-++-=, 故选:C .17.记数列{}n a 的前n 项和为n S ,已知113a =,12111(1)n n n S a S +++=-.令11n n b S =-,则5(b = ) A .112-B .92-C .72-D .911【解答】解:依题意,得2111(1)n n n a S S +++=-,则2111()(1)n n n n S S S S +++-=-,即22111121n n n n n S S S S S ++++-=-+,所以1121n n n S S S ++=-,所以11(1)1n n n S S S ++-=-, 易知10n S -≠,所以11111111111111n n n n n n S S S S S S +++++-+===+----, 所以111111n n S S +-=---, 所以{}n b 是首项为32-,公差为1-的等差数列,所以12n b n =--,所以5112b =-, 故选:A .18.已知数列{}n a 的前n 项的和为n S ,且11a =-,22a =,37a =.又已知当2n >时,112332n n n n S S S S +--=-++恒成立.则使得12111722()11155k k a a a -++⋯++++成立的正整数k的取值集合为( )A .{|9k k ,}k N ∈B .{|10k k ,}k N ∈C .{|11k k ,}k N ∈D .{|12k k ,}k N ∈【解答】解:当2n >时,112332n n n n S S S S +--=-++恒成立,∴当1n >时,211332n n n n S S S S ++-=-++恒成立,相减可得:21133n n n n a a a a ++-=-+, 化为:2111()2()n n n n n n a a a a a a ++-+-+-=-,∴数列1{}n n a a +-是等差数列,11a =-,22a =,37a =.4321333732114a a a a ∴=-+=⨯-⨯-=,213a a ∴-=,325a a -=,437a a -=,∴公差532=-=.132(1)21n n a a n n +∴-=+-=+.2(1)(321)122n n n a n -+-∴=-+=-.∴211111()11211n a n n n ==-+--+. 1211111111111111112()1111112313131212121k k a a a k k k k k k k k -∴++⋯+=-+-+-+⋯⋯+-+-=+--+++-+----+-++. 12111722()11155k k a a a -++⋯++++成立, ∴1117212155k k +--+成立, 化为:2121(1)110k k k ++,解得10k .∴使得12111722()11155k k a a a -++⋯++++成立的正整数k 的取值集合为{|10k k ,}k N ∈. 故选:B .19.已知数列{}n a 满足11a =,*12()n n n a a n N +=∈,n S 是数列{}n a 的前n 项和,则( ) A .201920202a = B .202020202a = C .1011202023S =-D .101020203(21)S =-【解答】解:由11a =,12n n n a a +=,得22a =, 且1122n n n a a +++=,两式作比可得:22n na a +=. ∴数列{}n a 的奇数项构成以1为首项,以2为公比的等比数列,偶数项构成以2为首项,以2为公比的等比数列. 则当n 为奇数时,1112222n n n a +--==;当n 为偶数时,122222n n n a -==.∴101020202a =,2020012100912322020(2222)(2222)S =+++⋯+++++⋯+1009101010102(12)1223(21)12-=++=--.故选:D .20.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为n T ,则2017(T = )A .2016B .2017C .2018D .2019【解答】解:由数列{}n a 的前n 项和为2n S n n =-, 当1n =时,11110a S ==-=;当2n 时,221[(1)(1)]22n n n a S S n n n n n -=-=-----=-,上式对1n =时也成立, 22n a n ∴=-,∴cos2(1)cos22n n n n b a n ππ==-, 函数cos2n y π=的周期242T ππ==, 2017152013262143720154820162017()()()()T b b b b b b b b b b b b b ∴=++⋯++++⋯++++⋯++++⋯++201702(152013)02(372015)4032cos450420162π=-++⋯+++++⋯++=⨯=. 故选:A .21.已知数列{}n a 满足12a =,111n na a +=-,则2021(a = ) A .0.5B .2C .0.5-D .1.5【解答】解:12a =,111n na a +=-,211122a ∴=-=,3121a =-=-,41121a =-=-,⋯⋯, 3n n a a +∴=.则202167332212a a a ⨯+===, 故选:A .22.设等差数列{}n a 的公差不为0,其前n 项和为n S ,若333(2)sin(2)2020a a -+-=,320182018(2)sin(2)2020a a -+-=-,则2020(S = ) A .0B .2020-C .2020D .4040【解答】解:等差数列{}n a 的公差不为0,且333(2)sin(2)2020a a -+-=,320182018(2)sin(2)2020a a -+-=-,令3()sin f x x x =+,则()()f x f x -=-即()()0f x f x -+=,333(2)sin(2)2020a a -+-=,320182018(2)sin(2)2020a a -+-=-, 两式相加可得,333320182018(2)sin(2)(2)sin(2)0a a a a -+-+-+-=, 32018(2)(2)0a a ∴-+-=, 320184a a ∴+=,则120202020320182020()1010()40402a a S a a +==+=.故选:D .23.设等差数列{}n a 的公差不为0,其前n 项和为n S ,若322(1)(1)2019a a -+-=,320182018(1)(1)2019a a -+-=-,则2019(S = ) A .0B .2C .2019D .4038【解答】解:因为322(1)(1)2019a a -+-=①,320182018(1)(1)2019a a -+-=-②, 两式相加化简得:22220182220182018(2)[(1)(1)(1)(1)1]0a a a a a a +-----+-+=,又因为2222222018201822018201813(1)(1)(1)(1)1[(1)(1)](1)1024a a a a a a a ----+-+=---+-+>.所以2201820a a +-=,即220182a a +=, 所以12019220182a a a a +=+=, 则120192019201920192a a S +=⨯=, 故选:C .二.填空题(共9小题)24.已知数列{}n b 是公比2q =的等比数列,数列{}n a 满足:11a =,212a =,1121211(2n n n n b b b b n a a a a +-+++=+且)n N +∈,则数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n S = . 【解答】解:11a =,212a =,1121211(2n n n n b b b b n a a a a +-+++=+且)n N +∈,① 当2n =时,3121211b b b a a a +=+,即12321b b b +=+, 数列{}n b 是公比2q =的等比数列, 111441b b b ∴+=+,解得11b =,∴12n n b -=,当3n =时,312412321b b b b a a a a ++=+,即34122821a +⨯+=⨯+,解得313a =, 又11212121(3,)n n n n b b b b n n N a a a a -+--++⋅⋅⋅+=+∈,② ①-②可得,112n n n n n n b b b a a a +--=-,即1112222n n n n n n a a a ----=-,化为21112n n n a a a --+=, 又1321124a a a +==, ∴1{}na 为等差数列,且公差21111d a a =-=,则111(1)n n n a a =+-=, ∴1n a n=, 112121211(1)2111n n n n n n n b b b bS n a a a a n +-∴=+++=+=+=-⋅+-.故答案为:(1)21n n -+.25.已知数列{}n a 满足11a =,213a =,若1111(2)3(2,*)n n n n n a a a a a n n N -+-++=∈,则数列{}n a 的通项n a = .【解答】解:111123(2,)n n n n n n a a a a a a n n N +-+-++=∈,∴1111112()n n n n a a a a +--=-,2111312a a -=-=.∴数列111{}n na a +-是等比数列,首项与公比都为2, ∴1112n n na a +-=. 2n ∴时,1212122212121n n n n n a ---=++⋯⋯++==--. 则数列{}n a 的通项121n n a =-, ∴则数列{}n a 的通项121n n a =-. 故答案为:121n -. 26.已知数列{}n a ,{}n b 满足1 1.1a =,10.2b =,11112,233n n n n n n b a a b a b ++++==+,n N ∈,令n n n c a b =-,则数列{}n c 的通项公式为 . 【解答】解:由题可得:111111111211()()22223323n n n n n n n n n n n n b a a b b b a a b a a b ++++++-=-=-+=-++=-, 又1110.9c a b =-=,故{}n c 是首项为0.9,公比为13的等比数列,故110.93n n c -=⨯. 故答案为:110.93n n c -=⨯. 27.已知数列{}n a 满足11a =,21211n n n a n a a +++=+,那么2019a = .【解答】解:数列{}n a 满足11a =,21211n n n a n a a +++=+,可得22a =,33a =,44a =,⋅⋅⋅, 猜想n a n =,下面用数学归纳法证明. ①当1n =时,显然满足猜想;②设n k =,k N ⋅∈时猜想成立,即k a k =,那么1n k =+时,212111k k k a k k +++==++,这就是说,1n k =+时,猜想正确;所以20192019a =. 故答案为:2019. 28.已知数列{}n b 满足112b =,11(*)2n n b n N b +=∈-,若2*12332()2n nb b b b m m m N ⋯-+∈,则m = . 【解答】解:由112b =,112n n b b +=-,得2111212322b b ===--, 3211322423b b ===--,4311432524b b ===--,..., 归纳猜测1n nb n =+. 下面利用数学归纳法证明: 当1n =时,112b =适合上式; 假设当n k =时结论成立,即1k kb k =+, 那么,当1n k =+时,111121121k k k b k b k k ++===-++-+, 即当1n k =+时,结论成立. 综上,1n nb n =+.2*12332()2n nb b b b m m m N ⋯-+∈,2123...223112n n n m m n n ∴⋅⋅⋅⋅=-+++对于任意*m N ∈恒成立,112n n +,∴231222m m -+,即2210m m -+,得1m =. 故答案为:1.29.已知数列{}n a 满足11a =,*11||(),2n n n a a n N +-=∈,21{}n a -是递增数列,2{}n a 是递减数列,则数列{}n a 的通项公式为 . 【解答】解:21{}n a -是递增数列, 21210n n a a +-∴->,2122210n n n n a a a a +-∴-+->,①21221||2n n n a a +-=,221211||2n n n a a ---=,又2211122n n -<, 212221||||n n n n a a a a +-∴-<-,②观察①②可知2210n n a a -->,∴221221211(1)()22n n n n n a a -----==,③2{}n a 是递减数列,同理可得,2220n n a a +-<,21221221(1)()22n n n n n a a ++-∴-=-=,④ 由③④归并可得,11(1)2n n n na a ++--=,11213212122111(1)(1)12222n nn n n n n n n a a a a a a a a a a --------∴=+-+-+⋅⋅⋅+-+-=+-+⋅⋅⋅++,1111()141(1)211233212n n n -----=+⨯=+⋅+,故答案为:141(1)332nn --+⋅.30.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n nn S a a =+,*n N ∈,1121(2)(2)n n n n n n b a a +++=++,则6T = .【解答】解:22n nn S a a =+, ∴当2n 时,21112n n n S a a ---=+,两式作差可得,22112n n n n n a a a a a --=+--, 整理得,11(1)()0n n n n a a a a ----+=,由0n a >知,10n n a a -+≠,从而110n n a a ---=, 即当2n 时,11n n a a --=,当1n =时,21112a a a =+,解得11a =或10a =(舍). 则{}n a 是首项为1,公差为1的等差数列, 则1(1)1n a n n =+-⨯=,∴112111(2)(21)221n n n n n n b n n n n +++==-++++++.则121111111 (36611221)n n n n T b b b n n +=+++=-+-++-+++. ∴6711443261135T =-=++. 故答案为:44135. 31.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n nn S a a =+,*n N ∈,11231(3)(3)n n n n n n b a a ++⋅+=++,则n T 的取值范围是 .【解答】解:数列{}n a 前n 项和分别为n S ,且0n a >,22n nn S a a =+,①, 当1n =时,解得11(0a =舍去),当2n 时,21112n n n S a a ---=+,②,①-②得:11(1)()0n n n n a a a a ----+=, 故11n n a a --=(常数),所以:数列{}n a 是以1为首项,1为公差的等差数列; 则n a n =.故111123123111(3)(3)(3)(31)331n n n n n n n n n n n b a a n n n n ++++⋅+⋅+===-++++++++,所以:11111111111 (41111303314314)n n n n T n n n ++=-+-++-=-<+++++, 由于1110331n n n b n n +=->+++, 所以1211113132111331n n n nnn bn n b n n ++++-++++=>-+++,故数列{}n b 单调递增;所以1744n T T =. 故n T 的取值范围是:71[,)444. 故答案为:71[,)444. 32.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n nn S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >恒成立,则k 的最小值是 .【解答】解:因为22n nn S a a =+,当2n 时,有21112n n n S a a ---=+,两式相减可得,22112n n n n n a a a a a --=+--,整理可得11(1)()0n n n n a a a a ----+=, 由0n a >可知,10n n a a -+≠, 从而110n n a a ---=, 即当2n 时,11n n a a --=,当1n =时,21112a a a =+,解得11a =或0(舍), 则数列{}n a 是首项为1,公差为1的等差数列, 则n a n =,所以1111212111(2)(2)(2)(21)221n n n n n n n n n n n b a a n n n n ++++++===-++++++++, 则1211111111366112213n n n n T b b b n n +=++⋯+=-+-+⋯+-<+++,所以13k, 则k 的最小值为13.故答案为:13.。
高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)
4.1.2 数列的递推公式知识点一数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.数列递推公式与通项公式的关系:递推公式表示a n 与它的前一项a n -1(或前n 项)之间的关系,而通项公式表示a n 与n 之间的关系. 要点二 a n 与S n 的关系1.前n 项和S n :把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =12n a a a +++ 2.a n 与S n 的关系:a n =11,1,2n n S n S S n -=⎧⎨-≥⎩【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)根据通项公式可以求出数列的任意一项.( ) (2)有些数列可能不存在最大项.( ) (3)递推公式是表示数列的一种方法.( ) (4)所有的数列都有递推公式.( ) 【答案】(1)√(2)√(3)√(4)×2.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5 D .19 【答案】D【解析】a 3=a 2+a 1=5+2=7,a 4=a 3+a 2=7+5=12,a 5=a 4+a 3=12+7=19,故选D. 3.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 【答案】B【解析】令2n 2-3=125得n =8或n =-8(舍),故125是第8项.故选B. 4.已知数列{a n }的前n 项和为S n =n 2,则a n =________. 【答案】2n -1【解析】当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=n 2-n 2+2n -1=2n -1.当n =1时,a 1=S 1=1满足上式,所以{a n }的通项公式为a n =2n -1.题型一 数列中项与项数关系的判断(1)写出数列的一个通项公式,并求出它的第20项;(2)判断42和10是不是该数列中的项?若是,指出是数列的第几项,若不是,请说明理由.【解析】(1)由于22=8,所以该数列前4项中,根号下的数依次相差3,所以它的一个通项公式为a n =3n -1;a 20=3×20-1=59.(2)令3n -1=42,两边平方得3n =33,解得n =11,是正整数令3n -1=10,两边平方得n =1013,不是整数.∴42是数列的第11项,10不是数列中的项. 【方法归纳】(1)由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.(2)判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.(3)在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.【跟踪训练1】已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出此数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢? 【解析】(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项.由3n 2-28n =68解得n =-2或n =343,所以68不是该数列的一项.题型二 已知S n 求a n例2 设S n 为数列{a n }的前n 项和,S n =2n 2-30n .求a n . 【解析】当n ≥2时,a n =S n -S n -1=2n 2-30n -[2(n -1)2-30(n -1)]=4n -32 当n =1时,a 1=S 1=-28,适合上式, 所以a n =4n -32.借助a n =⎩⎪⎨⎪⎧S 1,(n =1)S n -S n -1(n ≥2)【变式探究1】将本例中的“S n =2n 2-30n ”换为“S n =2n 2-30n +1”,求a n . 【解析】当n =1时,a 1=S 1=2×1-30×1+1=-27. 当n ≥2时,a n =S n -S n -1=2n 2-30n +1-[2(n -1)2-30(n -1)+1] =4n -32.验证当n =1时,上式不成立∴a n =⎩⎪⎨⎪⎧-27,n =14n -32,n ≥2.方法归纳已知数列{a n }的前n 项和公式S n ,求通项公式a n 的步骤: (1)当n =1时,a 1=S 1.(2)当n ≥2时,根据S n 写出S n -1,化简a n =S n -S n -1.(3)如果a 1也满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式为a n =S n -S n -1;如果a 1不满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式要分段表示为a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1,n ≥2.【跟踪训练2】已知数列:a 1+3a 2+32a 3+…+3n -1a n =n 3,求a n .【解析】当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13,满足a n =13n ,所以a n =13n .题型三 由数列递推公式求通项公式【例3】已知数列{a n }中,a 1=1,a n +1=a n +n +1,则a n =________.【答案】n (n +1)2【解析】∵a n +1=a n +n +1,a 1=1,∴a n +1-a n =n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,…,a 2-a 1=2 以上式子相加得: a n -a 1=2+3+…+n∴a n =1+2+3+…+n =n (n +1)2.变形为:a n +1-a n =n +1,照此递推关系写出前n 项中任意相邻两项的关系,这些式子两边分别相加可求. 【变式探究2】若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,则a n =________.【答案】1n【解析】∵a n +1=n n +1a n ,a 1=1,∴a n +1a n =nn +1,∴a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 2a 1=12,以上式子两边分别相乘得:a n a 1=n -1n ×n -2n -1×…×12=1n∴a n =1n a 1=1n .【方法归纳】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加法或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.【跟踪训练3】在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 【答案】A【解析】∵在数列{a n }中,a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=2+ln n .故选A.【易错辨析】数列中忽视n 的限制条件致误【例4】设S n 为数列{a n }的前n 项和,log 2(S n +1)=n +1,则a n =________.【答案】⎩⎪⎨⎪⎧3,n =12n ,n ≥2【解析】由log 2(S n +1)=n +1得S n +1=2n +1,∴S n =2n +1-1当n ≥2时a n =S n -S n -1=2n +1-1-2n +1=2n .当n =1时,a 1=S 1=3.经验证不符合上式.∴a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2.【易错警示】1. 出错原因忽视n =1的情况致错,得到错误答案:a n =2n . 2. 纠错心得已知a n 与S n 的关系求a n 时,常用a n =S n -S n -1(n ≥2)来求a n ,但一定要注意n =1的情况.一、单选题1.设数列{}n a 的前n 项和为n S ,11a =,2(1)nn S a n n =+-,(*n N ∈),若()22112n S S S n n+++--2013=,则n 的值为( ). A .1007 B .1006 C .2012 D .2014【答案】A 【分析】根据数列n a 与n S 的关系证得数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,利用等差数列的前n 项和公式求出题中的式子,化简计算即可. 【解析】2(1)nn S a n n=+-, 12(1)(2)nn n S S S n n n-∴-=+-, 整理可得,1(1)2(1)n n n S nS n n ---=-, 两边同时除以(1)n n -可得12(2)1n n S S n n n --=-,又111S = ∴数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,2321(1)23nS S S S n n∴++++-- 2(1)12(1)2n n n n -=⨯+⨯-- 22(1)n n =--21n =-,由题意可得,212013n -=, 解得1007n =. 故选:A .2.南宋数学家杨辉在《解析九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .171 B .190 C .174 D .193【答案】C 【分析】根据题意可得数列3,4,6,9,13,18,24,⋯,满足:11(2)n n a a n n --=-,13a =,从而利用累加法即可求出n a ,进一步即可得到19a 的值. 【解析】3,4,6,9,13,18,24,后项减前项可得1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()111133,222n n n n n -+⋅--=+=+≥.所以19191831742a ⨯=+=. 故选:C3.在数列{}n a 中,11a =,121nn n a a +-=-,则9a =( )A .512B .511C .502D .503【答案】D 【分析】利用累加法先求出通项即可求得答案. 【解析】因为11a =,121nn n a a +-=-,所以()()()121321n n n a a a a a a a a -=+-+-++-=()()()21211(21)21211222(1)2n n n n n --+-+-++-=++++--=-,所以9929503a =-=.故选:D. 4.数列23,45,69,817,1033,…的一个通项公式为( )A .221n n n a =+ B .2221n n n a +=+ C .1121n n n a ++=-D .12222n n n a ++=+【答案】A 【分析】根据数列中项的规律可总结得到通项公式. 【解析】1221321⨯=+,2422521⨯=+,3623921⨯=+,48241721⨯=+,510253321⨯=+, ∴一个通项公式为:221n nna =+. 故选:A.5.下列命题不正确的是( )A 的一个通项公式是n aB .已知数列{},3n n a a kn =-,且711a =,则1527a =C .已知数列{}n a 的前n 项和为()*,25n n n S S n N =-∈,那么123是这个数列{}n a 的第7项D .已知()*1n n a a n n N +=+∈,则数列{}n a 是递增数列【答案】C 【分析】A:根据被开方数的特征进行判断即可;B:运用代入法进行求解判断即可;C:根据前n项和与第n项之间的关系进行求解判断即可;D:根据递增数列的定义进行判断即可.【解析】对于A31⇒⨯na⇒=A正确;对于B,3na kn=-,且7151122327na k a n a=⇒=⇒=-⇒=,B正确;对于C,()*25nnS n N=-∈,13a=-,当2,n n N*≥∈时,111222n n nn n na S S---=-=-=,12127n-=,无正整数解,所以123不是这个数列{}n a的第7项,C错误;对于D.由()*11,0n n n na a n n N a a n++=+∈-=>,易知D正确,故选:C.6.已知数列{}n a的前n项和2nS n=,则数列11n na a+⎧⎫⎨⎬⎩⎭的前99项和为()A.1168B.1134C.198199D.99199【答案】D【分析】先根据11,2,1n nnS S naS n--≥⎧=⎨=⎩,求出21na n=-,然后利用裂项相消求和法即可求解.【解析】解:因为数列{}n a的前n项和2nS n=,2121nS n n-=-+,两式作差得到21(2)na n n=-≥,又当1n=时,21111a S===,符合上式,所以21na n=-,111111(21)(21)22121n na a n n n n+⎛⎫==-⎪-+-+⎝⎭,所以12233411111n na a a a a a a a+++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D.7.数列{}n a 中的前n 项和22nn S =+,数列{}2log n a 的前n 项和为n T ,则20T =( ).A .190B .192C .180D .182【答案】B 【分析】根据公式1n n n a S S -=-计算通项公式得到14,12,2n n n a n -=⎧=⎨≥⎩,故2,11,2n n b n n =⎧=⎨-≥⎩,求和得到答案.【解析】当1n =时,111224a S ==+=;当2n ≥时,()11112222222n n n n n n n n a S S ----=-=+-+=-=,经检验14a =不满足上式,所以14,12,2n n n a n -=⎧=⎨≥⎩, 2log n n b a =,则2,11,2n n b n n =⎧=⎨-≥⎩,()201911921922T ⨯+=+=. 故选:B.8.已知数列{}n a 满足11a =,()()()11*12n n n n a a a a n N n n ++-=∈++,则10a 的值为( )A .1231B .2231C .1D .2【答案】B 【分析】首先根据已知条件得到1111112n n a a n n +-=-++,再利用累加法求解即可. 【解析】 因为()()()*1112n n n n a a n n n N a a ++++=∈-,所以()()()*11112nn n n a a n N a a n n ++-=∈++, 所以()()111111212n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,当2n ≥时,11221111111n n n n a a a a a a ---⎛⎫⎛⎫⎛⎫-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111123n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪⎪+ ⎪ ⎝⎭⎝⎭-⎝⎭, 1111121n a a n -=-+,解得()11131122122n n n a n n +=-+=≥++ 当1n =时,上式成立,故2231n n a n +=+,故102022230131a +==+. 故选:B二、多选题9.数列{a n }的前n 项和为S n ,()*111,2N n n a a S n +==∈,则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .21,123,2n n n a n -=⎧=⎨⋅≥⎩【答案】ABD 【分析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a ,进而求得n S 以及判断出{}n S 是等比数列.【解析】依题意()*111,2N n n a a S n +==∈,当1n =时,2122a a ==, 当2n ≥时,12n n a S -=,11222n n n n n a a S S a +--=-=,所以13n n a a +=,所以()2223232n n n a a n --=⋅=⋅≥,所以21,123,2n n n a n -=⎧=⎨⋅≥⎩. 当2n ≥时,1132n n n a S -+==;当1n =时,111S a ==符合上式,所以13n n S -=.13n nS S +=,所以数列{}n S 是首项为1,公比为3的等比数列. 所以ABD 选项正确,C 选项错误.故选:ABD10.已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足1n n b a =,若n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,则k 的值不可能是( ) A .4 B .6 C .8 D .10【答案】AD 【分析】利用n a 与n S 的关系,求得n a ,进而求得n b ,然后根据n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,得到n 与k 的关系,进而求得答案.【解析】当1n =时,11212a S ===,当2n ≥时,()()2211122n n n n n n n a S S n --+++=-=-=,故n a n =(N n *∈),11n n b a n ==(N n *∈).因为n b ,2n b +,n k b +(N k *∈,2k >)成等差数列,所以22n n n k b b b ++=+,即2112n n n k=+++,所以48422n k n n ==+--,(2k >,N k *∈),从而2n -的取值为1,2,4,8,则对应的k 的值为12,8,6,5,所以k 的值不可能是4,10, 故选:AD .第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.数列{}n a 的前n 项的和231n S n n =++,n a =________.【分析】利用2n 时,1n n n a S S -=-求n a ,同时注意11a S =. 【解析】解析:由题可知,当2n 时,1n n n a S S -=-22313(1)(1)1n n n n ⎡⎤=++--+-+⎣⎦62n =-,当1n =时,113115a S ==++=,故答案为:5,162,2n n n =⎧⎨-⎩.12.设数列{a n }的前n 项和为S n =2n -3,则a n =________.【答案】【解析】解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =13.已知数列{}n a 的前n 项和为n S ,若n n a b S +=,2414a a =,则数列{}n a 的通项公式为___________. 【答案】212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭【分析】 由n n a b S +=可得数列{}n a 是公比为12的等比数列,然后根据2414a a =求出21a =即可. 【解析】因为n n a b S +=,所以当1n =时,1112b a S a +==,即12b a = 当2n ≥时,11n n b a S --+=,然后可得10n n n a a a --+=,即()1122n n a a n -=≥ 所以数列{}n a 是公比为12的等比数列 所以21124b a a ==,4111816a a b ==, 因为22411644a ab ==,所以4b =±, 当4b =时, 21a =,2221122n n n a a --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当4b =-时, 21a =-,2221122n n n a a --⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭故答案为:212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭四、解答题 14.已知数列{}n a 的前n 项和()2*2n S n kn k N =-+∈,且n S 的最大值为4.(1)求常数k 及n a ;(2)设()17n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)2k =,25n a n =-+ (2)2(1)n n T n =+ 【分析】(1)由于()222*2()n S n kn n k k k N =-+=--+∈,则可得24k =,从而可求出2k =,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a , (2)由(1)可得11121n b n n ⎛⎫=- ⎪+⎝⎭,然后利用裂项相消求和法求解即可 (1)因为()222*2()n S n kn n k k k N =-+=--+∈,所以当n k =时,n S 取得最大值2k , 所以24k =,因为*k N ∈,所以2k =,所以24n S n n =-+,当1n =时,11143a S ==-+=,当2n ≥时,2214[(1)4(1)]25n n n a S S n n n n n -=-=-+---+-=-+,13a =满足上式,所以25n a n =-+(2)由(1)可得()()11111177252(1)21n n b n a n n n n n n ⎛⎫====- ⎪-+-++⎝⎭, 所以1111111112222321n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111212(1)n n n ⎛⎫=-= ⎪++⎝⎭ 15.已知数列{}n a 满足()23*1232222n n a a a a n n N ++++=∈,求数列{}n a 的通项公式.【答案】12n na =【分析】 先根据前n 项和与通项的关系得12n n a =,再检验1n =时也满足条件即可求得答案. 【解析】因为23*1232222()n n a a a a n n N ++++=∈①, 所以()2311231222212n n a a a x a n n --++++=-≥②, ①-②得21(2)n n a n =≥,即 12n n a =, 当1n =时,112a =,满足12n n a =, 所以12n na = 16.已知数列{}n a 的前n 项和112n n S ⎛⎫=+ ⎪⎝⎭,求数列{}n a 的通项公式. 【答案】312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【分析】根据n S 与n a 的关系式,求解数列的通项公式即可.需要注意验证首项.【解析】()111111222n n n n S S n --⎛⎫⎛⎫=+∴=+≥ ⎪ ⎪⎝⎭⎝⎭①②-①②得()122n n a n ⎛⎫=-≥ ⎪⎝⎭ 根据题意,1111311222a S ⎛⎫==+=≠- ⎪⎝⎭ 所以数列的通项公式为312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩。
高中数学《数列的递推公式》习题(含解析)
第8课时数列的递推公式知识点一利用数列的递推公式求数列的项1.已知数列{a n}满足a n=4a n-1+3,且a1=0,则此数列第5项是() A.15B.255C.16D.63答案B解析a2=3,a3=15,a4=63,a5=255.2.已知a1=1,a n+1=a n3a n+1,则数列{a n}的第4项是()A.116B.117C.110D.125答案C解析a2=a13a1+1=13+1=14,a3=a23a2+1=1434+1=17,a4=a33a3+1=1737+1=110.3.已知数列{a n}满足a1=1,a n+1=2a n-1(n∈N*),则a1000=()A.1B.1999C.1000D.-1答案A解析a1=1,a2=2×1-1=1,a3=2×1-1=1,a4=2×1-1=1,…,可知a n=1(n∈N*).4.已知数列{a n}对任意的p,q∈N*满足a p+q=a p+a q,且a2=-6,那么a10等于()A.-165B.-33C.-30D.-21答案C解析由已知得a2=a1+a1=2a1=-6,∴a1=-3.∴a10=2a5=2(a2+a3)=2a2+2(a1+a2)=4a2+2a1=4×(-6)+2×(-3)=-30.5.已知数列{a n},a n=a n+m(a<0,n∈N*),满足a1=2,a2=4,则a3=________.答案2解析=a +m ,=a 2+m ,=-1,=3,∴a n =(-1)n +3,∴a 3=(-1)3+3=2.6.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2011=________;a 2018=________.答案01解析∵a 2011=a 503×4-1=0,∴a 2018=a 2×1009=a 1009=a 4×253-3=1.7.数列{a n }满足递推公式a 1=5,a n =nn +1a n -1(n ≥2,n ∈N *),则数列{a n }的前四项依次为________,它的通项公式为________.答案5,103,52,2a n =10n +1解析由a n a n -1=nn +1(n ≥2,n ∈N *),得a 2a 1=23,a 3a 2=34,…,a n a n -1=n n +1(n ≥2,n ∈N *),将以上各式两两相乘得a n a 1=23·34·…·n n +1=2n +1,所以a n =10n +1(n ≥2,n ∈N *),又a 1=5符合上式,所以其通项为a n =10n +1.所以a 1=5,a 2=103,a 3=52,a 4=2.8.已知数列{a n }满足a 1=1,a n -a n -1=1n (n -1)(n ≥2),求数列{a n }的通项公式.解累加法:a n -a n -1=1n (n -1)=1n -1-1n,a 2-a 1=1-12,a 3-a 2=12-13,a 4-a 3=13-14,…,a n -a n -1=1n -1-1n,累加可得a n-a1=1-1 n.又a1=1,所以a n=2-1 n.9.在数列{a n}中,若a1=2,且对所有n∈N*满足a n=a n+1+2,则a2016=________.易错分析本题求通项公式时采用累加法易漏掉a1错解a n=-2n+2致a2016=-4030.答案-4028解析由题意知a n+1-a n=-2,所以a n=(a n-a n-1)+(a n-1-a n-2)+(a n-2-a n-3)+…+(a2-a1)+a1=-2(n-1)+2=-2n+4,所以a2016=-2×2016+4=-4028.10.已知数列{a n}满足a1a2a3…a n=n2(n∈N*),求a n.易错分析本题易忽略式子a1a2a3…a n-1=(n-1)2仅适用于n∈N*且n≥2时的情况,因此两式相除得到a n=n2(n-1)2也仅适用于n≥2时的情况,从而错误断定a n=n2(n-1)2是数列的通项.解当n=1时,a1=1.由条件知a1a2a3…a n=n2(n∈N*),当n≥2时a1a2a3…a n-1=(n-1)2,两式相除得a n=n2(n-1)2(n≥2,n∈N*),故a n,n≥2,n∈N*.一、选择题1.已知a n=3n-2,则数列{a n}的图象是() A.一条直线B.一条抛物线C.一个圆D.一群孤立的点答案D解析∵a n=3n-2,n∈N*,∴数列{a n}的图象是一群孤立的点.2.在数列{a n}中,a1=13,a n=(-1)n·2a n-1(n≥2),则a5等于()A.-163B.163C.-83D.83答案B解析∵a1=13,a n=(-1)n·2a n-1,∴a2=(-1)2×2×13=23,a3=(-1)3×2×23=-4 3,a4=(-1)4×2×-43=-8 3,a5=(-1)5×2×-83=16 3.3.函数f(x)满足f(1)=1,f(n+1)=f(n)+3(n∈N*),则f(n)是()A.递增数列B.递减数列C.常数列D.不能确定答案A解析∵f(n+1)-f(n)=3(n∈N*),∴f(2)>f(1),f(3)>f(2),f(4)>f(3),…,f(n+1)>f(n),….∴f(n)是递增数列.4.数列{a n}的构成法则如下:a1=1,如果a n-2为自然数且之前未出现过,则用递推公式a n+1=a n-2,否则用递推公式a n+1=3a n,则a6=() A.-7B.3C.15D.81答案C解析由a1=1,a1-2=-1∉N,得a2=3a1=3.又a2-2=1=a1,故a3=3a2=9.又a3-2=7∈N,故a4=a3-2=7.又a4-2=5∈N,则a5=a4-2=5.又a5-2=3=a2,所以a6=3a5=15.故选C.5.设数列{a n }满足a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是()A .415B .425C .435D .445答案D解析由题知:a n +1=2na n -(n -1)a n -1n +1,a 3=2×2×3-13=113,a 4=2×3×113-2×34=4,a 5=2×4×4-3×1135=215,a 6=2×5×215-4×46=266,故a n =5n -4n .所以a 20=5×20-420=245=445.故选D .二、填空题6.在数列{a n }中,a n =2n +1,对于数列{b n },b 1=a 1,当n ≥2时,b n =ab n-1,则b 4=________,b 5=________.答案3163解析由a n =2n +1,知b 2=ab 1=a 3=7,b 3=ab 2=a 7=15,b 4=ab 3=a 15=31,b 5=ab 4=a 31=63.7.已知F (x )=1是R 上的奇函数.a n =f (0)+f (1)(n ∈N *).则数列{a n }的通项公式为________.答案a n =n +1解析因为F (x )+F (-x )=0,所以x 2,即若a +b =1,则f (a )+f (b )=2.于是由a n =f (0)+…+f (1)(n ∈N *),得2a n =[f (0)+f (1)]…[f (1)+f (0)]=2n +2,所以a n =n +1.8.函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2019=________.x 12345f (x )51342答案5解析由题意可得x 1,x 2,x 3,x 4,x 5,…的值分别为2,1,5,2,1,…故数列{x n }为周期为3的周期数列.∴x 2019=x 3×673=x 3=5.三、解答题9.数列{a n }中a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2.(1)求a 3,a 5;(2)探究256225是否为此数列中的项;若是,是第多少项?(3)试比较a n 与a n +1(n ≥2)的大小.解(1)∵对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,∴a 1·a 2=22,a 1·a 2·a 3=32,a 1·a 2·a 3·a 4=42,a 1·a 2·a 3·a 4·a 5=52.∴a 3=94,a 5=2516.(2)∵a 1·a 2·a 3·…·a n =n 2,∴n ≥3时,a 1·a 2·a 3·…·a n -1=(n -1)2,∴n ≥3时,∴a n ,且a 1=1,a 2=4,而256225=,∴256225是数列中的项,是第16项.(3)∵a na n+1=>1,∴a n>a n+1(n≥2).10.已知数列{a n}满足a1=1,a n+1=2a na n+2n∈N*),试探究数列{a n}的通项公式.解解法一:将n=1,2,3,4依次代入递推公式得a2=23,a3=24,a4=25,又a1=2 2,∴可猜想a n=2n+1.应有a n+1=2n+2,将其代入递推关系式验证成立,∴a n=2n+1.解法二:∵a n+1=2a na n+2,∴a n+1a n=2a n-2a n+1.两边同除以2a n+1a n,得1a n+1-1a n=12.∴1a2-1a1=12,1a3-1a2=12,…,1a n-1a n-1=12.把以上各式累加得1a n-1a1=n-12.又a1=1,∴a n=2n+1.故数列{a n}的通项公式为a n=2n+1(n∈N*).。
高考数学题型全归纳:如何由递推公式求通项公式典型例题(含答案)
如何由递推公式求通项公式高中数学递推数列通项公式的求解是高考的热点之一,是一类考查思维能力的题型,要求考生进行严格的逻辑推理。
找到数列的通项公式,重点是递推的思想:从一般到特殊,从特殊到一般;化归转换思想,通过适当的变形,转化成等差数列或等比数列,达到化陌生为熟悉的目的。
下面就递推数列求通项的基本类型作一个归纳,以供参考。
类型一:1()nna a f n 或1()n na g n a 分析:利用迭加或迭乘方法。
即:112211()()+()nnnnna a a a a a a a ……或121121n n n nna a a a a a a a ……例1.(1)已知数列na 满足11211,2nna a a nn,求数列n a 的通项公式。
(2)已知数列n a 满足1(1)1,2nn n a a s ,求数列n a 的通项公式。
解:(1)由题知:121111(1)1nna a nnn n nn 112211()())n n n n na a a a a +(a -a a (1)111111()()()121122n n nn ……312n(2)2(1)n n s n a 112(2)nn s na n两式相减得:12(1)(2)n nna n a na n 即:1(2)1n na n n a n 121121n n nn n a a a a a a a a (121)121nn n n……n类型二:1(,(1)0)nn a pa q p q pq p 其中为常数,分析:把原递推公式转为:1(),1nnq a tp a t p其中t=,再利用换元法转化为等比数列求解。
例2.已知数列n a 中,11,123n n a a a ,求n a 的通项公式。
解:由123nn a a 可转化为:132(3)n na a 令3,nn b a 11n+1n则b =a +3=4且b =2b n b 1是以b =4为首项,公比为q=2的等比数列11422n n bn即123n na 类型三:1()(nn a pa f n 其中p 为常数)分析:在此只研究两种较为简单的情况,即()f x 是多项式或指数幂的形式。
2024新高考新试卷结构数列的通项公式的9种题型总结(解析版)
2024新高考新试卷结构数列的通项公式的9种题型总结题型解密考点一:已知S n =f n ,求a n利用S n =a 1,n =1S n−Sn −1,n ≥2,注意一定要验证当n =1时是否成立【精选例题】1已知S n 为数列a n 的前n 项和,且S n =2n +1-1,则数列a n 的通项公式为()A.a n =2nB.a n =3,n =12n,n ≥2C.a n =2n -1D.a n =2n +1【答案】B【详解】当n ≥2时,S n -1=2n -1,a n =S n -S n -1=2n +1-1-2n +1=2n ;当n =1时,a 1=S 1=21+1-1=3,不符合a n =2n ,则a n =3,n =12n,n ≥2.故选:B .2定义np 1+p 2+p 3+⋅⋅⋅+p n为n 个正数p 1,p 2,p 3,⋅⋅⋅,p n 的“均倒数”,若已知数列a n 的前n 项的“均倒数”为15n,则a 10等于()A.85B.90C.95D.100【答案】C【详解】因为数列a n 的前n 项的“均倒数”为15n ,所以n a 1+a 2+a 3+⋅⋅⋅+a n =15n⇒a 1+a 2+a 3+⋅⋅⋅+a n =5n 2,于是有a 1+a 2+a 3+⋅⋅⋅+a 10=5×102,a 1+a 2+a 3+⋅⋅⋅+a 9=5×92,两式相减,得a 10=5×(100-81)=95,故选:C3(多选题)定义H n =a 1+2a 2+⋯+2n -1a nn为数列a n 的“优值”.已知某数列a n 的“优值”H n =2n ,前n 项和为S n ,下列关于数列a n 的描述正确的有()A.数列a n 为等差数列B.数列a n 为递增数列C.S 20222022=20252 D.S 2,S 4,S 6成等差数列【答案】ABC【详解】由已知可得H n =a 1+2a 2+⋯+2n -1a nn=2n ,所以a 1+2a 2+⋯+2n -1a n =n ⋅2n ,①所以n ≥2时,a 1+2a 2+⋯+2n -2a n -1=n -1 ⋅2n -1,②得n ≥2时,2n -1a n =n ⋅2n -n -1 ⋅2n -1=n +1 ⋅2n -1,即n ≥2时,a n =n +1,当n =1时,由①知a 1=2,满足a n =n +1.所以数列a n 是首项为2,公差为1的等差数列,故A 正确,B 正确,所以S n =n n +3 2,所以S n n =n +32,故S 20222022=20252,故C 正确.S 2=5,S 4=14,S 6=27,S 2,S 4,S 6不是等差数列,故D 错误,故选:ABC .4设数列a n 满足a 1+12a 2+122a 3+⋅⋅⋅+12n -1a n =n +1,则a n 的前n 项和()A.2n -1B.2n +1C.2nD.2n +1-1【答案】C【详解】解:当n =1时,a 1=2,当n ≥2时,由a 1+12a 2+122a 3+⋅⋅⋅+12n -2a n -1+12n -1a n =n +1得a 1+12a 2+122a 3+⋅⋅⋅+12n -2a n -1=n ,两式相减得,12n -1a n =1,即a n =2n -1,综上,a n =2,n =12n -1,n ≥2 所以a n 的前n 项和为2+2+4+8+⋯+2n -1=2+21-2n -1 1-2=2n ,故选:C .【跟踪训练】1无穷数列a n 的前n 项和为S n ,满足S n =2n ,则下列结论中正确的有()A.a n 为等比数列B.a n 为递增数列C.a n 中存在三项成等差数列D.a n 中偶数项成等比数列【答案】D【详解】解:无穷数列a n 的前n 项和为S n ,满足S n =2n ∴n ≥2,a n =S n -S n -1=2n -2n -1=2n -1,当n =1时,a 1=S 1=21=2,不符合上式,∴a n =2,n =1,2n -1,n ≥2,所以a n 不是等比数列,故A 错误;又a 1=a 2=2,所以a n 不是递增数列,故B 错误;假设数列a n 中存在三项a r ,a m ,a s 成等差数列,由于a 1=a 2=2,则r ,m ,s ∈N *,2≤r <m <s ,所以得:2a m =a r +a s ⇒2×2m -1=2r -1+2s -1∴2m =2r -1+2s -1,则∴1=2r -m -1+2s -m -1,又s -m -1≥0⇒2s -m -1≥1且2r -m -1>0恒成立,故式子1=2r -m -1+2s -m -1无解,a n 中找不到三项成等差数列,故C 错误;∴a 2n =22n -1(n ∈N *),∴a 2(n +1)a n =22n +122n -1=4∴a 2n 是等比数列,即a n 中偶数项成等比数列,故D 正确.故选:D .2对于数列a n ,定义H n =a 1+2a 2+3a 3+⋯+na nn为a n 的“伴生数列”,已知某数列a n 的“伴生数列”为H n =(n +1)2,则a n =;记数列a n -kn 的前n 项和为S n ,若对任意n ∈N *,S n ≤S 6恒成立,则实数k 的取值范围为.【答案】 3n +1;227≤k ≤196.【详解】因为H n =(n +1)2=a 1+2a 2+3a 3+⋯+na nn,所以n ⋅(n +1)2=a 1+2a 2+3a 3+⋯+na n ①,所以当n =1时,a 1=4,当n ≥2时,(n -1)⋅n 2=a 1+2a 2+3a 3+⋯+(n -1)a n -1②,①-②:3n 2+n =na n ,所以a n =3n +1,综上:a n =3n +1,n ∈N *,令b n =a n -kn =(3-k )n +1,则b n +1-b n =3-k ,可知{b n }为等差数列,又因为对任意n ∈N *,S n ≤S 6恒成立,所以S 6-S 5=b 6≥0,S 7-S 6=b 7≤0,则有b 6=3-k ×6+1=19-6k ≥0,b 7=3-k ×7+1=22-7k ≤0, 解得227≤k ≤196.故答案为:3n +1;227≤k ≤196考点二:叠加法(累加法)求通项若数列a n 满足a n +1−a n =f (n )(n ∈N *),则称数列a n 为“变差数列”,求变差数列a n 的通项时,利用恒等式a n =a 1+(a 2−a 1)+(a 3−a 2)+⋅⋅⋅+(a n −a n −1)=a 1+f (1)+f (2)+f (3)+⋅⋅⋅+f (n −1)(n ≥2)求通项公式的方法称为累加法。
最新高考数列递推公式题型归纳解析完整答案版
(n 1)bn1 nbn 2 0 令 n 1, 得 b1 2. bn 2 (n 1)d .
设 b2 2 d (d R), 下面用数学归纳法证明 (1)当 n 1, 2 时,等式成立
新疆 源头学子小屋
/wxc/
a2k 1 a2k 3k a2k 1 (1) k 3k ,即 a2k 1 a2k 1 3k (1) k a3 a1 3 (1) , a5 a3 32 (1) 2 ……
将以上 k 个式子相加,得 …… a2k 1 a2k 1 3k (1) k
②-①,得 2(bn1 1) (n 1)bn1 nbn , 即 (n 1)bn1 nbn 2 0, nbn2 (n 1)bn1 2 0.
-3-
③-④,得
nbn2 2nbn1 nbn 0, 即 bn2 2bn1 bn 0,
1 ___
n 1 n2
解:由已知,得 an1 a1 2a2 3a3 (n 1)an1 nan ,用此式减去已知式,得 当 n 2 时, an1 an nan ,即 an1 (n 1)an ,又 a2 a1 1,
a1 1,
b 1 b 1 b 1
(an 1)bn (n N * ), 证明:数列{bn}
是等差数列;(Ⅲ)证明:
a n 1 a1 a2 n ... n (n N * ). 2 3 a2 a3 an 1 2
(I)解: an1 2an 1(n N * ), an1 1 2(an 1), an 1 是以 a1 1 2 为首项,2 为公比的 等比数列 an 1 2n.
用递推公式求数列通项公式的方法及数列求和的方法精讲与练习(含答案)
数列的通项公式的求法 一、观察法(即猜想法,不完全归纳法)观察各项的特点,关键是找出各项与项数n 的关系例1:根据数列的前4,写出它的一个通项公式:9,99,999,9999,......二、公式法若已知数列的前n 项和与项数n 的关系,求数列的通项公式可用公式法求解。
)1()2(111==≥-=-n S a n S S a n n n例2:}{n a 的前n 项和n S ,求}{n a 的通项公式。
三、由递推公式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊的数列。
1.迭加法已知递推关系)(),(*1N n n f a a n n ∈=-+例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
变式:已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
2.迭乘法 已知递推关系是)(),(*1N n n f a a nn ∈=+ 例4:已知数列}{n a 中,n n a nn a a 1,211+==+,求}{n a 的通项公式。
变式:已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
3、待定系数法例5 已知数列{}n a 满足112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式。
变式: 已知数列{}n a 满足1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
4、数学归纳法例6 已知数列{}n a 满足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式。
解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得 2122322243228(11)88224(211)(213)9925258(21)248348(221)(223)252549498(31)488480(231)(233)49498181a a a a a a +⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯+⨯=+=+=⨯+⨯+⨯ 由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论。
高考递推数列题型分类归纳解析
高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。
类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例1:已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
例2:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。
变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。
例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:(2006,重庆,文,14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________ 变式:(2006. 福建.理22.本小题满分14分) 已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式; (II )若数列{b n }滿足12111*444(1)(),n n b b b b n a n N ---=+∈ 证明:数列{b n }是等差数列;(Ⅲ)证明:*122311...().232n n a a a n nn N a a a +-<+++<∈ 类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。
2024年高考真题汇总 数列(解析版)
专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。
高中数学人教A版必修5精题精练:数列的通项公式与递推公式 含解析 精品
数列的通项公式与递推公式【知识梳理】如果已知数列{a n}的第一项(或前几项),且任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.【常考题型】题型一、数列的表示方法【例1】根据数列{a n}的通项公式,把下列数列用图象表示出来(n≤5,且n ∈N*).(1)a n=(-1)n+2;(2)a n=n+1 n.[解](1)数列{a n}的前5项依次是1,3,1,3,1,图象如下图①所示.(2)数列{a n}的前5项依次是2,32,43,54,65,图象如下图②所示.【类题通法】通项公式法、列表法与图象法表示数列优点(1)用通项公式表示数列,简洁明了,便于计算.公式法是常用的数学方法.(2)列表法的优点是不经过计算,就可以直接看出项数与项的对应关系.(3)图象能直观形象地表示出随着序号的变化,相应项变化的趋势.【对点训练】1.一辆邮车每天从A地往B地运送邮件,沿途(包括A,B)共有8站,从A地出发时,装上发往后面7站的邮件各一个,到达各站后卸下前面各站发往该站的邮件,同时装上该站发往后面各站的邮件各一个.试用列表法表示邮车在各站装卸完毕后剩余邮件个数所成的数列.解:将A,B之间所有站按序号1,2,3,4,5,6,7,8编号.通过计算,各站装卸完毕后剩余邮件个数依次构成数列7,12,15,16,15,12,7,0,如下表:【例2】已知数列{a n}的第一项a1=1,以后的各项由公式a n+1=2a na n+2给出,试写出这个数列的前5项.[解]∵a1=1,a n+1=2a na n+2,∴a2=2a1a1+2=2 3,a3=2a2a2+2=2×2323+2=12,a4=2a3a3+2=2×1212+2=25,a5=2a4a4+2=2×2525+2=13.故该数列的前5项为1,23,12,25,13.【类题通法】根据递推公式写出数列的前几项,要弄清楚公式中各部分的关系,依次代入计算即可.另外,解答这类问题时还需注意:若知道的是首项,通常将所给公式整理成用前面的项表示后面的项的形式;若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式.【对点训练】2.已知数列{a n}中,a1=1,a2=2,以后各项由a n=a n-1+a n-2(n≥3)给出.(1)写出此数列的前5项;(2)通过公式b n=a na n+1构造一个新的数列{b n},写出数列{b n}的前4项.解:(1)∵a n=a n-1+a n-2(n≥3),且a1=1,a2=2,∴a3=a2+a1=3,a4=a3+a2=3+2=5,a5=a4+a3=5+3=8.故数列{a n}的前5项依次为a1=1,a2=2,a3=3,a4=5,a5=8.(2)∵b n =a na n +1,且a 1=1,a 2=2,a 3=3,a 4=5,a 5=8,∴b 1=a 1a 2=12,b 2=a 2a 3=23,b 3=a 3a 4=35,b 4=a 4a 5=58.故b 1=12,b 2=23,b 3=35,b 4=58.题型三、由递推公式归纳数列的通项公式【例3】 已知数列{a n }的第1项是2,以后的各项由公式a n =a n -11-a n -1(n =2,3,4,…)给出,写出这个数列的前5项,并归纳出数列{a n }的通项公式.[解] 可依次代入项数进行求值.a 1=2,a 2=21-2=-2,a 3=-21-(-2)=-23,a 4=-231-⎝ ⎛⎭⎪⎫-23=-25, a 5=-251-⎝ ⎛⎭⎪⎫-25=-27.即数列{a n }的前5项为2,-2,-23,-25,-27. 也可写为-2-1,-21,-23,-25,-27. 即分子都是-2,分母依次加2,且都是奇数, 所以a n =-22n -3(n ∈N *).【类题通法】根据递推公式写出数列的前几项,然后由前几项分析其特点、规律,归纳总结出数列的一个通项公式.【对点训练】3.已知数列{a n }满足a 1=1,a n =a n -1+1n (n -1)(n ≥2),写出该数列前5项,并归纳出它的一个通项公式.解:a 1=1,a 2=a 1+12×1=1+12=32,a 3=a 2+13×2=32+16=53,a 4=a 3+14×3=53+112=74,a 5=a 4+15×4=74+120=95.故数列的前5项分别为1,32,53,74,95. 由于1=2×1-11,32=2×2-12,53=2×3-13,74=2×4-14,95=2×5-15, 故数列{a n }的一个通项公式为a n =2n -1n =2-1n . 【练习反馈】1.符合递推关系式a n =2a n -1的数列是( ) A .1,2,3,4,… B .1,2,2,22,… C.2,2,2,2,…D .0,2,2,22,…解析:选B B 中从第二项起,后一项是前一项的2倍,符合递推公式a n =2a n -1.2.数列12,14,18,116,…的递推公式可以是( ) A .a n =12n +1(n ∈N *)B.a n =12n (n ∈N *) C .a n +1=12a n (n ∈N *)D .a n +1=2a n (n ∈N *)解析:选C 数列从第二项起,后一项是前一项的12,故递推公式为a n +1=12a n (n ∈N *).3.已知a 1=1,a n =1+1a n -1(n ≥2),则a 5=________.解析:由a 1=1,a n =1+1a n -1得a 2=2,a 3=32,a 4=53,a 5=85. 答案:854.已知数列{a n }满足a 1>0,a n +1a n=13(n ∈N *),则数列{a n }是________数列(填“递增”或“递减”).解析:由已知a 1>0,a n +1=13a n (n ∈N *), 得a n >0(n ∈N *).又a n +1-a n =13a n -a n =-23a n <0, 所以{a n }是递减数列. 答案:递减5.已知数列{a n }的通项公式为a n =nn 2+1,写出它的前5项,并判断该数列的单调性.解:对于公式a n =n n 2+1,依次取n =1,2,3,4,5,得到数列的前5项为a 1=12,a 2=25,a 3=310,a 4=417,a 5=526.而a n +1-a n =n +1(n +1)2+1-nn 2+1=1-n 2-n [(n +1)2+1](n 2+1).因为n ∈N *,所以1-n 2-n <0,所以a n +1-a n <0,即a n +1<a n .故该数列为递减数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
an 1 an
(b a)( 2 )n 1 。 3
把 n 1,2,3, , n 代入,得 a2a1源自b a ,a3a2
(b a) ( 2) , a4
a3
22 (b a) ( ) ,
3
3
an
an 1
(b
a)(
2) n
2
。把以上各式相加,得
3
22
an a1 (b a)[1
()
33
( 2)n 2] 3
1 ( 2)n 1 3 (b 2
a1
a2
3, a4 a3
4, , an an 1
n ,将以上 n 个式子相乘,得 a n
n! (n 2)
2
类型 3 an 1 pan q (其中 p,q 均为常数, ( pq( p 1) 0) )。
解法(待定系数法):把原递推公式转化为:
an 1 t p(an t ) ,其中 t
q ,再利用换元法转化为
1)
K
,
k
a2k+1 =a2k+3 , 其中 k=1,2,3, …… .
( I )求 a3, a5; ( II )求 { an}的通项公式 .
解: a2 k a2 k 1 ( 1) k , a2 k 1 a2k 3k
a2k 1 a2k 3k a2 k 1 ( 1)k 3k ,即 a2k 1 a2 k 1 3k ( 1) k
3
3
解:由 an 2
2 an 1
1 a n 可转化为 an 2
san 1
3
3
t (an 1 san )
即 an 2 (s t )an 1 stan
2 st
3 1 st 3
s1
1
s
1或
3
t 3 t1
这里不妨选用
s1 1(当然也可选用
t 3
1 s
3 ,大家可 以试一试 ),则 t1
an 2 an 1
an 1 an (
a3 a1 3 ( 1) , a5 a3 32 ( 1)2 ……
…… a2k 1 a2 k 1 3k ( 1) k
将以上 k 个式子相加,得
a2k 1 a1 (3 32
3k ) [( 1) ( 1) 2
将 a1 1代入,得 a 2k 1
1 3k 1
1 (
1) k
1,
2
2
a2k
a2k 1 ( 1) k
2[(b1 b2 ... bn bn 1 ) ( n 1)] ( n 1)bn 1. ②
②-①,得 2(bn 1 1) (n 1)bn 1 nbn, 即 (n 1)bn 1 nbn 2 0, nbn 2 (n 1)bn 1 2 0.
③-④,得 nbn 2 2nbn 1 nbn 0, 即 bn 2 2bn 1 bn 0,
2k 1
2(2 k
1 )
1 , k 1,2,..., n,
2
2
a1 a2 ... an
n .
a2 a3
an 1 2
ak ak 1
2k 1 1
1
1
1
2k 1 1 2 2(2k 1 1) 2 3.2k 2k
2
1 11
2
. 3
2k
,k
1,2,..., n,
a1 a2
a2 a3
... an an 1
n 11 (
k
2
k
bk 1
bk
[2 (k 1)d ]
k1 k1 k1
这就是说,当 n k 1 时,等式也成立
2 k1
2 [( k 1) 1]d.
根据( 1)和( 2),可知 bn 2 (n 1)d 对任何 n N * 都成立
bn 1 bn d, bn 是等差数列
( III )证明:
ak ak 1
2k 1 2k 1 1
例 3:已知 a1 3 , a n 1 3n 1 a n (n 1) ,求 an 。 3n 2
解: an 3(n 1) 1 3(n 2) 1 3(n 1) 2 3(n 2) 2
321 31 a1
32 232
3n 4 3n 7 3n 1 3n 4
52
6
3
8 5 n 3 。1
变式 2.1:( 2004,全国 I, 理 15)已知数列 {an},满足 a1=1, an a1 2a2 3a3
2
4 ( an 1
1
2n
33
33
3
an 1 pan qn(其中 p,q 均为常数, ( pq( p 1)( q 1) 0) )。
2 ) ,即 an 4an 1 2n ,利用 3 (或 an 1 pan rq n ,其中 p,
q, r 均为常数)的方法,解之得: an 4n 2n
(Ⅱ )将 an 4n 2n 代入①得
解法一(待定系数——迭加法)
例 4, :数列 an : 3an 2 5an 1 2an 0(n 0, n N ) , a1 a, a2 b ,求数列 an 的通项公式。
由 3an 2 5an 1 2an
0 ,得 a n 2 a n 1
2 (an 1
an ) ,且 a2
a1
3
b a。
则数列 an 1 an 是以 b a 为首项, 2 为公比的等比数列,于是 3
an (an an 1) ( an 1 an 2 ) ... (a2 a1) a1 2n 1 2n 2 ... 2 1 2n 1(n N * ).
( III )证明:
1 ( 1) n 1
3
又
1
1
3
a1 1 , 所 以
变式 5.1(: 2006,福建 ,文 ,22,本小题满分 14 分)已知数列 an 满足 a1 1, a2 3,an 2 3an 1 2an( n N *).
( I )证明:数列 an 1 an 是等比数列;( II )求数列 an 的通项公式;( III )若数列 bn 满足 4b1 41 b2 1...4bn 1 (an 1)bn (n N * ), 证明 bn 是等差数列
1
-
1 2i+1- 1)
=
3 2
×
( 2
1 1-
1
-
1 2i+1- 1) <
3 2
类型 5 递推公式为 an 2 pan 1 qan (其中 p,q 均为常数) 。
解法一 (待定系数法 ):先把原递推公式转化为
st p
an 2 san 1 t (an 1 san ) 其中 s, t 满足 st
q
解 法 二 ( 特 征根 法 ) : 对于 由 递推 公式 an 2 pan 1 qan , a1 , a2
1 3k
1 (
1) k
1。
2
2
( 1)k ]
3 (3k
1)
1 [(
1) k
1]
2
2
经检验 a1 1 也适合, an
1
n1
32
1
(
n1
1) 2
1(n为奇数 )
2
2
1
n
32
1
(
n
1) 2
1( n为偶数 )
2
2
类型 2 an 1 f ( n)an
解法:把原递推公式转化为 an 1 f ( n) ,利用累乘法 (逐商相乘法 )求解。 an
(n 1)an 1 (n≥2),
则 {an}的通项 an
1
n1
___ n 2
解:由已知,得 an 1 a1 2a2 3a3
(n 1)an 1 nan ,用此式减去已知式,得
当 n 2 时, an 1 an nan ,即 an 1 (n 1)an ,又 a2 a1 1,
a1 1, a2 1, a 3
1p
等比数列求解。 变式 3.1:( 2006,重庆 ,文 ,14)
在数列 an 中,若 a1 1, an 1 2an 3(n 1),则该数列的通项 an ___________
an 2n 1 3
变式 3.2:( 2006. 福建 .理 22.本小题满分 14 分)已知数列 an 满足 a1 1, an 1 2an 1(n N * ).
设数列 an 的前 n 项的和 Sn
4 an
1
2n 1
33
2 , n 1,2,3,
3
2n
n
3
(Ⅰ)求首项 a1与通项 an ;(Ⅱ)设 Tn
, n 1,2,3, Sn
,证明: Ti
i1
2
解:( I )当 n 1 时, a1
S1
4 a1
4
2
3 33
a1 2 ;
当n
2 时, a n
Sn
Sn 1
4 an
1 2n 1
an 1 是以 a1 1 2 为首项, 2 为公比的
等比数列
an 1 2n. 即 an 2n 1(n N * ).
( II )证法一:
4k1 41 k2 1...4kn 1 (an 1)kn . 4( k1 k2 ... kn ) n 2nkn .
2[(b1 b2 ... bn) n] nbn , ①
bn 2 bn 1 bn 1 bn (n N * ),
bn 是等差数列
证法二:同证法一,得
(n 1)bn 1 nbn 2 0 令 n 1,得 b1 2.
设 b2 2 d(d R), 下面用数学归纳法证明 bn 2 (n 1)d .
( 1)当 n 1,2 时,等式成立 ( 2)假设当 n k(k 2) 时, bk 2 (k 1)d , 那么
最新高考数列递推公式题型归纳解析完整答案版