土壤五种酶的测定方法
土壤酶测定方法
土壤磷酸酶(酸性)——磷酸苯二钠比色法(一)试剂1.pH5 醋酸盐缓冲液:A:L 醋酸溶液(稀释至1000ml)B:L 醋酸钠溶液 A 液+B液稀释至 100ml若使用无水乙酸及乙酸钠配制 1 升PH为的乙酸盐缓冲液,则需要无水乙酸及乙酸钠的量计算以下:①无水乙酸用量的计算:无水乙酸的浓度为,则需无水乙酸的体积为×1000/=(毫升);②乙酸钠用量的计算:查表知,无水乙酸钠的摩尔质量为82,则需无水乙酸钠的质量为×82× 1=11(克)。
使用无水乙酸及乙酸钠配制 1 升PH为的乙酸盐缓冲液的方法以下:用量筒量取毫升无水乙酸至1000 毫升烧杯内,再用台秤称取无水乙酸钠11 克至该烧杯,而后用量筒量取=996 毫升蒸馏水至该烧杯内,搅拌至乙酸钠溶解并呈平均的溶液即为1 升PH为的乙酸 - 乙酸钠缓冲液。
或许:量 7ml 醋酸钠液 +3ml 醋酸液混淆即得。
2.% 磷酸苯二钠: pH5醋酸缓冲液3.氯代二溴对苯醌亚胺:称取 2 ,6- 二溴苯醌氯酰亚胺,用 10ml 96%乙醇(48ml 乙醇 +2ml 水)溶解,储存于棕色瓶中,寄存在冰箱中,保留的黄色溶液未变褐色以前均可使用。
4.酚标准溶液:酚原液 --- 取 1g 苯酚溶于蒸馏水中,定容至 1000ml 水中,保留于棕色瓶中。
酚工作液 --- 取 10 ml 酚原液稀释至 1000ml 水中,每毫升含酚5.甲苯硫酸铝溶液,称取硫酸铝,定容至100ml。
(二)实验步骤1.标线制作取 0,1, 3,5,7,9,11,13ml 酚工作液,置于 50ml 容量瓶中,加入5ml 缓冲液和 4 滴氯代二溴对苯醌亚胺试剂,显色后稀释至刻度,30min 后比色测定。
以光密度值为纵坐标,浓度为横坐标绘成标准曲线。
2.样品测定称取风干土样(过 20 目筛,去除杂质),搁置于 200ml 容量瓶(离心管)中,加甲苯,轻摇 15min 后,加入 20ml %磷酸苯二钠,认真摇匀后搁置于 37°C恒温箱中培育 24h,后于培育液中加入 %硫酸铝溶液过滤。
土壤酶活性的测定方法
土壤酶活性的测定方法土壤酶活性的测定方法主要包括测定土壤中的蔗糖酶、脲酶、过氧化氢酶和过氧化物酶等多种酶活性,这些酶活性的测定可以反映土壤的微生物代谢能力和土壤质量。
本文将详细介绍几种常用的土壤酶活性测定方法。
一、酶活性测定方法的准备工作1. 样品处理:收集土壤样本后,将其放在4C冷藏保存,保持样品活性,避免酶的降解。
2. 取样:根据需要,从土壤样品中取出一定量的湿重或干重样品。
3. 土壤处理:依据实验要求,对土壤样品进行处理,如水分调整、添加营养物质等。
二、蔗糖酶活性测定方法蔗糖酶是一种常见的土壤酶,可反映土壤中的碳循环能力。
蔗糖酶活性的测定方法如下:1. 取一定量的土壤样品,并通过筛网过滤,去除杂质。
2. 准备培养基:其中包括蔗糖作为底物、缓冲液、指示剂等。
3. 加入适量的土壤样品和培养基到离心管中,混匀后,放置在恒温摇床上培养一定时间。
4. 培养结束后,通过离心将土壤颗粒沉淀到底部。
5. 取沉淀后的上清液,用酚酞指示剂进行比色检测,根据比色结果计算蔗糖酶活性。
三、脲酶活性测定方法脲酶是一种重要的土壤酶,参与土壤中尿素的分解过程。
脲酶活性的测定方法如下:1. 取一定量的土壤样品,在10C恒温条件下接种脲酶底物,使底物完全被土壤降解。
2. 在一定时间后,通过添加草酸溶液阻止进一步反应,停止脲酶的活性。
3. 取样品,加入酚硫酸溶液,进行比色测定。
4. 根据比色结果计算脲酶活性。
四、过氧化氢酶活性测定方法过氧化氢酶是一种催化过氧化氢分解的酶,可反映土壤的抗氧化能力。
过氧化氢酶活性的测定方法如下:1. 取一定量的土壤样品,并通过筛网过滤去除杂质。
2. 准备含过氧化氢底物和其他试剂的反应体系。
3. 将土壤样品加入反应体系中,充分混匀后,在一定时间内反应。
4. 在反应结束后,通过添加硫酸钠溶液停止反应,阻止进一步的化学反应。
5. 使用紫外分光光度计测定样品的吸光度,根据结果计算过氧化氢酶活性。
五、过氧化物酶活性测定方法过氧化物酶是一类重要的土壤酶,在土壤中参与有机物降解和氧化还原反应。
土壤酶的测定方法
一、脲酶测定(比色法)脲酶是对尿素转化起关键作用的酶,它的酶促反应产物是可供植物利用的氮源,它的活性可以用来表示土壤供氮能力。
1、试剂配制:(1)pH6.7柠檬酸盐溶液:取368g柠檬酸溶于600mL蒸馏水中,另取295g氢氧化钾溶于水,再将两种溶液合并,用1N氢氧化钠将pH调至6.7,并用水稀释至2L。
(2)苯酚钠溶液:称取62.5g苯酚溶于少量乙醇中,加2mL甲醇和18.5mL丙酮,后用乙醇稀释至100mL(A液),保存再冰箱中。
称取27g氢氧化钠溶于100mL水中(B液),保存于冰箱中。
使用前,取A、B两液各20mL混和,并用蒸馏水稀释至100mL备用。
(3)次氯酸钠溶液:用水稀释制剂至活性氯的浓度为0.9%,溶液稳定。
(4)10%尿素溶液:10g尿素溶于100mL水中。
(5)N的标准溶液:精确称取0.4717g硫酸铵溶于水稀释至1L,则得1mL含0.1mgN 的标液,再将此液稀释10倍制成氮工作液(0.01mg/mL)。
2、操作步骤称取5g土置于50mL容量瓶中,加1mL甲苯处理,加塞塞紧轻摇15min;往瓶中加入5mL10%尿素液和10mL的柠檬酸盐缓冲液(pH6.7),仔细混匀。
在37℃恒温箱中培养24h。
然后用热至38℃的蒸馏水稀释至刻度(甲苯应浮在刻度以上),摇荡,将悬液过滤。
取滤液1mL 置于50mL容量瓶中,用蒸馏水稀释至10mL,然后加入4mL苯酚钠溶液,并立即加入3mL次氯酸钠溶液,加入每一试剂后,立即将混合物摇匀,20min后,将混合物稀释至刻度,在波长578nm处测定吸光值。
脲酶活性以样品所得的吸光值减去对照样品吸光值之差,根据标准曲线求出氨态氮量。
标准曲线绘制:分别取0、1、3、5、7、9、11、13mL氮工作液置于50mL容量瓶中,加蒸馏水至20mL,再加4mL苯酚钠溶液和3mL次氯酸钠溶液,随加随摇匀,20min后显色,定容。
1h内在分光光度计上于578nm处比色。
土壤脲酶、蔗糖酶、磷酸酶活性的测定
土壤酶活性的测定方法及部分样品配制详细请参考《土壤微生物分析方法手册》,《土壤酶及其研究法》土壤样品采集与制备土壤样品取样后混匀,用于土壤酶活性测定的土壤磨细过2mm筛后,置于4℃冰箱内保存备测。
1.土壤酶活性的测定方法1.1.脲酶采用靛酚蓝比色法方法原理:本法基于以尿素为基质,酶促水解生成的氨与酚类化合物起反应生成蓝色的靛酚,颜色深度与氨含量相关,用于尿酶活性的测定。
操作步骤:取10g风干土,置于100ml三角瓶中,加2ml甲苯,15min后加10ml 10%尿素液和20ml pH6.7柠檬酸盐缓冲液。
摇匀后在37℃恒温箱中培养3h。
按此操作,进行以水代替基质,及无土壤的基质对照测定,过滤后取0.5ml滤液于50ml比色管中,然后按绘制标准曲线显色方法进行比色测定。
氮的标液:精确称取0.4717g硫酸按溶于水并稀释至1000ml,则得1ml含0.1mg氮的标准液。
绘制标准曲线时,可将此液稀释10倍供用。
pH6.7柠檬酸盐缓冲液:用368g柠檬酸溶于600ml水,另取295g氢氧化钾溶于水,再将二种溶液混合,然后用1M的氢氧化钠调节pH到6.7,定容到2L。
苯酚溶液:称取苯酚(C6H5OH)10g和硝基铁氰化钠[Na2Fe(CN)5NO2H2O]100mg稀释至1L。
此试剂不稳定,须贮于棕色瓶中,在4℃冰箱中保存。
次氯酸钠碱性溶液:称取氢氧化钠(化学纯)10g、磷酸氢二钠(Na2HPO4·7H2O, 化学纯)7.06g、磷酸钠(Na3PO4·12H2O, 化学纯)31.8g 和52.5g·L-1次氯酸钠(NaOCl,化学纯,即含5%有效氯的漂白粉溶液)10mL 溶于水中,稀释至1L,贮于棕色瓶中,在4℃冰箱中保存。
标线绘制:取稀释的标准液0、l、2、4、6、8、10ml,移于50rnl容量瓶中,然后加入蒸馏水至20mL。
再加4mL苯酸钠溶液和4mL次氯酸钠溶液,随加随摇匀。
土壤酶的测定方法
参考关松萌等编制的土壤酶及其研究法一、土壤蔗糖酶3,5- 二硝基水杨酸比色法:1、试剂的配制①3,5- 二硝基水杨酸溶液:称0.5g二硝基水杨酸,溶于20ml2N氢氧化钠和50ml水中,加30g的酒石酸钾钠,用水稀释至100ml.(不超过七天)②pH5.5磷酸缓冲溶液:1/15M磷酸氢二钠(11.867gNa2HPO4.2H2O溶于1L蒸馏水中)0.5ml加1/15M磷酸二氢钾(9.078g KH2PO4溶于1L蒸馏水中)9.5ml即成。
③8%蔗糖溶液。
④甲苯。
⑤标准葡萄糖溶液:将葡萄糖先在50—58℃条件下,真空干燥至恒重。
然后取500mg溶于100ml苯甲酸溶液中(5ml还原糖/ml),即成标准葡萄糖溶液。
再用标准溶液制成1ml含0.01—0.05mg葡萄糖工作溶液。
标准曲线绘制:取1ml不同浓度的工作液,并按与测定蔗糖酶活性同样的方法进行显色,比色后以光密度值为纵坐标,葡萄糖浓度为横坐标绘制成标准曲线。
2、操作步骤称5g风干土,置于50ml的三角瓶中,注入15ml8%蔗糖溶液,5ml pH5.5磷酸缓冲溶液和5滴甲苯。
摇匀混合物后,放入恒温箱,在37℃下培养24h。
到时取出,迅速过滤。
从中吸取滤液1ml,注入50ml容量瓶中,加3ml3,5- 二硝基水杨酸溶液,并在沸腾的水浴锅中加热5min,随即将容量瓶移至自来水流下冷却3min。
溶液因生成3-氨基-5-硝基水杨酸而呈橙黄色,最后用蒸馏水稀释至50ml,并在分光光度计上于波长508nm处进行比色。
为了消除土壤中原有的蔗糖、葡萄糖引起的误差,每一土样需做无基质对照,整个实验需做无土对照。
无土对照:不加土样,其他操作与样品实验相同。
无基质对照:以等体积的水代替基质,其他操作与样品实验相同。
3、结果计算蔗糖酶活性以24小时后1g土壤葡萄糖的毫克数表示。
葡萄糖(毫克)=a×4式中:a——从标准曲线查得的葡萄糖毫克数4——换算成1g土的系数二、土壤淀粉酶3,5- 二硝基水杨酸比色法:1、试剂配制①1%淀粉。
几种土壤酶的测定方法
土壤酶的测定方法(一)蔗糖酶方法:比色法1 试剂配制(1)20%蔗糖(质量分数)(2)甲苯(3)pH=5.5醋酸盐缓冲液:取120 ml 冰醋酸用水稀释至1 L(a),取164 g无水CH3COONa 溶于水并稀释至1 L(b),将(a)与(b)二液按1:8混合再用pH计校正pH。
(4)0.2 M Na2HPO4·12H2O(5)钼溶液:配制5%钼酸铵水溶液(a),再取200 ml浓硫酸加800 ml水(b)。
使用前将(a)、(b)二液按1:1混合。
(6)铜试剂:取50 g CuSO4·5H2O溶于500 ml水中(a),取25 g Na2CO3、25 g酒石酸钾钠、20 g NaHCO3和200 g Na2SO4溶于水并稀释至1 L再加几滴甲苯(b)。
使用前将(a)、(b)二液混合。
(7)葡萄糖标准溶液:将葡萄糖先在50-58℃条件下,真空干燥至恒重。
然后取500 mg溶于100 ml苯甲酸溶液(饱和)中(5 mg还原糖/ml),即成标准葡萄糖溶液。
再用标准液制成1 ml含0.01-0.5 mg葡萄糖的工作溶液。
2 标准曲线绘制:将(7)所述的葡萄糖标准溶液稀释成1 mg/ml 还原糖工作液。
然后,取不同体积(0.5-50 ml)工作液移于100 ml容量瓶中,加入10 ml pH=5.5醋酸盐缓冲液,用水稀释至刻度。
吸取此液5 ml移于100 ml容量瓶中,加4 ml铜试剂。
在沸腾水浴上放置25 min,冷却至室温。
再加2 ml 0.2 M磷酸氢二钠和5 ml钼溶液,显色1 min定容,在分光光度计上于578 nm 处比色,根据光密度值和浓度绘制标准曲线。
3 操作步骤取10 g土壤(&填料)置于100 ml容量瓶中,加2 ml甲苯。
15 min后加10 ml 20 %蔗糖和10 ml pH=5.5醋酸盐缓冲液,置于37℃恒温箱中培养24 h。
培养结束后,过滤并定容,按绘制标准曲线操作步骤显色、比色。
测土壤酶活方法
测土壤酶活方法酶活性是评价土壤质量和生物活性的重要指标之一。
测定土壤酶活性可以帮助我们了解土壤中微生物的活动水平和土壤中有机物的分解能力,从而判断土壤的肥力和健康状况。
本文将介绍几种常用的测土壤酶活性的方法。
一、脲酶法测定土壤酶活性脲酶法是一种常用的测定土壤酶活性的方法。
该方法是通过测定土壤中脲酶的活性来间接反映土壤中的酶活性。
脲酶是一种催化尿素分解的酶,可以将尿素分解为氨和二氧化碳。
测定土壤中脲酶的活性可以反映土壤中微生物的活动水平和有机物的分解能力。
脲酶法的操作步骤如下:1. 取一定质量的土壤样品,将其与含有尿素和缓冲液的试剂混合。
2. 反应一段时间后,加入酸性试剂停止反应。
3. 用碱性试剂滴定未反应的尿素,计算出脲酶的活性。
二、过氧化氢酶法测定土壤酶活性过氧化氢酶法是一种常用的测定土壤酶活性的方法。
该方法是通过测定土壤中过氧化氢酶的活性来间接反映土壤中的酶活性。
过氧化氢酶是一种催化过氧化氢分解的酶,可以将过氧化氢分解为水和氧气。
测定土壤中过氧化氢酶的活性可以反映土壤中微生物的活动水平和有机物的分解能力。
过氧化氢酶法的操作步骤如下:1. 取一定质量的土壤样品,将其与含有过氧化氢和缓冲液的试剂混合。
2. 反应一段时间后,加入酸性试剂停止反应。
3. 用碱性试剂滴定未反应的过氧化氢,计算出过氧化氢酶的活性。
三、醋酸红法测定土壤酶活性醋酸红法是一种常用的测定土壤酶活性的方法。
该方法是通过测定土壤中醋酸红酶的活性来间接反映土壤中的酶活性。
醋酸红酶是一种催化醋酸红分解的酶,可以将醋酸红分解为醋酸和二氧化碳。
测定土壤中醋酸红酶的活性可以反映土壤中微生物的活动水平和有机物的分解能力。
醋酸红法的操作步骤如下:1. 取一定质量的土壤样品,将其与含有醋酸红和缓冲液的试剂混合。
2. 反应一段时间后,加入酸性试剂停止反应。
3. 用碱性试剂滴定未反应的醋酸红,计算出醋酸红酶的活性。
测定土壤酶活性可以通过脲酶法、过氧化氢酶法和醋酸红法等方法来进行。
土壤过氧化氢酶、过氧化物酶、磷酸酶、蔗糖酶、脲酶测定方法。
土壤过氧化氢酶、过氧化物酶、磷酸酶、蔗糖酶、脲酶测定方法。
土壤酶活性测定方法土壤脲酶的测定方法(苯酚钠—次氯酸钠比色法)一、原理脲酶存在于大多数细菌、真菌和高等植物里。
它是一种酰胺酶作用是极为专性的,它仅能水解尿素,水解的最终产物是氨和二氧化碳、水。
土壤脲酶活性与土壤的微生物数量、有机物质含量、全氮和速效磷含量呈正相关。
根际土壤脲酶活性较高,中性土壤脲酶活性大于碱性土壤。
人们常用土壤脲酶活性表征土壤的氮素状况。
土壤中脲酶活性的测定是以脲素为基质经酶促反应后测定生成的氨量,也可以通过测定未水解的尿素量来求得。
本方法以尿素为基质,根据酶促产物氨与苯酚-次氯酸钠作用生成蓝色的靛酚,来分析脲酶活性。
二、试剂1)甲苯2)10%尿素:称取10g尿素,用水溶至100ml。
3)PH6.7柠檬酸盐缓冲液:184g柠檬酸和147.5g氢氧化钾(KOH)溶于蒸馏水。
将两溶液合并,用1mol/LNaOH将PH调至6.7,用水稀释定容至1000ml。
4)苯酚钠溶液(1.35mol/L):62.5g苯酚溶于少量乙醇,加2ml甲醇和18.5ml 丙酮,用乙醇稀释至100ml(A液),存于冰箱中;27gNaOH溶于100ml水(B 液)。
将A、B溶液保存在冰箱中。
使用前将A液、B液各20ml混合,用蒸馏水稀释至100ml。
5)次氯酸钠溶液:用水稀释试剂,至活性氯的浓度为0.9%,溶液稳定。
6)氮的标准溶液:精确称取0.4717g硫酸铵溶于水并稀释至1000ml,得到1ml含有0.1mg氮的标准液。
绘制标准曲线时,再将此溶液稀释10倍供用。
三、操作步骤标准曲线制作:分别吸取稀释后的标准液0、1、3、5、7、9、11、13ml,移于50ml容量瓶中,然后补加蒸馏水至20ml。
再加入4ml苯酚钠溶液和3ml 次氯酸钠溶液,随加随摇匀。
20min后显色,定容。
1h内在分光光度计上于578nm 波长处比色。
然后以氮工作液浓度为横坐标,吸光值为纵坐标,绘制标准曲线。
土壤酶活性测定方法综合
土壤酶活性测定方法综合引言:土壤酶活性是指土壤中特定酶在一定时间内分解特定底物的能力,是评估土壤生态系统功能和土壤肥力状况的重要指标。
土壤酶活性测定方法是研究土壤酶活性的关键手段之一、本文将综合介绍常用的土壤酶活性测定方法,包括蔗糖酶活性测定方法、过氧化氢酶活性测定方法和脲酶活性测定方法。
一、蔗糖酶活性测定方法:蔗糖酶是一种重要的有机磷酸酶,广泛存在于土壤中,能够水解蔗糖为葡萄糖和果糖。
测定土壤蔗糖酶活性可以反映土壤中酶的数量和活性。
1.提取土壤酶液:将土壤与玻璃棒研磨均匀,用0.5mol/L甘油缓冲液(pH6.8)溶解土壤,离心沉淀,得到土壤酶液。
2.酶活性测定:取一定量的土壤酶液加入蔗糖底物和缓冲液,在37℃恒温振荡下反应30分钟,用酒精停止反应,加入硫酸,取样测定比色液的吸光度。
3.统计分析:根据比色液吸光度与标准曲线对照,计算出土壤蔗糖酶活性。
二、过氧化氢酶活性测定方法:过氧化氢酶是一种氧化还原酶,能够催化过氧化氢分解为氧气和水。
测定土壤过氧化氢酶活性可以反映土壤中氧化还原反应的发生情况。
1.提取土壤酶液:将土壤与甘油缓冲液混合,加入液氮使其冷冻破碎,离心沉淀得到土壤酶液。
2.酶活性测定:取一定量的土壤酶液加入过氧化氢底物和缓冲液,在25℃恒温振荡下反应一定时间,停止反应后加入酒精,用紫外分光光度计测定吸光度。
3.统计分析:根据吸光度与过氧化氢递减曲线对照,计算出土壤过氧化氢酶活性。
三、脲酶活性测定方法:脲酶是一种解脲酸酯的酶,能够水解尿素为氨和二氧化碳。
测定土壤脲酶活性可以反映土壤中氮循环的情况。
1.提取土壤酶液:将土壤与脲酸酯缓冲液混合,用玻璃棒研磨均匀,离心沉淀得到土壤酶液。
2.酶活性测定:将一定量的土壤酶液加入脲酶底物和缓冲液,在37℃恒温振荡下反应一定时间,反应停止后加入酒精,用比色法测定吸光度。
3.统计分析:根据吸光度与标准曲线对照,计算出土壤脲酶活性。
结论:以上就是蔗糖酶活性测定方法、过氧化氢酶活性测定方法和脲酶活性测定方法的综合介绍。
土壤酶测定方法
土壤酶测定方法芳基酰胺酶Arylamidase (EC 3.4.11.2)试剂:1、THAM缓冲液(0.1 M,pH 8.0):2.44 g 三羟甲基氨基甲烷溶于50 mL水中,用0.05 M H2SO4滴定调节pH,加水稀释溶液至200 mL。
2、L-leucine β-naphthylamide solution L-亮氨酸β-萘胺(8.0 mM)(2 mM):称取0.2342 g L-亮氨酸β-萘胺盐酸盐溶于水,定容至100 mL。
3、Ethanol 乙醇:(95%)4、Acidified ethanol 酸化乙醇(0.26 M HCl):4.32 mL浓HCl加入乙醇中,用乙醇定容至200 mL。
5、p-Dimethylaminocinnamaldehyde solution 对二甲氨基肉桂醛溶液(0.6mg/mL):0.12 g 对二甲氨基肉桂醛溶于乙醇,用乙醇定容至200 mL。
6、标准液β-萘胺溶液(β-naphthylamine)(125 ug/mL):称取12.5 mg β-萘胺,75 mL蒸馏水,5 mL乙醇,用蒸馏水定容至100 mL。
7、β-萘胺标准曲线:分别吸取1,2,3,4,5,6 mL标准液β-萘胺溶液(125 ug/mL)与25 mL容量瓶,定容。
标曲溶液浓度分别为:5,10,15,20,25,30 ug/mL β-萘胺。
步骤:1、称取1 g土壤(风干,<2 mm)于25 mL 三角瓶,加入3 mL 0.1 M 的THAM缓冲液(pH 8.0),1 mL 8.0 mM 的L-亮氨酸β-萘胺盐酸盐。
三角瓶涡旋几秒,混匀,密封,放置在震荡培养箱1 h(37o C)。
2、培养结束后,加入6 mL乙醇(95%)终止反应,土壤悬浮液立即混匀,转移至离心管,在17000xg离心1 min。
3、将上层清液转移至测试管,阻止基质的进一步水解。
吸取1 mL上层清液至另一个测试管,加入1 mL乙醇,2 mL 酸化乙醇,2 mL对二甲氨基肉桂醛溶液,混合溶液涡旋混匀,红色偶氮化合物在540 nm下比色。
土壤酶指标测定
土壤生物化学指标测定一、土壤脱氢酶(dehydrogenase)活性测定(比色法)(一)分析意义脱氢酶能酶促脱氢反映,它起着氢的中间传递题的作用。
在土壤中,碳水化合物和有机酸的脱氢酶作用比较活跃,他们可以作为氢的工体。
脱氢酶能自基质中析出氢而进行氧化作用。
(二)方法选择与原理Lenhard(1956)最先提出用TTC作为氢的受体生成红色的TF,进行闭塞测定,以溶液的光密度值表示酶活性。
后来对上述的方法做了不同的改进和完善。
用土壤有机质作为氢的供体或用葡萄糖做氢的供体,用生成的TF数量或换算成氢的体积来表示脱氢酶的活性。
(三)试剂配制1、0.5%TTC溶液2、甲苯3、Tris-HCl缓冲液Ph7.6:0.1M三羟甲基氨基甲烷(12.114g/L)50ml 与0.1MHCl38.5ml混合后,用水稀释至100ml。
4、硫化钠5、0.1mol/L葡萄糖溶液。
(四)实验步骤1、标准曲线的绘制:称取相当于50mg纯品量的已烘干的TTC于50 ml比色管中,定容,制成1 mg/L的母液。
分别向6支50ml比色管中依次注入1、2、3、4、5、6mL mg/ml 标准TTC溶液,用蒸馏水定容,是为工作液:取7只带塞比色管(50ml)依次加入2 mL Tris-HCl演算缓冲液,1 mL不同浓度的TTC工作液,1 mL10%硫化钠新配溶液,摇匀,放置20分钟;反应完全后,准确加入10ml甲苯,振摇。
完全提取TF,稳定数分钟,取上层有机溶液在紫外分光光度计492nm处闭塞(在比色皿中也需稳定2分钟)绘制标准曲线。
2、操作过程:取0.5g新鲜土壤,置于50ml 比色管中,依次加入2mlTris-HCl盐酸缓冲液、1ml 0.1mol/L葡萄糖溶液、1ml 0.5% TTC溶液,震荡均匀,离心(4000转/分)5分钟后,将甲苯提取液在分光光度计492 nm处闭塞测定。
同时设无土壤和无TTC的对照(以蒸馏水替代)。
3、结果计算:脱氢酶活性=TF含量/0.5g —土壤含水量脱氢酶活性,以24h后1g干土中TF的生成量表示。
土壤五种酶的测定方法
参考文献:1、关松荫等,编著. 土壤酶及其研究法[M].农业出版社,1986.2、周礼凯,编著. 土壤酶学[M].科学出版社关松荫等,1986蔗糖酶:比色法(1) P274-276脲酶:比色法P294-297蛋白酶:比色法9(1) P302-304磷酸酶:磷酸苯二钠法(2) P312-313过氧化氢酶:容量法P323比色法1、试剂(1) 苯甲酸溶液0.25%(2) 3,5-二硝基水杨酸(3) pH5.5磷酸缓冲液(4) 8%蔗糖溶液(5) 甲苯2、操作步骤5克风干土→50mL三角瓶→15mL 8%蔗糖溶液→5mL pH5.5磷酸缓冲液→5滴甲苯→摇匀放入恒温箱→37℃培养24h →取出迅速过滤→吸取滤液1mL →流水冷却3min →蒸馏水稀释至50mL →508nm比色3、结果计算蔗糖酶活性以24h后1g土壤葡萄糖的毫克数表示。
葡糖糖(毫克)= a×4式中a——从标准曲线查得的葡萄糖毫克数4——换算成1g土的系数标准曲线:以光密度为纵坐标,以葡萄糖浓度为横坐标。
Y=0.229×(-0.0209)R2=0.9961注意:Y值为吸光度值,相当于表中的A平均X值为根据上述公式计算的结果,相当于a值葡萄糖含量为a* 4 (毫克)比色法(1)1.试剂(1)1%酪素溶液(2)0.1N硫酸(3)20%硫酸钠(4)2%茚三酮液(5)甲苯(6)甘氨酸标准溶液2.操作步骤4g风干土→50ml三角瓶→20ml1%酪素液→1ml甲苯→30℃恒温箱24h→2ml0.1N硫酸→12ml20%硫酸钠液→15min(6000转/min)离心→上清液2ml 50ml容量瓶→1ml茚三酮→沸水浴10min→蒸馏水稀释至刻度→500nm比色3.结果计算蛋白酶活性,以24h后1g土壤中氨基氮的毫克数表示。
NH2-N(mg)=a*5式中 a——从标准曲线查得氨基氮毫克数b——换算成1g土的系数标准曲线:以光密度为纵坐标,以氨基氮浓度为横坐标。
土壤酶活性测定方法
土壤酶活性测定方法
土壤酶活性测定方法,主要用于评估土壤中各种酶的活性水平,以了解土壤肥力、有机质分解和养分循环等生态过程的状况。
常见的土壤酶活性测定方法包括呼吸酶活性、脲酶活性、过氧化氢酶活性、过氧化物酶活性等。
以下是常用的几种土壤酶活性测定方法:
1.呼吸酶活性测定法
呼吸酶活性是衡量土壤微生物活性和有机质分解的一种指标。
方法基于土壤微生物呼吸作用的过程,通过测定土壤呼吸二氧化碳释放速率来评估土壤微生物活性。
常用的测定方法有浸提法、插管法和接触式法等。
2.脲酶活性测定法
脲酶在土壤中参与尿素的分解过程,是一个重要的氮素转化酶。
脲酶活性的测定方法通常利用碳酸二乙酯在酶的作用下水解成二乙酰胺,通过测定产物的吸光度或荧光强度来评估脲酶活性。
3.过氧化氢酶活性测定法
过氧化氢酶是土壤中对过氧化氢具有催化降解作用的一种酶。
测定过氧化氢酶活性的方法常采用比色法或荧光法。
其中,比色法是通过过氧化氢与乳酸铁催化反应产生的底物和酶催化下的反应速率相关的颜色变化来测定酶活性。
而荧光法则是通过过氧化物与具有荧光基团的底物反应产生荧光信号来测定酶活性。
4.过氧化物酶活性测定法
过氧化物酶包括过氧化物歧化酶和过氧化氢酶,是土壤中分解有毒过氧化物的关键酶。
测定该酶活性的方法主要有过氧化氢法和氧化还原法。
过氧化氢法利用过氧化氢催化底物的氧化反应来测定过氧化物酶活性,而氧化还原法则是通过直接测定底物与过氧化物酶反应后产生的电流或电势差来评估酶活性。
以上是常见的几种土壤酶活性测定方法,通过测定土壤中相关酶活性的变化,可以评估土壤生物学特性并指导土壤改良和管理措施的制定。
几种常用的土壤酶活性意义及测定
几种常用的土壤酶活性意义及测定土壤酶是土壤中的重要组成部分,它们参与了土壤的有机质分解、养分转化等重要生态过程。
土壤酶活性的意义在于指示土壤的生物活性和健康状况,能够反映土壤的肥力和生态功能。
因此,研究土壤酶活性对于评价土壤质量和改善土壤生态环境具有重要意义。
本文将介绍几种常用的土壤酶活性意义及测定方法。
一、脲酶活性脲酶是一种氧化酶,广泛存在于土壤中。
它能催化脲类化合物的分解,参与土壤氮的生物循环过程。
脲酶活性可以反映土壤中的氮转化能力和有机质的分解速率。
脲酶活性的测定常用碘酸钠法和银盐法,可以通过测定脲酶催化反应产生的碘或银色沉淀的数量来评估脲酶的活性水平。
二、过氧化氢酶活性过氧化氢酶存在于土壤中的微生物和植物中,它是一种氧化还原酶,能够催化过氧化氢的分解。
过氧化氢是土壤中常见的活性氧化物,它对土壤微生物和植物的生长发育具有毒害作用。
过氧化氢酶活性的测定可以用过氧化氢法和双酚A法,其原理是利用过氧化氢催化反应的颜色变化或双酚A氧化反应的速率来评估过氧化氢酶的活性。
三、脱氢酶活性脱氢酶包括脱氢酶、脱氢酶、过氧化酶等,广泛存在于土壤中的微生物中。
它们能够催化有机物的氧化还原反应,参与土壤中有机质的降解分解过程。
脱氢酶活性的测定可以用间苯二酚法、尼羧酸法和氨基酸反应法等方法,通过测定产生的颜色变化、吸光度变化或氨基酸含量的变化来评估脱氢酶的活性水平。
四、葡萄糖酶活性葡萄糖酶是一种分解葡萄糖的酶,广泛存在于土壤中的微生物和植物中。
它能够催化葡萄糖的氧化反应,参与土壤中有机质的分解和碳的循环过程。
葡萄糖酶活性的测定可以用邻苯二酚法、硫酸酚法和氨基酸反应法等方法,通过测定产生的颜色变化、吸光度变化或氨基酸含量的变化来评估葡萄糖酶的活性水平。
土壤酶活性的测定方法多种多样,选择适合的方法要考虑到土壤样品的特性、目标酶的特性和测定的灵敏度。
通过研究土壤酶活性,可以了解土壤中的生物活性和功能,为土壤质量评价、生态环境保护和土壤养分管理提供科学依据。
土壤酶活性测定方法
土壤酶活性测定方法土壤酶活性测定方法一、蔗糖酶: 3,5-二硝基水杨酸比色法1. 试剂配制(1)2N氢氧化钠200mL:称取16g 氢氧化钠,用蒸馏水溶解,定溶于200mL容量瓶中。
(2)3,5-二硝基水杨酸溶液1000mL:称5g二硝基水杨酸,溶于200mL2N氢氧化钠和500mL蒸馏水中,再加300g酒石酸钾钠,用蒸馏水稀释至1000mL(不超过7天)。
(3)1/15M 磷酸氢二钠1000mL:23.867g N a2HPO4·12H2O 溶于1000mL蒸馏水中。
(4)1/15M 磷酸二氢钾1000mL:9.078g KH2PO4溶于1000mL蒸馏水中。
(5)pH5.5磷酸缓冲液100mL:5 mL磷酸氢二钠(1/15M)加95mL磷酸二氢钾(1/15M) (6)8%蔗糖1000mL:称取80g蔗糖,用水溶解,稀释至1000mL。
(7)甲苯。
(8)标准葡萄糖溶液(1mg/mL)1000mL:取少量葡萄糖在真空干燥箱中,于55℃条件下真空干燥至恒重。
然后取1.00g葡萄糖溶于100ml蒸馏水中成标准葡萄糖母液(10mg还原糖/ml)。
取此母液10ml, 用蒸馏水定容至100mL即成标准葡萄糖液(1mg/ml);2. 操作步骤(1)标准曲线绘制:分别取标准葡萄糖液0.4mL,0.8 mL,1.2mL, 1.6mL, 2.0mL,2.8mL, 3.2mL于50 mL比色管中,另取一管做空白对照。
用蒸馏水补足至10mL。
加入3.0mL 3,5-二硝基水杨酸,沸水浴5min,随即在自来水流下冷却。
最后用蒸馏水稀释至50mL,并在分光光度计上于波长508nm处进行比色。
比色后,以光密度值为纵坐标,葡萄糖浓度为横坐标绘制成标准曲线。
(2)土壤蔗糖酶活性测定:称5.00g土样,置于50mL三角瓶中,注入15.0mL 8%蔗糖溶液,5.0mL pH5.5磷酸缓冲液和5滴甲苯。
摇匀混合物后,放入恒温箱,在37℃下培养24h。
土壤微生物量及土壤酶活性测定方法
土壤微生物量及土壤酶活性测定方法土壤中的微生物是维持土壤生态系统健康的重要组成部分,土壤酶活性则可以作为评价土壤肥力和生物活性的重要指标。
因此,在土壤微生物量和土壤酶活性测定方面的研究非常重要。
本文将介绍几种常用的土壤微生物量和土壤酶活性的测定方法。
一、土壤微生物量测定方法1.铺平法:将土壤样品铺平在玻璃板上,使用显微镜对土壤中的微生物进行直接观察和计数。
这种方法的优点是简单易行,但需要大量的时间和人力。
2.累积碳法:通过测定土壤中的有机碳含量来间接估算土壤微生物量。
有机碳水平与微生物量密切相关,所以可以通过测定土壤中的有机碳来推测微生物的数量和活性。
3.培养法:将土壤样品接种到适当的培养基上进行培养,然后通过菌落计数或直接计数来估算微生物的数量。
这种方法适用于数量较多的微生物,如细菌和真菌。
4.傅里叶变换红外光谱法(FTIR):通过测量土壤样品的傅里叶变换红外光谱,分析土壤中的微生物量。
该方法具有快速、准确、非破坏性等优点。
1.浊液法:通过观察测定液中的混浊度来测定土壤中的脲酶、过氧化氢酶等氧化酶的活性。
这种方法简单易行,但对于不同种类的土壤酶效果不一样。
2.比色法:采用酶底物与酶催化产物之间的化学反应,通过测定反应产物的颜色来估算土壤酶活性。
比色法可以用于测定脱氢酶、脱氢酶、脱氧核苷酸酶等酶的活性。
3.荧光法:将有机物和荧光试剂一起加入土壤样品中,经过反应后,在荧光分析仪中测定产生的荧光强度来测定土壤酶的活性。
荧光法适用于测定蔗糖酶、酚氧化酶和脱氢酶等酶的活性。
4.比浊法:通过加入酶底物后,观察土壤样品的混浊度来测定土壤中酶的活性。
比浊法适用于黄酶、脱氢酶等酶的活性测定。
5.电导法:通过测定土壤样品溶液中的电导率变化来估算土壤中酶的活性。
电导法适用于磷酸酶和脱氢酶等酶的活性测定。
总结起来,土壤微生物量和土壤酶活性的测定方法多种多样,选择合适的方法需要考虑样品特性和实验条件等因素。
每种方法都有其优点和局限性,研究者应根据需要选取合适的方法进行测定。
土壤酶的测定方法
土壤酶的测定方法土壤酶是指存在于土壤中的各种生物所分泌的酶。
它们在土壤中起着关键的生物地球化学功能,包括有机质分解、养分循环和抑制有害物质等。
由于土壤酶的活性会受到环境因素的影响,因此准确测定土壤酶活性对于了解土壤生态系统的功能和健康状态至关重要。
测定土壤酶活性的方法有多种,下面将介绍几种常用的方法。
1.pH酶效应法pH酶效应法利用不同pH条件下土壤酶活性的变化来测定。
该方法通常使用缓冲液调节土壤pH,然后测定不同pH下的酶活性。
酶活性与pH变化的关系可以反映土壤酶的稳定性和耐受性。
2.酶活法酶活法是测定土壤中特定酶活性的一种常用方法。
常见的酶活性测定有蔗糖酶、脱氢酶和过氧化物酶等。
该方法通常在实验室条件下进行,通过添加特定底物并测定反应产物来测定酶活性。
3.酶基质法酶基质法是利用添加特定底物并测定底物降解产物的方法来测定土壤酶活性。
常见的酶基质法有蔗糖基质法、硝酸盐还原酶基质法和过氧化物酶基质法等。
该方法通常在实验室条件下进行,通过添加特定底物并测定底物降解产物来测定酶活性。
4.比色法比色法是利用特定化学反应物质与酶活性相关产物发生反应产生颜色变化来测定酶活性的方法。
常见的比色法有3,5-二硝基水杨酸盐法、PCP法和甲醛法等。
该方法通常是测定土壤酶活性的一种快速、简单和经济的方法。
以上介绍的方法只是常用的几种,实际上还有许多其他方法可以用来测定土壤酶活性。
需要注意的是,不同的酶活性测定方法适用于不同的酶和底物,因此在选择方法时应根据具体情况进行选择。
综上所述,测定土壤酶活性是了解土壤生态系统功能和健康状态的重要手段之一、通过选择合适的方法,可以准确测定土壤酶活性,为土壤管理和保护提供科学依据。
土壤酶活活性测定方法
土壤酶活活性测定方法酶活性是指酶在一定时间内单位体积或质量产生的酶催化反应产物的数量。
酶活性在土壤中起着关键作用,因为它们能够将无机和有机物质转化为可供植物吸收的形式。
常用的土壤酶活性指标包括脲酶、过氧化氢酶、蔗糖酶、碱性磷酸酶等。
下面将介绍常见的土壤酶活活性测定方法:1.脲酶活性测定:脲酶能够催化尿素的水解,生成氨和二氧化碳。
用于测定土壤脲酶活性的方法是通过在土壤样品中加入一定浓度的尿素,经过一定时间后,测量生成的氨量来评估脲酶活性水平。
2.过氧化氢酶活性测定:过氧化氢酶是一种重要的抗氧化酶,能够将过氧化氢分解为氧气和水。
测定土壤中过氧化氢酶活性的方法是在土壤样品中加入过氧化氢底物,经过一定时间后,通过测量反应体系中氧气释放速率来评估过氧化氢酶活性水平。
3.蔗糖酶活性测定:蔗糖酶是一种能够催化蔗糖水解生成葡萄糖和果糖的酶。
测定土壤中蔗糖酶活性的方法是在土壤样品中加入一定浓度的蔗糖,经过一定时间后,测量生成的葡萄糖和果糖的量来评估蔗糖酶活性水平。
4.碱性磷酸酶活性测定:碱性磷酸酶是一种能够催化有机磷酸盐水解为无机磷酸盐的酶。
测定土壤中碱性磷酸酶活性的方法是在土壤样品中加入一定浓度的磷酸酯底物,经过一定时间后,通过测量反应体系中无机磷酸盐生成的速率来评估碱性磷酸酶活性水平。
除了以上几种常见的土壤酶活性指标外,还有其他一些指标可以用于评估土壤酶活性,如脱氢酶、葡萄糖氧化酶等。
具体选择测定方法应根据实际需求和研究目的来确定。
总结起来,土壤酶活活性测定方法是通过测定土壤中特定酶活性水平来评估土壤质量和生态系统功能的一种手段。
常见的土壤酶活性指标包括脲酶、过氧化氢酶、蔗糖酶、碱性磷酸酶等。
选择适当的测定方法需要考虑实际需求和研究目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考文献:
1、关松荫等,编著. 土壤酶及其研究法[M].农业出版社,1986.
2、周礼凯,编著. 土壤酶学[M].科学出版社
关松荫等,1986
蔗糖酶:比色法(1) P274-276
脲酶:比色法P294-297
蛋白酶:比色法9(1) P302-304
磷酸酶:磷酸苯二钠法(2) P312-313
过氧化氢酶:容量法P323
蔗糖酶
比色法
1、试剂
(1) 苯甲酸溶液0.25%
(2) 3,5-二硝基水杨酸
(3) pH5.5磷酸缓冲液
(4) 8%蔗糖溶液
(5) 甲苯
2、操作步骤
5克风干土→50mL三角瓶→15mL 8%蔗糖溶液→5mL pH5.5磷酸缓冲液→5滴甲苯
→摇匀放入恒温箱→37℃培养24h →取出迅速过滤→吸取滤液1mL →流水冷却3min →蒸馏水稀释至50mL →508nm比色
3、结果计算
蔗糖酶活性以24h后1g土壤葡萄糖的毫克数表示。
葡糖糖(毫克)= a×4
式中a——从标准曲线查得的葡萄糖毫克数
4——换算成1g土的系数
标准曲线:以光密度为纵坐标,以葡萄糖浓度为横坐标。
Y=0.229×(-0.0209)R2=0.9961
注意:
Y值为吸光度值,相当于表中的A平均
X值为根据上述公式计算的结果,相当于a值
葡萄糖含量为a* 4 (毫克)
蛋白酶
比色法(1)
1.试剂
(1)1%酪素溶液
(2)0.1N硫酸
(3)20%硫酸钠
(4)2%茚三酮液
(5)甲苯
(6)甘氨酸标准溶液
2.操作步骤
4g风干土→50ml三角瓶→20ml1%酪素液→1ml甲苯→30℃恒温箱24h→
2ml0.1N硫酸→12ml20%硫酸钠液→15min(6000转/min)离心→上清液2ml 50ml容量瓶→1ml茚三酮→沸水浴10min→蒸馏水稀释至刻度→500nm比色
3.结果计算
蛋白酶活性,以24h后1g土壤中氨基氮的毫克数表示。
NH2-N(mg)=a*5
式中 a——从标准曲线查得氨基氮毫克数
b——换算成1g土的系数
标准曲线:以光密度为纵坐标,以氨基氮浓度为横坐标。
Y=2.8236x+0.011R²=0.9968
X=(y - 0.011)/2.8236
过氧化氢酶
容量法
1.试剂
(1)0.3%的过氧化氢溶液
(2)3N硫酸
(3)0.1N高锰酸钾溶液
2. 操作步骤
2 g 风干土→100 ml 三角瓶→40 ml 蒸馏水→5 ml 0.3%过氧化氢溶液→复式
震荡机震荡20min→5ml 3N硫酸→过滤→去25ml 滤液→0.1N高锰酸钾滴定至
淡粉红色
3. 计算
土壤过氧化氢酶活力以及所消耗的高锰酸钾的ml 数来表示。
脲酶
比色法
1.试剂
(1)PH6.7柠檬酸盐缓冲液
(2)苯酚钠溶液
(3)次氯酸钠溶液
(4)10%尿素液
(5)甲苯
(6)硫酸铵
2.操作步骤
5g风干土→50ml三脚瓶→1ml甲苯→10ml 10%尿素液→20ml PH6.7柠檬酸盐
缓冲液→37℃恒温箱24h→过滤取3ml滤液→50ml容量瓶→加蒸馏水至20ml 4ml苯酚钠→3ml次氯酸钠液→20min后显色定容→1h内578nm比色
3.计算
脲酶活性以24h后1g土壤中NH3-N的毫克数表示。
NH3-N( mg ) = a×2
式中a——从标准曲线查得的NH3-N毫克数
z——换算成1g土的系数
磷酸酶
磷酸苯二钠比色法(2)
1、原理:
在碱性条件下,当存在氧化剂铁氰化钾时,酚被氧化成醌,醌又与4—氨基氨替比林络合成玫瑰色,颜色深度与酚量相关,通过比色测定游离酚量。
2、试剂
(1)PH9.8氯化铵—氢氧化铵缓冲液
(2)8%铁氰化钾液体
(3)3% 4—氨基氨替比林液
(4)0.5%磷酸苯二钠溶液
(5)酚的标准溶液
(6)甲苯
3、操作步骤
称5g风干土→50ml三角瓶→5滴甲苯→20ml0.5%磷酸苯二钠→37度恒温箱2h →滤液5ml →50ml容量瓶→20ml蒸馏水→0.25ml缓冲液→0.5ml4—氨基氨替比液→0.5ml铁氰化钾液→定容→15min内于510nm比色
4、结果计算
磷酸酶的活性,以2h后100g土壤中P2O5的毫克数表示。
P2O5(mg)=a*80*0.32*2.29
式中a——5ml滤液中酚的毫克数80——换算为100g土壤的系数
0.32——磷单位表示结果的系数 2.29——将P换算P2O5的系数标准曲线:以光密度为纵坐标,以浓度为横坐标。
y =2.2036x-0.0008 R²=0.994。