水情测报系统方案

合集下载

水库水雨情自动测报系统方案 (4)

水库水雨情自动测报系统方案 (4)

水库水雨情自动测报系统方案简介水库水雨情自动测报系统是一种用于定期自动监测水库水位和降雨情况的系统。

通过安装在水库周边的传感器和自动化设备,系统能够实时收集水库水位和降雨数据,并通过网络将数据传输到中央服务器,以便进行数据分析和监控。

这种系统能够提供准确的水库水雨情数据,方便水库管理人员和相关部门进行决策和应对突发事件。

系统组成水库水雨情自动测报系统主要包括传感器、数据采集装置、通信设备、中央服务器和数据分析软件等组成部分。

1. 传感器传感器是用于测量水库水位和降雨量的装置。

常用的水位传感器包括压力传感器和浮子传感器,能够准确测量水位高度。

降雨传感器则可以测量雨水的降落量。

2. 数据采集装置数据采集装置是用于接收传感器采集的数据,并进行处理和存储的设备。

它可以通过串口、以太网等方式与传感器以及其他设备进行连接,采集数据并进行实时处理。

数据采集装置还可以具备报警功能,当水位或降雨量超过预设阈值时,可以发送报警消息到中央服务器或相关人员。

3. 通信设备通信设备是实现数据传输的关键组件,它可以将采集到的数据通过无线网络或有线网络传输到中央服务器。

常用的通信设备包括无线传输模块、以太网模块等。

4. 中央服务器中央服务器是用于接收、存储和分析数据的设备。

它可以通过网络与数据采集装置进行通信,接收实时数据并存储在数据库中。

中央服务器还可以提供数据查询、报表生成、远程监控等功能。

5. 数据分析软件数据分析软件是用于对采集的数据进行分析和处理的工具。

通过对水库水位和降雨数据的分析,可以提供给水库管理人员重要的决策依据。

数据分析软件还可以生成各种报表和图表,用于数据展示和数据可视化。

系统工作原理水库水雨情自动测报系统的工作原理如下:1.传感器实时采集水库水位和降雨数据,并传输给数据采集装置。

2.数据采集装置接收并处理传感器数据,存储到本地数据库中。

3.数据采集装置将处理后的数据通过通信设备传输到中央服务器。

4.中央服务器接收并存储数据,并进行实时监控和分析。

水雨情测报实施方案

水雨情测报实施方案

水雨情测报实施方案一、背景介绍。

水雨情测报是指根据气象条件、水文条件和水利工程需要,对降水情况进行监测、预报和预测,为水利生产、防洪减灾、水资源管理和生态环境保护等提供科学依据和技术支持。

水雨情测报的实施方案对于保障人民群众生命财产安全、促进社会经济可持续发展具有重要意义。

二、实施目标。

1. 提高水雨情监测预报的准确性和可靠性,为水利工程运行管理提供科学依据;2. 加强水雨情信息的发布和传播,提高社会公众的防灾意识和自救能力;3. 推动水雨情监测预报技术的创新和发展,提升水利防灾减灾能力。

三、实施步骤。

1. 加强监测设施建设,提高监测数据的采集和传输能力;2. 完善预报模型和算法,提高预报准确性和时效性;3. 建立健全水雨情信息发布机制,加强信息传播力度;4. 加强水雨情监测预报技术的研发和应用,推动技术创新和发展。

四、实施措施。

1. 加强监测设施建设,包括更新和维护监测设备,提高监测精度和覆盖范围;2. 完善监测数据传输和处理技术,提高数据采集和传输效率;3. 建立多元化的预报模型和算法,结合气象、水文和水利工程数据,提高预报准确性;4. 加强水雨情信息发布平台建设,包括建立官方网站、手机App等多种发布渠道,提高信息传播覆盖面;5. 加强对水雨情监测预报技术人才的培养和引进,提高技术研发和应用水平。

五、实施效果评估。

1. 建立健全水雨情监测预报数据统计和分析体系,定期发布监测预报数据统计分析报告;2. 监测预报数据与实际降水情况进行对比分析,评估监测预报准确性和可靠性;3. 定期组织水雨情监测预报技术评估和应用效果评估,总结经验,改进工作。

六、总结。

水雨情测报实施方案的成功实施,对于提高水利工程运行管理水平,增强社会公众的防灾意识和自救能力,推动水雨情监测预报技术的创新和发展具有重要意义。

我们将不断完善实施方案,提高水雨情监测预报技术水平,为促进社会经济可持续发展作出更大贡献。

水库水情测报系统设计方案

水库水情测报系统设计方案

目录第1章概述 (4)1.1工程概况 (4)1.2王瑶水库水情测报系统现状 (4)1.3王瑶水库水情测报系统更新改造的必要性 (5)第2章总体设计 (6)2.1设计目标 (6)2.2设计原则 (6)2.3设计依据 (7)2.4系统组成 (8)2.4.1 信息采集系统 (8)2.4.2 信息化网络系统 (8)2.4.3 土建、供电、防雷 (8)2.4.4 数据库系统 (9)2.4.5 应用软件系统 (9)第3章信息采集系统 (10)3.1系统概述 (10)3.2站点分布 (10)3.3系统组成 (11)3.3.1 雨量站 (11)3.3.2 水位雨量站 (11)3.3.3 蒸发站 (12)3.4通信信道 (13)3.5工作体制 (13)3.5.1 自报体制 (13)3.5.2 自报-确认体制 (14)3.5.3 召测体制 (14)3.5.4 工作体制选择 (15)3.6主要设备技术指标 (15)3.6.1 遥测终端机(RTU) (15)3.6.2 雨量计 (15)3.6.3 水位计 (16)3.6.4 蒸发计 (16)3.6.5 溢流计 (17)3.6.6 GSM通信终端 (17)第4章信息化网络系统 (19)4.1系统概述 (19)4.2系统拓扑结构 (19)4.3主要设备技术指标 (20)4.3.1 工控机 (20)4.3.2 交换机 (20)4.3.3 VPN网关/防火墙 (21)4.3.4 服务器 (21)4.3.5 工作站 (21)4.3.6 笔记本电脑 (21)第5章应用软件系统 (22)5.1软件系统组成结构 (22)5.2中心站应用软件系统 (23)5.2.1 信息接收处理系统 (23)5.2.2 汛情动态监视系统 (24)5.2.3 信息查询系统 (25)5.3洪水预警预报系统 (27)5.3.1 系统概述 (27)5.3.2 系统功能 (28)5.3.3 水文预报模型库 (29)5.3.4 基于洪水预报的洪水调度 (30)5.4综合数据库系统 (31)5.4.1 综合数据库组成 (31)5.4.2 数据库管理系统 (32)第6章电源和防雷设计 (34)6.1电源系统设计 (34)6.1.1 遥测站供电 (34)6.1.2 中心站、分中心站供电 (34)6.2防雷设计 (35)6.2.1 防雷系统总体要求 (35)6.2.2 防雷地网的制作 (35)第7章土建工程 (37)7.1雨量站土建 (37)7.2水位雨量站土建 (37)7.3蒸发站土建 (37)第1章概述1.1工程概况王瑶水库位于延安市安塞县杏子河流域中游,是一座以防洪和供水为主,兼发电、灌溉、养殖等综合利用的大(Ⅱ)型水利枢纽工程,主要建筑物为2级,设计总库容2.03亿立方米。

水情测报系统

水情测报系统

水情测报系统1. 引言水情测报系统是一个用于监测和报告水域水情状况的系统。

水情是指水体的水文情况,包括水位、流量、水温等因素。

水情测报系统可以帮助水利部门、水文站点和相关机构实时了解水情信息,并及时采取相应的措施来应对水灾和优化水资源管理。

水情测报系统的目标是提供准确、及时的水情数据,帮助用户预测水情变化趋势,及时制定相应的应对方案。

本文将介绍水情测报系统的设计和实现,包括系统架构、功能模块、数据采集与处理、数据展示与分析等内容。

2. 系统架构水情测报系统采用分布式架构,主要由数据采集端、数据处理端和数据展示端组成。

2.1 数据采集端数据采集端负责收集水情相关数据,包括水位、流量、水温等信息。

数据采集端可以通过传感器、监测设备、人工观测等方式获取数据,并将数据上传至数据处理端进行处理和存储。

2.2 数据处理端数据处理端负责接收、处理和存储数据。

数据处理端可以利用数据挖掘、机器学习等技术对数据进行分析和预测,并将处理后的数据存储至数据库中。

同时,数据处理端可以根据用户需求生成报表、统计分析和预警信息,并将结果传输至数据展示端。

2.3 数据展示端数据展示端负责展示处理后的水情数据和相关信息。

数据展示端可以通过Web 界面、移动应用等形式将数据可视化,以便用户查看和分析。

用户可以通过数据展示端了解实时水情信息、查询历史数据、生成报表和图表等。

3. 功能模块水情测报系统主要包括数据采集模块、数据处理模块和数据展示模块三个功能模块。

3.1 数据采集模块•支持多种数据源,包括传感器、监测设备、人工观测等。

•实时采集水情数据,并进行数据质量检测和校正。

•数据上传至数据处理端进行处理和存储。

3.2 数据处理模块•接收并分析采集到的水情数据。

•利用数据挖掘和机器学习算法对数据进行预测和分析。

•根据用户需求生成报表、统计分析和预警信息。

3.3 数据展示模块•将处理后的水情数据通过可视化界面展示给用户。

•支持实时数据展示和历史数据查询。

4.水情自动测报系统工作流程(教材)

4.水情自动测报系统工作流程(教材)

水情自动测报系统工作流程目录第一章概述 (3)1.1 系统组成 (4)1.2 系统功能 (5)第二章信息采集 (6)2.1 信息源 (7)2.2 传感器 (7)2.3 遥测终端(RTU) (7)2.4 系统工作体制 (8)2.5 电源系统 (9)2.6 防雷和接地系统 (10)第三章信息传输 (10)3.1 通信设备 (11)3.2 通信方式 (12)3.2.1 超短波通信 (12)3.2.2 短波通信 (12)3.2.3 卫星通信 (12)3.2.4 PSTN通信 (12)3.2.5 GSM/GPRS通信 (12)3.2.6 混合通信方式 (13)第四章信息接收 (13)4.1 数据接收单元 (14)4.2 通信控制软件 (15)第五章数据处理系统 (16)5.1 计算机网络 (17)5.1.1 安全分区 (17)5.1.2 网络工作流程 (18)5.2 应用软件 (19)5.2.1 水调平台软件 (19)5.2.2 实时计算软件 (20)5.2.3 水文预报软件 (21)5.2.4 调度软件 (22)5.3 信息发布 (23)5.3.1 水情信息网站 (24)5.3.2 短信发布软件 (26)第一章概述水情自动测报系统(以下简称系统)是利用遥测、通信、计算机和网络等先进技术,完成流域或测区内水文、气象、汛情、工情等信息的实时采集、传输和处理,为工程防洪、兴利、优化调度提供服务的自动化系统。

系统由各种传感器、通讯设备、计算机网络及相关软件组合而成。

可分为遥测站、信息传输通道(简称信道)和中心控制站(简称中心站)三部分。

系统的工作流程可概括为信息采集、传输、接收和处理(见图1.1)。

图1.1 系统工作流程图1.1 系统组成1)遥测站。

可实现自动收集雨量、水位和其它参数的实时数据。

在中心站的控制下按一定方式把这些数据编排成脉冲信号,通过信道传递到中心站。

遥测站的仪器设备有雨量计、水位计、编码器、数传机、电台和电源设备等。

水情自动测报实施方案

水情自动测报实施方案

水情自动测报实施方案一、前言。

随着社会的发展和科技的进步,水资源的管理变得越来越重要。

而水情自动测报系统的建设和实施,对于水资源的监测和管理具有重要意义。

本文将针对水情自动测报实施方案进行详细的介绍和分析,以期为相关工作提供有效的指导和支持。

二、系统概述。

水情自动测报系统是指通过现代化的传感器和监测设备,对水资源的水位、流量、水质等数据进行实时监测和自动报送的系统。

其主要目的是实现水资源的动态监测和实时报送,为水资源管理部门提供及时、准确的数据支持。

三、系统组成。

1. 传感器设备,包括水位传感器、流量传感器、水质传感器等,用于实时监测水资源的相关数据。

2. 数据采集设备,用于采集传感器设备传输的数据,并进行处理和存储。

3. 通信设备,用于将采集到的数据通过网络传输至监测中心。

4. 监测中心,负责接收、处理和存储传感器设备传输的数据,并进行分析和报告。

四、系统实施方案。

1. 确定监测点位,根据实际情况确定水情自动测报系统的监测点位,包括河流、湖泊、水库等水体。

2. 设计传感器布设方案,根据监测点位的特点和需求,设计合理的传感器布设方案,确保数据的准确性和全面性。

3. 确定数据采集和传输方案,选择合适的数据采集设备和通信设备,确保数据的及时传输和存储。

4. 建设监测中心,建设配套的监测中心,配备专业的技术人员,确保数据的及时处理和分析。

5. 完善管理和应急预案,建立健全的管理制度和应急预案,确保系统的正常运行和数据的安全性。

五、系统运行与维护。

1. 定期巡检和维护,对传感器设备和数据采集设备进行定期巡检和维护,确保设备的正常运行。

2. 数据分析和报告,监测中心对采集到的数据进行分析和报告,及时向相关部门提供数据支持。

3. 应急响应,建立健全的应急响应机制,对突发事件进行及时响应和处理。

六、总结。

水情自动测报系统的建设和实施,对于水资源的监测和管理具有重要意义。

通过本文的介绍和分析,相信能够为相关工作提供有效的指导和支持,推动水情自动测报系统的建设和应用,为水资源的保护和管理做出贡献。

水井水情自动测报系统实施方案

水井水情自动测报系统实施方案

水井水情自动测报系统实施方案1. 引言水井水情自动测报系统是一种用于实时监测水井水位和水质情况的技术方案。

本文档旨在提供一个实施方案,以便有效地部署和操作该系统。

2. 方案概述该自动测报系统由以下几个组件组成:- 水位传感器:安装在水井内部,用于测量水位的高低。

- 水质传感器:安装在水井内部,用于测量水质的相关参数,如pH值、溶解氧等。

- 数据采集器:负责接收传感器的数据,并将其传输到数据处理中心。

- 数据处理中心:负责接收、存储和分析传感器数据,并生成相应的报告和警报信息。

- 用户界面:提供给用户查看实时数据、报告和警报信息的界面。

3. 实施步骤下面是水井水情自动测报系统的实施步骤:3.1 安装传感器首先,需要将水位传感器和水质传感器安装到水井内部。

确保传感器的位置合适,并正确连接传感器与数据采集器。

3.2 部署数据采集器和数据处理中心接下来,将数据采集器放置在合适的位置,以便收集传感器的数据。

同时,部署数据处理中心,确保其能够接收和存储传感器数据,并具备相应的数据分析功能。

3.3 连接传感器和数据采集器将水位传感器和水质传感器与数据采集器进行连接。

确保连接安全可靠,并测试传感器的正常运作。

3.4 设计用户界面根据用户需求,设计一个用户界面,使用户能够方便地查看实时数据、报告和警报信息。

确保界面友好直观,操作简单便捷。

3.5 系统测试和调试完成系统部署后,进行系统测试和调试。

确保传感器数据准确可靠,数据采集器和数据处理中心正常工作,并用户界面能够正确显示数据和报告信息。

4. 维护和监管水井水情自动测报系统的维护和监管是确保系统长期稳定运行的重要环节。

定期检查传感器和设备的运行状况,及时处理故障和异常情况,并对系统进行必要的升级和维护。

5. 总结通过本实施方案,我们可以有效地部署和操作水井水情自动测报系统,实现对水井水位和水质情况的实时监测。

这将有助于提高对水资源的管理和保护,为相关决策提供科学依据,以及及时警示潜在的水质问题。

小范围雨、水自动测报系统技术方案

小范围雨、水自动测报系统技术方案

小范围雨、水自动测报系统技术方案系统方案该系统主要为无人值守雨量站和水位自动监测点组成,监测系统的主要任务是测定降雨量、水位自然变化情况,它是一项基础和前期工作。

本系统各项设备符合自动测报要求;自动完成雨量、水位数据的采集、记录、传输,能通过太阳能保证设备自身的长期能量供应,不受外部电源影响。

设备的结构设计保证了防水性能。

能长期地、特别是在暴雨洪水等恶劣天气条件下可靠地工作,有效的避免了因外部环境影响而丢失雨量、水位数据。

1、系统功能①自动采集、存储(固态)降雨数据、水位变幅情况②三种数据收集方式:l 定时自报:由中心设定每日自报时刻,仪器到时自动将及时数据发送至中心l 定量自报:由中心设定报警雨量,仪器在降雨量、水位变幅达到报警值的情况下发送该时段的雨量、水位数据l 随机招测:通过手机或中心短信终端随机察看某站点的降雨量、水位实时、历史情况③通讯方式:l 短信方式:用于仪器的远程设置管理,数据的临时随机招测l 无线数传方式(需增加无线数传电台和无线数传中继电台):用于仪器的远程设置管理,数据的临时随机招测,仪器历史记录的读取等l 有线Modem方式(需增加有线Modem和有线电话线路支持):用于仪器历史记录的读取l 无线上网(GPRS)方式(需增加无限上网模块及GPRS网络支持):用于仪器的远程设置管理,数据的临时随机招测,仪器历史记录的读取等④本地功能:l 本地察看历史记录:日降雨量、水位和时降雨量、水位可本地察看l 本地修改仪器参数:纪录周期、站号、内部时钟、雨量分辨率等参数可本地设置⑤远程设置:纪录周期、站号、内部时钟、雨量分辨率、地区中心及省中心站电话号码、短信终端号码、自报时间、雨量、水位报警值等参数可远程设置(仅限短信方式和无线数传方式)⑥系统定时发送时钟同步信号,全系统时钟同步。

⑦能与其它有关的计算机网络系统进行数据通信。

2、系统工作体制系统工作体制对系统功能的实现有重要的影响,本系统采用查询应答与自报兼容的工作体制。

江河水库流域或水电厂水情自动测报系统设计方案

江河水库流域或水电厂水情自动测报系统设计方案

水库流域或水电厂水情自动测报系统设计方案1.概述1.1 流域及工程概况XX流域发源于赣、闽边界武夷山西麓广昌县灵华峰,自南向北流经广昌、南丰、南城、金溪、临川、进贤、南昌等县(市),在南昌县青岚湖注入鄱阳湖,河流全长344km。

抚河控制站李家渡水文站集水面积15811km2,李家渡以上河长275km,河道平均坡降2.11‰,流域形状呈菱形。

海拔高程在17~1800m之间。

流域内山地约占27%、丘陵约占63%、平原约占10%。

河源至南城称盱江,为上游河段,属山区性河流,河宽300m左右,河道平均坡降3.41‰;支流黎滩河在南城以下与盱江汇合后称抚河,南城至临川为抚河中游河段,属丘陵、平原河流,该河段除XX狭谷宽约200余m以外,河谷渐宽可达400~500m,两岸多位丘陵台地,河道平均坡降0.43‰;临川以下为下游河段,是广阔的冲积平原,河床宽达400~800m,河道平均坡降0.24‰,两岸的大片农田靠圩堤保护。

抚河流域支流众多,流域面积大于150km2的支流有13条,其中9条分布在XX坝址以上。

XX水电站位于江西省东南部抚河中游临川市鹏田乡XX村附近,地理坐标为东经116°38′,北纬27°45′,抚河中游XX狭谷段,坝址以上集水面积7060 km2,占全流域(李家渡水文站以上)面积的44.7%。

坝址以上河长187 km,河道平均坡降2.95‰,坝址以上流域重要由盱江和支流黎滩河组成,盱江流域集水面积4159 km2,黎滩河集水面积2478 km2。

流域内已建大型水库1座、中型水库7座,XX水库位于黎滩河,为一座大一型水库,控制集水面积2376 km2,总库容12.14×108 m3,7座中型水库分别位于盱江及黎滩河各支流上,控制集水面积454.8 km2,累计总库容1.87×108 m3。

XX水电站是以防洪、灌溉为主,兼顾发电、供水和航运等综合运用的大二型水利水电枢纽工程,重要建筑物设计洪水标准为12023一遇,校核洪水标准为102023一遇。

水文水情自动测报系统

水文水情自动测报系统

水文(水资源)自动测报系统解决方案1 组网方案简述1.1 水文自动测报系统概述水文自动测报系统属于应用现代遥测、通信、计算机技术,是完成江河流域降雨量、蒸发量、河流湖泊水位、海洋潮位、流量(流速)、风向风速、水质、闸坝的闸门开度、渗压、土壤墒情等数据的实时采集、报送和处理应用的信息系统,属于非工程性防洪措施。

它能将某一流域或区域内的水文气象、水资源信息在短时间内传递至决策机构,以便进行洪水预报和水资源优化调度,减少水害损失,提高水资源的利用率,可以产生巨大的社会效益和经济效益。

根据水文自动测报系统规模和性质的不同,可将其分为水文自动测报基本系统和水文自动测报网两部分。

水文自动测报基本系统由中心站、遥测站(包括监测站)、通信系统(包括中继站)组成。

水文自动测报网是通过计算机的标准接口和各种信道,把若干个基本系统连接起来,组成进行数据交换共享的水文自动测报网络。

水文自动测报系统多用在重点防洪地区及大型水利工程上,特别是在流域性、区域性的水文数据采集、传输和处理、应用的自动化方面起到了积极作用。

我国的水文自动测报系统从70年代末起步,在浙江省浦阳江流域首先应用。

80年人初期为引进阶段,先后在淮河王家坝区间、长江流域汉江丹江口水库、黄河的三门峡至花园口建成进口设备的水情自动测报系统。

1985年以后为国产设备研制、定型阶段,有淮河正阳关以上流域水文自动测报系统、黄河流域陆浑小区自报式水情自动测报系统、长江流域汉江的黄龙滩水库水情自动测报系统等。

90年代后为推广应用阶段。

水文自动测报系统包括三种工作制式:自报式、查询应答式和混合式。

自报式工作制式:在遥测站设备控制下每当被测参数发生一个规定的增减量变化或按设定的时间间隔,即向中心站发送所采集的数据,接收端的数据接收设备始终处于值守状态。

现在已经对传统的自报式工作制式进行了改进,使自报式工作制式有了较大发展。

改进后自报式也是双向通信方式,不是过去的纯单向工作方式。

水情自动测报系统-技术方案

水情自动测报系统-技术方案

1技术方案-软件1.1项目概况1.2系统需求。

1.2.1信息接收处理系统信息接收处理系统应基于各测站的水情信息自动采集系统,通过计算机网络和软件实现的自动化处理进入为本系统运行配置的数据库,实现对水情相关资料进行实时测报的功能,应满足不同数据源的接收方式维护,建立实时水情数据库、历史水情数据库、模型库、预报库等其它专用库,按照满足水情预报成果的制作与发布要求。

信息接收处理系统主要功能包括:数据接收处理、数据库管理、标准数据库创建。

1.2.2水文预报系统水文预报系统的开发,需采用先进的网络通信、计算机技术以及信息处理和洪水预报模式,坚持实用性、可靠性、先进性、前瞻性的原则。

建立满足水利枢纽工程运行服务的交互式洪水预报系统。

1.2.2.1系统功能水文预报作业系统应采用多种预报方法和预报模型的平行运行,并可进行多方案成果的交互式分析、比较,为水库的预报调度运用决策提供技术支持。

运行模式可采用自动定时预报和交互式预报两种模式并举。

水文预报系统主要功能包括:水情数据预处理、水雨情信息查询、预报模型(方法库)指定、作业预报计算、考虑预见期降雨的预报计算、水文预报成果交互式分析和预报精度评定。

1.2.2.2预报项目预报项目为入库流量、坝址区重要站水位;预见期包括6h、12h、24 h、48h定时过程预报和洪峰预报。

1.2.2.3运行功能要求短期作业预报运行程序,采用交互方式指定本次使用的模型程序,以方便加入新的预报方法库和在不同的预报站上进行不同的预报模型的组合。

系统具有实时校正的交互修正等综合分析功能;具有利用降雨综合分析信息,对预见期不同降雨量级水文情势变化的模拟功能。

具有较为完善的信息检索功能。

作业预报系统还应包括成果输出、精度评定、方案参数率定等配套功能。

1.2.2.4水文预报系统集成为了便于用户使用,应将短、中期水文预报的全部功能集成到一个总平台上,并具有水雨情信息查询、报表生成、资料整理归档等功能,供用户完成全部短、中期水文预报等相关的工作。

水情自动测报系统-技术方案

水情自动测报系统-技术方案

1技术方案-软件1.1项目概况1.2系统需求。

1.2.1信息接收处理系统信息接收处理系统应基于各测站的水情信息自动采集系统,通过计算机网络和软件实现的自动化处理进入为本系统运行配置的数据库,实现对水情相关资料进行实时测报的功能,应满足不同数据源的接收方式维护,建立实时水情数据库、历史水情数据库、模型库、预报库等其它专用库,按照满足水情预报成果的制作与发布要求。

信息接收处理系统主要功能包括:数据接收处理、数据库管理、标准数据库创建。

1.2.2水文预报系统水文预报系统的开发,需采用先进的网络通信、计算机技术以及信息处理和洪水预报模式,坚持实用性、可靠性、先进性、前瞻性的原则。

建立满足水利枢纽工程运行服务的交互式洪水预报系统。

1.2.2.1系统功能水文预报作业系统应采用多种预报方法和预报模型的平行运行,并可进行多方案成果的交互式分析、比较,为水库的预报调度运用决策提供技术支持。

运行模式可采用自动定时预报和交互式预报两种模式并举。

水文预报系统主要功能包括:水情数据预处理、水雨情信息查询、预报模型(方法库)指定、作业预报计算、考虑预见期降雨的预报计算、水文预报成果交互式分析和预报精度评定。

1.2.2.2预报项目预报项目为入库流量、坝址区重要站水位;预见期包括6h、12h、24 h、48h定时过程预报和洪峰预报。

1.2.2.3运行功能要求短期作业预报运行程序,采用交互方式指定本次使用的模型程序,以方便加入新的预报方法库和在不同的预报站上进行不同的预报模型的组合。

系统具有实时校正的交互修正等综合分析功能;具有利用降雨综合分析信息,对预见期不同降雨量级水文情势变化的模拟功能。

具有较为完善的信息检索功能。

作业预报系统还应包括成果输出、精度评定、方案参数率定等配套功能。

1.2.2.4水文预报系统集成为了便于用户使用,应将短、中期水文预报的全部功能集成到一个总平台上,并具有水雨情信息查询、报表生成、资料整理归档等功能,供用户完成全部短、中期水文预报等相关的工作。

太平江一级水电站水情自动测报方案

太平江一级水电站水情自动测报方案

太平江一级水电站水情自动测报方案太平江一级水电站水情自动测报系统工程建设项目,是一个复杂、专业的信息自动化系统工程,涉及到水文、电力系统、气象、通信、计算机、信息、集成等多种技术,包括数据采集与处理、数据库管理、流域监视、越限报警、图形与报表、数据通信、水务计算、WEB浏览系统等众多应用。

水情信息;太平江;系统;测报一、工程概况太平江一级水电站位于缅甸东北克钦邦(Kachin)境内的太平江上,紧邻中缅边境,工程区上游为中国云南省德宏傣族景颇族自治州盈江县,坝址位于中缅37号界桩下游约2km河段内,坝址地理坐标为东径97°31′′,北纬24°25′,坝址控制太平江流域集水面积6010km2,上游中国境内建有大盈江1~4级水电站。

电站装机容量为240MW,工程规模为中型,工程等别为Ⅲ等,其主要建筑物为3级。

水库正常蓄水位为255m,相应库容为472×104m3,P=2%设计洪水位为255m,P=0.2%校核洪水位为257m,相应库容为578×104m3,属小(1)型水库中型电站,水库最大坝高46m,大坝采用砼重力坝,据(DL5108-2022)《水电枢纽工程等级划分及设计安全标准》规定,水库设计洪水标准采用50年一遇,校核洪水标准采用500年一遇,厂房设计洪水标准采用50年一遇,校核洪水标准采用200年一遇。

二、流域概况太平江发于中国云南省保山市腾冲县西北面高黎贡山西南支脉南侧,在中国境内称为大盈江,属伊洛瓦底江水系。

太平江头由大岔河、胆扎河和轮马河组成,三河汇合后称为槟榔江,河流自北向南蜿蜒流至德宏州盈江县旧城下拉线寨附近左纳南底河支流,槟榔江与南底河交汇后在中国境内称为大盈江,续向西南纵贯平坦的盈江坝子,经虎跳石峡谷,在洪崩河口中缅两国37号界桩处进入缅甸,称太平江,继而在缅甸巴莫附近汇入伊洛瓦底江,最终注入印度洋。

大盈江流域呈狭长状,地势自北向南呈阶梯状展布,分水岭高程介于1000~3500m之间,属中、低山地貌,河流水系呈不对称发育,除左支南底河外,左岸还有南伞河、南怀河、户撒河、古利河等,右岸主要支流有南挡河、盏达河、水槽河、水东彪河、郎崩河、户宋河等。

德化涌溪梯级电站水情自动测报系统总体方案设计

德化涌溪梯级电站水情自动测报系统总体方案设计

5 ・ 6
小水电 2 8 0 年第5 ( 1 期) 0 期 总第 4 3
利 用其强 大 的网络体 系 和数据 处理能 力 ,发挥 其 良 好 的人机 界 面及 监控 节点 易于扩 充等 功 能 ,实 现水 情 和其它生 产设 备信 息平 台一致 。
计算机应用
纤传输 的各水 库 坝顶 的水位 、降雨 数据 ,预 处理后 将 水 、雨数据 打包 通过 串 口向梯级 计算 机监 控系统 传送 。
型号水 位测 量站及 雨量站 接入需 求 。此外 ,系统应 能适 应计算 机硬件 和软件 技术 的发展 ,具 备局 部设 备更 新换代 能力 。 22 泉 州水利部 门的水雨情 自动 测报 系统现状 .
为年 降水总 量 的 7 .% 。 32 涌溪三 级水库 电站是涌溪 流域首 期开发 建设 的 骨干 电 站 。 坝 址 以 上 集 水 面 积 24k 2 2 m ,总 库 容
流 。多年平 均 降水量 l70 3m 0 . m,年 降水 量分 布 不 均匀 ,多集 中 于梅 雨 和 台风 季 节 ,4~9月 降水 量
节 ,地 质 灾 害发 生 率 高 ,容 易造 成 交 通 中 断。 而 水 、雨 情 信息对 主 汛期 的水 库 调 度 运行 尤 为重 要 , 因此 系统 的准确性 和可靠 性必须 从设备 的选 型贯穿 至信 号传输 通道等 环节 。 2 )开放性 和可 扩展 性 系统设 有接 口预 留 ,满 足 日后不 断增 加 的不 同
实现 了对 3 座电站的远程实时监控,生产现场实行 少人 值守 。
2 1 设 计 原 则 .
1 )准确性 和可靠 性
心地域 分 布非常广 ,地形 变化 复杂 ,梅雨 和台风季
嶂 ,山体雄 伟 ,河 床坡 降大 ,集流快 ,属 山区性 河

河流水情自动测报系统实施方案

河流水情自动测报系统实施方案

河流水情自动测报系统实施方案介绍本方案旨在建立一个河流水情自动测报系统,以实现对河流水情的24小时自动监测和数据采集,为河流水文化建设提供数据支撑。

方案内容1. 系统硬件- 选择高精度的水位传感器和水流速传感器等硬件设备,并保证设备具有防水性能,以应对恶劣的自然环境;- 通过高清晰的摄像头等设备拍摄并记录现场实况,并配合音视频数据分析,为自动测报系统提供更为全面的数据支撑。

2. 系统软件- 以MySQL为数据库,建立专门的数据存储和管理系统;- 通过Java、Python等编程语言编写监控程序,实现对水位变化、水流速度等数据的自动采集和处理,以及数据的自动分析、绘制和报警;- 为系统提供可视化的界面,并具有云存储功能,便于用户随时查看水情数据。

方案优势1. 取代传统的人工测报方式,实现自动化的数据采集和处理,提高数据的精准性和实时性;2. 具有多种传感器和设备,能够同时监测多种水文因素,为河流的生态环境建设提供有效支持;3. 建立专门的数据库和数据管理系统,提高数据的安全性和可管理性;4. 具有可视化的界面和云存储功能,便于用户随时随地查看水情数据,提高了数据的可用性。

方案实施1. 根据具体要求制定系统设计方案,并进行设备采购和数据管理系统的搭建;2. 将监控程序部署在系统硬件上,并通过Wifi等网络方式连接到数据库;3. 进行系统测试和调试,完成系统的上线运行。

总结河流水情自动测报系统实施方案,以先进的技术手段取代了传统的人工测报方式,自动采集和处理水文数据,提高了数据的精确性和实时性。

将其应用于河流水文化建设中,不仅有利于保护和改善河流环境,也为防洪减灾等方面提供了数据支持。

水文水情自动测报系统设计

水文水情自动测报系统设计

水文(水资源)自动测报系统解决方案1 组网方案简述1.1 水文自动测报系统概述水文自动测报系统属于应用现代遥测、通信、计算机技术,是完成江河流域降雨量、蒸发量、河流湖泊水位、海洋潮位、流量(流速)、风向风速、水质、闸坝的闸门开度、渗压、土壤墒情等数据的实时采集、报送和处理应用的信息系统,属于非工程性防洪措施。

它能将某一流域或区域内的水文气象、水资源信息在短时间内传递至决策机构,以便进行洪水预报和水资源优化调度,减少水害损失,提高水资源的利用率,可以产生巨大的社会效益和经济效益。

根据水文自动测报系统规模和性质的不同,可将其分为水文自动测报基本系统和水文自动测报网两部分。

水文自动测报基本系统由中心站、遥测站(包括监测站)、通信系统(包括中继站)组成。

水文自动测报网是通过计算机的标准接口和各种信道,把若干个基本系统连接起来,组成进行数据交换共享的水文自动测报网络。

水文自动测报系统多用在重点防洪地区及大型水利工程上,特别是在流域性、区域性的水文数据采集、传输和处理、应用的自动化方面起到了积极作用。

我国的水文自动测报系统从70年代末起步,在浙江省浦阳江流域首先应用。

80年人初期为引进阶段,先后在淮河王家坝区间、长江流域汉江丹江口水库、黄河的三门峡至花园口建成进口设备的水情自动测报系统。

1985年以后为国产设备研制、定型阶段,有淮河正阳关以上流域水文自动测报系统、黄河流域陆浑小区自报式水情自动测报系统、长江流域汉江的黄龙滩水库水情自动测报系统等。

90年代后为推广应用阶段。

水文自动测报系统包括三种工作制式:自报式、查询应答式和混合式。

自报式工作制式:在遥测站设备控制下每当被测参数发生一个规定的增减量变化或按设定的时间间隔,即向中心站发送所采集的数据,接收端的数据接收设备始终处于值守状态。

现在已经对传统的自报式工作制式进行了改进,使自报式工作制式有了较大发展。

改进后自报式也是双向通信方式,不是过去的纯单向工作方式。

水情自动测报系统的日常管理和维护方案及常见问题

水情自动测报系统的日常管理和维护方案及常见问题

水情自动测报系统的日常管理和维护方案水情自动测报系统概况水情自动测报系统是综合运用计算机、电子、通信、遥感、水文、气象等多学科技术,完成对江河、水库和流域的降雨量、水位、流量、土壤蒸发、机组发电、闸门启闭等水情信息的实时采集、传输、处理、存储管理、预报、自动生成调度方案和发布的信息系统。

通俗的说:它是江河和水库调度的“千里眼”,是水调自动化的重要组成部分,它为决策人员合理准确的调度提供科学的依据。

水情自动测报系统系统主要由水文传感器、数据采集终端(RTU)、数据传输信道、通信设备、应用软件、数据处理计算机和供电电源等构成。

若以信息传输方式来区分,可分为有线传输(ISDN)、微波、公用电话线(PSTN)、短波、超短波(UHF/VHF)、卫星(Inmartsa-C,Vsat)和移动短信(GSM、CDMA、GPRS)等方式。

若以其所处位置不同来区分,系统又可分为遥测站、空间站、中继站(地面站、网管中心)和中心站。

空间信道遥测站中心站图示1、水情自动测报系统工作流程图一、做好基础工作1、收集资料、建立档案水情自动测报系统运行管理的一项重要的基础工作就是建立完整的技术资料档案。

内容包括:设备的技术说明书、各种图纸、系统的各项设计报告、系统的安装和调式报告、系统的试验和验收报告、系统运行日志、系统的月度和年度运行报告、各类报表、设备台帐、系统的日常维护和检修记录、遥测站档案(包括遥测站所在地、代管人、安装及投运时间、测站属性、通信方式、遥测站改造和维护记录、故障情况和处理记录等)等。

2、制定运行规范要根据本系统的实际情况,制定一套切实可行的系统运行管理规范和操作规程,规范应对整套系统运行、操作、管理、维护、故障检修和考核做出具体的规定,使工作人员有章可循。

3、编写运行报告根据每日记录,统计出系统的可用率、系统的畅通率,数据的正确率(与人工报数据比较)和预报精确度等。

编写系统的月度和年度运行报告,内容包括:系统通信情况、中心站运行和维护情况、中继站与遥测站的运行和维护情况、系统的升级改造、系统的故障以及处理情况、数据精度分析、系统尚存在的问题和处理意见等。

水库水雨情自动测报系统方案

水库水雨情自动测报系统方案

水库水雨情自动测报系统方案1. 引言水库水雨情自动测报系统是指利用现代化的传感器、数据采集装置和通信技术,实现对水库水位和降雨量的实时监测和自动报告的系统。

该系统可以提供准确的水库水情和雨情数据,为水库调度和洪水预警提供重要参考依据,促进水资源的科学管理和合理利用。

本文档旨在提供水库水雨情自动测报系统的设计方案,包括系统的整体架构、主要功能模块和工作流程,以及相关技术和设备的选择和配置。

2. 系统架构水库水雨情自动测报系统的整体架构如下图所示:graph TBA[传感器] --> B[数据采集装置]B --> C[数据存储与处理服务器]C --> D[报警与报表生成模块]•传感器:采用水位传感器和雨量传感器,实时监测水库水位和雨量数据。

•数据采集装置:负责接收传感器数据,并通过通信技术将数据传输到数据存储与处理服务器。

•数据存储与处理服务器:负责存储和管理水库水情和雨情数据,并对数据进行处理和分析,生成报表和报警信息。

•报警与报表生成模块:根据预先设定的阈值和规则,对水位和降雨量数据进行实时监测,一旦超过设定的阈值,系统将生成报警信息。

同时,系统可以根据需求生成水情和雨情报表。

3. 主要功能模块3.1. 传感器模块传感器模块负责实时监测水库水位和雨量数据,并将数据传输给数据采集装置。

常用的水位传感器包括压力传感器、浮子传感器和超声波传感器;常用的雨量传感器包括雨滴传感器和雨量杆。

3.2. 数据采集装置模块数据采集装置模块负责接收传感器模块传输的数据,并通过通信技术将数据传输给数据存储与处理服务器。

数据采集装置需要具备稳定可靠的通信功能,常用的通信技术包括以太网、无线通信和Modbus通信。

3.3. 数据存储与处理服务器模块数据存储与处理服务器模块负责存储和管理水库水情和雨情数据,并对数据进行处理和分析。

服务器应具备高性能的处理能力和稳定可靠的存储功能,并提供数据查询、计算和报表生成等功能。

水雨情测报实施方案

水雨情测报实施方案

水雨情测报实施方案一、前言。

水雨情测报是指根据气象、水文等相关数据,预测未来一段时间内的降雨情况,为防汛抗旱、农业生产、水资源管理等提供重要参考依据。

水雨情测报的准确性和及时性对于社会生产生活具有重要意义,因此,制定一套科学、合理的水雨情测报实施方案显得尤为重要。

二、水雨情测报实施方案的基本原则。

1.科学性,水雨情测报实施方案应基于科学的气象、水文等数据和模型,确保预测结果的准确性和可靠性。

2.及时性,水雨情测报应及时更新,确保相关部门和群众能够及时获取最新的降雨情况预测信息。

3.精准性,水雨情测报应该尽可能精准地预测降雨的时间、强度、范围等关键信息,为相关部门和群众提供有针对性的防范措施。

4.服务性,水雨情测报实施方案应服务于社会生产生活的各个领域,为农业、水利、交通等部门提供决策支持,为广大群众提供生活便利。

5.持续性,水雨情测报实施方案应具有持续性,能够长期有效地为社会生产生活提供可靠的降雨情况预测信息。

三、水雨情测报实施方案的内容和步骤。

1.数据采集,水雨情测报实施方案首先需要建立完善的气象、水文等数据采集系统,确保数据的准确性和完整性。

2.数据分析,对采集到的气象、水文等数据进行分析,建立相应的模型和算法,预测未来一段时间内的降雨情况。

3.预测发布,根据数据分析的结果,及时发布降雨情况的预测信息,包括降雨时间、强度、范围等关键信息。

4.应急响应,针对预测发布的降雨情况,相关部门应及时制定相应的防汛抗旱、农业生产、水资源管理等应急响应措施。

5.监测评估,对水雨情测报的实施效果进行监测评估,不断优化和完善水雨情测报实施方案。

四、水雨情测报实施方案的保障措施。

1.技术支持,加强与气象、水文等专业机构的合作,充分利用先进的技术手段和设备,提高水雨情测报的预测能力和水平。

2.人才培养,加强水雨情测报相关人才的培养和引进,提高水雨情测报实施方案的专业化和科学化水平。

3.设施建设,加大对气象、水文等数据采集设施的建设投入,确保数据采集系统的完善和稳定运行。

长洲水利枢纽水情自动测报系统方案设计

长洲水利枢纽水情自动测报系统方案设计


1 概 况
1 1 工 程简介 .
18 01T, 0 UI局部 的暴雨 中心 区年雨 量达 20 0rT T 0 ll f l
左 右。
坝址 以上流域属亚热带季风区, 其洪水是 由多 次连续暴雨所形成。由历年天气资料分析统计 , 造
成本 流域连 续暴雨 或大 暴雨 的天气 系统 主要 是地 面 冷锋 或静止 锋 、 高空切 变线 、 南低 涡和 台风等 。以 西 上天气 系统 造 成 的 流 域 降雨 历 时 长 、 围广 、 度 范 强 大, 由于流域 面积 大 , 雨频 繁 , 水 往 往 由流 域 多 暴 洪 次连 续暴雨所 形成 , 水主要特 点是 峰高量 大 、 时 洪 历 长 、 水过程 多呈 复峰 型 , 洪 一般 较大 的洪水过 程都在
6 1 0 m 3 s 水利枢 纽正 常蓄水 位 2 . m, 2 / O6 汛期运 行

水位为 1 . m, 86 总库容 5 6亿 m , 3调节库容 10亿 .
m3 。 1 2 流域概 况 .
3  ̄4 左右; 中 7d 0 0d 其 洪量 占整个洪水过程总量 的 3 %~5 % ,5d 量 占 6 %以上 。 0 0 1 洪 0 流域 的雨 季 迟早 不一 , 因而 主要 干 支 流洪 水早
平市 与郁 江汇合 后 称 浔 江 ; 江在 广 西梧 州 市 与桂 浔 江汇合后 始称西 江 ; 江 向东 流 至广 东 三水 思 贤 与 西
洪水多发生在 6 ~9月; 郁江的洪水 出现最迟 , 而且 时间跨度较大 , 发生在 6 0月。长洲水利枢纽干 ~1
流河段 的洪 水期 为 5 1 间 , ~ 0月 大洪 水 多 出现 在 6
站 。支 流桂 江 有 昭 平 站 、 江 ( 南 ) , 别 建 于 马 京 站 分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水情测报系统方案
一、方案概述
水情测报系统方案适用于水利管理部门远程监测水库水位、雨量等实时数据,同时支持远程图像监控,为保障水库的适度蓄水和安全度汛提供了准确、及时的现场信息。

它做到了水库水雨情的实时监测、实现了水库的信息化管理,在保护人民生命、财产安全方面发挥了重大作用。

二、水库管理难点
l点多分散
l安全隐患大
l位置偏僻
l管理人员少
l交通不便
l多数无电源
三、水情测报系统方案解决方案
1、系统构成
3、系统特点
四、水情测报系统软件
1、主要特点:
★ B/S结构,支持远程访问
★兼容多种通信方式
★支持图像、视频监控
★无缝对接其它平台软件
3、手机APP辅助管理
五、水情测报系统设备
1、现场监测设备
2、现场监测核心设备——GPRS/CDMA低功耗RTU
DATA-6301(无显示) DATA-6311(液晶显示) 3、特点
1)接口丰富,兼容多种类型、多个厂家设备。

2)抗高温,耐严寒。

3)超低功耗,平均工作电流仅10mA;节省配套设备成本;运输、安装方便。

4、产品资质
水文监测数据通信规约(SL651-2014)
水资源监测数据传输规约(SZY206-2012)
四川省水文测报系统技术规约(SCSW008-2011)
加密传输规约
水文自动测报系统设备遥测终端机(SL 180-2015)
水文自动测报系统技术规范(SL 61-2003)
水资源监控设备基本技术条件(SL426-2008)
特殊区域水文、水资源数据安全采集系统RTU追加测试
5、主要技术参数:
硬件配置:6路PI、4路DI、4路AI 、3路DO、2路串口。

存储容量:4M、8M、16M、32M(可选)。

供电电源:10V~30V DC。

外形尺寸:145x100x65mm。

待机电流:<0.1mA/12V。

平均工作电流:≤10mA/12V。

工作环境:温度:-40~+85℃;湿度:≤95%。

设参方式:串口设参、远程设参、蓝牙设参(可选)。

相关文档
最新文档